
The Sixth Workshop on Insights from Negative Results in NLP, pages 63–78
May 4, 2025 ©2025 Association for Computational Linguistics

Monte Carlo Sampling for Analyzing In-Context Examples

Stephanie Schoch and Yangfeng Ji
Department of Computer Science

University of Virginia
Charlottesville, VA 22904

{sns2gr,yangfeng}@virginia.edu

Abstract

Prior works have shown that in-context learning
is brittle to presentation factors such as the or-
der, number, and choice of selected examples.
However, ablation-based guidance on select-
ing the number of examples may ignore the
interplay between different presentation fac-
tors. In this work we develop a Monte Carlo
sampling-based method to study the impact of
number of examples while explicitly account-
ing for effects from order and selected exam-
ples. We find that previous guidance on how
many in-context examples to select does not
always generalize across different sets of se-
lected examples and orderings, and whether
one-shot settings outperform zero-shot settings
is highly dependent on the selected example.
Additionally, inspired by data valuation, we
apply our sampling method to in-context exam-
ple selection to select examples that perform
well across different orderings. We find a nega-
tive result, that while performance is robust to
ordering and number of examples, there is an
unexpected performance degradation compared
to random sampling.

1 Introduction

In-context learning is an emergent ability of LLMs
(Wei et al., 2022; Brown et al., 2020b) where an
LLM learns to perform an unseen task by seeing a
number of demonstrations in the context window
(Brown et al., 2020a). While in-context learning
has shown significant potential as a way to extract
relevant information from an LLM and align the
model with user expectations, it has also exhibited
brittleness to an assortment of factors. For example,
model performance when learning in-context is
sensitive to which examples are selected (Rubin
et al., 2022; Liu et al., 2022; Wu et al., 2023; Ye
et al., 2023) as well as their orderings (Lu et al.,
2022; Chen et al., 2023b; Liu et al., 2022; Chang
and Jia, 2023; Guo et al., 2024; Wu et al., 2023).

Another important parameter, the number of ex-
amples, has received comparably little attention.
Prior works have suggested that one-shot settings
outperform zero-shot settings even when a random
label is used (Min et al., 2022). Additional abla-
tions have guided this parameter by citing perfor-
mance plateaus at set numbers of examples (Wang
et al., 2024; Min et al., 2022; Wu et al., 2023).
However, it is unclear whether this guidance holds
when accounting for other sensitive factors such as
different orderings and selected examples.

Previous work on data valuation has shown the
efficacy of applying Monte Carlo sampling to eval-
uate datum contributions under different permu-
tations in fine-tuning settings (Ghorbani and Zou,
2019; Schoch et al., 2023). Inspired by this, we
develop a Monte Carlo sampling-based method to
investigate the impact of number of examples while
using permutations to account for order and selec-
tion of in-context examples.

Specifically, we utilize Monte Carlo sampling
and analyze performance with the addition of each
exemplar. We find that performance plateaus at pre-
viously suggested numbers of examples do not con-
sistently generalize under different permutations.
Further, we find that one-shot performance may be
more sensitive to the selected example than previ-
ously recognized (Min et al., 2022; Brown et al.,
2020b) and the guidance of one-shot outperform-
ing zero-shot is dependent on the selected example.
Finally, we find that using Monte Carlo sampling to
select in-context examples may increase robustness
to effects from ordering and selected examples, but
unexpectedly, does not lead to performance im-
provements over random sampling.

2 Related work

In-context learning In many prior works inves-
tigating in-context learning sensitivity to ordering
and selected examples (see Appendix A for de-

63



scription of in-context learning), a fixed number of
examples are used (Zhang et al., 2022b; Lu et al.,
2022; Min et al., 2022), with common guidance
from prior ablations stating performance plateaus
around k = 4 (Wang et al., 2024) and k = 8
examples (Min et al., 2022; Wu et al., 2023). Re-
cent work has looked at the how the number of ex-
amples impacts performance on chain-of-thought
reasoning benchmarks (Chen et al., 2023a) and sug-
gested that fewer examples may be needed, yet it is
otherwise unclear the effect of number of demon-
strations on other tasks and prompting frameworks,
particularly when controlling for order and selected
examples.

