
Proceedings of the 15th International Workshop on Spoken Dialogue Systems Technology, pages 160–164
May 27–30, 2025. ©2025 Association for Computational Linguistics

160

Abstract

In Retrieval-Augmented Generation

(RAG) systems efficient information

retrieval is crucial for enhancing user

experience and satisfaction, as response

times and computational demands

significantly impact performance. RAG

can be unnecessarily resource-intensive for

frequently asked questions (FAQs) and

simple questions. In this paper we introduce

an approach in which we categorize user

questions into simple queries that do not

require RAG processing. Evaluation results

show that our proposal reduces latency and

improves response efficiency compared to

systems relying solely on RAG.

1 Introduction

Since the launch of ChatGPT in November 2022,

conversational systems powered by Large

Language Models (LLMs) have gained widespread

adoption, allowing users to ask questions with the

expectation of receiving accurate, factual answers

(McTear and Ashurkina 2024; Mohamadi et al.

2023; Skjuve et al. 2024).

However, the responses of LLMs are not always

accurate or even up-to-date. Although LLMs are

trained on vast datasets, they may lack access to

domain specific information, such as data from a

company’s internal database. The knowledge of an

LLM is limited to the training data's cut-off date,

resulting in potential obsolescence. Moreover,

unlike traditional retrieval systems, where

knowledge is stored explicitly in structures such as

knowledge graphs, LLMs encode knowledge

implicitly within their model parameters, making

information retrieval less transparent and

potentially less reliable (Yang et al. 2024; Zhu et al.

2024).

Retrieval-Augmented Generation (RAG) has

been developed as a method to address these

limitations by combining the generative

capabilities of LLMs with real-time information

retrieval from external sources (Lewis et al. 2021).

In RAG, external documents are embedded into

vector representations and stored in a specialized

vector database. When a user submits a query, it is

similarly vectorized and used to retrieve relevant

documents. These documents are then integrated

with the query and sent to the LLM for inference,

ensuring that the generated response is based

exclusively on the retrieved information. This

hybrid approach enables RAG systems to deliver

accurate, up-to-date, and context-specific answers

(Gao et al. 2023; Huang and Huang, 2024).

The effectiveness of RAG systems has been

demonstrated across various domains. Kharitonova

et al. (2024) evaluated a RAG-based question-

answering system for mental health support by

embedding documents containing clinical practice

guidelines. Their results highlighted the system’s

ability to deliver answers that were coherent,

accurate, and supported by scientific evidence.

Similarly, Olawore et al. (2025) described a RAG-

based system designed to provide information

about university fees, departments, facilities and

other administrative details. Their findings showed

that the system retrieved relevant and accurate

information more effectively than standalone

LLMs. Furthermore, the system enabled

transparency and accountability by allowing users

to trace each response back to its original source

within the university dataset.

One significant drawback of RAG is that it is

computationally expensive, particularly at the

retrieval and inference stages. Processing

frequently asked questions through the entire RAG

workflow is both inefficient and costly. A more

effective approach involves using a semantic

cache, capable of handling variations and

paraphrases of queries while returning consistent

responses. On receiving a new request, the system

Optimizing RAG: Classifying Queries for Dynamic Processing

Kabir Olawore1 Michael McTear1 Yaxin Bi1 David Griol2

1 School of Computing, Ulster University, UK
2 Departamento de Lenguajes y Sistemas Informáticos, University of Granada, Spain

{olawore-b, mf.mctear, y.bi}@ulster.ac.uk, dgriol@ugr.es

mailto:dgriol@ugr.es

161

first checks if a similar request has been processed

previously. If so, it retrieves the stored response

from the cache, bypassing the need to re-execute

the complete RAG workflow (Alake et al. 2024;

Mortro 2025; Siriwardhana et al. 2023). This

approach reduces redundant computations and can

also minimize end-to-end latency. For instance, Jin

et al. (2024) introduced and evaluated a cache-

based system called RAGCache across various

models and workloads, demonstrating a 4x

reduction in time to first token generation.

