
Proceedings of the 4th International Workshop on Knowledge-Augmented Methods for Natural Language Processing (KnowledgeNLP’25), pages 160–179
May 3, 2025 ©2025 Association for Computational Linguistics

Towards Effectively Leveraging Execution Traces
for Program Repair with Code LLMs

Mirazul Haque1∗, Petr Babkin2∗, Farima Farmahinifarahani2, Manuela Veloso1

J. P. Morgan AI Research, {1New York, 2Palo Alto}
{first.last}@jpmchase.com

Abstract

Large Language Models (LLMs) show promis-
ing performance on various programming tasks,
including Automatic Program Repair (APR).
However, most approaches to LLM-based APR
are limited to the static analysis of the pro-
grams, while disregarding their runtime behav-
ior. Inspired by knowledge-augmented NLP,
in this work, we aim to remedy this poten-
tial blind spot by augmenting standard APR
prompts with program execution traces. We
evaluate our approach using the GPT family
of models on three popular APR datasets. Our
findings suggest that simply incorporating ex-
ecution traces into the prompt provides a lim-
ited performance improvement over trace-free
baselines, in only 2 out of 6 tested dataset /
model configurations. We further find that the
effectiveness of execution traces for APR di-
minishes as their complexity increases. We ex-
plore several strategies for leveraging traces in
prompts and demonstrate that LLM-optimized
prompts help outperform trace-free prompts
more consistently. Additionally, we show trace-
based prompting to be superior to finetuning a
smaller LLM on a small-scale dataset; and con-
duct probing studies reinforcing the notion that
execution traces can complement the reasoning
abilities of the LLMs.

1 Introduction

Automatic Program Repair (APR) is a critical chal-
lenge in software engineering, aiming to reduce
human effort in debugging and fixing software de-
fects. Software bugs can lead to significant security
vulnerabilities, financial losses, and system failures,
necessitating efficient repair mechanisms. While
large language models (LLMs) have demonstrated
remarkable capabilities in generating and modify-
ing code, their effectiveness in APR remains con-
strained by their reliance on static code analysis.

*equal contribution.

9 ### Buggy Program:
10 def search(x, seq):
11 index = 0
12 def helper(index):
13 if not seq:
14 return 0
15 elif x <= seq[index]:
16 return index
17 else:
18 if index + 1 >= len(seq):
19 return index + 1
20 else:
21 return helper(index+1)
22

23 ### Failing test case:
24 result = search(42, (-5, 1, 3, 5, 7, 10))
25 assert result == 6,

'Expected 6 but got %s' % result↪→
26 AssertionError: Expected 6 but got None
27

28 ### Execution trace:
29 Starting var:.. x = 42
30 Starting var:.. seq = (-5, 1, 3, 5, 7, 10)
31 call 10 def search(x, seq):
32 line 11 index = 0
33 New var:....... index = 0
34 line 12 def helper(index):
35 New var:....... helper = <function search.<locals>

.helper at 0x7fd455b89040>↪→
36 return 12 def helper(index):
37 Return value:.. None

Figure 1: Example buggy program, a failing test case
and its execution trace. While the failure message sim-
ply indicates the output is wrong, the execution trace
provides a detailed explanation how it was produced.

Debugging complex software issues often necessi-
tates a deeper understanding of the program’s exe-
cution behavior, including variable modifications
and control flow changes, which conventional Deep
Learning-based and LLM-based APR approaches
fail to capture effectively (Xia and Zhang, 2022;
Jiang et al., 2023; Tian et al., 2023; Sutton et al.,
2023).

Recent advancements in knowledge-augmented
NLP have emphasized integrating external informa-
tion into language models to enhance reasoning and

160

accuracy. Inspired by this, our research explores
augmenting LLM-based automated program repair
(APR) with program execution traces—structured
runtime data that reveal a program’s actual behav-
ior. These traces provide diagnostic insights be-
yond static code analysis. By embedding them
into repair prompts, we aim to bridge the gap be-
tween static and dynamic program understanding,
aligning with trends in knowledge-augmented NLP
that leverage external sources to enhance language
model capabilities.

We frame our work in terms of three research
questions (RQs). In RQ1 (Section 3.2), our ob-
jective is to quantify the gains from incorporat-
ing execution traces into the APR prompt over the
prompts only containing the failing test case as
well as the trace-free chain-of-thought prompting
baseline (Chen et al., 2023). We find that simply
adding the execution trace does not consistently
outperform trace-free prompts.

To inform a more finegrained approach, in RQ2
(Section 3.3), we analyze the relationship between
trace complexity and the likelihood of the LLM
producing a working fix. To measure this complex-
ity, we consider two parameters: trace length and
the number of variable modifications. We find that
the effectiveness of trace-based prompts decreases
with the growing length and number of variable
assignments.

Motivated by this finding, in RQ3 (Section 4),
we aim at improving the consistency of trace-based
APR by experimenting with three different repre-
sentations of execution traces: traces in a collated
format, LLM-optimized traces, and a trace repre-
sentation conditionally selected based on query-
ing the LLM’s confidence. We find that LLM-
optimized trace-based prompts provide the most
consistent results with respect to program repair.

We additionally perform two follow-up studies:
in the first, we compare our trace-based prompt-
ing approach with a fine-tuned baseline inspired
by TraceFixer (Bouzenia et al., 2023); and in the
second one, we directly probe the LLM on two
trace understanding tasks.

The rest of the paper is organized as follows. In
Section 2, we discuss the related work and how it
differs from our approach. Section 3 details our
methodological setup and covers RQ1 and RQ2.
Section 4 covers RQ2 and in Section 5, we discuss
the additional studies.

2 Related Work

Recent work looked into augmenting code LLMs
with execution information to improve perfor-
mance on downstream tasks, including APR.

SelfAPR (Ye et al., 2022) proposed to use com-
piler and test diagnostics during self-supervised
training of the language model for improving APR.
Additionally, several works have proposed the use
of execution traces for pretraining code LLMs. In
TRACED (Ding et al., 2023), authors finetuned
a BERT-like model to predict execution paths and
quantized values, which allowed it to outperform an
AST-based UniXcoder (Guo et al., 2022) on clone
detection and vulnerability detection. Whereas,
Liu et al.’s program state prediction pre-training
improved code search and generation (Liu et al.,
2023). Finally, TraceFixer, based on CodeT5 and
finetuned with execution traces, showed a 13% im-
provement in APR on synthetic bugs over the code-
only baseline but struggled with real bugs, hinting
at potential generalization limitations (Bouzenia
et al., 2023).

Among training-free approaches, Self-Debug
(Chen et al., 2023) improved program generation
by generating code explanations directly from the
LLM, in a chain-of-thought fashion, as part of solv-
ing the APR task.

