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Abstract

Recent studies have shown that few-shot learn-
ing enables large language models (LLMs) to
generate training data for supervised models at
a low cost. However, for complex tasks, the
quality of LLM-generated data often falls short
compared to human-labeled data. This presents
a critical challenge: how should one balance
the trade-off between the higher quality but
more expensive human-annotated data and the
lower quality yet significantly cheaper LLM-
generated data? In this paper, we tackle this
question for a demanding task: conversational
semantic frame analysis (SFA). To address
this, we propose a novel method for synthesiz-
ing training data tailored to this complex task.
Through experiments conducted across a wide
range of budget levels, we find that smaller bud-
gets favor a higher reliance on LLM-generated
data to achieve optimal cost-efficiency.

1 Introduction

It is costly to construct training data with human
annotation for supervised learning models (SLMs).
In recent years, large language models (LLMs) like
GPT-4 have demonstrated remarkable abilities in
generating coherent text, understanding context,
and following complex specifications to accom-
plish tasks (Brown et al., 2020; OpenAI, 2024).
Therefore, there have been many attempts to lever-
age existing LLMs as data synthesizers to generate
training data for SLMs, aiming to reduce data costs.
Studies have indicated that using LLM-generated
data can cut costs significantly while achieving a
comparable performance against human-annotated
data for certain tasks (Wang et al., 2021; Ding et al.,
2023).

In this paper, we explore the feasibility of syn-
thesizing training data for conversational semantic
frame analysis (SFA). SFA captures knowledge ex-
changed between speakers by extracting semantic
frames, which consist of a trigger (the main action)

Expert Interviewer

Time

ObjectPLACE

Temperature

BAKE_FRY

Line up these Gyozas and first 

fry them for about two minutes.

Is it okay to use high heat?

Yes, that will be fine.

Figure 1: A dialogue piece with semantic frame annota-
tion. Green indicates a trigger, and orange indicates an
argument. The argument-trigger relation is illustrated
with arrows. This is a simplified demonstration trans-
lated from Japanese.

and its arguments (details of the event). For exam-
ple, in Figure 1, the triggers "line up" (PLACE) and
"fry" (BAKE_FRY) are annotated, with correspond-
ing arguments like Object, Time, and Temperature
linked to them. An important characteristic of these
dialogues is the frequent repetition and confirma-
tion of technical details. For example, in Figure 1,
the interviewer’s question introduces a new argu-
ment to an existing frame. Refer to Figure 12 in
Appendix for a longer and more complex annota-
tion example.

We expect LLM-generated data for SFA to be of
lower quality than human-annotated data, as SFA is
significantly more complex than the tasks typically
addressed in previous LLM-based data synthesis
studies (Wang et al., 2021; Ding et al., 2023; He
et al., 2024; Josifoski et al., 2023). These studies
have primarily focused on simpler tasks such as
sentence-level labeling, extracting relation triplets,
or tasks with fewer recurring entities and relations.
Furthermore, Ma et al. (2023) demonstrated that
few-shot LLMs generally underperform in many
information extraction tasks, such as named en-
tity recognition, compared to supervised baselines.
Given these findings, it is reasonable to expect that
LLM-generated data for SFA will also be of lower
quality than human-annotated data.

Given that LLM-generated data for SFA may
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Figure 2: The overview of the cost-efficiency analysis. We mixed human data and LLM-generated data to create data
mixtures up to a specific budget. The ratio of human data to LLM-generated data was adjusted in increments of 0.1.
These data mixtures were then used to train our SFA model to identify the ratio that achieves optimal cost-efficiency.

be of lower quality compared to human data, it
is not feasible to simply replace all human data
with LLM-generated data, despite the latter being
significantly cheaper. Instead, it becomes essen-
tial to consider the trade-off between the higher
quality of human data and the lower cost of LLM-
generated data. This trade-off is particularly rele-
vant in scenarios where the budget is limited. This
raises the research question: How to adjust the ra-
tio of human to LLM-generated data within a fixed
budget for optimal performance?

We address this question by synthesizing LLM-
generated training data and combining it with
human-annotated data to train the SLM, evaluating
whether this combination achieves optimal perfor-
mance within the budget (Figure 2). This process
is repeated across a wide range of budget settings,
from as low as $200 to as high as $12,800. For each
budget level, we experiment with different ratios
of human and LLM-generated data to identify the
combination that maximizes cost-efficiency.

We propose a novel method for synthesizing
training data using an LLM for the challenging
task of SFA, generating two types of data: Human-
Pseudo (HP) and Pseudo-Pseudo (PP). PP data
comprises pseudo-dialogues and pseudo-labels that
are both synthesized by an LLM, whereas HP data
combines human dialogues sampled from a human-
annotated dataset with pseudo-labels generated by
the LLM. By comparing the performance of mod-
els trained on HP and PP data, we aim to determine
whether the text component (dialogues) or the label
component plays a more critical role in improving
SFA performance in this situation.

Our empirical results reveal a clear trend across
various budget levels: as the budget decreases, the
optimal ratio shifts toward relying more on LLM-
generated data. Conversely, when the budget is
sufficiently large, incorporating LLM-generated
data can actually harm performance. Another key
contribution of our work is the direct comparison
between HP and PP data. Our findings demonstrate
that PP data is highly competitive with HP data,
indicating that, in this context, replacing human-
generated text with LLM-generated text is a viable
and cost-effective option. We believe our findings
can be applied to SFA in other technical domains
or similar tasks (e.g., frame semantic parsing).