Zhao et al. (2024) proposed a four-level query

classification system based on data requirements

and reasoning complexity, encompassing explicit

fact queries, implicit fact queries, and interpretable

and hidden rationale queries. They introduce

different methods for integrating external data with

queries at each classification level. Explicit fact

queries can be answered directly using the

provided data, while the other types of queries

require additional processing and access to external

resources.

In this paper, we argue that explicit fact queries

can be treated similarly to frequently asked

questions, thereby bypassing the RAG workflow.

On receiving a new query, the system first

determines if the query has been asked before. If it

has, the stored response is retrieved. If not, the

system checks whether the query qualifies as an

explicit fact query and retrieves the corresponding

answer. For other query types, the RAG workflow

is invoked. Additionally, queries of any type that

are asked and resolved a certain number of times

can also be added to the semantic cache for

frequently asked questions. Our approach

significantly reduces computational costs and

latency in question-answering systems. In the

following sections, we present a preliminary

investigation into these concepts, offer

experimental results addressing latency reduction,

and conclude with recommendations for future

work.

2 Methodology

Our proposal approach enhances RAG chatbot

capabilities through question classification and a

routing mechanism, optimized to process queries

of varying complexity. The main objective is to

significantly improve computational efficiency and

latency compared to traditional RAG-based

conversational agents that uniformly process all

queries through the entire pipeline. At the core of

this system lies a classifier that determines whether

to bypass the retrieval stage for straightforward

queries or engage the full retrieval pipeline for

complex questions requiring additional factual

support.

As Figure 1 shows, the proposed hybrid

architecture comprises three distinct stages:

classification, retrieval, and generation. In the

classification stage, incoming queries are analysed

to determine their complexity and information

requirements. Simple queries that can be addressed

directly proceed immediately to the generation

stage, while complex queries that necessitate

additional context are routed through the retrieval

pipeline. This selective engagement of the retrieval

mechanism represents a key optimization in our

design, substantially reducing the computational

overhead associated with unnecessary document

retrieval and processing.

2.1 Data Preparation

The dataset is a curated dataset 𝑄𝑃 comprising

predefined key-value pairs of 100 questions and

answers together with an unstructured dataset for

the RAG pipeline. The unstructured data contains

information about courses at the Faculty of

Computing, Engineering, and the Built

Environment (CEBE) at Ulster University. The

key-value pairs consists of questions and answers

related to CEBE, which were generated using an

LLM and manually selected based on their

semantic simplicity and brevity, ensuring they

address straightforward queries efficiently. The

selection process employs metrics such as semantic

complexity and query length to classify a question

as "simple". Each pair in 𝑄𝑃 undergoes pre-

Figure 1: Optimized RAG chatbot architecture,

classifying queries as simple (predefined responses)

or complex (retrieval and LLM-generated responses).

162

processing to standardize formats and optimize

retrieval:

𝑄𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝑄𝑃)

This standardized dataset serves as a

lightweight response mechanism for simple

queries, bypassing the computational overhead

associated with RAG-based inference.

2.2 Question Classification Framework

Users interact with the system through a chatbot
interface. During query processing, each incoming

user query 𝑄 undergoes an initial complexity

assessment to determine its appropriate response

strategy. The classification mechanism evaluates 𝑄

across multiple dimensions, such as semantic

complexity, query length, and contextual

requirements.

𝐶(𝑄) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 (𝑄 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

A machine learning-based classification model,

trained on an annotated dataset of questions using

logistic regression, serves as the backbone of this

routing system. The model differentiates between

simple questions, which can be directly resolved

using predefined answers, and complex questions

that necessitate retrieval and generative reasoning

steps. For simple queries, the predefined response

is retrieved.

For complex queries, the model invokes the

RAG pipeline to produce an informed response.

This dual-response strategy reduces computational

overhead by leveraging predefined answers when

possible, while ensuring nuanced processing for

more intricate queries. The dynamic classification

and routing approach ensures optimal performance

and adaptability in handling a diverse range of user

queries.

2.3 State Management

To ensure optimal system performance and

mitigate latency across the hybrid architecture, the

predefined key-value question-answer pairs are

designed to enhance computational efficiency.