To the best of our knowledge, all of these works
do not consider the effect of putting execution
traces in the prompt of a pretrained LLM.

3 Analyzing the Impact of Execution
Traces on Program Repair

In this section, we analyze the effects of adding
traces in the LLM prompt on APR performance,
compared to two trace-free baselines (Ye et al.,
2022), (Chen et al., 2023). Additionally, we per-
form a differentiated analysis of APR performance
based on trace complexity. We formulate the corre-
sponding two research questions as follows.
RQ1. Are prompts with execution traces more
effective at program repair than prompts without
traces?
RQ2. How does trace complexity affect the effec-
tiveness of trace-based prompts?

3.1 Set Up

Datasets. We surveyed 15 popular datasets across
Python, Java, C++, and other major languages, fo-
cusing on dataset size, program diversity, unit test
availability, and dataset origin (e.g., self-contained

161

algorithmic problems like CodeNet (Puri et al.,
2021) or full open-source projects like PyTrace-
Bugs (Akimova et al., 2021)). While realistic
datasets are ideal, evaluating them requires signif-
icant manual effort due to complex dependencies.
Algorithmic datasets offer advantages like man-
ageable length and easily testable, self-contained
functions, enabling trace generation through execu-
tion.

We selected three APR datasets: Refactory (Hu
et al., 2019), RunBugRun (Prenner and Robbes,
2023), and HumanEval-Java (Jiang et al., 2023).
Refactory includes nearly 2000 faulty Python pro-
grams submitted by students, enabling coverage of
diverse mistakes. RunBugRun, derived from Co-
deNet, contains a quarter million submissions for
4000 distinct problems; we sampled 1000 Python
bugs for evaluation. HumanEval, originally for
Python, was adapted into HumanEval-Java, inject-
ing synthetic bugs for APR testing.

Each dataset includes at least 5 test cases per
problem. For RunBugRun, we implemented a
wrapper to handle input/output via standard input
and print statements for accurate result comparison.
Models. With the landscape of state-of-the-art code
LLMs rapidly changing, we chose use two most
widely studied commercial models from OpenAI
for ease of comparison with other work: GPT-3.5
Turbo (Ouyang et al., 2022) and GPT-4 (OpenAI,
2023). These two models represent two different
performance tiers both in terms of the number of
parameters and different release timelines, hence,
studying these models could shine the light on the
LLMs’ evolving ability to reason about program ex-
ecution across product generations. While there is
undoubtedly scope for including more proprietary
as well as open source models, given our narrow
focus on traces, we leave this to be explored in
future work.
Execution Traces Generation. As the program is
being executed, it is possible to step through it pro-
grammatically, while also capturing every change
to the function’s variables, akin to interactive de-
bugging. PySnooper(pys) library for Python pro-
vides this functionality via a decorator that can be
added to a function of interest to automatically log
state changes, such as variable initialization and
modification, subroutine calls, returned values, and
runtime exceptions. Crucially, each state change
reference a specific line of code on which it oc-
curred. Examples of execution traces are given
in the Appendix A.2. Before appending traces to

the prompt we perform basic postprocessing, in-
cluding the removal of timestamps and stripping of
terminal formatting command sequences.

Prompt Types. We follow the instruction template
for complete function generation used by Xia et al.
(2023), expanding it with two additional types of
information, namely, a failing test case (henceforth,
referred to as Error Prompts) and a program exe-
cution trace (referred as Trace Prompts). We offer
our rationale for these choices, along with other
prompt types considered, in Appendix B.

To ensure the prompt and response fit within the
GPT model context size, we truncate the content
of the prompt if the number of lines exceeds 200.
We have added an example of all the prompts in
Section A in the Appendix.

Baseline. We consider the Prompt-based base-
line Self-Debug. With this baseline, we explore
prompting LLMs using execution traces generated
by LLMs themselves (instead of actual program
execution traces). This baseline inspired by Self-
Debugging (Chen et al., 2023) where LLMs are
prompted to debug their own generated code. In
particular, we draw inspirations from the Explana-
tion step of this work where the model is asked
to generate execution traces for a predicted code.
We tailored Self-Debugging’s prompts to fit our
usecase: in our prompts, we provide LLMs with
a program and a test case feedback, and ask them
to trace through the execution of the program and
determine the needed fix, and correct the function
accordingly. We perform these experiments with
both GPT-3.5 and GPT-4.

Metrics. In previous work on APR, models are
evaluated either at the granularity of distinct bugs
solved (Xia et al., 2023; Jiang et al., 2023) or in-
dividual test cases passed (Tian et al., 2023). In
contrast, we generate multiple prompts for each
program tailored to a specific failing test case and
its corresponding execution trace (e.g., A.1, A.2).
Rather than aggregating predictions from multiple
samples, we generate a single prediction per test
case-specific prompt and aggregate across prompts
when computing metrics. The key metrics are Cor-
rect Fix Accuracy (CFA), the percentage of fixes
passing all test cases, and Correct Program Ac-
curacy (CPA), the percentage of programs with at
least one correct fix. We do not report test case-
level accuracy, as it can be too lenient and doesn’t
account for variations in the number of test cases
per program.

162

Model Dataset Method # FPs # Fixes # CF # CP CFA CPA

GPT-3.5

Refactory
Self-Debug

138 579
244 73 0.421 0.529

Error Prompt 304 91 0.525 0.659
Trace Prompt 295 87 0.509 0.630

HumanEval-Java
Self-Debug

157 634
210 75 0.331 0.477

Error Prompt 241 85 0.380 0.541
Trace Prompt 212 86 0.334 0.547

RunBugRun
Self-Debug

456 559
151 132 0.270 0.289

Error Prompt 260 221 0.465 0.484
Trace Prompt 249 216 0.445 0.473

GPT-4

Refactory
Self-Debug

138 579
414 117 0.715 0.847

Error Prompt 458 122 0.791 0.884
Trace Prompt 427 113 0.737 0.818

HumanEval-Java
Self-Debug

157 634
312 105 0.492 0.668

Error Prompt 313 104 0.493 0.662
Trace Prompt 324 112 0.511 0.713

RunBugRun
Self-Debug

456 559
337 287 0.602 0.629

Error Prompt 296 264 0.529 0.578
Trace Prompt 312 266 0.558 0.583

Table 1: RQ1 Quantitative Results. FP = Faulty Programs, CF = Correct Fixes, CP = Correct Programs,
CFA = Correct Fix Accuracy, CPA = Correct Program Accuracy.

3.2 RQ1. Are prompts with execution traces
more effective at program repair than
prompts without traces?

In this research question, our objective is to eval-
uate the effectiveness of including program exe-
cution traces into LLM prompts, for solving APR
tasks, compared to the baselines. The effectiveness
is measured through reporting CPA and CFA. The
evaluation results can be found in Table 1. The
number of faulty programs, number of fixes, and
total test cases are the same for all types of prompts
per each dataset.