Monte Carlo sampling Monte Carlo sampling
has been widely adopted in the data valuation lit-
erature to provide unbiased approximations of the
Shapley value (Ghorbani and Zou, 2019), based
on prior work on Monte Carlo methods for Shap-
ley value approximation (Mann and Shapley, 1962;
Castro et al., 2009; Maleki et al., 2013) (see Ap-
pendix A for additional details). Recent works have
also applied principles from data valuation to in-
context learning example selection and ordering
(Guo et al., 2024; Chang and Jia, 2023; Nguyen
and Wong, 2023). While in data valuation, Monte
Carlo sampling methods are used to calculate the
marginal contribution of each data point averaged
over a number of permutations, our motivation dif-
fers. In our setting, we are motivated by the utility
of Monte Carlo sampling to provide an unbiased
estimate of the influence of number of examples
on in-context learning performance by reducing
influence of ordering and selected examples.

3 Method

To study the effect of the number of examples,
we aim to reduce the influence of ordering and
selected examples as confounding factors. While
averaging across trials in previous work helps re-
duce the influence of selected examples, it does not
account for different orderings. Additionally, prior
work on ordering only addresses up to k = 4 (Lu
et al., 2022) as the possible permutations increase
exponentially with respect to k. This motivates
the use of Monte Carlo sampling with incremental
exemplar additions as 1) the use of permutations
reduces the influence of ordering, and 2) the aver-
aging across multiple trials reduces the influence
of selected examples. We explain this as well as
our method in detail below.

Algorithm 1: Monte Carlo Sampling
Method

1: Input: Training data Dtrn = {1, ..., n},
evaluation data Dtst = {1, ...,m}, LLM
M, performance metric VM, parameters:
K (# examples), P (# permutations)

2: Output: Average performance µ(VM) for
k = {0, ...,K} for one subset SK

3: Initialize µk = 0 for k = 0, ...,K
4: Randomly sample subset SK from Dtrn

5: for p ∈ {1, ..., P} do
6: πp: Random permutation of SK

7: for k ∈ {0, ...,K} do
µk ← µk + VM(S[0 : k]π)

8: end for
9: end for

10: for k ∈ {0, ...,K} do
µk ← 1

P µk

11: end for

Consider a training dataset Dtrn =
{(xi, yi)}ni=1 that contains n training instances.
Given a fixed test set Dtst, we aim to draw k
exemplars from Dtrn and test model performance
on Dtst. We let Sk

π ⊆ Dtrn denote a subset with
some ordering π and cardinality k, where k ≤ n.
Additionally, we let VM denote the predictive
performance of a model M, e.g., prediction
accuracy.

For each k ∈ {1, 2, ...,K}, the set of possible
subsets Sk = {Sk

(i)}n
Ck

i=1 . The expected model per-
formance for any given Sk

(i) can be defined as:

Eπ∼Π[VM(Sk
π(i))] (1)

where VM(Sk
π) is the performance of model M

using Sk
π and Π is the uniform distribution over all

k! permutations of Sk
(i).

For each k, exhaustively permuting all nCk sub-
sets Sk, and averaging over the expected values
would give us the expected value for each number
of exemplars. In practice, however, this is computa-
tionally infeasible. Instead, we utilize Monte Carlo
sampling to approximate this value.

Specifically, we utilize the Monte Carlo sam-
pling method adapted from Ghorbani and Zou
(2019). First, we define K as the maximum ex-
emplars we aim to use. Next, we sample SK from
Dtrn. For a predefined number of permutations
of SK , we iteratively scan from the first element
to the final element, computing the model perfor-

64



(a) MNLI (b) MRPC (c) QNLI (d) QQP

(e) RTE (f) SST-2 (g) WNLI (h) Hellaswag

Figure 1: In-context performance for each dataset and model. Results show the average of 20 permutations at each
step k in the proposed Monte Carlo sampling method. Shaded regions show standard deviation of 5 trials.

mance at each step. We average the performance
for each k across p permutations. We provide the
pseudo-code in algorithm 1. In practice, we per-
form this procedure over multiple trials, resampling
SK for each trial and averaging over the result. In
our experiments, we use 5 trials and p = 20 permu-
tations.