2 Related Work

Semantic Frame Analysis (SFA) / Frame Se-
mantics in Dialogues Semantic frame analy-
sis is a task inspired by frame-semantic parsing
(FSP) and semantic role labeling (SRL). Unlike
the FrameNet project used in FSP (Baker et al.,
1998) or PropBank used in SRL (Kingsbury and
Palmer, 2002), the frame design in semantic frame
analysis differs in two ways: (1) the trigger types
are domain-specific and predicate-centered, and (2)
the argument types are frame-agnostic and domain-
agnostic, meaning that a fixed set of argument types
is used across various technical domains. Here, we
refer to the process of identifying the span and type
of triggers and arguments as Trigger Detection
and Argument Detection.

Frame semantics can be used to capture critical
information in dialogue situations. Skachkova and
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Kruijff-Korbayova (2021) proposed using frame se-
mantics in the domain of disaster response. The ex-
tracted information is used to capture and interpret
verbal team communication for mission process
assistance. Ebner et al. (2020) tackled argument de-
tection in a multi-sentence setting to better capture
events that span across sentences, which is similar
to our setting that is done on the dialogue level.
In this study, we focus on conversational SFA in
Japanese interview dialogues, using the cooking
section of the EIDC dataset (Okahisa et al., 2022;
Chika et al., 2024) for the experiments and analy-
ses.

Supervised Learning Models (SLMs) for SFA
Previous studies have employed probabilistic
model (Das et al., 2010) and RNN-based
model (Swayamdipta et al., 2017) as SLMs for FSP.
Kalyanpur et al. (2020) introduced Transformer-
based models (Vaswani et al., 2017) to FSP, uti-
lizing a sequence-to-sequence Transformer model
and framing FSP as a text generation task by tag-
ging entities with index numbers for tokens. In
Matta et al. (2023), an encoder transformer model
was used to address SFA in a cascaded manner:
first, a trigger detection model identifies triggers
within the context, and then a separate argument
detection model determines the arguments for each
trigger. However, we are concerned that this cas-
caded approach might introduce error propagation.
Therefore, in this paper, we adopt JaMIE (Cheng
et al., 2022), an encoder-centric model that simulta-
neously detects entities and their relations, offering
an end-to-end solution for SFA.

LLMs for SFA-like tasks While no existing
work directly targets SFA using LLMs, recent stud-
ies have explored related tasks, such as named en-
tity recognition (NER) and relation extraction (RE).
Wang et al. (2023a) reformulated NER as a text-
generation task by wrapping entities in tag pairs,
allowing LLMs to process them efficiently. Zhang
et al. (2023) and Wan et al. (2023) enhanced LLM
performance on RE tasks by improving prompt
design. Sun et al. (2023) tackled various NLP
tasks, including NER and RE, by utilizing im-
proved prompting and few-shot retrieval methods,
similar to the approaches in Wang et al. (2023a)
and Wan et al. (2023). These studies, along with
the method proposed by Kalyanpur et al. (2020),
have inspired our prompt design for SFA using an
LLM (Figure 4).

LLMs as Data Synthesizers There have been
numerous efforts to utilize LLMs for generating
synthetic data to train SLMs. Wang et al. (2021)
utilized few-shot GPT-3 to generate labels for nat-
ural language understanding and generation tasks,
achieving performance comparable to human la-
beling while significantly reducing costs. Ding
et al. (2023) explored various methodologies for
generating labeled data using GPT-3 and demon-
strated results on par with human-labeled data in
tasks such as sentiment triplet extraction. He et al.
(2024) employed GPT-3.5 with chain-of-thought
reasoning (Wei et al., 2023) as an alternative to
crowdsourced annotators, demonstrating perfor-
mance that was either superior to or on par with
human annotators. However, these studies focus on
tasks that are less complex than SFA. They either
involve a single label per sequence, extract fewer
entities, or do not include relations. Additionally,
they do not provide an analysis of the trade-off
between human and LLM-generated data.

3 Preliminaries

We define Semantic Frame Analysis (SFA) and in-
troduce the EIDC dataset (Okahisa et al., 2022;
Chika et al., 2024), which contains SFA annota-
tions and is used in this study.

3.1 Semantic Frame Analysis (SFA)

Semantic frame analysis aims to extract semantic
frames, which represent events, in a given context.
The core of a semantic frame is a trigger, which is
a predicate and the main action of the event. Since
each frame has only one trigger, we refer to the
frame type by the trigger type from now on without
further notice. The event can also include associ-
ated details, such as the object, instrument, or tem-
perature, referred to as frame arguments, linked
to the event-evoking trigger. Note that different
from frame designs such as the FrameNet project
(Baker et al., 1998), argument types in the EIDC
dataset are designed to be both frame-agnostic and
domain-agnostic, meaning all frames can accept
arguments such as Object, Time, Manner, etc.

SFA consists of two parts: Trigger Detection
and Argument Detection. In trigger detection, the
task is to identify the spans of triggers and classify
their types, which functions similarly to a named
entity recognition task. In argument detection, the
goal is not only to identify the spans and types of
arguments but also to determine their associated
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triggers. During evaluation, an argument prediction
is considered incorrect if its association with a trig-
ger is wrong, even if the span and type are correctly
identified. Additionally, a single trigger can have
multiple associated arguments. Our proposed data
synthesis method (Section 4.2) can generate data
for SFA while adhering to these conditions.

3.2 Technical Interview Dialogue Dataset with
SFA Annotation

In this paper, we utilize the cooking section of
the EIDC dataset (Okahisa et al., 2022; Chika
et al., 2024). Note that when referring to the EIDC
dataset, we specifically mean the cooking section
unless stated otherwise. Examples of dialogues and
SFA annotations in this domain are presented in
Figure 1 and 12.

Technical Interview Dialogues The EIDC
dataset contains interview dialogues where an ex-
pert discusses cooking processes with an inter-
viewer. The expert introduces and explains a recipe
spontaneously or in response to the interviewer’s
questions. The interviewer is asked to actively elicit
knowledge about the cooking process through in-
teractions, such as asking questions.