Across the board, the Self-Debug baseline per-
forms the worst except in one configuration using
GPT-4 on the RunBugRun dataset. This general
outcome is unsurprising as having the LLM gen-
erate an execution trace could introduce hallucina-
tion and thus undermine the resulting fixes. For
both GPT-3.5 and GPT-4 on the Refactory dataset,
prompts including just a failing test case decisively
outperform ones with execution traces by multiple
percentage points on both fix accuracy and program
accuracy.

On the HumanEval-Java dataset with GPT-3.5,
error-only prompts are only ahead of trace-based
prompts in terms of fix accuracy but are slightly
behind in program accuracy. Meanwhile, with
GPT-4, trace-based prompts consistently outper-
form error-only prompts on both metrics. Results
on RunBugRun paint a similar picture, where GPT-

3.5 doesn’t seem to benefit from including traces,
while GPT-4 gets a tangible lift over the error-only
prompts. Overall, on two out of three datasets,
trace-based prompts significantly improve the abil-
ity of GPT-4 to generate working bug fixes.

While GPT-3.5 lagging behind in terms of abso-
lute scores irrespective of prompt type is expected,
more broadly, its inability to benefit from execution
traces (even degraded performance) could high-
light a qualitative generational gap when it comes
to emergent abilities of LLMs. Notwithstanding,
there remain a few unexplained results, such as the
lack of performance gain from using traces on the
Refactory dataset and the unusually strong perfor-
mance of the Self-Debug baseline in one particular
configuration. To gain a fine-grained understand-
ing, in the next research question, we focus on
studying the varying complexity of execution traces
and how they affect downstream APR performance.

RQ1 Summary. Trace prompts do not
consistently outperform Error Prompts on
program repair.

3.3 RQ2. How does trace complexity affect
the effectiveness of trace-based prompts?

Unlike other elements of the prompt, execution
traces are dynamic in nature and are highly depen-
dent on a particular input as much as the program
itself. Additionally, execution traces can be dramat-

163

Trace Length # Var Changes
Trace Complexity

0

10

20

30

40

50

60

70

Va
lu

es
Program Type

Correct Programs
Incorrect Programs

(a) HumanEval-Java Dataset with GPT-4

Trace Length # Var Changes
Trace Complexity

0

20

40

60

80

100

120

Va
lu

es

Program Type
Correct Programs
Incorrect Programs

(b) RunBugRun Dataset with GPT-4

Trace Length # Var Changes
Trace Complexity

0

10

20

30

40

Va
lu

es

Program Type
Correct Programs
Incorrect Programs

(c) Refactory Dataset with GPT-4

Figure 2: Distributions of trace lengths and variable
changes across correct vs incorrect program fixes gener-
ated by GPT-4. Analysis for GPT-3.5, showing a similar
trend, is given in the appendix.

ically different in the presence of a runtime error,
compared to when the function finishes executing
correctly (even if the returned value itself is wrong).
Thus, variations in trace complexity could be a cru-
cial factor in how beneficial their inclusion is in the
prompt. On the one hand, traces that are too short
may not provide much information beyond what
is already conveyed by the program itself and the

failing test case. On the other hand, overly long
and complex traces may overwhelm LLMs’ long
context and ultimately confuse it. We believe there
is a sweet spot at which the inclusion of traces is
most beneficial. As such, we observed great vari-
ability with respect to the overall trace length, as
well as in the number and type of individual state
changes.

To gain insights into nuanced differences among
our evaluated datasets, we compute the statistics
of overall trace length and the number of variable
modifications in all prompts, while differentiating
by whether the resulting fix was correct (Figure
2). For both the HumanEval-Java and RunBugRun
datasets, median1 trace length and number of vari-
able modifications were significantly higher for
failing fixes than for the correct ones. This corrob-
orates our presupposition that longer traces could
undermine rather than help APR. Conversely, in
the Refactory dataset, somewhat contrary to our in-
tuitions, for failing fixes median trace length were
actually lower than for successful fixes. Regarding
the number of variable modifications, the median
was just one, compared to 5 in RunBugRun. This
disparity implies variable modifications could play
a key role in the effectiveness of a trace for APR.

RQ2 Summary. The prompts having
longer execution traces have a lower
chance of generating a correct fix.

4 Impact of Modified Traces

As we find that longer trace length could have a
negative impact in the effectiveness of GPT mod-
els, we focus on modified trace strategies and their
impact on the effectiveness of the model. In this
section, we discuss one research question.
RQ3. Can the format of traces be optimized to
guarantee gains for APR?

4.1 Modified Traces

Collated Execution Traces. Even though execu-
tion traces for both languages reference code lines
from the original program, they are placed in the
standalone section of the prompt, separate from
the program itself. In order to thoroughly ablate

1In all datasets and for both correct and failing fixes we
observed the presence of extremely long traces in excess of
10,000 entries. Additionally, a significant number of trace
prompts got truncated (5% for Refactory and almost 10% for
RunBugRun).

164

trace format, we experimented with combining the
two by placing each trace entry directly to its corre-
sponding line of code as an inline comment 2. The
rationale behind this design choice is to consoli-
date the two types of information in the common
location, potentially freeing the LLM from having
to constantly cross-reference between them.
LLM-Optimized Execution Traces (OPT). While
in a general case deterministic traces provide valu-
able information regarding variable changes, log-
ging every single event is not always ideal. In
scenarios such as infinite loops, traces end up re-
peating the same information, while also unbound-
edly growing in length. It can thus be desirable
to optimize potentially lengthy traces by condens-
ing superfluous information. To optimize execu-
tion traces, we prompt a long context GPT4-32k
model with the deterministic execution trace and
an instruction to generate a shorter version of it,
optimized for downstream APR.
Confidence Based Prompt Selection (Conf OPT).
In addition to modifying the format or content of
the prompt itself, we experimented with a simple
prompt routing mechanism based on pre-querying
LLM’s confidence about correctly solving a pro-
gram repair task using the deterministic trace. If
the confidence level is low, we fallback onto using
an LLM-optimized trace instead.

We have considered multiple ways to find the
confidence value of the model. One possible way is
to prompt the model to find whether it’s confident
or not (boolean) to use a specific prompt to repair
a program. But on a small prompt set, we find that
the model outputs that it is always confident for all
inputs. Additionally, another way is to feed both
prompts and ask the model for which prompt it is
more confident to repair the program. However,
based on the findings of recent work (Huang et al.,
2023), LLM might be biased for a specific position
(prompt one or prompt two). Hence, based on the
findings of Huang et al. (Huang et al., 2023), we
use a Likert-scale based confidence score. Given a
score range of 1-5, if the confidence score provided
by the model is less than 3, we consider that the
model has low-confidence. The approach is shown
in Figure 3.
Trace-length Based Prompt Selection (TRL
OPT). As we have found through investigating

2In case of multiple passes through the same line e.g.,
variable changes within a loop, we concatenate each of the
traced events by a new line, providing a full history of state
changes at that line.

