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Abstract
In this work, we propose DEPGEN, a frame-
work for evaluating the generalization capabil-
ities of language models on the task of rela-
tion extraction, with dependency parses as scaf-
folds. We use a GNN-based framework that
takes dependency parses as input and learns
embeddings of entities which are augmented
to a baseline multilingual encoder. We also in-
vestigate the role of dependency parses when
they are included as part of the prompt to LLMs
in a zero-shot learning setup. We observe that
including off-the-shelf dependency parses can
aid relation extraction, with the best perform-
ing model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-
shot setting respectively across two datasets.
For the in-context learning setup, we observe
an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs. We
also carry out extensive statistical analysis to
investigate how different factors such as the
choice of the dependency parser or the nature
of the prompt impact performance. We make
our code and results publicly available for the
research community at https://github.
com/ShoRit/multilingual-re.git

1 Introduction

Information packaging in language does not hap-
pen arbitrarily (Croft, 2022). The “internal struc-
ture” of a text message, which determines how the
message is constructed or parsed, is grounded in
predefined linguistic rules in the form of syntax
and semantics. Linguistic structures such as de-
pendency graphs (Zeman et al., 2019; Chomsky,
2002) or semantic parses (Banarescu et al., 2013;
Reddy et al., 2017) have been pivotal in the his-
tory of NLP research both for their intrinsic merit
i.e. developing frameworks that can construct or
interpret such structures automatically (Chen et al.,
2024; Gu et al., 2024), and their external value as
augmentations to aid language understanding tasks
(Ding et al., 2024; Şahin, 2022).

Information extraction or IE is one such field
which had relied heavily on linguistic information
ever since its inception; some notable examples
include few-shot named entity recognition or NER
(Chen et al., 2023; Xie et al., 2024), relation ex-
traction (Li et al., 2023; Zhou et al., 2024), open-
domain question answering, (Zhang et al., 2023b,
2024) amongst others. However, recent years have
witnessed a decline in the adoption of linguistic
frameworks in favor of large scale pre-trained lan-
guage models (Devlin et al., 2018; Liu et al., 2019;
Conneau et al., 2020a; Sainz et al., 2024) which are
shown to encode syntactic and semantic informa-
tion within their parameters (Starace et al., 2023;
Liu et al., 2024) and have also demonstrated sig-
nificant improvements on IE (Sainz et al., 2024;
Efeoglu and Paschke, 2024).

Moreover, as we usher into an era of large lan-
guage models, the question which looms over our
head like the proverbial sword of Damocles “Are
dependency parses helpful for information extrac-
tion?” We are motivated to answer this question
based on the past work of Sachan et al. (2021)
which showed the utility of adding syntactic infor-
mation for different information extraction tasks in
English. However, the observed benefits hold true
only when the gold parses are available, with no
improvements over the baseline in presence of off-
the-shelf parses. In this study we expand upon this
idea and investigate whether off-the-shelf depen-
dency parses can assist language models in multi-
lingual information extraction for both indomain
and zero-shot transfer settings.

We specifically deal with the task of multi-
lingual relation extraction, wherein we identify the
nature of relationship between two annotated enti-
ties in a document. We show in Figure 1 how we
can connect the entities wood and fences by travers-
ing the dependency graph that connects these two
entities, highlighting the potential utility of linguis-
tic frameworks for this task. We explore the role
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Figure 1: Example depicting the supplemental information provided by the dependency tree. The entities of interest
are wood and fences, having the relationship material_used. The path wood← used→ make→ posts→ fences
elicits this relationship.

of dependency parses for cross-lingual relation ex-
traction in both a fine-tuned supervised setting and
a prompting/ in-context learning setup.

We propose a framework, DEPGEN, built on top
of a pretrained multi-lingual language model that
uses dependency parse information to perform re-
lation extraction for both in-domain and zero-shot
cross-lingual transfer settings. Through a com-
prehensive set of 2440 experiments spanning 10
languages over 2 datasets, we observe that incorpo-
rating dependency information brings about mod-
est improvements for in-domain and cross-lingual
fine-tuning setups by 0.9% and 1.5% respectively.

We also carry out extensive statistical analysis
to identify which factors significantly impact per-
formance. Our observations highlight that perfor-
mance improvements is mostly predicated by the
choice of the target language, and the choice of the
pre-trained language model rather than the choice
of the dependency parser for all cases. However,
for the in-context learning setup, we demonstrate
that the performance is determined by the choice
of the prompting strategy, with our proposed ap-
proach boasting the highest gains, i.e. an absolute
improvement of 1.67 F1 score over the baseline.

2 Related Work

2.1 Generalization in Information Extraction

Recent years bear witness to countless research en-
deavors to facilitate generalizability and transfer
across domains for several information extraction
(IE) tasks. Such works include zero-shot relation
extraction (Wang et al., 2022b; Jun et al., 2022;
Li et al., 2023), zero-shot or few-shot NER (Zeng
et al., 2022; Das et al., 2022; Xie et al., 2024) , zero-
shot KBQA (Gu et al., 2021; Dutt et al., 2023),
cross-lingual KBQA (Zhang et al., 2023a), and
open domain QA (Min et al., 2020; Zhang et al.,
2023b), amongst others (Fritzler et al., 2019; Zhou
et al., 2019). This interest is in part due to the
advent of large scale pre-trained language mod-
els such as Devlin et al. (2018); Liu et al. (2019);
Conneau et al. (2020a); Sainz et al. (2024) which

have shown significant improvements on IE. Re-
cent works on domain adaptation and transfer learn-
ing have advocated different pre-training objective
functions to ensure the model is well adapted to
the particular domain. Other multi-lingual/ cross-
lingual transfer works employ different data aug-
mentation techniques such as translation into the
target data to aid transfer. In this work, we investi-
gate approaches to perform multi-lingual informa-
tion extraction in a zero-shot setting without any
additional data in the target language.

2.2 Relation Extraction

The goal of relation extraction or relation classifi-
cation is to detect and classify the relation between
specified entities in a text according to some prede-
fined schema. Current research in RE has mostly
been carried out in a few-shot or a zero-shot set-
ting to address the dearth of training data (Liu et al.,
2022; Li et al., 2023) and the “long-tail” problem of
skewness in relation classes (Ye and Ling, 2019b;
Liang et al., 2023). Salient work in that direc-
tion includes (i) designing RE-specific pretraining
objectives for learning better representations (Bal-
dini Soares et al., 2019; Wang et al., 2022a), (ii)
incorporating meta-information such as relation de-
scriptions (Yang et al., 2020; Chen and Li, 2021),
a global relation graph, (Qu et al., 2020), or en-
tity types (Peng et al., 2020), and (iii) leveraging
additional information in the form of dependency
parses (Yu et al., 2022), translated texts for multilin-
gual RE (Nag et al., 2021), or distantly supervised
instances (Zhao et al., 2021; Ye and Ling, 2019a).
T-5 based models have shown to perform well in re-
lation extraction settings with few-shot finetuning
(Diaz-Garcia and Lopez, 2024).

Recently, LLMs have shown promise in zero-
shot relation extraction. Challenging cases such as
overlapping relations and none-of-the-above (nota)
relations have been handled effectively by LLMs in
zero-shot settings (Li et al., 2023). LLMs have also
outperformed smaller models for RE with larger,
document-level context sizes in models such as
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Figure 2: An overview of our proposed framework DEPGEN. The architecture takes as input a document, which
comprises a sequence of sentences, with the entities highlighted in red. This document passes through a multilingual
encoder to obtain the token embeddings, and a dependency parser that generates dependency parses for each
sentence. The individual sentences in the dependency parser are connected using a central [CENTRAL] node to
obtain a connected graph. The nodes are initialized using the embeddings obtained from the multilingual encoder
and updated using a Graph Neural Network. The final representations of the entities obtained from the GNN are
fused with the entity embeddings and concatenated with the [CLS] token of the document to predict the relation.