Annotation for Semantic Frame Analysis Each
dialogue in the EIDC dataset comes with manual
annotations of SFA. Human annotators manually
assign labels to the dialogues with reference to
the annotation guideline, which defines how to la-
bel entities and relations in the context and pro-
vides demonstrations. We also extracted these in-
formation from the annotation guideline and used
them in the system prompt for the LLM. The trig-
ger types represents cooking actions such as bake
frying and cutting because the semantic frames
are designed to capture cooking-related events. A
complete list of entity types can be found in Ap-
pendix A.6. The original paper by Chika et al.
(2024) presents inter-annotator agreement scores,
including Cohen’s kappa, to demonstrate annota-
tion quality.

4 Data Synthesis With an LLM

This section presents our methodology for con-
structing training data for conversational semantic
frame analysis using an LLM.

4.1 Pseudo-dialogue Generation
To generate pseudo-dialogues, the LLM is
prompted with few-shot dialogues and asked to

Dialogue 1: Interviewer: About the order of…
Dialogue 2: Expert: Put some salt in…

Dialogue 8: Interviewer: The next step…

User Prompt: 
Dialogue Demonstrations

Assistant Output: 
Pseudo-dialogues
Dialogue 9: Interviewer: So the heat is…

Dialogue 12: Expert: Alright. Here we boil…

…

…

You are an excellent linguist. Generate dialogues (…)

System Prompt: 
Instructions

Figure 3: The overview of the prompt design for pseudo-
dialogue generation. Refer to the actual prompt design
in Appendix A.3.

generate new ones that are close to the few-shots
in format but contain different contents (Figure 3).
For the few-shot examples, we not only sample
from a preserved pool of human dialogues but
also adopt the self-instruct strategy (Wang et al.,
2023b) to sample from the previously generated
pseudo-dialogues to increase diversity. The pre-
filtering and post-filtering methods, along with the
detailed settings for the self-instruction of pseudo-
dialogues, are explained in Section 5.1.

4.2 Pseudo-labels by LLM

We apply pseudo-labels to the dialogues via a novel
three-step tagging and labeling prompting scheme
that converts SFA into a text generation task. An
example of this pseudo-labeling process is illus-
trated in Figure 4. The steps are as follows, given
an input context:

1. Entity Tagging: Insert entity tags (<En> and
</En>, n ∈ N ) to mark the start and end of
entities.

2. Trigger Detection: Identify the triggers
among the entities tagged in Step 1.

3. Relation Detection: Determine argument re-
lations among the entities tagged in Step 1.

This output format captures multiple entities and
relations simultaneously and can be easily con-
verted into the data format required by the SLM.
We provide type definitions as outlined in the an-
notation guidelines within the system prompt and
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Expert: Line up these Gyozas and first fry them (…)

User Prompt: 
Context

Assistant Prompt: 
Multi-step Labeling Process
Step 1. Mark up the text with entities.

Step 2. Identify triggers
- (E1, PLACE)
- (E3, BAKE_FRY) (…)

Expert: <E1>Line up</E1> these 
<E2>Gyozas</E2> and first  <E3>fry</E3>
them for <E4>about two minutes</E4>. (…)

Step 3. Identify relations
- (E1, Object, E2)
- (E3, Time, E4) (…)

You are an excellent annotator for linguistic tasks. (…)

System Prompt: 
Instructions

Expert: Cut it vertically (…)

User Prompt: 
Target Labeling Context

Assistant Prompt: 
Labeling Output
Step 1. Mark up the text with entities.

Step 2. Identify triggers
- (E1, DIVIDE) (…)

Expert: <E1>Cut</E1> it <E2>vertically</E2> (…)

Step 3. Identify relations
- (E1, Manner, E2) (…)

Few-shot Demonstrations

Figure 4: We designed a novel multi-step labeling
scheme for LLMs to handle SFA in text generation.
Refer to the full prompt design in Appendix A.4.

demonstrate the tagging process using a few-shot
approach.

4.3 Data Variants
We construct three data variants used in this
study: Human-Human (HH), Human-Pseudo (HP),
and Pseudo-Pseudo (PP). In this context, "Hu-
man" refers to data collected from humans, while
"Pseudo" denotes data generated by an LLM. We
did not consider a Pseudo-Human variant because
human annotation is too precious to be assigned to
lower-quality LLM-generated dialogues.

Human-Human (HH) We sampled human dia-
logues and labels directly from the EIDC dataset
and formed HH data. The Human-Human data is
the most expensive and is also expected to have the
highest label accuracy, closely aligning with the
desired standards defined in the annotation guide-
lines.

Human-Pseudo (HP) In HP data, SFA labels are
assigned by an LLM to human dialogues sampled

from the EIDC dataset using the pseudo-labeling
method from Section 4.2.

Pseudo-Pseudo (PP) PP data is fully synthe-
sized, with LLM-generated dialogues and labels.

5 Experimental Settings

To study how to achieve optimal cost-efficiency by
collecting both human and LLM-generated data
with a fixed budget, we conducted the following
steps for the experiments.

1. Collecting data: Sample/synthesize Human-
Human (HH), Human-Pseudo (HP), and
Pseudo-Pseudo (PP) data.

2. Defining budget settings: Define a range of
budgets to simulate the fixed budget scenario.

3. Creating HH+HP and HH+PP mixtures:
For each budget setting, construct human and
LLM-generated data mixtures to simulate bud-
get allocations.

4. Training and evaluating the SFA model:
Train the SFA model using the data mixtures
and evaluate its performance to identify the
optimal data ratio.

In the following sections, we provide detailed de-
scriptions of these steps. An overview of the cost-
efficiency analysis is demonstrated in Figure 2.