Program+DT

Program+DT

GPT

GPT

Conf<3?

Prompt to
Summarize

Trace

Prompt to get
Confidence

Score

Program+
SummaT GPT Repaired

Program

Figure 3: The Flow of Conditional Selection of Traces

RQ2 that trace prompts work well if the trace length
is within a specific range; hence, switching to a dif-
ferent prompt given a longer trace might be benefi-
cial. In this technique, instead of using a confidence
score like Conf OPT, we use trace length for rout-
ing between prompts. The routing is investigated
in two settings: trace prompt and OPT prompt, and
trace prompt and error prompt. If the trace length
is less than N , we use trace prompt, or we use
OPT prompt or error prompt based on the setting.
We use the following N values for the experiment:
25,30,35,40,45,50.

4.2 RQ3 Results.

The results could be found in Table 2. For ease
of comparison, for each dataset and model we
include the best performing strategy from RQ1,
which could be either error prompt, trace prompt or
the Self-Debug baseline. Of the three trace modifi-
cation strategies, LLM-Optimized prompts (OPT)
provide the most consistent performance gains on
both CFA and CPA metrics. With respect to CPA,
for all dataset and model pairs, OPT is among the
top three performing prompting techniques. The
CFA values for OPT are even more commendable,
whereas, for three out of six model-dataset pairs,
OPT has the best CFA (second best in the other
three). Furthermore, this confirms our implication
from RQ2 that less complicated traces are better
for prompting for program repair tasks.

For confidence-based prompt selection, while we
find the CFA and CPA values are comparatively bet-
ter for GPT4, the performance in GPT3.5 is worse.
This would imply that GPT-4 is significantly better
in providing confidence scores for prompts than
GPT-3.5. But, as the performance is significantly
worse than OPT on average, the application of the
method for GPT-4 is still not reliable.

For trace length-based prompt selection, we only
report the best results in the table. We have two
findings here; first, although routing could improve
the CFA and CPA values more than individual

165

Metric Method GPT-3.5 GPT-4
Refactory HumanEval-Java RunBugRun Refactory HumanEval-Java RunBugRun

CFA

Collated Trace 0.452 0.391 0.381 0.656 0.531 0.483
OPT Trace 0.502 0.430 0.472 0.753 0.572 0.570
Conf OPT Trace 0.368 0.380 0.429 0.735 0.549 0.527
TRL OPT Trace (EP) 0.490 0.312 0.457 0.742 0.492 0.549
TRL OPT Trace (OPT) 0.493 0.353 0.466 0.737 0.473 0.574
RQ1 Best 0.525 0.380 0.465 0.791 0.511 0.602

CPA

Collated Trace 0.587 0.497 0.407 0.818 0.681 0.508
OPT Trace 0.601 0.535 0.497 0.862 0.713 0.589
Conf OPT Trace 0.384 0.522 0.453 0.847 0.732 0.550
TRL OPT Trace (EP) 0.623 0.528 0.484 0.826 0.694 0.589
TRL OPT Trace (OPT) 0.623 0.573 0.491 0.826 0.675 0.603
RQ1 Best 0.659 0.547 0.484 0.884 0.713 0.629

Table 2: RQ3 Quantitative Results. CFA = Correct Fix Accuracy, and CPA = Correct Program Accuracy.

prompts, we find that only for the GPT-3.5 model
and HumanEvalJava dataset could routing get the
best CPA score among all considered techniques.
Second, changing the value of N would have a
limited impact on CFA and CPA values. Overall,
we could not find any strong result suggesting that
routing between techniques based on trace length
might be significantly beneficial. Detailed results
could be found in Figures 6 and 7 (in Appendix).

Lastly, collated trace prompts disappointingly
do not provide an improvement over trace prompts.
One possible explanation is a lack of exposure to
this format during LLM training as code doesn’t
normally include inline comments about state
changes. Second, inline traces within loops can
“stretch” the length of the program quite a bit, pos-
sibly diluting LLMs attention to the continuation of
the program after the loop. In our probing studies
of LLM trace understanding, we find that, indeed,
LLMs struggle to keep up with variable changes
across multiple iterations. Finally, the problem
of truncation becomes more severe with collated
traces, as not just the trace but also part of the orig-
inal problem could be excluded from the prompt.

RQ3 Summary. Optimized trace prompt
is the most consistent type of prompting
technique, specifically for CFA metric.

5 Additional Studies

5.1 Trace-based prompting compared to
finetuning a smaller model.

In this RQ, we focus on evaluating if fine-tuning a
small-sized LLM would generate better results w.r.t
program repair rather than prompting GPT mod-
els with different prompts. For that purpose, we

fine-tune the deepseek-coder-1.3b-instruct 3 model
with training data extracted from HumanEval-Java
and RunBugRun datasets. Finally, we compare
the program repair performance of fine-tuning and
prompting-based techniques on test data.
Finetuning Setup. Our finetuning approach is in-
spired by TraceFixer (Bouzenia et al., 2023), which
finetunes a CodeT5 model using the buggy pro-
gram’s code, its execution trace, and the desired
state of the program. As we didn’t have access to
TraceFixer’s code, we implemented our own fine-
tuning pipeline. In our case, the input to the model
consists of a buggy program, the failing test case
results, and corresponding execution traces. Dur-
ing training, the correct version of the program is
included in the prompt, while during inference it
is omitted, to be filled in by the model. For each
dataset, 80% of the problems are randomly selected
for training, and the rest are reserved for testing.
This accounts for 459 samples for RunBugRun and
517 samples for HumanEval-Java datasets. We use
the training settings and parameters suggested by
deepseek-coder developers to finetune this model.
Details of these parameters can be found in the
model’s repo.
Result. Figure 4 shows the results. For com-
parison purposes, we calculate CPA and CFA for
prompting-based techniques on the same test pro-
grams. It can be noted that all the prompting tech-
niques outperform fine-tuned model’s CPA and
CFA. It is observed that models fine-tuned with
and without trace show lower CPA and CFA than
prompting-based techniques. One of the reasons
behind the results might be the limited training
data for each task. Also, the TraceFixer technique
showed better results in the original work, but the
number of training examples for TraceFixer was

3https://github.com/deepseek-ai/DeepSeek-Coder

166

FT
(w

 Tra
ce)

 CFA

FT
(w

 Tra
ce)

 CPA

FT
(w

o T
rac

e)
CFA

FT
(w

o T
rac

e)
CPA

Err
or

Pro
mpt

CFA

Err
or

Pro
mpt

CPA

Tra
ce

Pro
mpt

CFA

Tra
ce

Pro
mpt

CPA

Colla
ted

 Tra
ce

CFA

Colla
ted

 Tra
ce

CPA

OPT
 Tra

ce
CFA

OPT
 Tra

ce
CPA

Re
fa

ct
or

y
HE

J
RB

ug
R

Da
ta

se
t

0.09 0.03 0.09 0.03 0.64 0.8 0.55 0.6 0.35 0.56 0.54 0.63

0.22 0.21 0.16 0.17 0.49 0.69 0.51 0.72 0.61 0.76 0.65 0.76

0.24 0.23 0.2 0.19 0.49 0.54 0.44 0.48 0.54 0.58 0.54 0.58

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: CPA and CFA of Prompting-Based Tech-
niques vs. Model Fine-Tuned for APR Tasks.

significantly higher, too. In our future work, we
plan to use a larger training dataset and larger mod-
els for finetuning.

