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Abstract

This paper addresses fine-tuning Large Lan-
guage Models (LLMs) for function calling
tasks when real user interaction data is unavail-
able. In digital content creation tools, where
users express their needs through natural lan-
guage queries that must be mapped to API calls,
the lack of real-world task-specific data and pri-
vacy constraints for training on it necessitate
synthetic data generation. Existing approaches
to synthetic data generation fall short in diver-
sity and complexity, failing to replicate real-
world data distributions and leading to subop-
timal performance after LLM fine-tuning. We
present a novel router-based architecture that
leverages domain resources like content meta-
data and structured knowledge graphs, along
with text-to-text and vision-to-text language
models to generate high-quality synthetic train-
ing data. Our architecture’s flexible routing
mechanism enables synthetic data generation
that matches observed real-world distributions,
addressing a fundamental limitation of tradi-
tional approaches. Evaluation on a compre-
hensive set of real user queries demonstrates
significant improvements in both function clas-
sification accuracy and API parameter selec-
tion. Models fine-tuned with our synthetic data
consistently outperform traditional approaches,
establishing new benchmarks for function call-
ing tasks.

1 Introduction

Digital content creation platforms increasingly rely
on natural language interfaces to make complex
design tools accessible to non-technical users. A
critical challenge lies in accurately translating user
queries into appropriate function calls (Schick et al.,
2023) for instance, when a user requests “Find me
an image of an elephant with the background being
Taj Mahal”, the system must orchestrate multiple
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API calls for searching, background removal, and
compositing.

In this paper, we specifically address the chal-
lenge of training models to classify user intent
into two distinct categories: queries that can be
fulfilled through search API operations versus
those requiring generation through Generative-AI-
powered APIs. Given a user query, our model
determines: (1) whether to route the request to
“Search” or “Generate” operations based on user in-
tent, (2) the appropriate Content Type parameter se-
lection (e.g. Photo, Template, Background, Video),
and (3) prompt optimization specific to each API
type—simplifying “Search” queries while preserv-
ing detailed specifications for “Generate” API re-
quests. The examples below in Listing 1 demon-
strate how our model processes and classifies dif-
ferent types of user queries:

Listing 1: Example function calls for user queries
example1 = {
'input ': 'Find me an image of an

elephant ',
'output ': {

'function ': 'Search ',
'content_type ': 'Photo ',
'extracted_prompt ': 'elephant '
}

},
example2 = {
'input ': 'Create a birthday invitation

for my nephew whose birthday is on
January 21',

'output ': {
'function ': 'Generate ',
'content_type ': 'Template ',
'extracted_prompt ': 'invitation for

nephew 's birthday on January 21'
}

}

While existing function calling models (Patil
et al., 2023) show promise, their performance on
specialized domains remains suboptimal and pri-
vacy restrictions on production data create train-
ing challenges. To address these limitations, we
present two key contributions:
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Figure 1: Data generation architecture overview integrating metadata, knowledge graph, and visual content. A
“Weighted Router” directs text and image inputs to different prompt categories: length-based, API-based, and media
type. They are processed by Text-to-Text and Vision-to-Text LLMs to generate synthetic data for downstream tasks.

1. A methodology for incorporating structured
domain knowledge into synthetic data generation
that leverages: (a) Techniques for extracting gener-
alizable patterns from content metadata; (b) Meth-
ods for utilizing domain-specific knowledge graphs
to generate contextually relevant queries.

2. A novel router-based architecture for syn-
thetic data generation featuring: (a) Multiple
specialized LLM prompt templates as distinct
routes; (b) A weighted routing mechanism using
population-level statistics;

(c) Integration of multi-modal language models
to increase data diversity.

Our approach (Figure 1) improves downstream
model performance while producing balanced train-
ing data across content types, with well-distributed
keywords and diverse sentence structures that bet-
ter align with real-world user interactions.