AutoRE (Xue et al., 2024). All of these techniques
seek to alleviate the need for expensive human-
annotated training data. In this work, we question
whether incorporating linguistic structures in the
form of dependency parsing as an explicit addition
to the input in existing models can aid learning
robust representations that can be transferred to
other languages.

3 Methodology

We investigate the role of dependency parses for
zero-shot cross-lingual relation extraction in two
setups, namely (i) a fine-tuned setup where a model
is first trained on a given source language and
then evaluated on a target language, and (ii) an in-
context-learning setup where we prompt an LLM to
predict the relation between two specified entities
in a zero-shot setting to test the innate capabilities
of the LLM for RE.

3.1 Fine-Tuning Setting

We present a detailed description of our proposed
framework, DEPGEN here. Our framework lever-
ages the internal structure of a document text to
aid relation classification. We define internal struc-
ture as the linguistic information encoded within

the document based on syntactic rules in the form
of dependency parses. This section describes the
individual components that constitute our frame-
work DEPGEN, namely the multilingual encoder,
dependency parser, graph neural network, and the
fusion layer. We dive deep into the methodology
for representing the textual content, and elaborate
on the approach employed for incorporating depen-
dency parses for a given input sentence. Finally,
we end the section with how the different modes of
information are fused, and the classification setup.
A pictorial representation of our framework can
be seen in Figure 2 Our architecture involves the
following components.

3.1.1 Multilingual Encoder

We experiment with mBERT (Devlin et al., 2018)
and XLMR (Conneau et al., 2020c) as our multi-
lingual text encoder to obtain representations of
the input sentence(s). Past work has shown the
efficacy of such contextual multilingual encoders
in capturing long-range semantic dependency in
text (Litschko et al., 2021). Similar to these works,
we consider the final encoder layer representation
of [CLS] token as the text representation. The sen-
tence(s) are fed as input to the MULTILINGUAL
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ENCODER (Figure 2) and the [CLS] token represen-
tation from the final layer is fed into the FUSION

LAYER. The individual token representations from
the final layer are used to initialize the node embed-
dings in the dependency graph of the INTERNAL

STRUCTURE module, which we describe below.

3.1.2 Internal Structure
We incorporate the internal structure information
by learning the syntactic dependency information
between the tokens in the input sentence. We first
pass the input tokens through a DEPENDENCY

PARSER to obtain the dependency tree for each
sentence. We then construct a dependency graph
from the constituent dependency trees, which is
then fed as input to a Graph Neural Network (GNN)
(Scarselli et al., 2008). The various components of
this module are as follows.

Dependency Parser To generate the dependency
tree, we use off-the-shelf multilingual dependency
parsing modules, i.e. Stanza (Qi et al., 2020a) and
Trankit (Nguyen et al., 2021). The resulting de-
pendency tree represents the syntactic dependency
relations between the words in a sentence; the de-
pendencies follow the Universal Dependencies for-
malism (Nivre et al., 2016; Zeman et al., 2019),
resulting in 76 types of dependencies across the
different languages for our experiments.

Dependency Graph Since the dependency tree
is defined for a sentence, the output from DEPEN-
DENCY PARSER will be in the form of a forest of
disconnected dependency trees; for example 4 trees
for 4 sentences in Figure 2. We add a pseudo node
[CENTRAL] and add a new type of dependency
relation [SENT] between the [CENTRAL] and all
the [ROOT] nodes of the sentences. The proposed
design has two benefits - (1) The [CENTRAL] node
allows for information exchange between the sen-
tences, which otherwise would probably lead to
different clusters of representations (represented by
colors in Figure 2) for nodes in different sentences,
(2) The distance between the two entities is reduced
(dotted red line in Figure 2) when the entities are
present across two different sentences, resulting in
an efficient information flow between them.

Graph Neural Network We represent each word
as a node in the dependency graph and the depen-
dency relations as the edges between the nodes.
Each node in the graph is initialized with the rep-
resentations obtained from the final layer of the

MULTILINGUAL ENCODER. We aggregate the sub-
token representations via max-pooling and obtain
the final representation of a word. This initializa-
tion helps incorporate the semantic relationship
between the nodes and facilitates end-to-end joint
training of the MULTILINGUAL ENCODER and the
INTERNAL STRUCTURE modules. The relation
embeddings for the all the relation types are ini-
tialized at random and learnt jointly along with
the node embeddings. The representations of the
two entities from the multi-layer GNN are then
fed to the FUSION LAYER along with the sentence
representation for relation prediction.

3.1.3 Relation Prediction
We concatenate the representations obtained from
the MULTILINGUAL ENCODER and the INTER-
NAL STRUCTURE modules in the FUSION LAYER

and perform a multi-class classification for predict-
ing the relation. During training, we compute the
standard Cross Entropy loss, and back-propagate it
jointly through all the components of the network.

3.2 In-context Learning Setting

In addition to the DEPGEN framework that encap-
sulates the fine-tuned setting, we also explore the
role of dependency parses when provided as ad-
ditional inputs to LLMs in a zero-shot prompting
setup. We experiment with three different types
of prompt formats that encodes the dependency
information which we describe below.

Tuple Format: In the tuple-based prompt format,
we simply provide the dependency parse as a list
of tuples or dictionary keys. Each tuple comprises
three elements, i.e. a node in the dependency graph
or a word, the corresponding head node of that
word, and the relation that connects the head node
to the word. For example, the phrase “Porsche
Panamera”, would have the following information
in the form of a tuple.

{
word : P o r s c h e
head : Panamera ,
r e l : compound

}

Text Format: Instead of providing the de-
pendency parse information in the form of tu-
ples, we verbalize the dependency relations be-
tween the words in the sentence in natural
language format. In the above example of
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“Porsche Panamera”, we re-write the tuple infor-
mation as “Porsche is Compound noun
modifier of Panamera”. We do this for all
the tuples in the dependency graph.

Filtered Text Format: As opposed to verbaliz-
ing all the tuples in the dependency graph, we filter
out only the tuples that connect the two entities in
the sentence via the dependency relations. Not only
does this reduce the number of input tokens to the
LLM, it also helps filter out redundant information.

As a control, we also prompt the models with
only the text, without any dependency informa-
tion, which serves as a baseline. The details of the
prompts are in the Appendix.

4 Experimental Setup

4.1 Dataset

We conduct our experiments on relation extraction
on two datasets i.e. IndoRE and REDFM.

IndoRE (Nag et al., 2021) The IndoRE dataset
covers a diverse and rich set of entity and relation
annotated sentences in three low resource Indian
languages — Bengali (bn), Hindi (hi) and Telugu
(te). To study protocols for transferring RE capa-
bility across languages, it also has labeled English
(en) RE instances as an example of a resource-high
language. The dataset consists of 32,610 sentences
combining all four languages from Wikidata where
each language contains 51 unique relations. Out
of these languages, we exclude Bengali from our
experiments because the dependency parsers’ in-
ability to parse the language.

REDFM (Huguet Cabot et al., 2023) We use
this dataset consisting of examples from 7 lan-
guages. These languages include English (en), Ara-
bic (ar), Spanish (es), German (de), Italian (it),
French (fr), and Chinese (zh), which are hand-
annotated. There are a total of about 15,400 ex-
amples in the dataset with a total of 32 types of
relations. We use the languages en, es, de, it, and
fr for training (i.e. source languages), and all the
7 languages for testing in a zero-shot setting (i.e.
target languages). We exclude Arabic and Chinese
as source language due to the unavailability of a
training split in the REDFM dataset. We use the
train/validation/test splits as in the original paper.