5.2 Probing Studies of Trace Understanding
To gain insights into the observed lack of improve-
ment in APR performance using collated traces and
results from using traces for APR in general, we
investigate two additional questions via small-scale
probing experiments.

Can the LLM align the program with its ex-
ecution trace? We directly measure the LLM’s
ability to perform trace collating given a standalone
program and its execution trace. The rationale be-
hind this experiment is that if an LLM can do this
task with high accuracy, then there is no added
benefit of adding collating traces into prompts.

Can the LLM infer the execution trace from
the program alone? Although the Self-Debug
approach implicitly traces through the program’s
execution, it is never formally evaluated. If an
LLM can accurately generate a program’s execu-
tion trace, then adding such a trace into the prompt
would understandably not provide additional value
for APR. Prompts used for each task can be found
in Appendix C.2.

For both of these experiments we used GPT-4
on a subset of programs from the Refactory dataset.
Since trace prediction behavior can be different
depending on whether a function executes success-
fully or raises an error, for each experiment we
differentiate between traces produced for working
and failing programs. In addition, due to a limited
number of distinct problems in Refactory, we addi-

tionally evaluate on the Geeks-for-geeks dataset4.
To evaluate the LLM’s output, we compute a diff
against the ground truth trace or collated trace/pro-
gram and report the exact match rate, after light
post-processing, in Table 3 of Appendix C.1.

Based on these results, trace collating accuracy
reaches 88% on reference Refactory programs,
however it degrades by nearly ten percent on pro-
grams containing failures. Furthermore, on the
more diverse Geeks for geeks dataset, which also
eliminates the possibility of prompt leakage, collat-
ing performance sharply decreases to just 45%.

Prediction of a program’s execution trace by an
LLM from scratch is a significantly more challeng-
ing task compared to merely modifying the format
of the trace. As a result, the rate of zero-diff trace
predictions does not exceed 50% in the case of ref-
erence Refactory programs and is further halved
for programs containing failures. Across the Geeks
for geeks dataset, only 15% of generated traces
perfectly match the ground truth. We provide qual-
itative analysis of a manually reviewed sample of
diffs in the appendix.

Despite the impressive ability of GPT-4 at ma-
nipulating execution traces neither of the two tasks
appear to be trivially solvable. Hence, we conclude
real execution traces can contribute information
for downstream tasks not yet easily inferrable by
strong LLMs such as GPT-4.

6 Conclusion

In this study, we examined the impact of incorpo-
rating program execution traces into prompts on
the program repair capabilities of the GPT model
family. Our findings indicate that trace-based
prompts do not consistently outperform error-based
prompts; their effectiveness varies with the dataset
and LLM used. Analysis reveals that longer traces
and more variable assignments reduce prompt ef-
fectiveness. Using this insight, we developed vari-
ations of trace-based prompts, finding that LLM-
optimized traces offer more consistent improve-
ments without limiting trace complexity heuristi-
cally. We validated our results against a fine-tuned
baseline and found that LLMs have limited capacity
for trace generation, explaining the weaker perfor-
mance of the Self-Debug baseline and highlighting
the potential utility of traces in code tasks.

4https://github.com/facebookresearch/
TransCoder

167

https://github.com/facebookresearch/TransCoder
https://github.com/facebookresearch/TransCoder

7 Disclaimer

Disclaimer: This paper was prepared for informa-
tional purposes by the Artificial Intelligence Re-
search group of JPMorgan Chase & Co. and its
affiliates ("JP Morgan”) and is not a product of the
Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever
and disclaims all liability, for the completeness, ac-
curacy or reliability of the information contained
herein. This document is not intended as invest-
ment research or investment advice, or a recom-
mendation, offer or solicitation for the purchase
or sale of any security, financial instrument, finan-
cial product or service, or to be used in any way
for evaluating the merits of participating in any
transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such so-
licitation under such jurisdiction or to such person
would be unlawful.

References
Pysnooper. https://pypi.org/project/

PySnooper/. (Accessed on 10/14/2023).

Elena N Akimova, Alexander Yu Bersenev, Artem A
Deikov, Konstantin S Kobylkin, Anton V Kony-
gin, Ilya P Mezentsev, and Vladimir E Misilov.
2021. Pytracebugs: A large python code dataset
for supervised machine learning in software de-
fect prediction. In 2021 28th Asia-Pacific Software
Engineering Conference (APSEC), pages 141–151.
IEEE.

Islem Bouzenia, Yangruibo Ding, Kexin Pei, Baishakhi
Ray, and Michael Pradel. 2023. Tracefixer: Execu-
tion trace-driven program repair.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser,
Wei Le, and Baishakhi Ray. 2023. Traced: Execution-
aware pre-training for source code.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation.

Yang Hu, Umair Z Ahmed, Sergey Mechtaev, Ben
Leong, and Abhik Roychoudhury. 2019. Re-
factoring based program repair applied to pro-
gramming assignments. In 2019 34th IEEE/ACM
International Conference on Automated Software
Engineering (ASE), pages 388–398. IEEE.

Kung-Hsiang Huang, Philippe Laban, Alexander R Fab-
bri, Prafulla Kumar Choubey, Shafiq Joty, Caiming

Xiong, and Chien-Sheng Wu. 2023. Embrace diver-
gence for richer insights: A multi-document summa-
rization benchmark and a case study on summariz-
ing diverse information from news articles. arXiv
preprint arXiv:2309.09369.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan.
2023. Impact of code language models on automated
program repair.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang,
Alexey Svyatkovskiy, Shengyu Fu, Neel Sundare-
san, and Nan Duan. 2023. Code execution with pre-
trained language models.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Julian Aron Prenner and Romain Robbes. 2023. Runbu-
grun – an executable dataset for automated program
repair.

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
et al. 2021. Codenet: A large-scale ai for code
dataset for learning a diversity of coding tasks. arXiv
preprint arXiv:2105.12655.