2 Related Work

The challenge of generating high-quality synthetic
training data for language models has been ex-
plored through various approaches. Prior work
in generating high-quality synthetic training data
for language models spans three key categories:
Instruction-tuning approaches have shown signif-
icant promise, starting with Self-Instruct’s (Wang
et al., 2023) 175-seed task framework. The field
expanded through WizardLM’s EvolInstruct (Xu
et al., 2023), Unnatural Instructions (Honovich
et al., 2022), FLAN (Wei et al., 2022), FLAN-
T5 (Chung et al., 2024), Alpaca (Taori et al.,

2023), Prompt-Breeder (Fernando et al., 2023), and
Template-based Generation (Gholami and Omar,
2023). Multimodal synthetic data generation ad-
vanced through Visual Instruction Tuning (Liu
et al., 2023), MiniGPT-4 (Zhu et al., 2023), and
InternVL (Chen et al., 2024), incorporating visual
and textual information for enhanced data gener-
ation. Function calling approaches, exemplified
by Gorilla (Patil et al., 2023) building on Self-
Instruct (Wang et al., 2023), addressed API param-
eter matching challenges, though lacking domain-
specific knowledge integration.

Our work differs from previous approaches in
several key aspects. (1) We focus specifically on
generating synthetic data for function calling while
maintaining real-world query distributions. Unlike
general instruction tuning approaches, we target
the unique challenges of function calling data gen-
eration which include precise parameter matching
requirements, maintaining real-world API usage
distributions and handling complex nested function
calls. (2) We introduce a novel router-based archi-
tecture that combines multiple generation strate-
gies. We extend existing router-based approaches
by adding weighted probabilistic sampling and by
using population-level statistics to guide routing de-
cisions. We also combine text-to-text and vision-to-
text generation paths. (3) We incorporate domain-
specific knowledge while respecting privacy con-
straints by not directly referring to the real-world
datasets. (4) We leverage multiple modalities (text
and images) to increase the diversity and quality
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of generated data, particularly for visual content-
related APIs. We introduce novel evaluation met-
rics measuring the qualitative alignment of the syn-
thetic data with real-world data covering content-
type alignment, diversity in data types generated,
word length variability, and positional variance of
key terms within sentences.

3 Methodology and Experiments

This section details how our data generation ap-
proach evolved.

3.1 Template-based Heuristic Generation

Figure 2: Knowledge Graph of concepts linked by edges

Our initial approach employed rule-based tem-
plates that combined content metadata with
domain-specific Knowledge Graph (KG) relation-
ships (Kumar et al., 2023) between different as-
pects of digital content creation. Consider a snap-
shot of the Knowledge Graph sub-graph (Figure 2).
This sub-graph consists of interconnected nodes
representing User Intents ("Birthday", "Diwali",
"Baby shower"), Design Types ("Card", "Invite"),
Scene Objects ("Cake"), and associated Actions
("Cut a cake"). Each edge between the nodes rep-
resents a relationship between them. These con-
nections were created using the historical and se-
mantic relationships seen between different entities
like User Intents, Design Types, Scene Objects and
Actions. They enable the generation of semanti-
cally coherent queries by following established re-
lationships between concepts. We create synthetic
“Search” API data by generating random prompts
combining the related entities (e.g. Intent and De-
sign Type) with search synonyms e.g. "find me",
"search for", "look for", "search", "show me".

Listing 2: Examples of Image and Template metadata
image_asset_metadata = {
...
'title ': 'Tropical frangipani flowers

floating ',
'keywords ': ['flower ', 'frangipani ', '

paradise ', 'turquoise ', 'tranquil ',
'tropical ', 'summer '],

'gentech ': False
...
},

template_asset_metadata = {
...
'topics ': ['galactic ','space ','server

banner ']
'title ': 'Galaxy Minecraft Server Banner

',
...
}

In addition to using the Knowledge Graph, we
also use content metadata of templates and images
to heuristically create data. Each image or template
asset contains metadata capturing its characteris-
tics, such as the title of the asset, keywords or tags
associated with it, whether it was generated by AI,
locale, aspect ratio, click through rate, etc. This
metadata provides a foundation of contextually rel-
evant information that reflects real-world content
organization and classification. Listing 2 captures
some of the image and template metadata tags used.
For “Generate” API queries, we constructed tem-
plates that combined action verbs (e.g. "generate",
"create" or "make") with content design types and
titles from our metadata. For example, a template
might expand to “please generate a template for"
followed by the title from our content metadata.
For creating “Generate” API queries for Image as-
sets, we only use the asset if the label ‘gentech’ is
set to True. Similarly, for “Search” API queries,
we used search-related verbs (e.g. "find", "search
for") with appropriate content descriptors. This ap-
proach allowed rapid generation of synthetic data
with proportions matching real-world statistics, but
suffered from significant limitations: The gener-
ated queries lacked diversity, often with unnatural
language patterns.