5.1 Details of Data Synthesis Procedures
We provide details on the data synthesis procedures.
We reserved 3 dialogues1 from the EIDC training
data as few-shot examples for both the pseudo-
dialogue generation and pseudo-labeling process.

Pseudo Dialogue Generator As introduced in
Section 4.1, we adopted the self-instruct strategy
(Wang et al., 2023b) to bootstrap pseudo-dialogue
generation. Following the settings in their work,
we provide the model with 6 human dialogues and
2 pseudo-dialogues as few-shots. We synthesized
the first 100 pseudo-dialogues with only human
dialogues as few-shots. Afterward, we moved
on to mixing few-shot examples. Before adding
pseudo-dialogues back into the dialogue pool, we
filtered them by ROUGE-L score (<0.7) against

1To fit within the context length limits of both the LLM
and the SLM, we divide dialogues into smaller sessions using
a heuristic method. Hereafter, a ’dialogue’ will refer to a
’dialogue session’ unless otherwise specified. Each session
consists of up to 10 utterances.
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Data Size Cost
Data Type (Sessions) Text ($) Label ($) Total ($)

Human-Human 1,472 6.4k 6.4k 12.8k
Human-Pseudo 2,858 12.4k 0.37k 12.8k
Pseudo-Pseudo 4,293 0.28k 0.56k 0.84k

Table 1: The size and cost statistics of the three data variants.

existing dialogues to ensure that the newly gener-
ated ones were not extremely similar to the existing
ones. None of the pseudo-dialogues exceeded this
limit. We then filtered the most similar ones us-
ing ROUGE-L to reduce them to the desired size
shown in Table 1, which ended with a max ROUGE-
L score of 0.52. We used GPT-4-0613 (accessed
01/2024) and set the generation temperature to 0.7,
the presence penalty to 2.

Pseudo SFA Labeler We adopted GPT-4-0613
(accessed 01/2024) to generate pseudo-labels for
SFA. For few-shots, we sampled 3 complete hu-
man dialogues, then filtered them to remove ses-
sions with too few entities, resulting in 37 dialogue
sessions. For each labeling target, we used 3 few-
shots: the top 2 most similar dialogue sessions,
determined by the ROUGE-L score to ensure sim-
ilarity to the target, and 1 specially preserved di-
alogue session containing as many as 30 entities.
This special few-shot was included in all cases be-
cause we empirically observed that GPT-4 tends
to overlook entities if the few-shots lack sufficient
entities.We conducted an ablation study to deter-
mine this prompt design, which we report in Ap-
pendix A.1. We further provide a case analysis of
LLM-generated labels in Appendix A.2.

5.2 Data and Budget Settings

We provide details on the data statistics, data mix-
tures, and budget settings.

Data Statistics As shown in Table 1, we col-
lected up to $12,800 for both HH and HP data,
which roughly aligns with the three-year total of
scholarship funds for a PhD student at a Japanese
university.2 For HH data, we sampled $12,800
worth of human dialogue and label pairs from the
EIDC dataset, out of a maximum of 4,600 instances
and a total cost of $40,000 of the original dataset.
For HP data, we repeatedly sampled human dia-
logues in the EIDC dataset and then applied pseudo-

2We excluded the collection cost of few-shot examples
sampled from the training split of the EIDC dataset, as well as
the instructions derived from the annotation guidelines.

labels to them until the cost reached $12,800, which
was calculated based on the cumulative costs of the
human dialogues and OpenAI API usage. For PP
data, due to the low cost of both pseudo-dialogue
and pseudo-labels, we collected 1.5x times the data
size compared to HP data while only costing $840.
The costs for pseudo-dialogues and pseudo-labels
were also calculated from the token usage of the
OpenAI API service. We ceased further collec-
tion of PP data upon discovering that performance
had reached saturation and would not improve with
additional data.

We conducted a quantitative analysis compar-
ing human dialogues and pseudo-dialogues. We
found that the average length of pseudo-dialogues
generated by GPT-4 was similar to that of human
dialogues (127 tokens vs. 136 tokens) and exhib-
ited fewer extreme outliers in terms of length. By
comparing the label density of HP and PP data,
we observed that pseudo-dialogues tended to con-
tain more entities than human dialogues, leading to
a higher count for certain label types. For more
details on the length and label distributions of
pseudo-dialogues, refer to Appendix A.5 and Ap-
pendix A.6.

Data Mixtures We create two types of data mix-
tures: HH+HP3 and HH+PP mixtures, to simulate
the situation where one collects human data and
LLM-generated data at the same time. Refer to
Appendix A.8 for a demonstration of the budget
allocation between the two types of data.

Budget Settings We set different budget ranges
for the HH+HP mixture and the HH+PP mixture,
with the budget range for the latter being lower
due to the significantly lower cost of PP data. For
each budget, we adjust the proportion of HH data
within the budget from 0 to 1 with an interval of
0.1, creating 11 ratio variants for each budget level.

• For HH+HP mixture ($):
800, 1,200, 1,600, 3,200, 6,400, 12,800

3When creating HH+HP mixtures, we avoided choosing
data with the same human dialogues to avoid confusion to the
SFA model.
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Figure 5: The cost-efficiency plot for HH+HP mixture. The black dotted line represents the performance of few-shot
GPT-4. Each budget curve features a star marking its optimal point. The shaded region around each curve indicates
the standard deviation across five different seeds.

Figure 6: The cost-efficiency plot for HH+PP mixture. Due to the collection limit of $840 worth of PP data, the plot
only shows the right portion of the curve for budgets $1,200 and $1,600, where the data is combined with HH data.
The values of some outlier points are displayed on the plot with colors corresponding to the budget curve.