When a query 𝑄 arrives, it is first transformed into

a vectorized embedding (𝑄), which is stored in the

system state:

𝐸(𝑄) = 𝐸𝑚𝑏𝑒𝑑 (𝑄)

The classification model processes (𝑄) to

predict the query type, determining whether it

aligns with predefined responses or requires

retrieval-augmented generation (RAG). If the

classifier identifies 𝑄 as likely resolvable via the

predefined dataset, the system searches for a

semantically similar question within the stored

embeddings (𝐷). The best-ranked candidate is

retrieved and evaluated against a predefined

similarity threshold 𝜏:

𝑀𝑎𝑡𝑐ℎ(𝑄) = 𝐴𝑟𝑔𝑀𝑎𝑥 (𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐸(𝑄), 𝐸(𝐷)))≥

𝜏

If the similarity score satisfies the threshold, the

corresponding predefined response is returned.

Otherwise, the RAG pipeline is invoked to process

the query. As more queries are processed, repeated

patterns are identified and dynamically added to

the predefined question-answer management

system. This iterative process ensures continuous

improvement of the system’s predefined state,

reducing the reliance on real-time retrieval for

frequently encountered queries. By maintaining a

balance between the predefined response

mechanism and the RAG pipeline, the system

sustains responsiveness and minimizes

computational overhead.

2.4 RAG Pipeline

The RAG pipeline manages queries that are

considered complex or infrequent. The RAG

module is made up of two major components: the

retriever and the generator. The retriever used a

dense embedding model to locate relevant

documents within the prepared corpus, ensuring

that the most semantically similar content was

selected. The generator on the other hand is

powered by a transformer-based model, generating

a coherent and contextually relevant response

using the retrieved documents (Olawore et al.

2025).

2.5 Performance Evaluation

We have completed a preliminary evaluation

comparing our RAG_HYBRID proposal with a

RAG-only approach. We have used classic metrics

such as accuracy, precision, recall, and F1-score to

assess the relevance and precision of the chatbot’s

responses. These metrics provide a robust

framework for evaluating the alignment of the

chatbot’s outputs with expected answers, ensuring

the system’s ability to deliver accurate and

contextually appropriate responses.

To assess performance, we have measured

latency. Latency was determined by recording the

163

time elapsed between the submission of a query

and the chatbot’s final response. This analysis

demonstrated the hybrid system's efficiency in

reducing response times, highlighting its potential

for improving user experience in real-time

applications.

Additionally, the RAG_HYBRID’s CPU

utilization was evaluated and compared with the

RAG-only solution. CPU usage was measured by

logging the average processor consumption during

query processing and the generation of the final

response. This analysis provided insights into the

computational efficiency of the hybrid architecture,

emphasizing its ability to manage resource

utilization while maintaining responsiveness.

3 Results

The evaluation result shows the effectiveness of the

RAG-hybrid chatbot. Figure 2 shows the plot of the

latency comparison between RAG-hybrid an

RAG-only.

 The plot illustrates a clear latency advantage of

the RAG_HYBRID system over the RAG_ONLY

system across 100 queries, consisting of 57 simple

questions and 43 complex questions.

RAG_HYBRID consistently demonstrates lower

response times with minimal fluctuations, while

RAG_ONLY exhibits significant spikes, exceeding

6 seconds for some queries. These results highlight

the efficiency of the RAG_HYBRID system in

leveraging predefined answers to maintain low

latency and reduce computational overhead.

 Also, in terms of processing needs, Figure 3

demonstrates a notable difference in CPU usage

between the RAG_HYBRID and RAG_ONLY

systems across the 100 test queries.

RAG_HYBRID consistently exhibits lower CPU

utilization, maintaining efficiency and avoiding

significant spikes, while RAG_ONLY shows

pronounced peaks, with usage exceeding 3.5% for

certain queries. These results highlight the

computational efficiency of the RAG_HYBRID

approach, which leverages predefined answers to

reduce the processing burden, compared to the

RAG_ONLY system that relies on resource-

intensive retrieval and generation processes. The

edge cases in RAG_HYBRID are situations where

the chatbot had to respond to users’ queries with

RAG.