Charles Sutton, David Bieber, Kensen Shi, Kexin Pei,
and Pengcheng Yin. 2023. Can large language mod-
els reason about program invariants?

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F. Bis-
syandé. 2023. Is chatgpt the ultimate programming
assistant – how far is it?

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the
era of large pre-trained language models. In
2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1482–1494.

Chunqiu Steven Xia and Lingming Zhang. 2022.
Less training, more repairing please: revisiting
automated program repair via zero-shot learning.
In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages
959–971.

He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and
Martin Monperrus. 2022. Selfapr: Self-supervised
program repair with test execution diagnostics. In
Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering,
pages 1–13.

168

https://pypi.org/project/PySnooper/
https://pypi.org/project/PySnooper/
http://arxiv.org/abs/2304.12743
http://arxiv.org/abs/2304.12743
http://arxiv.org/abs/2306.07487
http://arxiv.org/abs/2306.07487
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2203.03850
http://arxiv.org/abs/2302.05020
http://arxiv.org/abs/2302.05020
http://arxiv.org/abs/2305.05383
http://arxiv.org/abs/2305.05383
https://api.semanticscholar.org/CorpusID:257532815
http://arxiv.org/abs/2304.01102
http://arxiv.org/abs/2304.01102
http://arxiv.org/abs/2304.01102
http://arxiv.org/abs/2304.11938
http://arxiv.org/abs/2304.11938
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129

A Different Prompt Types

A.1 Error Prompt
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

A.2 Trace Prompt
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

12 ### Function Execution Trace:
13 Source path:... temp.py
14 Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
15 call 10 def sort_age(lst):
16 line 11 return lst.sort(key = lambda x: x[1])
17 Modified var:.. lst = [('F', 18), ('F', 19), ('M', 23), ('M', 30)]
18 return 11 return lst.sort(key = lambda x: x[1])
19 Return value:.. None

A.3 Collated Prompt
1 ### Provide a fix for the buggy function, annotated with its execution trace of the below failing

test case.↪→
2 ### Buggy Function (execution states indicated via inline comments):
3 # Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
4 def sort_age(lst): # Call def sort_age(lst):
5 lst.sort(key=lambda x: x[1],reverse=True) # Modified var:.. lst = [('M', 30), ('M', 23), ('F',

19), ('F', 18)]↪→
6 print(lst) # Return print(lst)
7 # Return value:.. None
8

9 ### Failing Test Case:
10 [('M', 30), ('M', 23), ('F', 19), ('F', 18)]
11 Traceback (most recent call last):
12 File "temp.py", line 14, in <module>
13 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

14 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None

A.4 OPT Prompt
1

2 ### Provide a fix for the buggy function.
3 ### Buggy Function:
4 def sort_age(lst):
5 lst.sort(key=lambda x: x[1],reverse=True)
6 print(lst)
7

169

8 ### Failing Test Case:
9 [('M', 30), ('M', 23), ('F', 19), ('F', 18)]

10 Traceback (most recent call last):
11 File "temp.py", line 15, in <module>
12 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

13 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
14 ### Function Execution Trace:Source path: temp.py
15 Function: sort_age(lst)
16 Input: lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
17 Line 12: Sorted list based on age in descending order
18 Updated lst: [('M', 30), ('M', 23), ('F', 19), ('F', 18)]
19 Line 13: Printed sorted list
20 Return: None
21

170

B Rationale behind prompt choice and other prompts considered.

In our preliminary experiment error-based prompts always performed better than program-only prompts.
Hence, we use Error Prompts as a point of comparison for Trace Prompts, foregoing prompts only
containing the buggy program. Furthermore, we explored the option of including all failing test cases in
the same prompt, however that did not provide a lift compared to a single test case, and overall performed
slightly worse. We hypothesize multiple test cases could be more helpful for program generation to
help define the space of valid solutions, whereas in APR the buggy function itself provides a bulk of
information for fixing a bug, and a single failing test case, while inexhaustive, is generally sufficient
for setting the LLM on the right path to finding a fix. The use of few-shot prompts, while feasible for
improving the accuracy of error-based prompts, is problematic for traces as it can greatly increase the
overall length of the prompt, potentially exceeding the 8k context window.

C Comparison of Refactory Fixes Generated by GPT 3.5 for Error and Trace Prompts
1 ### Provide a fix for the buggy function.
2 ### Buggy Function:
3 def sort_age(lst):
4 return lst.sort(key = lambda x: x[1])
5

6 ### Failing Test Case:
7 Traceback (most recent call last):
8 File "temp.py", line 13, in <module>
9 result = sort_age([('F', 18), ('M', 23), ('F', 19), ('M', 30)]); assert result == [('M', 30),

('M', 23), ('F', 19), ('F', 18)], 'Expected [(\'M\', 30), (\'M\', 23), (\'F\', 19), (\'F\',
18)] but got %s' % result

↪→
↪→

10 AssertionError: Expected [('M', 30), ('M', 23), ('F', 19), ('F', 18)] but got None
11

12 ### Function Execution Trace:
13 Source path:... temp.py
14 Starting var:.. lst = [('F', 18), ('M', 23), ('F', 19), ('M', 30)]
15 call 10 def sort_age(lst):
16 line 11 return lst.sort(key = lambda x: x[1])
17 Modified var:.. lst = [('F', 18), ('F', 19), ('M', 23), ('M', 30)]
18 return 11 return lst.sort(key = lambda x: x[1])
19 Return value:.. None

1 # GPT 3.5 EP Response:
2 '''The issue with the buggy function is that
3 the `lst.sort()` method modifies the list
4 in-place and does not return a sorted list.
5 To fix this, we can modify the function to
6 first sort the list using `lst.sort()` and
7 then return the sorted list by simply
8 returning the original list `lst`. Here's
9 the fixed function:'''

10

11 def sort_age(lst):
12 lst.sort(key=lambda x: x[1])
13 return lst
14

15 '''Now, running the failing test case
16 should give us the expected output:'''

1 # GPT 3.5 TP Response:
2 '''To fix the buggy function, we need to make
3 two changes: 1. Instead of returning the
4 result of the `lst.sort()` method, we need
5 to return the sorted list itself. 2. We need
6 to sort the list in descending order by
7 modifying the sorting key lambda function to
8 `lambda x: -x[1]`. Here is the fixed version
9 of the function:'''