3.2 Single-Prompt LLM Based Generation

To address these limitations, we experimented with
a Llama-3.1-70B-Instruct model (Touvron et al.,
2023) with a comprehensive set of prompts con-
taining API specifications and few-shot examples.
Different variants of the system prompt focused
on different aspects of the content metadata e.g. in-
tents, assets, actions. Examples of the Llama model
prompts used used for synthesizing “Search” and
“Generate” API queries are listed in appendix A.1.
To mimic the characteristics of real-world data (e.g.
query length for “Search” vs “Generate” queries),
the system prompts used for “Search” queries spec-
ify the query to be short and crisp. Conversely
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the “Generate” query prompts used layout creativ-
ity and engagement as a driving factor for data
generation. This approach generated more natu-
ral language queries but presented challenges in
controlling output distributions and maintaining
variety across generated samples. Furthermore, it
was difficult to ensure appropriate coverage across
different content types and query patterns.

In addition to Llama 70B model, a key inno-
vation in our approach is the integration of multi-
modal capabilities for synthetic data generation on
template data through the InternVL vision-to-text
model (Chen et al., 2024). We prompted the 40B In-
ternVL model to generate a few queries that would
result in the creation of the input template placing
emphasis on the important elements unique to the
template. The prompt for InternVL model is shared
in Appendix A.2. This addition of multi-modality
based data generation component enables the gen-
eration of queries based on actual domain-specific
corpus images and visual representations of non-
image content. This provides an additional route
for query generation that captures visual aspects
that are not present in the metadata, leading to more
natural descriptions and increased output diversity.

3.3 Router-based Multi-Modal Architecture

Our final approach introduced a novel router-based
architecture that addresses the limitations of the
previous two methods. The architecture consists
of multiple specialized prompt templates, each de-
signed to generate specific types of queries based
on length, API type, and content requirements.
These prompt templates incorporate variables from
content metadata and domain-specific KG (Kumar
et al., 2023) relationships, ensuring semantic rele-
vance while maintaining natural language patterns.
The architecture also employs dataset generation
from the approaches discussed above: heuristic-
based, Llama text-to-text model and InternVL’s
vision-to-text model.

The core of our architecture is a weighted router
that directs query generation requests to appropri-
ate prompt templates based on population-level
statistics. This routing mechanism implements
weighted sampling to maintain realistic query pat-
terns while ensuring coverage across different
query types and content categories. Table 1 gives
the distribution of the synthetic dataset generated
across the heuristic-, single-prompt- and router-
based approaches.

Synthetic Dataset variant Search Generate

Heuristic Based 103,189 102,922
Single-Prompt LLM Based 100,207 100,433
Router-Based 105,100 110,000

Table 1: Number of synthetic training examples gener-
ated for Search and Generate functions for each data
generation approach

3.4 Implementation Details

The router selection algorithm determines target
distributions based on population statistics and se-
lects prompt templates based on required query
characteristics and content type requirements. For
each synthetic data point, the router either selects a
text-based route, populating templates with meta-
data and KG elements, or a vision-based route,
processing content images through InternVL to
generate contextually relevant queries.

The system includes validation checks for query
realism, label accuracy, and distribution alignment.
It filters out duplicate queries, unrealistic language
patterns, and queries that violate length constraints.
This ensures that the synthetic data is high quality
and accurately reflects real-world usage patterns.

The query generation process is continuously
monitored and adjusted to maintain desired distri-
butions across query lengths, API usage patterns,
and content type frequencies. This adaptive ap-
proach ensures that the generated dataset remains
balanced and representative of current user behav-
ior patterns, while the multi-modal integration pro-
vides diversity and realism in the generated queries.