4.2 Fine-tuned Experimental Setup

We experiment with the following settings:

1. Baseline: We experiment with mBERT (De-
vlin et al., 2019) and XLMR (Conneau et al.,
2020b) as our choices to encode the document
text and the entity spans. We concatenate the
pooled representation of the entities and the
[CLS] embedding and use it for relation clas-
sification.

2. Dependency Parses: We experiment with
Trankit (Nguyen et al., 2021) and Stanza (Qi
et al., 2020b) as the choice of the dependency
parser across all languages for both datasets.

3. Graph Neural Network: We experiment
with RGCN (Schlichtkrull et al., 2018) and
RGAT (Busbridge et al., 2019) as the back-
bone GNN architecture to encode the depen-
dency information between words in the doc-
ument. We use a GNN with 2 hidden layers
for all our experiments.

4.3 In-context Learning Experimental Setup

We employ three different instruction-tuned LLMs
for our in-context learning experiments, i.e.
LLaMA (Meta-Llama-3-8B-Instruct) (Grattafiori
et al., 2024), Mistral (Mistral-7B-Instruct-v0.3)
(Jiang et al., 2023) and Qwen (Qwen2-7B-Instruct)
(Yang et al., 2024). We use instruction-tuned LLMs
since we wish to employ these LLMs in a zero-shot
setup for relation extraction without fine-tuning or
additional training. Similar to the fine-tuned experi-
mental setup, the dependency parse information are
obtained from two sources, i.e. Stanza and Trankit.

4.4 Experiment Counts

For in-domain, we have a total of 8 languages (5
for RedFM, 3 for IndoRE) for 2 given choices of
encoder, parser and GNN. Each experiment is re-
peated for 5 seeds resulting in a total of 320 exper-
iments, that include dependency information and
an additional 80 experiments (over 8 languages,
2 encoders, and 5 seeds) as the baseline. For the
zero-shot cross-lingual transfer setting, for RedFM,
we have 6 possible target languages for each of the
5 source languages, while for IndoRE, we have
2 possible targets for each of the 3 source lan-
guages. Thus for each 36 possible cross-lingual
pairs, we evaluate 50 different combination of en-
coder, parser, GNN, and seeds, resulting in another
1800 experiments. Finally, in the in-context learn-
ing setup for LLMs, we experiment with 3 LLMs
for 10 languages over 4 kinds of prompts (including
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RedFM IndoRE

mBERT

DEP GNN en es fr it de en hi te

- - 84.3±0.7 80.0±0.6 78.6±0.3 76.3±0.8 78.7±0.3 94.3±0.6 89.6±0.4 84.9±0.4

stanza rgcn 85.7±0.8 80.5±1.0 79.7±1.0 78.2±0.5 80.0±0.9 94.4±0.2 90.9±0.3 86.1±0.9
stanza rgat 85.2±1.4 82.2±0.6 79.9±0.4 77.9±1.2 80.5±0.6 94.9±0.3 89.5±1.4 85.9±1.1
trankit rgcn 84.3±0.4 81.8±0.8 80.7±0.8 78.9±0.7 79.7±0.9 94.0±0.2 89.7±0.1 85.9±1.9
trankit rgat 85.5±1.3 80.9±0.3 80.2±0.2 77.3±0.8 78.9±0.7 94.1±0.5 88.9±0.5 84.6±0.8

XLMR

- - 84.0±1.1 77.2±2.0 76.2±1.0 74.8±1.2 75.2±0.6 92.1±0.8 88.7±0.9 86.3±1.1

stanza rgcn 83.7±0.6 76.8±0.8 76.7±0.9 73.3±0.7 75.7±1.5 91.8±0.8 89.6±1.1 85.6±0.7
stanza rgat 84.0±0.8 77.5±1.4 74.4±0.9 75.6±1.2 76.2±1.1 92.2±0.4 89.9±0.9 85.7±0.6
trankit rgcn 83.8±0.5 76.4±1.1 74.7±1.0 72.6±2.3 73.9±2.6 91.9±0.9 89.9±0.8 85.2±0.5
trankit rgat 82.6±0.8 77.3±0.2 75.0±0.3 74.0±1.7 75.9±0.1 92.6±0.7 89.2±1.0 85.9±1.6

Table 1: In-domain RE performance of mBERT and XLMR on RedFM and IndoRE, with dependency information
(i.e. choice of the parser or DEP, and the choice of the GNN used to encode the information, i.e. GNN). Results are
averaged across the top 3 seeds, with the highest values in each column bolded.

RedFM IndoRE

mBERT

DEP GNN en es fr it de ar zh en hi te

- - 77.5±1.1 81.0±1.1 78.8±1.1 76.7±1.1 75.6±1.1 72.5±1.1 70.0±1.1 57.5±1.8 57.6±2.7 42.4±2.4

stanza rgcn 78.2±0.8 81.0±0.8 79.5±0.8 76.8±0.8 77.1±0.8 72.6±0.8 70.0±0.8 57.0±1.0 57.1±0.8 44.6±1.2
stanza rgat 78.0±1.0 81.1±1.0 78.8±1.0 76.5±1.0 77.2±1.0 73.2±1.0 70.4±1.0 56.4±1.2 57.7±1.2 45.2±1.4
trankit rgcn 78.7±0.8 81.3±0.8 79.3±0.8 75.4±0.8 77.8±0.8 72.8±0.8 70.0±0.8 57.9±0.8 59.1±0.6 44.9±1.6
trankit rgat 77.9±0.8 80.6±0.8 79.1±0.8 76.3±0.8 77.9±0.8 73.1±0.8 70.4±0.8 57.1±1.4 57.9±1.8 45.1±1.7

XLMR

- - 72.7±1.4 74.2±1.4 72.2±1.4 66.8±1.4 70.7±1.4 61.8±1.4 63.1±1.4 50.0±2.2 55.1±1.5 45.9±1.6

stanza rgcn 73.4±1.4 74.5±1.4 73.2±1.4 67.7±1.4 70.3±1.4 61.2±1.4 63.9±1.4 49.3±1.8 55.4±1.4 46.1±1.7
stanza rgat 73.3±1.5 74.3±1.5 73.4±1.5 67.9±1.5 68.4±1.5 61.1±1.5 63.2±1.5 50.0±1.6 53.8±2.8 46.3±2.0
trankit rgcn 73.1±1.3 74.7±1.3 73.1±1.3 66.8±1.3 69.5±1.3 62.7±1.3 63.8±1.3 50.7±0.7 56.3±1.1 45.5±2.9
trankit rgat 73.1±1.1 75.7±1.1 73.4±1.1 65.9±1.1 70.9±1.1 62.1±1.1 63.6±1.1 50.8±1.4 56.0±2.2 46.9±2.6

Table 2: Zero-shot Cross-lingual RE performance on RedFM and IndoRE with mBERT and XLMR as the
multilingual encoders with different combinations of dependency information. For a given target language, we
average the performance across the different source languages. The highest values in each column are highlighted
in bold. Detailed individual cross-lingual performance metrics are given in the Appendix.

the baseline), and 2 kinds of parsers (Stanza and
Dependency), resulting in a suite of 240 prompt-
ing experiments. Our final experimental suite thus
comprises 2440 experiments.

5 Results and Insights

In this section, we pose the following research ques-
tions (RQs) and attempt to answer the same.
RQ1. Impact of dependency parses on RE for
indomain and cross-lingual transfer ?

We report the in-domain and cross-lingual re-
lation extraction performance with mBERT and
XLMR as the multilingual encoders, stanza and
trankit as the choice of the off-shelf-parsers, and
RGCN and RGAT being the backbone GNN for

both the IndoRE and RedFM datasets, in Tables 1
and 2 respectively.