10

11 def sort_age(lst):
12 lst.sort(key=lambda x: -x[1])
13 return lst
14

15 '''This will return the correct sorted
list.'''↪→

171

Trace Length # Var Changes
Trace Complexity

0

20

40

60

80

Va
lu

es

Program Type
Correct Programs
Incorrect Programs

(a) HumanEval-Java Dataset with GPT-3.5

Trace Length # Var Changes
Trace Complexity

0

20

40

60

80

100

120

Va
lu

es

Program Type
Correct Programs
Incorrect Programs

(b) RunBugRun Dataset with GPT-3.5

Trace Length # Var Changes
Trace Complexity

0

5

10

15

20

25

30

35

40

Va
lu

es

Program Type
Correct Programs
Incorrect Programs

(c) Refactory Dataset with GPT-3.5

Figure 5: Distributions of trace lengths and variable changes across correct vs incorrect program fixes generated by
GPT-3.5

172

25 30 35 40 45 50
Threshold

0.30

0.35

0.40

0.45

0.50

0.55

Va
lu

e

CPA - EP
CFA - EP
CPA - OPT
CFA - OPT

(a) HumanEval-Java Dataset with GPT-3.5

25 30 35 40 45 50
Threshold

0.450

0.455

0.460

0.465

0.470

0.475

0.480

0.485

0.490

Va
lu

e

CPA - OPT
CFA - OPT
CPA - EP
CFA - EP

(b) RunBugRun Dataset with GPT-3.5

25 30 35 40 45 50
Threshold

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Va
lu

e

CPA - OPT
CFA - OPT
CPA - EP
CFA - EP

(c) Refactory Dataset with GPT-3.5

Figure 6: Ablations of trace length threshold values used with the routing strategy for GPT3.5

173

25 30 35 40 45 50
Threshold

0.50

0.55

0.60

0.65

0.70

Va
lu

e

CPA - EP
CFA - EP
CPA - OPT
CFA - OPT

(a) HumanEval-Java Dataset with GPT-4

25 30 35 40 45 50
Threshold

0.54

0.55

0.56

0.57

0.58

0.59

0.60

Va
lu

e

CPA - OPT
CFA - OPT
CPA - EP
CFA - EP

(b) RunBugRun Dataset with GPT-4

25 30 35 40 45 50
Threshold

0.74

0.76

0.78

0.80

0.82

Va
lu

e

CPA - OPT
CFA - OPT
CPA - EP
CFA - EP

(c) Refactory Dataset with GPT-4

Figure 7: Ablations of trace length threshold values used with the routing strategy for GPT-4.

174

C.1 Trace Understanding Probing Studies Full Results and Qualitative Findings

Table 3: Trace Understanding Probing Results

Dataset partition (#prompts) Trace Collating Trace Prediction
Refactory reference (34) 88% 50%
Refactory fail (38) 79% 26%
Geeks for geeks (300) 45% 15%

We manually reviewed a sample of diffs to gain qualitative insights of LLM trace manipulation behavior.
Most discrepancies between ground truth and either LLM-collated or predicted traces are due to additions
or deletions of variable modifications from the trace. In particular, within loops, the LLM tends to either
miss or add extra variable modifications., which could hit at a potential limitation in the depth of reasoning
and memory. In the task of trace prediction from scratch, the second most erratic behavior is around
predicting function returns, which can amount to both wrong value and wrong placement within the
execution flow. Interestingly, in addition to generating traces, the LLM consistently attempts to fix code
formatting, and in many cases optimizes away code branches not taken. Similarly, in the presence of
execution failures, the LLM is unreliable at correctly predicting exceptions – either predicting exception
types not commonly raised by a given operation, missing the exception altogether or, in some cases,
patching the code to prevent an exception. Miscellaneous observed other discrepancies are due to the
LLM adding superfluous commentary, trace formatting mistakes and hallucination of object hashes and
other literals.

175

C.2 Prompts for Predicting and Collating Traces

1 ### Given a function and its invocation, trace the function's execution, using inline comments in
the format shown in the below examples:↪→

2 ### Example program:
3 def unique_day(day, possible_birthdays):
4 count = 0
5 for birthday in possible_birthdays:
6 if birthday[1] == day:
7 count += 1
8 return count == 1
9

10 ### Example invocation:
11 unique_day(day = '1', possible_birthdays = (('January', '1'), ('February', '1')))
12

13 ### Example traced program:
14 # Starting var:.. day = '1'
15 # Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
16 def unique_day(day, possible_birthdays):
17 count = 0 # New var:....... count = 0
18 for birthday in possible_birthdays: # New var:....... birthday = ('January', '1')
19 # Modified var:.. birthday = ('February', '1')
20 if birthday[1] == day:
21 count += 1 # Modified var:.. count = 1
22 # Modified var:.. count = 2
23 return count == 1
24 # Return value:.. False
25

26 ### Example program with exception:
27 def remove_extras(lst):
28 result = []
29 for i in lst and not result:
30 result += result + i
31 return result
32

33 ### Example invocation with exception:
34 remove_extras(lst = [3, 4, 5, 1, 3])
35

36 ### Example traced program with exception:
37 # Starting var:.. lst = [3, 4, 5, 1, 3]
38 def remove_extras(lst):
39 result = [] # New var:....... result = []
40 for i in lst and not result: # Exception:..... TypeError: 'bool' object is not iterable
41 result += result + i
42 return result
43

44 ### Valid traces types the following: 'Starting var', 'Modified var', 'New var', 'Return value',
'Exception'. Do not insert any other comments.↪→

45

46 ### Program:
47 def search(x, seq):
48 for i in range(len(seq)):
49 if x <= seq[i]:
50 return i
51 return len(seq)
52 ### Invocation:
53 search(-100, ())
54

176

1 ### Given a function and its execution trace, can you align each element in the trace with the corresponding line in the program, using the format
shown in the below examples:↪→

2 ### Example program:
3 def unique_day(day, possible_birthdays):
4 count = 0
5 for birthday in possible_birthdays:
6 if birthday[1] == day:
7 count += 1
8 return count == 1
9