Figure 3: Comparison of word count distribution (Mean,
Median and Interquartile Range) across the real and syn-
thetically generated datasets (Heuristic, Single Prompt
and Router)
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3.5 Fine-tuning

To efficiently adapt the models while managing
computational resources, we employ Quantized
Low-Rank Adaptation (QLoRA) (Dettmers et al.,
2023) across our experiments. For the Gorilla
OpenFunctions v2 model (Patil et al., 2023), we
utilize 4 NVIDIA A100 GPUs operating in par-
allel, with the base model parameters quantized
to 4-bit precision while maintaining model quality
through low-rank adapters. The training configu-
ration utilizes cosine annealing for learning rate
optimization (Loshchilov and Hutter, 2017) with
ADAM_W (Loshchilov and Hutter, 2019) as the
optimizer, and we set the LoRA rank and alpha
parameters to 16 and 32 respectively to balance
adaptation capability with training stability.

Additionally, we fine-tuned several small lan-
guage models (SLMs) using the same QLoRA
technique Phi-3.5-mini-instruct (Microsoft, 2024),
Llama-3.2-1B-Instruct (LlamaTeam, 2024), Llama-
3.2-3B-Instruct (LlamaTeam, 2024), Qwen2.5-
1.5B-Instruct (QwenTeam, 2024), Qwen2.5-0.5B-
Instruct (QwenTeam, 2024) and Gemma-2-2b-it
(GemmaTeam, 2024). For these models, the train-
ing infrastructure consisted of 4 NVIDIA A10
GPUs operating in parallel. We maintained consis-
tent quantization and adaptation strategies across
all models to ensure fair comparison. The hyper-
parameters and prompt structure used for training,
training and evaluation loss, system memory usage
and GPU utilization are in Appendix B.

4 Results and Analysis

We analyze the results by first looking at the data
diversity of the router based synthetic data (word
count distribution, content type diversity, positional
diversity of keywords and query length distribution)
and comparing it with other synthetically generated
datasets. We then focus on the performance met-
rics of different variants of Gorilla model across
different synthetic datasets. We also show the per-
formance improvement of Small Language Models
(SLMs) fine-tuned on our router based synthetic
dataset compared to their base model.

4.1 Word Count Distribution

Figure 3 compares the word count distribution
across real-world and synthetically generated
datasets, specifically analyzing the mean, median,
and Interquartile Range (IQR). For this compari-
son, we sampled 2,500 search queries from each

distribution.
The real-world dataset has a mean word length of

7 words and a median of 4 words. The distribution
is right-skewed with a short IQR, suggesting that
real-world queries are generally concise, typically
ranging between 1 to 10 words.

In contrast, the synthetic dataset generated using
Heuristic Data (KG and metadata-based) exhibits a
higher median of 6 words, indicating that the gen-
erated queries tend to be more verbose. Although
the Single Prompt-based data has a similar IQR,
its narrower distribution suggests that the synthetic
queries are, on average, shorter than real-world
queries.

Finally, we observe that the Router-based syn-
thetic data generation approach maintains a similar
IQR to the real-world data, while achieving a bal-
anced distribution between diverse and realistic
queries. This means that the generated queries are
neither excessively long nor too short, aligning with
real-world user behavior—where users are likely
to search with either "Search" (short user query) or
"Generate" (long user query).

4.2 Content Type Diversity
Traditional synthetic data generation techniques
often struggle to replicate a real-world data diver-
sity, resulting in imbalanced datasets where certain
content types are overrepresented. In contrast, our
architecture enables a balanced and diverse distri-
bution across content types. Figure 4 shows that
our approach achieves a relatively even distribu-
tion across multiple content types (e.g. ‘Templates’,
‘Images’, ‘Videos’, ‘Backgrounds’), allowing the
model to learn from a variety of content requests
without over-fitting to any single category. This
balanced distribution ensures that the model is ex-
posed to a realistic sampling of potential queries,
improving its generalization ability for content-
specific API calls. In contrast, traditional synthetic
data generation methods (Figure 4) tend to be heav-
ily skewed, with content types like ‘Image’ domi-
nating the dataset, while others such as ‘Audio’ and
‘Template’ are underrepresented. This can limit
a model’s capability to handle less frequent but
important content types, resulting in suboptimal
performance in real-world applications.