At the outset, we observe that across both
datasets, adding dependency information gener-
ally improves performance over the baseline in the
in-domain setting; we see higher gains when we
have mBERT as the MLM as opposed to XLMR.
We also observe that the gains are higher for the
REDFM dataset than IndoRE, possibly due to
the poorer quality of dependency parses on low-
resource languages like Hindi and Telugu, as op-
posed to standard high-resource cases like English,
Spanish, and Italian. In fact, for all languages other
than English, we see a consistent improvement in
F1-score of approximately 2.0% and 1.0% with
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Figure 3: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the IndoRE
dataset analyzed across variations in sentence, lexical
and dependency length

the mBERT model on the REDFM and IndoRE
dataset respectively, for the best combination of
dependency parser and GNN.

In the zero-shot cross-lingual transfer scenario
from Table 2 we observe trends that are markedly
different from the in-domain setting. Each entry in
this Table is computed by averaging the macro-F1
score over the other source languages, apart from
itself, for the top 3 seeds. We notice only slight
improvements in RE performance for mBERT but
higher gains for XLMR. We hypothesize that since
XLMR has a worse performance than mBERT, it
benefits more from the dependency information in
the zero-shot setting. In a similar vein, we observe
much higher gains for Hindi and Telugu (around
2.6% and 6.6% relative performance improvements
respectively) in the zero-shot setting for mBERT.
The markedly lower scores in IndoRE in the zero-
shot transfer setup as compared to REDFM can be
attributed to the higher number of relations in the
dataset (32 for IndoRE vs 51 for REDFM).
RQ2. Which scenarios benefit the most with
additional information in the fine-tuned setup?

In the fine-tuned setup, we analyze which sce-
narios or inputs benefit the most from including

Figure 4: Performance of DEPGEN for in-domain and
zero-shot cross-lingual transfer settings on the RedFM
dataset analyzed across variations in sentence, lexical
and dependency length

dependency information. We thus group the test
instances according to three different dimensions,
i.e. (1) input sentence length (2) lexical distance
between two entities in the sentence and (3) depen-
dency path length. Figures 3 and 4 show the effect
of these components for the in-domain and zero-
shot cross-lingual transfer settings for the IndoRE
and RedFM datasets respectively. The blue, orange
and green plots reflect the bottom quartile, inter-
quartile range and the top quartile respectively for
each of these three dimensions.

Sentence Length: We quantify sentence length
based on the total number of tokens in the docu-
ment. For both zero-shot and in-domain settings
across the two datasets, adding linguistic informa-
tion in the form of dependency graphs improves
relation extraction for longer sentences. We posit
that including dependency information helps to cap-
ture long range dependencies across words and thus
the observed gains for longer sentences.

Lexical Distance: We quantify the lexical dis-
tance as the number of tokens between the two
entities. Here, we observe that dependency infor-
mation is more helpful for cases where the dis-
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Model Parser Prompting RedFM IndoRE Average
ar de en es fr it zh en hi te

Llama

None - 25.6 25.7 27.0 27.0 16.7 36.7 37.1 47.6 39.0 21.9 30.4
Stanza Tuple 24.3 19.3 23.9 17.0 18.4 19.3 29.6 30.2 28.3 10.9 22.1
Stanza Text 25.1 24.5 22.6 23.1 23.5 24.0 30.6 44.4 37.4 22.9 27.8
Stanza Filtered Text 33.5 35.0 32.3 31.6 30.5 34.0 36.1 48.0 44.5 29.8 35.5 (↑5.1%)
Trankit Tuple 30.3 17.1 37.3 17.2 18.3 22.1 32.4 27.5 30.6 10.5 24.3
Trankit Text 23.4 25.4 22.7 22.6 23.8 25.6 30.5 44.8 38.4 24.0 28.1
Trankit Filtered Text 33.1 35.2 35.6 31.4 28.7 30.3 35.3 46.2 42.8 29.5 34.8

Mistral

None - 36.7 38.2 39.0 35.8 36.0 38.3 35.6 51.3 38.5 10.6 36.0
Stanza Tuple 27.2 35.9 30.9 31.9 28.1 35.1 30.9 48.4 30.6 9.8 30.9
Stanza Text 29.2 32.0 34.4 32.6 30.4 33.4 33.2 47.5 37.1 8.7 31.9
Stanza Filtered Text 39.1 39.5 40.9 37.1 36.6 40.2 36.7 50.8 38.5 10.3 37.0 (↑1.0%)
Trankit Tuple 27.4 35.3 32.5 31.5 26.9 30.6 31.3 48.0 30.5 10.8 30.5
Trankit Text 27.9 32.0 34.7 30.7 31.0 32.7 34.1 46.8 36.4 11.2 31.7
Trankit Filtered Text 39.3 39.7 39.3 36.3 36.9 37.8 38.1 50.9 38.3 11.2 36.8

Qwen

None - 44.3 39.6 40.3 38.0 36.8 43.0 40.8 42.7 39.2 29.1 39.4
Stanza Tuple 35.4 32.0 34.6 31.8 31.9 37.8 31.4 38.3 38.2 26.1 33.8
Stanza Text 33.8 34.8 36.0 33.3 33.3 33.3 29.9 39.5 41.1 30.6 34.6
Stanza Filtered Text 42.1 32.8 39.8 37.3 33.6 38.4 40.4 44.7 45.4 28.6 38.3(↓1.1%)
Trankit Tuple 34.3 30.7 35.2 34.1 28.1 35.1 33.6 39.6 37.4 21.8 33.0
Trankit Text 35.4 35.2 34.2 33.1 34.0 33.4 30.2 40.5 40.5 27.3 34.4
Trankit Filtered Text 39.9 36.0 35.4 39.4 34.7 38.6 34.5 44.0 45.9 26.6 37.5

Table 3: Effect of dependency parses and prompting techniques for LLM-based relation extraction for the REDFM
and IndoRE datasets. Performance reported in terms of F1-Score. Best performing methods are shown in bold.

tance between the entities is not high, i.e. Low and
Medium categories.

Dependency Path Length: We quantify the de-
pendency path length as the number of dependency
relations that separate the two entities in the depen-
dency graph. We see prominent gains for both short
and long range dependency paths, especially for
the ZS case for IndoRE. However, similar to lex-
ical distance, the gains are more prominent when
the dependency path between the entities is small.
Since our chosen GNN has only two layers, we hy-
pothesize that it is unable to capture signals across
long dependency paths effectively.
RQ3. Can dependency parses help improve
relation extraction performance for LLMs?

Table 3 summarizes the performance of three LLMs
- LLaMA (Grattafiori et al., 2024), Mistral (Jiang
et al., 2023) and Qwen (Yang et al., 2024) for zero-
shot relation extraction on the IndoRE and RedFM
datasets. To account for the skew in distribution
of relations, we employ the macro-F1 score as the
primary evaluation metric. We observe that for the
LLama-3 and Mistral models, incorporating depen-
dency parses improves performance across several
cases. The gains are most prominent when the de-

pendency information is presented in the form of
natural language text; we see consistent improve-
ments for the Text Prompt Format over the Tuple
Prompt Format, where the information is presented
as a list of tuples. We see that the filtered prompt
that removes information not pertaining to the two
entities, improves performance further.

The improvement can be as significant as 1% to
5% in some cases in terms of absolute F1-score for
Mistral and LLama-3 respectively. For the Qwen
model, dependency parses do not afford much ben-
efits. Thus the choice of the LLM and the descrip-
tion of the prompt, play a significant role in zero-
shot relation extraction performance. It should be
noted, however, that the zero-shot performance for
the in-context learning setup is significantly worse
than the zero-shot cross-lingual performance in the
fine-tuned setup. With LLMs, we see an average
absolute improvement of 1.67% across all models
and languages with the Filtered Text Prompt.
RQ4. Which factors influence generalization?