• For HH+PP mixture ($):
200, 400, 800, 1,200, 1,600

5.3 Supervised Learning Model and
Evaluation Metrics for SFA

We adopt JaMIE (Cheng et al., 2022) as our su-
pervised learning model (SLM) for SFA. JaMIE is
an architecture featuring one transformer encoder
and multiple decoding heads for sequence labeling
and can handle relation extraction by design. We
employ the Japanese DeBERTa-V2-base as the pre-
trained encoder for JaMIE and train the decoding
heads from scratch.4 Refer to the training hyperpa-
rameters in Appendix A.7.

We evaluated the performance of Trigger Detec-
tion and Argument Detection using a classification
metric that accounts for both the type and span
accuracy of entities.5 Correct predictions require
both the entity’s type and span to be accurate. We

4https://huggingface.co/ku-nlp/deberta-v2-base-japanese
5We modified the evaluation code from seqeval

(https://github.com/chakki-works/seqeval).

award partial scores if the predicted entity’s type
is correct but the span only overlaps with the true
answer. Argument predictions are marked false
if their associated trigger is incorrect.6 The over-
all performance is measured using a weighted F1
score, aggregated from the F1 scores of each class.

6 Results and Analyses

The objectives of the cost-efficiency analysis are as
follows:

1. Optimal Data Ratio: What is the optimal
ratio for combining human data and LLM-
generated data within a limited budget? Is the
ratio budget-dependent?

2. HP vs. PP: Should one pay more to collect
human-dialogues instead of pseudo-dialogues

6In addition to semantic frames, the data also included
Event Coreference Relations (ECR). We did not evaluate ECR
directly, however, we evaluated argument detection by allow-
ing the target trigger to be any of the events on the same ECR
event sequence in the true labels.
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for a potential performance increase?

We analyze the experimental results to answer these
objectives in the following sections.

6.1 Cost-efficiency Analysis
In this section, we address the first objective: op-
timal data ratio for HH+HP and HH+PP mixtures,
and if it is budget-dependent.

HH+HP Mixture In Figure 5, we observe that
when the budget is lower than $6,400 for trigger
detection and $3,200 for argument detection, opti-
mal cost-efficiency is achieved by combining HH
and HP data. The lower the budget is, the more
HP data should be included for best performance.
In this case, the trade-off between human data and
LLM-generated data has a positive impact on the
performance.

On the other hand, we see that when the budget
is higher than above, the optimal cost-efficiency is
brought by using 100% HH data. This shows that
LLM-generated data cannot be used in all situations
because it may harm the performance.

HH+PP Mixture In Figure 6, we see that for
all the budgets we set, the optimal performance
was achieved by combining HH and PP data. We
specifically observed that since PP data is so much
cheaper, allocating 10% of the budget to PP data in
budget $1,600 brought a significant performance
boost for both trigger and argument detection. Al-
though we did not further raise the budget for
PP data, we can estimate that the optimal will be
achieved by using 100% HH data if we raise the
budget to $6,400 and above. Therefore, we con-
clude that when the budget is not high enough to
reach saturation (optimal performance by using
100% HH data), one should combine human and
LLM-generated data and adjust the ratio to using
more LLM-generated data as the budget declines.

6.2 Human-Pseudo vs. Pseudo-Pseudo
We further investigated the second objective: is
HP data better than PP data for having human dia-
logues instead of pseudo-dialogues?

We observed no significant disadvantage caused
by replacing human dialogues with pseudo-
dialogues for LLM-generated data. In fact, with the
same budget of $1,600, one could achieve a slightly
higher performance in trigger detection using PP
data compared to HP data (0.596 in Figure 6 vs.
0.571 in Figure 5). Therefore, from a cost-sensitive
perspective, PP data is a superior option.

6.3 Data Augmentation for Low-resource
Setting

We review the effectiveness of LLM-generated data
from a data augmentation perspective (Figure 7). In
this setting, we trained the SLM first using all LLM-
generated data, i.e., either all HP or PP data, then
continued training it on different costs of HH data,
ranging from $800 to $12,800. The result shows
that when the amount of HH data is limited (lower
than $3,200), both HP and PP data help boost per-
formance. The effectiveness of LLM-generated
data is more significant when the budget for HH
data is low. Notably, while the cost of PP data is
significantly cheaper than HP data in this setting
($840 vs. $12,800), the former is arguably compet-
itive against the latter as the max performance gap
(green line vs. red line) is less than 0.02 F1 score.

Figure 7: The effectiveness of LLM-generated data from
a data augmentation perspective. We trained the SLM
on all HP or PP data (blue and orange dotted lines), then
continued training on different sizes of HH data (red
and green lines).

7 Conclusion

In this paper, we conducted a comprehensive anal-
ysis to evaluate the cost-efficiency to combine
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LLM-generated data with human-annotated data
for Japanese conversational semantic frame analy-
sis under various budget constraints. We proposed
a novel method to synthesize two types of training
data: Human-Pseudo (HP) data and Pseudo-Pseudo
(PP) data, for the experiments and analyses. Our
findings indicate that the ideal ratio to combine hu-
man and LLM-generated data is budget-dependent,
with a tendency to favor a higher proportion of
LLM-generated data as the budget decreases. Fur-
thermore, our results suggest that fully synthesized
data (PP data) is a viable option, as it is signifi-
cantly cheaper while maintaining comparable per-
formance levels to the half-synthesized counterpart
(HP data). In future work, we aim to extend our
analysis to other domains and tasks to validate the
generalizability of our findings.
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Limitations

While we believe our conclusions are comprehen-
sive within our experimental settings, our work has
several limitations. Firstly, determining the exact
ratio of human to LLM-generated data remains
challenging, as it depends on factors such as the
specific task, dataset characteristics, and budget
constraints. Secondly, we only focused on the task
of SFA in the cooking domain in this work. We
hope that future work could extend the findings of
our work to other domains and related tasks.
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A Appendix

A.1 Ablation for Prompt Design for
Pseudo-labeling

We conducted an ablation study to determine
the impact of different prompt design choices on
pseudo-labeling performance and adopted one of
the top-performing prompt designs. We evaluate
the effects of varying instruction styles and few-
shot selection strategies by measuring the perfor-
mance of few-shot LLMs on the validation dataset,
as detailed below:

• Instruction Style

– w/ entity demo.: The instruction includes
entity demonstrations.