4.3 Positional Diversity of Keywords
One of the key improvements in our synthetic data
generation approach is the reduction of keyword
position bias, specifically for ‘Content Type’ key-
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User Query Function Content Type Optimized Subprompt

Find me a birthday template with balloons and
confetti

Search Template birthday balloons confetti

Create an elegant wedding invitation with gold
floral borders for a December ceremony

Generate Template elegant wedding invitation gold flo-
ral borders December ceremony

Show me tropical beach backgrounds Search Background tropical beach background

Generate a podcast cover with neon colors and
retro style

Generate Design Asset podcast cover neon colors retro style

Find business presentation templates with data
charts

Search Template business presentation data charts

Table 2: Representative Examples from Golden Dataset

Model and Dataset variant Function Call ContentType Subprompt
F1-Score Accuracy (CTA) Similarity (SS)

Pre Fine-tuned Base Gorilla 0.646 0.239 0.824
Fine-tuned Gorilla: Single Prompt dataset 0.788 0.574 0.898
Fine-tuned Gorilla: Heuristic dataset 0.801 0.676 0.919
Fine-tuned Gorilla: Synthetic dataset + Router 0.844 0.65 0.867
Fine-tuned Gorilla: Synthetic + Heuristic dataset + Router 0.875 0.737 0.915
Prompt Tuned Gorilla: Synthetic + Heuristic dataset + Router 0.881 0.756 0.918

Table 3: Performance summary of the fine-tuned Gorilla model trained on different datasets. The ContentType
Accuracy and Subprompt Similarity are referenced as CTA and SS respectively

Figure 4: Comparison of Content Type distribution

words within user queries. Traditional synthetic
datasets often position these keywords (e.g. ‘Im-
age’, ‘Video’, ‘Template’, ‘Audio’) consistently at
the beginning or end of queries. This lack of po-
sitional diversity leads to models that are prone to
over-fitting, as they learn to expect keywords in
fixed positions, which limits their generalization
capabilities in real-world scenarios.

Our router-based synthetic data generation
framework creates a more even distribution of con-
tent type keywords (Figure 5) across positions in
the query, which exposes the model to a wider
range of query structures, helping it generalize and
reducing over-fitting.

Figure 5: Comparison of normalized keyword positions

4.4 Query Length Diversity

To ensure our dataset accurately reflects real-world
query variations, we designed distinct length distri-
butions for “Search” and “Generate” queries. We
observed that users tend to use the “Search” API to
look for generic content and then select a result to
start their design with. In contrast, they tend to use
the “Generate” API to create specific content which
may not exist in the content library. Consequently,
“Search” queries are usually shorter than “Generate”
queries. By accommodating a spectrum of query
lengths, our approach improves the model’s ability
to handle both concise and complex user requests.
For “Search” based queries, we upper-bound the
length to 10 words. This allows the model to focus
on short, targeted requests, enhancing retrieval per-
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formance. In contrast, “Generate” based queries
allow a broader range of lengths, with an upper
limit set to 40 words (Figure 6). By expanding the
length allowance for “Generate” queries, the model
learns to handle more descriptive inputs, improving
its ability to create content that aligns with nuanced
user specifications.

Figure 6: Comparison of search and generate query
length

4.5 Performance Metrics and Evaluation
4.5.1 Golden Dataset Details
To evaluate model performance, we created a man-
ually curated golden dataset consisting of 460 real-
world user queries with high-quality labels. This
dataset provides a balanced representation across
query types and intents, with 237 Search queries
and 223 Generate queries. The dataset exhibits nat-
ural language variation with query lengths ranging
from brief phrases to detailed specifications (me-
dian length = 8 words, mean = 10.9 words, maxi-
mum = 38 words). This diverse distribution ensures
comprehensive evaluation across all supported con-
tent types, with particular emphasis on commonly
requested media like templates and images while
maintaining representation of specialized content
types.

Each query in the dataset is annotated with func-
tion classification (Search/Generate), content type
label and optimized sub-prompt.The dataset in-
cludes queries ranging from simple search requests
to complex generation specifications, as illustrated
in Table 2. This variation in query complexity and
specificity allows us to assess model performance
across different difficulty levels and use cases. The
content type distribution in golden dataset is in
Table 5. This comprehensive labeling enables eval-
uation across multiple dimensions of model perfor-
mance, from high-level task classification to the
nuanced understanding required for subprompt op-
timization. The golden dataset served as our pri-
mary benchmark for comparing different model

variants and synthetic data generation approaches,
providing consistent and reliable metrics for Func-
tion Call F1 score, Content Type Accuracy (CTA),
and Subprompt Similarity (SS) as reported in Ta-
bles 3 and 4.