We now inspect the factors that characterize
performance improvements over the baseline for
the two datasets in the fine-tuned learning and in-
context learning setup. We perform a multivariate
ANOVA analysis with the relative performance dif-
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ference (expressed as a percentage over the base-
line), from including the dependency parses, as the
dependent variable.

The independent variables chosen are the choice
of the multilingual encoder, (mBERT or XLMR),
dependency parser (Stanza or Trankit), GNN em-
ployed (RGCN or RGAT), and the source and tar-
get language 1. We also consider the pair-wise
interaction effects of each of these variables, and
note the F-statistic and their corresponding p-value
for the indomain (Tables 9 and 11) and zero-shot
cross-lingual (Tables 10 and 12) respectively.

For the indomain setting in IndoRE, we observe
that the relative performance change hinges most
on the choice of the dependency parser followed
by source language. Although the choice of the
encoder and the GNN do not have any significant
effect on relative performance, their pair-wise inter-
actions is indeed significant. The story is remark-
ably different for REDFM where only the choice
of the encoder has any significant effect on RE.

In the zero-shot cross-lingual setting for IndoRE,
we see significant effects arising from the choice
of the target language and the pairwise interaction
between the choice of the source/target language
with that of the encoder. A similar story also holds
for REDFM, wherein we notice the only significant
interactions are between the choice of the source/-
target language and the encoder, and also between
the choice of the source/target language pairs them-
selves. Simply put in the zero-shot setting the role
of the dependency information is insignificant for
both datasets.

We carry out a similar statistical analysis for the
zero-shot ICL setup, with the relative performance
change over the baseline as the dependent variable,
and the choice of the LLM (i.e. LLama-3, Qwen,
and Mistral), the prompt (i.e. Tuple Format, Text
Format, and Filtered Text Format), the language
(7 for RedFM and 3 for IndoRE), and the choice
of the dependency parser (i.e. Trankit and Stanza)
as the independent variables. We also consider the
pair-wise interaction effects of each of these vari-
ables, and note the F-statistic and their correspond-
ing p-value for the IndoRE and REDFM dataset
respectively in Tables 13 and 14 respectively. We
observe, over both datasets, significant effects aris-
ing from the choice of the LLM, and the choice
of the prompt, as well as the pairwise interaction

1For the indomain setting we consider only the target lan-
guage

between the choice of the prompt and LLM, and
the choice of the source language and LLM. Once
again, we see that the choice of the dependency
parser, i.e. the Stanza or Trankit, does not play a
significant role.

6 Conclusion and Future Work

In this paper we propose a multi-component frame-
work for multi-lingual relation extraction. Our fine-
tuned framework DEPGEN, combines the signals
from the input sentence with dependency parses
that are encoded through a GNN. Through exten-
sive evaluations, we have reported the implica-
tions of our work for both in-domain and zero-shot
transfer settings across multiple languages. We
observe that including off-the-shelf dependency
parses can aid relation extraction, with the best per-
forming model having a mild relative improvement
of 0.91% and 1.5% in the in-domain and zero-shot
setting respectively across two datasets. We also
develop an in-context learning prompting approach
that incorporates dependency information to bring
about an average improvement of 1.67%, with sig-
nificant gains for low-performing LLMs.

In this work, we investigate how augmenting
dependency parses in language models can facil-
itate information extraction tasks in low-resource
settings. Specifically, our contributions being inde-
pendent of the language setting makes our model
portable to other languages in a zero-shot transfer
setup. Future avenues will explore the role of these
linguistic frameworks for other information extrac-
tion or reasoning tasks, and the impact of different
kinds of linguistic frameworks such as AMRs or
UMRs.
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Celano, Slavomír Čéplö, Savas Cetin, Fabricio
Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun,
Alessandra T. Cignarella, Silvie Cinková, Aurélie
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A Appendices

In this section, we provide extra figures and ta-
bles to further corroborate our experiments in this
work. Additionally, we also present a statistical
significance analysis of our results using the Anova
method.

352

http://hdl.handle.net/11234/1-3105
https://aclanthology.org/2022.findings-emnlp.132
https://aclanthology.org/2022.findings-emnlp.132
https://aclanthology.org/2022.findings-emnlp.132
https://doi.org/10.18653/v1/2023.findings-eacl.185
https://doi.org/10.18653/v1/2023.findings-eacl.185
https://doi.org/10.18653/v1/2023.findings-eacl.185
https://doi.org/10.18653/v1/2024.findings-acl.96
https://doi.org/10.18653/v1/2024.findings-acl.96
https://doi.org/10.18653/v1/2024.findings-acl.96
https://doi.org/10.18653/v1/2023.acl-long.808
https://doi.org/10.18653/v1/2023.acl-long.808
https://aclanthology.org/2021.adaptnlp-1.20
https://aclanthology.org/2021.adaptnlp-1.20
https://doi.org/10.18653/v1/2024.emnlp-main.747
https://doi.org/10.18653/v1/2024.emnlp-main.747


Dataset Source Encoder Parser Sent Length Lex Length Dep Length # Docs # Rels

Mean Median Mean Median Mean Median

Indore en mBERT stanza 31.23 29.0 13.92 11.0 5.43 5.0 8486 51
hi mBERT stanza 66.76 56.0 27.29 21.0 5.70 5.0 6963 51
te mBERT stanza 151.45 140.0 44.74 31.0 6.05 6.0 8154 51
en mBERT trankit 31.23 29.0 13.92 11.0 5.42 5.0 8486 51
hi mBERT trankit 66.76 56.0 27.29 21.0 5.85 6.0 6963 51
te mBERT trankit 151.45 140.0 44.74 31.0 5.69 6.0 8154 51
en XLMR stanza 34.40 32.0 15.95 13.0 5.43 5.0 8486 51
hi XLMR stanza 56.25 48.0 22.85 17.0 5.70 5.0 6963 51
te XLMR stanza 125.60 113.0 37.43 26.0 6.05 6.0 8154 51
en XLMR trankit 34.40 32.0 15.95 13.0 5.42 5.0 8486 51
hi XLMR trankit 56.25 48.0 22.85 17.0 5.85 6.0 6963 51
te XLMR trankit 125.60 113.0 37.43 26.0 5.69 6.0 8154 51

RedFM en mBERT stanza 117.53 107.0 27.96 17.0 6.40 6.0 10899 32
es mBERT stanza 103.77 91.0 25.97 17.0 6.24 6.0 6538 32
fr mBERT stanza 92.18 78.0 23.19 15.0 5.86 5.0 7383 32
it mBERT stanza 79.31 65.0 20.56 14.0 5.80 5.0 6812 32
de mBERT stanza 88.79 79.0 22.97 15.0 5.28 5.0 7497 32
ar mBERT stanza 107.15 90.0 29.68 22.0 6.08 6.0 1846 32
zh mBERT stanza 118.18 101.0 35.25 22.0 6.69 6.0 1384 32
en mBERT trankit 117.53 107.0 27.96 17.0 6.37 6.0 10899 32
es mBERT trankit 103.77 91.0 25.97 17.0 6.16 6.0 6538 32
fr mBERT trankit 92.18 78.0 23.19 15.0 5.68 5.0 7383 32
it mBERT trankit 79.31 65.0 20.56 14.0 5.64 5.0 6812 32
de mBERT trankit 88.79 79.0 22.97 15.0 5.16 5.0 7497 32
ar mBERT trankit 107.15 90.0 29.68 22.0 6.18 6.0 1846 32
zh mBERT trankit 118.18 101.0 35.25 22.0 6.75 6.0 1384 32
en XLMR stanza 130.33 119.0 31.52 19.0 6.40 6.0 10899 32
es XLMR stanza 112.22 100.0 28.86 19.0 6.24 6.0 6538 32
fr XLMR stanza 103.20 86.0 26.77 17.0 5.86 5.0 7383 32
it XLMR stanza 85.14 71.0 22.72 16.0 5.80 5.0 6812 32
de XLMR stanza 96.23 87.0 25.53 17.0 5.28 5.0 7497 32
ar XLMR stanza 95.81 81.0 26.64 19.0 6.08 6.0 1846 32
zh XLMR stanza 96.10 81.0 28.35 18.0 6.69 6.0 1384 32
en XLMR trankit 130.33 119.0 31.52 19.0 6.37 6.0 10899 32
es XLMR trankit 112.22 100.0 28.86 19.0 6.16 6.0 6538 32
fr XLMR trankit 103.20 86.0 26.77 17.0 5.68 5.0 7383 32
it XLMR trankit 85.14 71.0 22.72 16.0 5.64 5.0 6812 32
de XLMR trankit 96.23 87.0 25.53 17.0 5.16 5.0 7497 32
ar XLMR trankit 95.81 81.0 26.64 19.0 6.18 6.0 1846 32
zh XLMR trankit 96.10 81.0 28.35 18.0 6.75 6.0 1384 32