Finally, Table 1 shows that the RAG-hybrid

chatbot achieves outstanding performance, with

98% accuracy and recall, a perfect precision of

1.00, and an F1-score of 0.99. These results

highlight its reliability and effectiveness in

delivering accurate and relevant responses.

Accuracy Precision Recall F1score

RAG-

Hybrid

0.98 1.00 0.98 0.99

4 Conclusions and Future Work

This study introduced a hybrid RAG chatbot

architecture that efficiently combines predefined

question-answer pairs with retrieval-augmented

generation, demonstrating notable improvements

in latency, CPU usage, and overall accuracy

compared to RAG-only solutions. These results

highlight the system's efficiency and scalability for

real-time conversational AI.

Future efforts will focus on enhancing the

classification model to adapt to evolving query

patterns and integrating advanced language models

to handle complex queries more effectively. We

will also explore other methods of mitigating

Figure. 2: Latency comparison between rag_hybrid

and rag_only.

Figure. 3: Comparison of CPU usage between

rag_hybrid and rag_only.

Table 1: Performance metrics of the RAG hybrid

model.

164

computational expense. An extended evaluation of

our proposal in real-world scenarios and the

incorporation of user experience metrics will also

contribute to further evidence of its practical utility.

Acknowledgments

This paper has been supported by funding from the

EU H2020 project CRYSTAL: https://project-
crystal.eu/

References

Richmond Alake and Apoorva Joshi. 2024. Adding

Semantic Caching and Memory to Your RAG

Application Using MongoDB and LangChain.

https://www.mongodb.com/developer/products/atlas

/advanced-rag-langchain-mongodb/

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,

Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen

Wang. 2024. Retrieval-augmented generation for

large language models: A survey.

https://doi.org/10.48550/arXiv.2312.10997

Yizheng Huang and Jimmy Huang. 2024. A Survey on

Retrieval-Augmented Text Generation for Large

Language Models. https://arxiv.org/abs/2404.10981

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin

Liu, Xuanzhe Liu, and Xin Jin. 2024. RAGCache:

Efficient Knowledge Caching for Retrieval-

Augmented Generation.

https://arxiv.org/abs/2404.12457

Ksenia Kharitonova, David Pérez-Fernández, Javier

Gutiérrez-Hernando, Asier Gutiérrez-Fandiño,

Zoraida Callejas, and David Griol. 2024.

Incorporating evidence into mental health Q&A: a

novel method to use generative language models for

validated clinical content extraction, Behaviour &

Information Technology.

https://doi.org/10.1080/0144929X.2024.2321959

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio

Petroni, Vladimir Karpukhin, Naman Goyal,

Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim

Rocktäschel, Sebastian Riedel, and Douwe Kiela.

2021. Retrieval-Augmented Generation for

Knowledge-Intensive NLP Tasks.

https://arxiv.org/abs/2005.11401

Michael McTear and Marina Ashurkina. 2024.

Transforming Conversational AI: Exploring the

Power of Large Language Models in Interactive

Conversational Agents. Apress Berkeley, CA.

https://doi.org/10.1007/979-8-8688-0110-5

Salman Mohamadi, Ghulam Mujtaba, Ngan Le,

Gianfranco Doretto, and Donald A. Adjeroh. 2023.

ChatGPT in the age of generative AI and large

language models: a concise survey.

https://arxiv.org/abs/2307.04251

Pere Mortro, 2025. Implementing semantic cache to

improve a RAG system with FAISS. Hugging Face

Open-Source AI Cookbook.

https://huggingface.co/learn/cookbook/en/semantic_

cache_chroma_vector_database

Kabir Olawore, Michael McTear, and Yaxin Bi. 2025.