4.5.2 Model Performance Metrics
We began with the baseline Gorilla openfunctions
v2 model (Patil et al., 2023) fine-tuned for API
calls, which yielded initial F1-Score of 0.646, Con-
tent Type Accuracy (CTA) of 0.239, and Sub-
prompt Similarity (SS) of 0.824 (Table 3). These
metrics highlighted areas for improvement to meet
our query mapping requirements. Testing a single-
prompt response approach resulted in F1-Score of
0.788, CTA of 0.57, and SS of 0.898, indicating
modest gains but underscoring the need for addi-
tional fine-tuning strategies.

To enhance performance further, we fine-tuned
the model on a heuristic dataset from our storage in-
dex, which included captions, template phrases (e.g.
"birthday template" for birthday-related queries),
and keywords based on query analysis. As a result,
F1 rose to 0.801, CTA to 0.676, and SS to 0.919.
Next, we implemented the multi-prompt router ap-
proach, generating synthetic data using domain-
specific metadata from our KG. Fine-tuning on
this synthetic dataset alone achieved F1 of 0.844,
CTA of 0.65, and SS of 0.867, showing the effec-
tiveness of our router-based approach in capturing
nuanced query patterns and context. Combining
the synthetic and heuristic datasets yielded further
improvements, with F1 reaching 0.875, CTA at
0.737, and SS at 0.915, demonstrating the bene-
fits of blending structured metadata with generated
queries. Finally, we applied prompt-tuned fine-
tuning to the combined dataset, achieving peak re-
sults: F1 of 0.881, CTA of 0.756, and SS of 0.918.
This iterative process validated the model’s capac-
ity to handle complex queries. To assess whether
the observed gains in Function Calling Accuracy
between the Single Prompt Fine-Tuned Gorilla
model and the Prompt Tuned Gorilla model (Syn-
thetic + Heuristic) dataset using the router were
statistically significant, we conducted McNemar’s
test. The p-value of 2.529 e-05 demonstrates a
highly significant difference. For Subprompt Simi-
larity (SS) metric, a paired t-test yielded a p-value
of 0.064, suggesting a trend toward significance.

In addition to training on Gorilla, we com-
pared the performance of Small Language Mod-
els (SLMs) before and after being trained
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Model Function Call ContentType Subprompt
F1-Score Accuracy (CTA) Similarity (SS)

Vanilla Gemma2-2B-Instruction-Tuned 0.626 0.337 0.882
Fine-tuned Gemma2-2B-Instruction-Tuned 0.876 0.552 0.91

Vanilla Qwen2.5-1.5B-Instruct 0.687 0.274 0.796
Fine-tuned Qwen2.5-1.5B-Instruct 0.863 0.554 0.91

Vanilla Qwen2.5-0.5B-Instruct 0.187 0 0.02
Fine-tuned Qwen2.5-0.5B-Instruct 0.876 0.554 0.91

Vanilla Phi-3.5-mini-Instruct 0.626 0.406 0.915
Fine-tuned Phi-3.5-mini-Instruct 0.889 0.576 0.91

Vanilla Llama-3.2-1B-Instruct 0.432 0 0.182
Fine-tuned Llama-3.2-1B-Instruct 0.865 0.57 0.91

Table 4: Performance summary of the additional SLM models before/after training on the router-based synthetic
dataset. The ContentType Accuracy and Sub-prompt Similarity are referenced as CTA and SS respectively

Content Type Count Percentage

Templates 103 22.4%
Photos/Images 97 21.1%
Audio 20 4.3%
Video 19 4.1%
Background 20 4.3%
Design Assets 17 3.7%
Text 20 4.3%
Any (type-agnostic) 164 35.7%

Table 5: Content Type Distribution in Golden Dataset

on our router-based synthetic dataset. The
SLMs used for comparison were Gemma2-
2B-it (Instruction-Tuned) model (GemmaTeam,
2024), Qwen2.5-1.5B-instruct and Qwen2.5-0.5B-
instruct models (QwenTeam, 2024), Phi3.5-mini-
instruct model (Microsoft, 2024) and Llama-3.2-
1B-Instruct model (LlamaTeam, 2024). We found
a significant improvement in the Function Call F1
score, CTA and SS scores across all the SLMs
after fine-tuning them with the Router-based syn-
thetic dataset. Additional details on performance
improvement are provided in Table 4.