– wo/ entity demo.: The instruction only
has a description for each entity type, but
no examples are provided (Figure 13).

• Few-shot Selection Methods

– By ROUGE-L: Examples are selected
based on the highest ROUGE-L similar-
ity score to the input.

– Mandatory: A single hand-picked exam-
ple that is entity-rich, containing up to
30 entities, is always included.

– Random: Examples are randomly se-
lected from the few-shot pool.

We observed that enabling ROUGE-L-based
few-shot retrieval, incorporating the mandatory
few-shot example, and providing entity demonstra-
tions in the instruction generally improved perfor-
mance. Additionally, not all LLMs performed well
on SFA. For instance, GPT-4-1106-preview occa-
sionally failed to recognize entities in the context,
even when they were present. GPT-3.5-turbo-0125
exhibited similar errors but also struggled with out-
put formatting, sometimes producing invalid out-
puts that had to be evaluated as empty predictions.
Moreover, it suffered from hallucinations, gener-
ating non-existent entity types. Based on these
observations, we conclude that SFA requires LLMs
at least at the GPT-4 level to achieve reliable per-
formance.

A.2 Case Analysis on LLM-generated labels

We conduct an error case analysis on two common
types of mistakes made by the LLM during the
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MIX

(Context: simmering chicken)

Expert: If you put it in from the beginning, 

it will fall apart while cooking.
SIMMER

Figure 8: It is difficult for LLM to label correctly when
it is necessary to infer the entity type from the context.

MIX HEAT

Expert: This is in a state where it has 

been stirred, and then heated.
Product

Figure 9: It is difficult for LLM to handle complex
relations, such as Product.

pseudo-labeling process. These cases were identi-
fied by comparing HH and HP data, both of which
contain the same human dialogues.

In the first case (Figure 8), the expert and in-
terviewer discuss a simmering process in the pre-
ceding context. In this context, the action of put
refers to placing something into boiling water and
should therefore be labeled as SIMMER. However,
the LLM tends to interpret the word literally, label-
ing it as MIX instead. It is challenging to instruct
the model to account for this type of inference ac-
curately.

Another common challenge for the LLM is han-
dling complex argument relations, such as Product.
Product is a unique type of argument that requires
the argument itself to be an existing trigger. In
Figure 9, the predicate stirred functions both as a
MIX type trigger and as a Product argument for
the trigger heated. However, the LLM failed to
recognize the Product argument relation.

A.3 Prompt For Pseudo-dialogue Generation
By LLM

An example of the prompt for pseudo-dialogue
generation is shown in Figure 14.

A.4 Prompt For LLM SFA Labeling
The adopted prompt design for SFA labeling is
shown in Figures 15, 16, and 17.

A.5 Length Distribution of Pseudo-dialogues
We present the length distributions of human di-
alogues and pseudo-dialogues in Figure 11. We
observed that GPT-4 generally followed the length
specification in the instruction, resulting in an aver-
age length of 127 tokens (token count by Japanese

DeBERTa-V2 tokenizer) compared to an average of
136 tokens in human dialogue sessions. Moreover,
pseudo-dialogues have a more short-tailed distribu-
tion, which means there are fewer extremely short
or long outliers.

A.6 Label Distribution in Pseudo-dialogues

We present the label distributions across three
data types: Human-Human, Human-Pseudo, and
Pseudo-Pseudo in Figure 10. When comparing
Human-Human to Human-Pseudo, we observe that
replacing human labelers with GPT-4 leads to fluc-
tuations in certain label types. Specifically, there
is a decrease in types such as "BAKE_FRY" and
"SIMMER" in triggers and "Manner" in arguments,
and an increase in types like "PLACE" in triggers
and "Instrument" in arguments. While we believe
that these fluctuations will not be a significant issue,
it is important to point out that in addition to the
fluctuations, the labels generated by GPT-4 may
not be accurate either.

When comparing Human-Pseudo to Pseudo-
Pseudo, we observe that replacing human dialogues
with pseudo-dialogues leads to a higher frequency
of certain types than in human dialogues. For ex-
ample, types like "MIX" and "BAKE_FRY" in trig-
gers and all argument types appear more frequently.
This increase occurs because GPT-4 tends to fit
a whole story into a pseudo-dialogue, resulting
in a higher overall entity count. In contrast, hu-
man dialogues are heuristically cut into smaller
sessions, which can lead to fewer entities per ses-
sion. Also, the increase in trigger types "MIX" and
"BAKE_FRY" indicates that GPT-4 tends to men-
tion these specific events, creating a bias toward
specific topics.

A.7 Training Hyperparameters for the SLM

We adopted JaMIE (Cheng et al., 2022) as our
SLM for SFA. For the encoder, we used a pre-
trained Japanese DeBERTa-V2-base model with
an encoder learning rate of 2e-5 and a relation de-
coder learning rate of 1e-2, without a learning rate
schedule.7 The model was trained for up to 30
epochs, and the best checkpoint was selected based
on the highest validation weighted F1 score. The
validation and test sets are defined in the EIDC
dataset with sizes of 269 and 379 dialogue sessions,
respectively.