Table 4: Combined Statistics for Indore and RedFM Datasets
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Without Any Dependency Information:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is being
discussed? Choose one from this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4:
instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12:
league\n13: owned by\n14: genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19:
manufacturer\n20: located in or next to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member
of\n25: sport \n26: characters\n27: participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The
answer is :

Tuple Format Prompt:
Given the sentence: "The Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.", which one of the following relations between the two entities <e1> and <e2> is
being discussed? We also provide the dependency parse in the form of head, rel, and word: {"head": "Panamera", "rel":
"det", "word": "The"}, {"head": "Panamera", "rel": "compound", "word": "Porsche"}, {"head": "vehicle", "rel": "nsubj",
"word": "Panamera"}, {"head": "vehicle", "rel": "cop", "word": "is"}, {"head": "vehicle", "rel": "det", "word": "a"}, {"head":
"sized", "rel": "compound", "word": "mid"}, {"head": "sized", "rel": "punct", "word": "/"}, {"head": "sized", "rel": "amod",
"word": "full"}, {"head": "sized", "rel": "punct", "word": "-"}, {"head": "vehicle", "rel": "amod", "word": "sized"}, {"head":
"vehicle", "rel": "compound", "word": "luxury"}, {"head": "ROOT", "rel": "root", "word": "vehicle"}, {"head": "segment",
"rel": "punct", "word": "("}, {"head": "segment", "rel": "compound", "word": "E"}, {"head": "segment", "rel": "punct",
"word": "-"}, {"head": "vehicle", "rel": "appos", "word": "segment"}, {"head": "Europe", "rel": "case", "word": "in"}, {"head":
"segment", "rel": "nmod", "word": "Europe"}, {"head": "segment", "rel": "punct", "word": ")"}, {"head": "vehicle", "rel":
"acl", "word": "manufactured"}, {"head": "manufacturer", "rel": "case", "word": "by"}, {"head": "manufacturer", "rel": "det",
"word": "the"}, {"head": "manufacturer", "rel": "amod", "word": "German"}, {"head": "manufacturer", "rel": "compound",
"word": "automobile"}, {"head": "manufactured", "rel": "obl", "word": "manufacturer"}, {"head": "manufacturer", "rel":
"appos", "word": "Porsche"}, {"head": "vehicle", "rel": "punct", "word": "."}, {"head": "engined", "rel": "nsubj", "word":
"It"}, {"head": "engined", "rel": "cop", "word": "is"}, {"head": "engined", "rel": "obl:npmod", "word": "front"}, {"head":
"engined", "rel": "punct", "word": "-"}, {"head": "ROOT", "rel": "root", "word": "engined"}, {"head": "has", "rel": "cc",
"word": "and"}, {"head": "engined", "rel": "conj", "word": "has"}, {"head": "layout", "rel": "det", "word": "a"}, {"head":
"drive", "rel": "amod", "word": "rear"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive", "rel": "compound",
"word": "wheel"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "layout", "rel": "amod", "word": "drive"}, {"head":
"has", "rel": "obj", "word": "layout"}, {"head": "layout", "rel": "punct", "word": ","}, {"head": "available", "rel": "mark",
"word": "with"}, {"head": "drive", "rel": "det", "word": "all"}, {"head": "drive", "rel": "punct", "word": "-"}, {"head": "drive",
"rel": "compound", "word": "wheel"}, {"head": "versions", "rel": "compound", "word": "drive"}, {"head": "available", "rel":
"nsubj", "word": "versions"}, {"head": "available", "rel": "advmod", "word": "also"}, {"head": "layout", "rel": "acl", "word":
"available"}, {"head": "engined", "rel": "punct", "word": "."}. Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 5: Prompt without dependency information and the tuple format prompt are used for relation extraction on the
English subset of the RedFM dataset with Trankit as the dependency parser.
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Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\We also provide the dependency parses as follows: T̈he is Determiner of Panamera, Porsche is Compound noun
modifier of Panamera, Panamera is Nominal subject of vehicle, is is Copula of vehicle, a is Determiner of vehicle, mid/ is
Adverbial modifier of sized, full is Adjectival modifier of sized, - is Punctuation of sized, sized is Adjectival modifier of vehicle,
luxury is Compound noun modifier of vehicle, vehicle is the root word, ( is Punctuation of E, E is Appositional modifier of
vehicle, - is Punctuation of segment, segment is Unspecified dependency of E, in is Case marker of Europe, Europe is Nominal
modifier of segment, ) is Punctuation of segment, manufactured is Clausal modifier of noun of vehicle, by is Case marker of
Porsche, the is Determiner of Porsche, German is Adjectival modifier of Porsche, automobile is Compound noun modifier
of manufacturer, manufacturer is Compound noun modifier of Porsche, Porsche is Oblique nominal of manufactured, . is
Punctuation of vehicle, It is Nominal subject of engined, is is Copula of engined, front is Adjectival modifier of engined, - is
Punctuation of front, engined is the root word, and is Coordinating conjunction of has, has is Conjunction of engined, a is
Determiner of layout, rear is Compound noun modifier of drive, - is Punctuation of wheel, wheel is Compound noun modifier of
drive, - is Punctuation of drive, drive is Compound noun modifier of layout, layout is Object of has, , is Punctuation of available,
with is Marker of available, all is Determiner of wheel, - is Punctuation of all, wheel is Compound noun modifier of drive, drive is
Compound noun modifier of versions, versions is Nominal subject of available, also is Adverbial modifier of available, available
is Adverbial clause modifier of has, . is Punctuation of engined, \Choose one from this list of 32 options:\n0: country\n1: place
of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6: child\n7: shares border with\n8: author\n9:
director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14: genre\n15: named after\n16: follows\n17:
headquarters location\n18: cast member\n19: manufacturer\n20: located in or next to body of water\n21: location\n22: part
of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27: participant\n28: notable work\n29:
replaces\n30: sibling\n31: inception\n\nThe answer is : "