5 Conclusion

LLMs are fueling efforts to develop systems that
accurately interpret user queries and map them to
function calls. However, the scarcity of real-world
user data and privacy constraints on training with
it necessitate synthetic data generation. Existing
synthetic data generation approaches lack the di-
versity and complexity needed to mirror real-world
interactions, limiting model performance. We in-
troduced a novel architecture for generating high-
quality synthetic training data. Our approach inte-
grates content metadata and domain-specific KGs

with text-to-text and vision-to-text models, produc-
ing more varied and representative data. Through
iterative development, we arrived at a router-based
multi-modal architecture that enhances data diver-
sity and improves model training outcomes. Our
model demonstrates gains in function mapping ac-
curacy, although further improvement is possible
in content-type classification.

6 Future Work

This research opens several promising avenues for
future investigation. One primary direction is to ex-
tend the system’s linguistic capabilities to support
multilingual query processing, thereby improving
global accessibility. Although our architecture has
proven effective in digital content creation, its un-
derlying principles could be generalized to other
domains requiring sophisticated function-calling
mechanisms. Leveraging more advanced language
models—such as Llama-405B (LlamaTeam, 2024)
or DeepSeek (DeepSeek-AI et al., 2024)—for syn-
thetic data generation may yield higher-quality
training examples, while expanding our golden
dataset could enable more rigorous model eval-
uation. Additionally, exploring the architecture’s
extensibility to support additional specialized func-
tions and API calls would both broaden the sys-
tem’s applications and provide insights into the
scalability of our approach across different func-
tional domains.
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A Model Prompts

A.1 Llama-3.1-70B-Instruct Model Prompts

Below is an example of System Prompt used for
generating Search data using Llama’s 70B model:

Role: System
Content: You are an AI Assistant responsible for gen-
erating a single, concise user search query based on
provided metadata. The search queries are short and
crisp and less than 10 words. You will be working
with different assets for example (templates, images,
videos, design assets, backgrounds, shapes). Help
me write a search query for an Instagram story tem-
plate for title:{title} focusing on intents:{intents}. The
query should directly reflect the relevant title, intents,
actions, or assets, without any additional explanations
or unnecessary text. Do not include any introductory
phrases or conclusions, just the query itself.
...
Role: System
Content: You are an AI Assistant responsible for gen-
erating a single, concise user search query based on
provided metadata. The search queries are short and
crisp and less than 10 words. You will be working
with different assets for example (templates, images,
videos, design assets, backgrounds, shapes). Help me
write a search query for the vibrant background for
title:{title} focusing on actions:{actions}. Please in-
clude the word background in the query.The query
should directly reflect the relevant title, intents, ac-
tions, or assets, without any additional explanations
or unnecessary text. Do not include any introductory
phrases or conclusions, just the query itself.
....

Here are examples of some of the prompts used
by Llama 70B model to synthesize Generate func-
tion data:

Role: System
Content: You are an AI that generates creative and en-
gaging user prompts based on provided metadata. The
prompt should be less than 40 words. Design a Face-
book post prompt for title:{title} that encourages users
to actions:{actions}. Use assets:{assets} to support
intents:{intents}.The prompt should feel like some-
thing a human would write and should not include any
hashtags or links or unnecessary punctuations.
....
Role: System
Content: You are an AI that generates creative and
engaging user prompts based on provided metadata.
The prompt should be less than 40 words. Make some
prompt for title:{title} with intents:{intents}. Use as-
sets:{assets}, or maybe not?
....
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A.2 InternVL 40B Model Prompt

Role: System
Content: Based on this image, generate 2 single-
sentence prompts that could have created this template.
Each prompt should specify the type of material, the
purpose it is for, and briefly mention key elements
to include. Mention specific business name only if
it is present in the image. Translate any non English
sentences/words to English.