10 ### Example trace:
11 Source path:... temp.py
12 Starting var:.. day = '1'
13 Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
14 call 10 def unique_day(day, possible_birthdays):
15 line 11 count = 0
16 New var:....... count = 0
17 line 12 for birthday in possible_birthdays:
18 New var:....... birthday = ('January', '1')
19 line 13 if birthday[1] == day:
20 line 14 count += 1
21 Modified var:.. count = 1
22 line 12 for birthday in possible_birthdays:
23 Modified var:.. birthday = ('February', '1')
24 line 13 if birthday[1] == day:
25 line 14 count += 1
26 Modified var:.. count = 2
27 line 12 for birthday in possible_birthdays:
28 line 15 return count == 1
29 return 15 return count == 1
30 Return value:.. False
31
32 ### Example aligned:
33 # Starting var:.. day = '1'
34 # Starting var:.. possible_birthdays = (('January', '1'), ('February', '1'))
35 def unique_day(day, possible_birthdays):
36 count = 0 # New var:....... count = 0
37 for birthday in possible_birthdays: # New var:....... birthday = ('January', '1')
38 # Modified var:.. birthday = ('February', '1')
39 if birthday[1] == day:
40 count += 1 # Modified var:.. count = 1
41 # Modified var:.. count = 2
42 return count == 1
43 # Return value:.. False
44
45 ### Example program with exception:
46 def remove_extras(lst):
47 result = []
48 for i in lst and not result:
49 result += result + i
50 return result
51
52 ### Example trace with exception:
53 Source path:... temp.py
54 Starting var:.. lst = [3, 4, 5, 1, 3]
55 call 10 def remove_extras(lst):
56 line 11 result = []
57 New var:....... result = []
58 line 12 for i in lst and not result:
59 exception 12 for i in lst and not result:
60 Exception:..... TypeError: 'bool' object is not iterable
61 Call ended by exception
62
63 ### Example aligned with exception:
64 # Starting var:.. lst = [3, 4, 5, 1, 3]
65 def remove_extras(lst):
66 result = [] # New var:....... result = []
67 for i in lst and not result: # Exception:..... TypeError: 'bool' object is not iterable
68 result += result + i
69 return result
70
71 ### Note aligned versions only include capitalized entries from the trace. Do not insert any other comments.
72
73 ### Program:
74 def search(x, seq):
75 for i in range(len(seq)):
76 if x <= seq[i]:
77 return i
78 return len(seq)
79 ### Trace:
80 Source path:... temp.py
81 Starting var:.. x = 42
82 Starting var:.. seq = (-5, 1, 3, 5, 7, 10)
83 call 10 def search(x, seq):
84 line 11 for i in range(len(seq)):
85 New var:....... i = 0
86 line 12 if x <= seq[i]:
87 line 11 for i in range(len(seq)):
88 Modified var:.. i = 1
89 line 12 if x <= seq[i]:
90 line 11 for i in range(len(seq)):
91 Modified var:.. i = 2
92 line 12 if x <= seq[i]:
93 line 11 for i in range(len(seq)):
94 Modified var:.. i = 3
95 line 12 if x <= seq[i]:
96 line 11 for i in range(len(seq)):
97 Modified var:.. i = 4
98 line 12 if x <= seq[i]:
99 line 11 for i in range(len(seq)):

100 Modified var:.. i = 5
101 line 12 if x <= seq[i]:
102 line 11 for i in range(len(seq)):
103 line 14 return len(seq)
104 return 14 return len(seq)
105 Return value:.. 6

177

C.3 Qualitative Examples of Trace Prediction Errors

1 # Starting var:.. lst = [3, 4, 5, 1, 3]
2 def remove_extras(lst):
3 i = 0 # New var:....... i = 0
4 while i < len(lst):
5 j = i + 1 # New var:....... j = 1
6 # Modified var:.. j = 2
7 # Modified var:.. j = 3
8 while j < len(lst):
9 if lst[i] == lst[j]:

10 lst = lst[:j] + lst[j+1:] #
Modified var:.. lst = [3,
4, 5, 1]

↪→
↪→

11 j += 1 # Modified var:.. j = 2
12 # Modified var:.. j = 3
13 # Modified var:.. j = 4
14 # Modified var:.. j = 5
15 # Modified var:.. j = 3
16 # Modified var:.. j = 4
17 # Modified var:.. j = 4
18 i += 1 # Modified var:.. i = 1
19 # Modified var:.. i = 2
20 # Modified var:.. i = 3
21 # Modified var:.. i = 4
22 return lst # Return value:.. [3, 4, 5, 1]

1 # Starting var:.. lst = [3, 4, 5, 1, 3]
2 def remove_extras(lst):
3 i = 0 # New var:....... i = 0
4 while i < len(lst):
5 j = i + 1 # New var:....... j = 1
6 # Modified var:.. j = 2
7 # Modified var:.. j = 3
8 # Modified var:.. j = 4
9 # Modified var:.. j = 5

10 while j < len(lst):
11 if lst[i] == lst[j]:
12 lst = lst[:j] + lst[j+1:] #

Modified var:.. lst = [3,
4, 5, 1]

↪→
↪→

13 j += 1
14 i += 1 # Modified var:.. i = 1
15 # Modified var:.. i = 2
16 # Modified var:.. i = 3
17 # Modified var:.. i = 4
18 return lst # Return value:.. [3, 4, 5, 1]
19

20

Figure 8: Example of erroneous variable modifications within a nested loop (Ground truth – left, prediction – right)

1 # Starting var:.. date = '3'
2 # Starting var:.. possible_birthdays =

(('January', '1'), ('January', '2'))↪→
3 def unique_day(date, possible_birthdays):
4 if date in possible_birthdays[1]:
5 return False
6 else:
7 return True # Return value:.. True

1 # Starting var:.. date = '3'
2 # Starting var:.. possible_birthdays =

(('January', '1'), ('January', '2'))↪→
3 def unique_day(date, possible_birthdays):
4 if date in possible_birthdays[1]:
5 return True # Return value:.. True
6 else:
7 return False

Figure 9: Example of wrong return value placement and code modification. (Ground truth – left, prediction – right)

1 # Starting var:.. lst = [('M', 23), ('F', 19),
('M', 30)]↪→

2 def sort_age(lst):
3 return lst.sort(key = lambda x: x[1],

reverse = True) # Modified var:.. lst
= [('M', 30), ('M', 23), ('F', 19)]

↪→
↪→

4 # Return value:.. None

1 # Starting var:.. lst = [('M', 23), ('F', 19),
('M', 30)]↪→

2 def sort_age(lst):
3 return lst.sort(key = lambda x: x[1],

reverse = True) # Return value:.. None↪→
4 # Exception:..... AttributeError: 'NoneType'

object has no attribute 'sort'↪→

Figure 10: Example of a falsely predicted exception. (Ground truth – left, prediction – right)

178

1 # Starting var:.. lst = [('F', 19)]
2 def sort_age(lst):
3 sort1 = [] # New var:....... sort1 = []
4 while lst:
5 largest = lst[0][1] # New var:.......

largest = 19↪→
6 if i[1] > largest: # Exception:.....

NameError: name 'i' is not defined↪→
7 largest = i[1]
8 lst.remove(i)
9 sort1.append(i)

10 return sort1

1 # Starting var:.. lst = [('F', 19)]

2 def sort_age(lst):
3 sort1 = [] # New var:....... sort1 = []
4 while lst:
5 largest = lst[0][1] # New var:.......

largest = 19↪→
6 for i in lst: # New var:....... i =

('F', 19)↪→
7 if i[1] > largest:
8 largest = i[1]
9 lst.remove(i) # Modified var:.. lst =

[]↪→
10 sort1.append(i) # Modified var:..

sort1 = [('F', 19)]↪→
11 return sort1 # Return value:.. [('F', 19)]

Figure 11: Example of a code modification to fix an exception. (Ground truth – left, prediction – right)

179