Filtered Text Prompt:
Given the sentence: T̈he Porsche Panamera is a mid/full-sized luxury vehicle (E-segment in Europe) manufactured by the
<e2>German</e2> automobile manufacturer <e1>Porsche</e1>. It is front-engined and has a rear-wheel-drive layout, with
all-wheel drive versions also available.̈, which one of the following relations between the two entities <e1> and <e2> is being
discussed?\n We also provide the dependency parses as follows: P̈orsche is Adjectival modifier of German, \n Choose one from
this list of 32 options:\n0: country\n1: place of birth \n2: spouse\n3: country of citizenship\n4: instance of\n5: capital\n6:
child\n7: shares border with\n8: author\n9: director\n10: occupation\n11: founded by\n12: league\n13: owned by\n14:
genre\n15: named after\n16: follows\n17: headquarters location\n18: cast member\n19: manufacturer\n20: located in or next
to body of water\n21: location\n22: part of\n23: mouth of the watercourse\n24: member of\n25: sport \n26: characters\n27:
participant\n28: notable work\n29: replaces\n30: sibling\n31: inception\n\n. The answer is :

Table 6: Text prompt and Filtered Text prompts used for relation extraction on the English subset of the RedFM
dataset with Trankit as the dependency parser.
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Table 7: Zero-shot cross-lingual performance for Relation Extraction on the RedFM dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en es fr it de ar zh

en - - - 80.4±0.2 80.7±0.4 77.3±1.3 78.8±0.9 72.7±0.8 70.4±0.6
en stanza rgcn - 79.6±0.8 80.9±1.4 76.2±1.0 80.2±0.5 74.4±0.9 72.0±0.8
en stanza rgat - 80.3±0.4 80.3±0.2 74.8±1.2 79.5±0.3 74.1±0.9 72.3±0.4
en trankit rgcn - 80.1±0.4 80.8±0.5 73.8±0.2 79.3±0.7 73.8±1.8 69.5±0.6
en trankit rgat - 80.8±0.3 80.7±0.2 74.4±1.8 79.0±0.7 74.5±0.7 70.1±0.6

es - - 77.6±0.1 - 77.2±0.8 76.4±0.6 75.9±0.7 70.9±1.6 70.8±1.1
es stanza rgcn 78.0±0.4 - 82.6±0.8 77.6±1.4 76.9±1.3 73.2±0.5 69.2±0.6
es stanza rgat 79.1±0.2 - 78.4±0.5 77.4±1.3 76.2±0.7 73.5±0.9 69.7±1.5
es trankit rgcn 79.3±0.9 - 80.6±1.6 76.3±0.6 77.1±1.0 73.3±0.3 71.5±1.6
es trankit rgat 80.0±1.1 - 78.7±0.5 78.3±1.0 77.7±0.8 72.6±1.2 71.2±2.6

fr - - 76.6±2.9 80.4±1.3 - 76.9±2.0 74.8±1.6 70.2±1.1 66.4±2.6
fr stanza rgcn 76.6±0.3 82.1±1.0 - 77.7±0.7 76.6±0.2 70.4±0.8 66.8±0.9
fr stanza rgat 80.0±0.7 82.1±0.9 - 77.0±1.0 77.5±1.5 71.5±1.0 67.5±1.2
fr trankit rgcn 78.6±0.3 83.3±1.6 - 78.7±1.1 78.8±2.5 72.4±0.5 69.7±0.7
fr trankit rgat 80.1±0.8 79.7±2.1 - 76.6±1.5 77.4±0.1 70.9±0.8 68.4±0.5

it - - 75.4±0.4 83.1±0.5 77.7±1.1 - 72.9±1.1 73.0±2.0 70.8±1.0
it stanza rgcn 79.0±0.6 83.0±0.7 77.2±1.0 - 74.7±1.4 70.8±0.3 70.0±0.7
it stanza rgat 76.7±0.9 83.8±0.7 77.5±0.5 - 75.7±1.5 72.2±1.6 70.5±0.4
it trankit rgcn 77.1±1.4 82.3±0.3 77.2±0.6 - 76.0±1.2 71.0±1.0 69.2±1.9
it trankit rgat 77.1±0.1 82.5±0.4 77.8±0.5 - 76.3±0.1 71.7±1.0 71.5±0.9

de - - 80.4±1.0 80.0±0.4 78.3±0.1 76.1±1.5 - 75.8±1.9 71.6±1.2
de stanza rgcn 80.0±0.2 80.4±0.7 76.7±0.3 75.8±0.8 - 74.2±0.8 70.0±1.9
de stanza rgat 79.2±0.4 81.3±1.1 78.1±1.4 76.6±2.7 - 74.6±0.5 71.7±0.6
de trankit rgcn 79.7±0.3 80.6±1.4 77.9±0.3 75.1±0.4 - 73.3±1.0 70.1±0.1
de trankit rgat 80.7±0.7 79.2±0.1 77.8±0.6 77.4±0.5 - 73.7±0.0 70.6±0.8

XLMR

en - - - 73.1±1.8 72.8±2.8 64.2±3.7 75.6±1.7 61.7±1.8 64.4±1.0
en stanza rgcn - 74.4±1.3 72.7±0.5 67.4±1.3 74.6±0.7 63.2±1.5 65.1±0.9
en stanza rgat - 73.1±0.7 72.7±1.4 66.5±3.5 71.1±1.0 59.6±2.7 62.2±0.4
en trankit rgcn - 74.4±1.5 72.0±1.8 65.4±2.2 71.5±1.6 62.6±1.8 64.6±1.3
en trankit rgat - 74.9±0.7 70.3±0.1 62.4±1.6 73.9±0.4 61.5±1.7 66.5±1.7

es - - 73.3±0.4 - 74.3±0.4 70.1±1.4 70.6±0.7 63.2±3.1 65.9±1.9
es stanza rgcn 73.4±2.2 - 75.1±0.3 68.3±2.5 67.3±0.6 61.9±1.2 62.4±1.4
es stanza rgat 72.7±1.9 - 75.2±1.0 69.3±1.6 67.3±0.3 60.5±1.4 62.8±1.8
es trankit rgcn 73.8±1.0 - 75.9±1.5 69.8±1.8 70.0±2.5 64.3±2.1 65.6±2.7
es trankit rgat 71.4±1.2 - 76.2±1.2 68.0±1.5 68.7±2.0 60.0±0.9 62.5±2.3

fr - - 71.1±0.9 75.0±0.6 - 68.9±0.6 68.5±1.3 61.5±1.2 59.4±2.6
fr stanza rgcn 74.3±1.7 74.1±1.1 - 69.7±0.6 72.2±1.3 58.7±0.6 62.9±2.7
fr stanza rgat 70.1±1.5 73.9±1.3 - 67.0±1.5 66.2±1.0 59.0±0.9 60.3±1.6
fr trankit rgcn 70.0±0.2 74.4±0.5 - 68.4±0.7 66.4±0.7 58.9±2.2 59.5±1.8
fr trankit rgat 71.8±1.3 76.0±0.7 - 68.2±0.8 70.6±1.0 61.5±1.2 59.9±1.3

it - - 71.2±1.1 76.1±1.6 72.2±0.9 - 68.2±1.7 60.8±0.5 62.0±1.7
it stanza rgcn 73.3±2.0 76.1±0.8 74.3±1.3 - 67.2±2.1 61.8±0.3 63.1±0.3
it stanza rgat 74.9±1.0 76.0±0.2 74.2±1.3 - 68.9±0.2 62.2±0.1 64.7±1.5
it trankit rgcn 73.3±1.2 77.0±0.7 74.8±1.6 - 70.0±1.7 64.5±1.0 64.7±1.0
it trankit rgat 72.6±1.9 78.7±0.5 76.6±0.2 - 70.2±1.0 63.6±3.4 64.6±1.5

de - - 75.0±1.5 72.4±0.9 69.3±1.3 64.1±0.3 - 60.8±0.7 64.0±1.2
de stanza rgcn 72.6±1.5 73.4±2.1 70.8±1.9 65.2±0.5 - 60.6±0.8 66.0±1.9
de stanza rgat 76.1±1.5 73.5±0.2 71.5±1.3 69.0±2.8 - 64.0±1.6 65.8±1.7
de trankit rgcn 74.1±1.0 72.8±0.8 69.6±1.8 63.6±2.3 - 63.4±1.0 64.5±1.9
de trankit rgat 75.0±0.5 73.2±1.6 70.3±1.3 64.9±1.0 - 63.7±0.5 64.4±3.5