B Model fine-tuning details

For fine-tuning all models, we employed Quan-
tized Low-Rank Adaptation (QLoRA) with consis-
tent hyperparameters across our experiments. The
training process utilized a learning rate of 1e−4

with the AdamW optimizer and cosine learning
rate scheduler. We implemented gradient accumu-
lation with 2 steps and a batch size of 4, process-
ing sequences up to 4,096 tokens in length. The
models were trained for 3 epochs with a warmup
ratio of 0.03, and we applied gradient clipping
with a maximum norm of 0.3 to ensure training
stability.The LoRA configuration maintained con-
sistency across all models, employing a rank of 16
with an alpha value of 32 and a dropout rate of 0.05.
The adaptation targeted key transformation matri-
ces including query, key, value, output, gate, up,
and down projections. To optimize memory usage
while preserving model quality, we implemented
4-bit quantization (NF4) with double quantization
enabled. The training pipeline incorporated mixed
precision (FP16) computation and gradient check-
pointing for efficient resource utilization. Model
evaluation and checkpoint saving were performed
at regular intervals of 1,000 steps, with training
metrics logged every 20 steps. For inference, we
deployed models using vllm with carefully tuned
sampling parameters. The configuration included a
maximum token length of 4,096, a temperature
of 0.3 for controlled randomness, and standard
top-k and top-p values of 50 and 1.0 respectively.
Each prompt generated a single sample to maintain
consistency in our evaluation process. All experi-
mental metrics, including training loss, validation
metrics, model checkpoints, and system resource
utilization, were tracked and logged using Weights
& Biases (Wandb) for comprehensive experiment
monitoring and reproducibility. To ensure repro-
ducibility across all experiments, we maintained a
fixed random seed of 42 throughout both training
and inference phases.

The following plots capture the comparison of

the training loss (Figure 7), system memory uti-
lization (Figure 8) and GPU utilization (Figure 9)
for the following models: Gorilla, Gemma2-2B-
it model, Qwen2.5-1.5B-Instruct, Qwen2.5-0.5B-
Instruct model and Llama3.2-1B-Instruct models.

Figure 7: Training loss comparison for: Gorilla,
Gemma, Qwen (both variants) and Llama models

Figure 8: System memory utilization comparison for:
Gorilla, Gemma, Qwen (both variants) and Llama mod-
els

Figure 9: Process GPU utilization comparison for: Go-
rilla, Gemma, Qwen (both variants) and Llama models

B.1 Finetuning Data Structuring and Prompt
Preparation

Before feeding data to the model, we pre-
structure the input using Hugging Face’s
apply_chat_template function. This function
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organizes the conversation into a list of messages
with defined roles (e.g. system and user), ensur-
ing that the prompt adheres to the format expected
by the model. In our implementation, the prompt is
prepared in two parts: one describing the task and
another providing the actual query and function
descriptions.

The prompt template is defined as follows:

Role: System
Content: You are an expert in composing func-
tions. You are given a set of possible functions
and a question. Based on the question, you will
need to make one function/tool call to achieve the
purpose. You should only return the function call
in your response. You MUST put it in the for-
mat of func_name(params_name1=params_value1,
params_name2=params_value2...). You SHOULD
NOT include any other text in the response.
Role: User
Content:«function»function_descriptions«question»query

The following Python code snippet demonstrates
how the prompt is generated and tokenized before
being passed to the model:

The apply_chat_template function performs
several key tasks:

1. Input Organization: It takes a list of mes-
sages, each tagged with a role (either system
or user), and concatenates them into a single
input string that respects the intended conver-
sational format.

2. Tokenization: The function tokenizes the
structured messages, converting them into a
format suitable for the model.

3. Generation Prompt Addition: It appends
any necessary generation prompts that guide
the model’s response.

4. Tensor Conversion: Finally, the tok-
enized data is converted into tensors (using
return_tensors="pt" for PyTorch), ensur-
ing compatibility with the model’s expected
input format.

This preprocessing step is critical for maintain-
ing the structure and consistency of the input data,
thereby facilitating effective fine-tuning and ensur-
ing that the model generates outputs that align with
the desired format.
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