7https://huggingface.co/ku-nlp/deberta-v2-base-japanese
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Figure 10: Trigger and argument label distribution.

LLM Instruction Few-shot Selection T. F1 Arg. F1

GPT-3.5-turbo-0125 w/ entity demo. 2 by ROUGE-L + 1 mandatory 0.434 0.170
GPT-4-1106-preview w/ entity demo. 2 by ROUGE-L + 1 mandatory 0.484 0.256

GPT-4-0613

w/ entity demo. 3 random 0.484 0.269
w/ entity demo. 3 by ROUGE-L 0.519 0.277
w/ entity demo. 2 random + 1 mandatory 0.513 0.293
w/ entity demo. 1 by ROUGE-L + 1 mandatory 0.519 0.303

w/o entity demo. 2 by ROUGE-L + 1 mandatory 0.460 0.245
GPT-4-0613† w/ entity demo. 2 by ROUGE-L + 1 mandatory 0.514 0.314

Table 2: Ablation study on prompt design for pseudo-labeling. T. F1 and Arg. F1 denote the weighted-F1 scores
for trigger and argument detection, respectively. † indicates the final prompt design chosen for pseudo-labeling.
Performance is measured on the validation set.

Figure 11: The length distributions of human and
pseudo-dialogues.

A.8 Demonstration for Budget Allocation
For example, when one has $1,600 of budget and
wants to allocate 30% ($480) of that to HH data
and 70% ($1,120) to HP data, the final mixture will
contain 55 instances of HH data and 250 instances
of HP data.

• $1,600 (30% HH, 70% HP) =
55 ($480) HH + 250 ($1,120) HP

CHANGE

CHANGE

ObjectObject

Object Manner

ECR

Object

(インタビュアー: はい。⼩⻨粉をふるったというところで

すね。わかりました。)

Interviewer: Yes. So this is where we sift the flour, 

right? Got it.

(技能者: はい。それでね、⼀つ付け加えるならば、これよ

くこのお菓⼦作るときに⼩⻨粉とベーキングパウダーとか、

重曹という膨らませるそういうものがあるんですけど、そ

れ⼀緒にふるうというケースが多いと思うんですが... )

Expert: Yes. And if I may add one thing: when making 

these sweets, it's common to sift the flour together with 

leavening agents such as baking powder or baking soda.

Figure 12: This human-annotated data example demon-
strates that (1) the same event is mentioned across mul-
tiple utterances, (2) a single trigger can have multiple
same type arguments, and (3) an ECR relation is present,
although it is not directly evaluated in this paper. The
example is translated from Japanese, and the original
text is provided in gray italic font.
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BAKE_FRY: 油を⽤いて⽕や熱源で調理する。（例：焼く、揚げる、炒める、焦がす、ローストする）

Figure 13: Without entity demonstration means to remove the examples, only keeping the description.

System Prompt:

You are an excellent linguist. 
Generate dialogues that are similar to the given dialogue 
context's length, but have different content.
The dialogue should include an interviewer (インタビュアー) 
and an expert (技能者), who will talk about the cooking 
process of a dish. 
The expert will try to explain the details of the cooking 
process, and the interviewer will ask questions to clarify 
the details.
Try to add details to the dialogue, such as the tools, 
techniques, time, temperature, etc.
Dialogues can start or end halfway through the cooking 
process.
Make sure each dialogue contains more than 3 turns.
Do NOT copy from existing dialogue context, make sure each 
dialogue is diverse and creative.
Each dialogue must be in a single line, like the 
demonstration from the user. Only start new lines when you 
want to start a new dialogue piece.
The user will provide you with 8 example dialogue pieces. 
You must continue generating from Dialogue 9 to Dialogue 12.

Few-shots:

Dialogue 1: 技能者:これは先ほどのレンコンのみじん切りと、あと⻑ネギ2
分の1本ぐらいを、これもみじん切りにしておきます。インタビュアー:うん、2
分の1本結構ね量を使われるんですね。技能者:そうですね、はい。インタビュ
アー:ヘルシー。技能者:はい。インタビュアー:もしネギ、⻘ネギとかでも⼤丈
夫なんですかね？技能者:もちろん⼤丈夫です。インタビュアー:⼤丈夫ですか。
技能者:はい。あと⽟ねぎでも⼤丈夫です。インタビュアー:⽟ねぎでも。いろ
いろ使えますね。家にある、あるものをなんか。

Dialogue 2: インタビュアー:このパスタソースの作り⽅について教えていた
だけますか？技能者:まずオリーブ油とにんにくをフライパンに⼊れ、⾹ばしい
匂いが⽴つまで炒めます。次にトマト⽸を加えて5分ほど煮込みます。インタ
ビュアー:その後に塩コショウで調味するんですよね？技能者:はい、そして最
後にベーシックなパスタソースが完成します。あとはお好みでバジルやチーズ
を加えることもできます。インタビュアー:パスタは何分茹でると良いですか？
技能者:袋に記載されている時間通りに茹でると最適な硬さになりますよ。
(…)

Model Output:

Dialogue 9: インタビュアー:この焼き⿃の作り⽅について教えてもらえます
か？技能者:まず、鶏⾁を⼀⼝⼤に切り分け、⽵串に刺します。次に塩とコショ
ウで下味をつけ、炭⽕でじっくりと焼き上げます。インタビュアー:それはどれ
くらいの時間焼くのですか？技能者:各⾯がキツネ⾊になるまで約5分間ほど焼
きます。そして最後に特製のたれを塗って仕上げます。インタビュアー:その特
製のたれは何を使っていますか？技能者:主にしょうゆ、みりん、砂糖を基本と
しており、あとは秘密のスパイスが⼊っていますよ。
(…)

Figure 14: The prompt design for pseudo-dialogue gen-
eration. In this example, Dialogue 1 is a human dia-
logue, and Dialogue 2 is a previously generated pseudo-
dialogue.