Development and Evaluation of a University

Chatbot Using Deep Learning: A RAG-Based

Approach. In: Asbjørn Følstad, Symeon

Papadopoulos, Theo Araujo, Effie L.-C. Law, Ewa

Luger, Sebastian Hobert, and Petter Bae Brandtzaeg

(eds.) Chatbots and Human-Centered AI: 8th

International Workshop, CONVERSATIONS 2024,

Thessaloniki, Greece December 4-5, 2024, Revised

Selected Papers. Springer Cham.

https://doi.org/10.1007/978-3-031-88045-2

Shamane Siriwardhana, Rivindu Weerasekera, Elliott

Wen, Tharindu Kaluarachchi, Rajib Rana, and

Suranga Nanayakkara. 2023. Improving the

Domain Adaptation of Retrieval Augmented

Generation (RAG) Models for Open Domain

Question Answering. Transactions of the

Association for Computational Linguistics, 11:1–

17. https://doi.org/ 10.1162/tacl_a_00530

Marita Skjuve, Petter Bae Brandtzaeg, and Asbjørn

Følstad. 2024. Why do people use ChatGPT?

Exploring user motivations for generative

conversational AI. First Monday, 29(1).

https://doi.org/10.5210/fm.v29i1. 13541

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian

Han, Qizhang Feng, Haoming Jiang, Shaochen

Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the

Power of LLMs in Practice: A Survey on ChatGPT

and Beyond. ACM Trans. Knowl. Discov. Data 18,

6, Article 160 (July 2024), 32 pages.

https://doi.org/10.1145/3649506

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan

He, Luna K. Qiu, and Lili Qiu. 2024. Retrieval

Augmented Generation (RAG) and Beyond: A

Comprehensive Survey on How to make your LLMs

use External Data More Wisely.

https://arxiv.org/abs/2409.14924

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan

Liu, Wenhan Liu, Chenlong Deng,

Haonan Chen, Zhicheng Dou, and Ji-Rong Wen.

2024. Large Language Models for Information

Retrieval: A Survey.

https://arxiv.org/html/2308.07107v3

https://protect.checkpoint.com/v2/___https:/project-crystal.eu/___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOmIzNjlmNTI4ZDI4ZjI1ZmUzMmM2MzMzMjIwODMyYWZmOjY6MWRmMzo0MGRlNGMwNjNhZTE0NmMyMzJjNDYxZTQ5MmVkNDVjOWZhN2UwZmU5ZGI3NzAyODliNWViYjFiZjg0OWJkM2RjOnA6RjpO
https://protect.checkpoint.com/v2/___https:/project-crystal.eu/___.YzJlOnVsc3RlcnVuaXZlcnNpdHk6YzpvOmIzNjlmNTI4ZDI4ZjI1ZmUzMmM2MzMzMjIwODMyYWZmOjY6MWRmMzo0MGRlNGMwNjNhZTE0NmMyMzJjNDYxZTQ5MmVkNDVjOWZhN2UwZmU5ZGI3NzAyODliNWViYjFiZjg0OWJkM2RjOnA6RjpO
https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/
https://www.mongodb.com/developer/products/atlas/advanced-rag-langchain-mongodb/
https://doi.org/10.48550/arXiv.2312.10997
https://arxiv.org/abs/2404.10981
https://arxiv.org/abs/2404.12457
https://doi.org/10.1080/0144929X.2024.2321959
https://arxiv.org/abs/2005.11401
https://doi.org/10.1007/979-8-8688-0110-5
https://arxiv.org/abs/2307.04251
https://huggingface.co/learn/cookbook/en/semantic_cache_chroma_vector_database
https://huggingface.co/learn/cookbook/en/semantic_cache_chroma_vector_database
https://doi.org/10.1007/978-3-031-88045-2
https://aclanthology.org/2023.tacl-1.1/
https://aclanthology.org/2023.tacl-1.1/
https://aclanthology.org/2023.tacl-1.1/
https://aclanthology.org/2023.tacl-1.1/
https://doi.org/%2010.1162/tacl_a_00530
https://doi.org/10.5210/fm.v29i1.%2013541
https://doi.org/10.1145/3649506
https://arxiv.org/abs/2409.14924
https://arxiv.org/html/2308.07107v3