356



Table 8: Zero-shot cross-lingual performance for Relation Extraction on the IndoRE dataset using different
combinations of multi-lingual encoder and dependency parse information and GNN. Highest values in each column
are in bold. The rows and columns correspond to the source and target language respectively.

mBERT

Src DEP GNN en hi te

en - - - 60.7±0.6 35.3±0.8
en stanza rgcn - 60.1±0.4 38.3±1.2
en stanza rgat - 58.7±0.3 40.6±2.2
en trankit rgcn - 62.5±0.8 38.0±1.4
en trankit rgat - 61.8±1.0 37.8±1.8

hi - - 69.7±1.9 - 49.5±2.3
hi stanza rgcn 68.6±0.6 - 49.4±0.8
hi stanza rgat 67.8±2.3 - 49.7±0.6
hi trankit rgcn 68.1±0.8 - 49.6±2.2
hi trankit rgat 68.0±1.6 - 53.9±0.9

te - - 45.3±1.7 54.4±2.6 -
te stanza rgcn 45.6±1.4 54.0±1.3 -
te stanza rgat 44.8±0.3 56.6±0.3 -
te trankit rgcn 47.7±0.8 54.2±0.1 -
te trankit rgat 46.1±1.2 54.2±2.5 -

XLMR

en - - - 57.4±2.3 37.2±2.5
en stanza rgcn - 55.3±1.2 37.0±1.6
en stanza rgat - 55.5±2.3 37.8±1.9
en trankit rgcn - 58.8±0.5 36.4±3.8
en trankit rgat - 61.0±2.5 39.0±4.0

hi - - 59.1±1.8 - 53.7±1.0
hi stanza rgcn 57.4±1.3 - 54.7±1.2
hi stanza rgat 61.0±2.5 - 54.8±2.1
hi trankit rgcn 59.5±0.8 - 54.3±1.8
hi trankit rgat 57.3±2.4 - 54.8±2.3

te - - 40.9±2.6 52.8±0.7 -
te stanza rgcn 41.2±2.2 55.5±0.9 -
te stanza rgat 39.0±0.7 52.0±3.2 -
te trankit rgcn 41.8±0.6 53.7±0.6 -
te trankit rgat 41.4±0.3 53.7±1.8 -
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Source sum_sq df F P(>F)
C(src) 1.844 2.000 6.265 0.020
C(GNN) 0.185 1.000 1.258 0.291
C(DEP) 1.226 1.000 8.330 0.018
C(ENC) 0.308 1.000 2.094 0.182
C(src):C(DEP) 0.165 2.000 0.56 0.590
C(src):C(ENC) 7.124 2.000 24.20 0.000
C(src):C(GNN) 1.335 2.000 4.534 0.043
C(DEP):C(GNN) 0.055 1.000 0.371 0.557
C(ENC):C(GNN) 1.045 1.000 7.098 0.026
C(DEP):C(ENC) 1.005 1.000 6.827 0.028
Residual 1.325 9.000 NaN NaN

Table 9: Indore In-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 48.606 2.000 2.449 0.108
C(GNN) 4.009 1.000 0.404 0.531
C(DEP) 23.301 1.000 2.348 0.139
C(ENC) 20.426 1.000 2.058 0.164
C(tgt) 199.051 2.000 10.030 0.001
C(tgt):C(DEP) 13.604 2.000 0.686 0.513
C(tgt):C(ENC) 85.332 2.000 4.300 0.025
C(tgt):C(GNN) 19.710 2.000 0.993 0.385
C(tgt):C(src) 12.388 4.000 0.312 0.735
C(src):C(DEP) 6.487 2.000 0.327 0.724
C(src):C(ENC) 73.878 2.000 3.723 0.039
C(src):C(GNN) 7.459 2.000 0.376 0.691
C(DEP):C(GNN) 0.845 1.000 0.085 0.773
C(ENC):C(GNN) 0.923 1.000 0.093 0.763
C(DEP):C(ENC) 1.561 1.000 0.157 0.695
Residual 238.143 24.000 NaN NaN

Table 10: Indore Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 1.862 4.000 0.408 0.800
C(GNN) 0.719 1.000 0.630 0.438
C(DEP) 3.613 1.000 3.167 0.093
C(ENC) 51.586 1.000 45.228 0.000
C(src):C(DEP) 2.027 4.000 0.444 0.775
C(src):C(ENC) 9.053 4.000 1.984 0.143
C(src):C(GNN) 3.373 4.000 0.739 0.578
C(DEP):C(GNN) 0.221 1.000 0.194 0.665
C(ENC):C(GNN) 1.773 1.000 1.555 0.229
C(DEP):C(ENC) 1.601 1.000 1.403 0.252
Residual 19.390 17.000 NaN NaN

Table 11: RedFM In-domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 14.700 4.000 0.988 0.322
C(GNN) 0.109 1.000 0.029 0.864
C(DEP) 1.111 1.000 0.299 0.585
C(ENC) 4.923 1.000 1.323 0.252
C(tgt) 10.040 6.000 0.450 0.718
C(tgt):C(DEP) 25.753 6.000 1.154 0.334
C(tgt):C(ENC) 106.197 6.000 4.757 0.000
C(tgt):C(GNN) 1.642 6.000 0.074 0.998
C(tgt):C(src) 314.185 24.000 3.518 0.000
C(src):C(DEP) 23.724 4.000 1.594 0.178
C(src):C(ENC) 323.737 4.000 21.752 0.000
C(src):C(GNN) 49.322 4.000 3.314 0.012
C(DEP):C(GNN) 0.615 1.000 0.165 0.685
C(ENC):C(GNN) 2.771 1.000 0.745 0.389
C(DEP):C(ENC) 0.389 1.000 0.105 0.747
Residual 647.408 174.000NaN NaN

Table 12: RedFM Cross-Domain ANOVA Results

Source sum_sq df F P(>F)
C(src) 58.4 2 0.657 5.26E-01
C(DEP) 2.2 1 0.048 8.28E-01
C(LLM) 1260.3 2 14.17 6.18E-05
C(PRM) 3042.5 2 34.22 3.94E-08
C(src):C(DEP) 16.7 2 0.187 8.30E-01
C(src):C(LLM) 543.7 4 3.058 3.36E-02
C(src):C(PRM) 426.9 4 2.401 7.46E-02
C(DEP):C(LLM) 62.3 2 0.708 5.05E-01
C(DEP):C(PRM) 48.0 2 0.54 5.87E-01
C(LLM):C(PRM) 2205.3 4 12.40 7.47E-06
Residual 1200.1 27 NaN NaN

Table 13: Indore Zero-shot ICL ANOVA Results

Source sum_sq df F P(>F)
C(src) 6123.02 6 13.34 2.91E-10
C(DEP) 5.09 1 0.07 7.97E-01
C(LLM) 4945.81 2 32.32 6.97E-11
C(PRM) 12473.392 81.51 1.23E-19
C(src):C(DEP) 178.97 6 0.39 8.83E-01
C(src):C(LLM) 13819.1212 15.05 1.46E-15
C(src):C(PRM) 1727.37 12 1.88 5.01E-02
C(DEP):C(LLM) 131.03 2 0.86 4.29E-01
C(DEP):C(PRM) 101.88 2 0.67 5.17E-01
C(LLM):C(PRM) 3130.31 4 10.23 1.12E-06
Residual 5815.44 76 NaN NaN

Table 14: RedFM Zero-shot ICL ANOVA Results
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