System Prompt:
You are an excellent annotator for linguistic tasks. You will be provided 
with a piece of Japanese dialogue. Your task is to annotate it with labels 
for semantic frame analysis.

Step 1. Mark up the text with entities.
Mark up the text using the following tags:
- <En>: The start of the n-th entity
- </En>: The end of the n-th entity

2. Identify triggers
Identify triggers from the extracted entities. Trigger types include:
- BAKE_FRY: 油を⽤いて⽕や熱源で調理する。（例：焼く、揚げる、炒める、焦がす、ローストす
る）
- DIVIDE: 何かの全体ないしは部分を2つ以上に分ける。（例：切る、刻む、割く、ほぐす、割る、
砕く、カットする、スライスする）
- CHANGE: 形状・向き・温度を変化させる。（例：擦る、溶かす、冷ます、ひっくり返す、泡⽴て
る、潰す、広げる、伸ばす、こねる、発酵させる）
(…)
3. Identify Relations
Identify relations between entities. There are 3 categories of relations: 
Argument, ECR and Product. Arguments should be further determined by types:
- Object: 当該の料理イベントの主たる材料を表す要素。（例：⾖腐、⼈参、お⾁、じゃがいも、
葉っぱ）
- Instrument: 当該の料理イベントを実⾏するために⽤いる道具や調理器具を表す要素。（例：包
丁、フライパン、冷⽔、泡⽴て器、鍋、ベーキングシート）「包丁で切る」、「泡⽴て器でよくかき
混ぜる」、「ひじきを冷⽔で戻す」などの形で現れる。
(…)
If two event triggers indeed refer to the same event/action, you should 
label their relation as ECR. As for Product, if E2 uses the outcome from E1, 
then you should label the two (E2, Product, E1).

Figure 15: The system prompt for the LLM. Some type
definitions are omitted.

Few-shots:
user
技能者:これは豚挽⾁をボウルに⼊れたところです。はい。
インタビュアー:お願いします。
技能者:はい。室温にし、室温でよくこねておきます。はい。
インタビュアー:はい。よくこねるというのは、だいたいどの状態が⽬安になりますか？
技能者:そうですね、ちょっとモチモチってなるぐらいまでこねていただければ。はい、そんなにハン
バーグのときほどこねないんですけれども。はい。
インタビュアー:はい。ハンバーグほどではない、なく、でもしっかりとこねる。
assistant
Step 1. Mark up the text with entities.
技能者:これは<E1>豚挽⾁</E1>を<E2>ボウル</E2>に⼊れたところです。はい。
インタビュアー:お願いします。
技能者:はい。室温にし、<E3>室温</E3>で<E4>よく</E4><E5>こねて</E5>おきます。はい。
インタビュアー:はい。よくこねるというのは、だいたいどの状態が⽬安になりますか？
技能者:そうですね、ちょっとモチモチってなるぐらいまで<E6>こねて</E6>いただければ。はい、
そんなに<E7>ハンバーグのときほど</E7><E8>こね</E8>ないんですけれども。はい。
インタビュアー:はい。ハンバーグほどではない、なく、でも<E9>しっかりと</E9>こねる。

Step 2. Identify triggers (trigger entity, type).
- (E5, CHANGE)
- (E6, CHANGE)
- (E8, CHANGE)

Step 3. Identify argument and ECR relations (entity1, relation, entity2).
- (E5, Object, E1)
- (E5, Instrument, E2)
- (E5, Temperature, E3)
- (E5, Manner, E4)
- (E6, Manner, E9)
- (E6, ECR, E5)
- (E8, Manner, E7)
- (E8, ECR, E6)

Figure 16: The few-shot demonstration for the LLM.
We show one example here.

Labeling Target:
user
技能者：今⽇はフライドポテトの作り⽅についてお話します。
インタビュアー：さいの⽬に切ったジャガイモを直接揚げていくんですか？
技能者：実はそうではありません。先に70〜80℃でじっくりと揚げて⽔分を⾶ばすのがポイントです。
インタビュアー：その後はどうすればいいんですか？
技能者：⼀度取り出して油を切ったら、今度は180℃でサクッと揚げます。これにより外側はパリッ
と、中はホクホクのフライドポテトが完成します。
======================
Model output:
assistant
Step 1. Mark up the text with entities.
技能者：今⽇は<E1>フライドポテト</E1>の作り⽅についてお話します。
インタビュアー：<E2>さいの⽬に切ったジャガイモ</E2>を直接<E3>揚げ</E3>ていくんですか？
技能者：実はそうではありません。先に<E4>70～80℃</E4>でじっくりと<E5>揚げ</E5>て⽔分を
⾶ばすのがポイントです。
インタビュアー：その後はどうすればいいんですか？
技能者：<E6>⼀度</E6><E7>取り出し</E7>て油を切ったら、今度は<E8>180℃</E8>でサクッと
<E9>揚げ</E9>ます。これにより外側はパリッと、中はホクホクのフライドポテトが完成します。

Step 2. Identify triggers (trigger entity, type).
- (E3, BAKE_FRY)
- (E5, BAKE_FRY)
- (E7, REMOVE)
- (E9, BAKE_FRY)

Step 3. Identify argument and ECR relations (entity1, relation, entity2).
- (E3, Object, E2)
- (E5, Temperature, E4)
- (E5, ECR, E3)
- (E7, Time, E6)
- (E9, Temperature, E8)
- (E9, Product, E7)

Figure 17: The input labeling target and an actual label-
ing output from the LLM. This is an example from the
Pseudo-Pseudo data.
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