In addition to the computational speedup achiev-
able by limiting the number of permutations, the
primary benefit of our approach is that is circum-
vents the need to resample at each k. As we cannot
exhaustively permute each Sk, if we resample for
each k, there are n!

(n−k−1)! possible permutations
preceding k, each of which could produce differ-
ing downstream performance VM(Sk−1

πk−1
) due to

the impact of Sk−1 and πk−1 (selected examples
and ordering, respectively). By sampling in this
manner, we effectively eliminate the influence of
k − 1 in understanding performance at k.

4 Experiment setup

Detailed descriptions of our setup can be found in
Appendix B.

Models We experiment with 8 models in total,
listed in Table 1. The selected models vary in size
from 160M to 13B and represent four distinct fam-
ilies: Pythia (Biderman et al., 2023), OPT (Zhang
et al., 2022a), GPT-Neo (Black et al., 2021), and
Llama2 (Touvron et al., 2023).

Datasets We use 8 datasets in our experiments
across a diverse range of tasks previously repre-
sented in in-context learning analysis. Specifically,
we perform experiments on natural language in-
ference (MNLI, QNLI, WNLI), sentiment analy-
sis (SST-2), commonsense reasoning (Hellaswag),
paraphrase detection (MRPC, QQP), and textual
entailment (RTE).

Sampling and Aggregation Procedure For each
trial, we randomly sample 20 in-context examples
from the training set. We perform 20 Monte Carlo
permutations. Within each permutation, we iterate
from the first example to the last, computing the
accuracy on the validation set at each step. Using
this procedure, we perform 5 trials for each experi-
ment. In aggregate, we perform 100 permutations
with each model and dataset combination.

5 Results

5.1 Analyzing Number of Examples

We plot the performance of each model across
k = {1, 2, ..., 20} examples, where each step repre-
sents the addition of one in-context example from
the Monte Carlo permutation. In line with com-
mon practice of reporting across multiple trials
with standard deviation information, our results are
averaged over 5 trials, controlling for selected ex-
amples and ordering effects. Results are reported
in Figure 1.

65



(a) Opt-1.3B (b) Pythia-1.4B

(c) GPT-Neo-2.7B (d) Llama2-13B

Figure 2: Results on SST-2. Blue lines represent in-
dividual permutations and red line indicates average
across all permutations within one trial.

Observed from the averaged results, our results
align with ablations in prior work (Wu et al., 2023;
Min et al., 2022). Specifically, much of the perfor-
mance improvement across models and datasets
occurs within the first 8 in-context examples,
where performance then begins to plateau and only
marginally increase. At face value, this result
shows that prior recommendations with respect to
the number of examples to use are not influenced
by ordering effects as we had hypothesized prior to
designing our sampling method.

Does performance consistently plateau at set
numbers of exemplars? When viewing the re-
sults from individual permutations, we find that
the performance plateaus by k = 4 (Wang et al.,
2024) and k = 8 (Min et al., 2022; Wu et al., 2023)
examples are not observable within individual per-
mutations. On the contrary, we continue to observe
erratic performance changes up through k = 20
examples. This suggests the previously observed
plateaus on averaged results, both in prior work
and recreated in Figure 1, may mask significant
performance fluctuations, and the best performance
within a selected example set may occur anywhere
from k = {1, 2, ...20}. Additionally, we observe
that in some permutations, there is a performance
drop at k = 1. We investigate this further in the
following section.

Is one example better than none? Prior work
has suggested that one demonstration outperforms
no demonstrations even when a random label is
used (Min et al., 2022). Other work has suggested

(a) Opt-1.3B (b) Pythia-1.4B

(c) GPT-Neo-2.7B (d) Llama2-13B

Figure 3: One-shot MNLI performance across 5 trials.
Each blue point represents the accuracy using the first
exemplar in a permutation. Red points indicate zero-
shot performance. Results show that zero-shot settings
can outperform one-shot settings, dependent upon the
selected example.

some dependence on the dataset and model (Xie
et al., 2022; Brown et al., 2020b). However, our
results indicate that the performance of zero-shot
vs. few-shot settings may be dependent on the
selected example, regardless of dataset and model.
To illustrate this, in Figure 6, we plot the one-shot
performance of each permutation across all 5 trials
on the MNLI dataset using each model, with the
zero-shot performance of the model indicated in
red.

In contradiction to prior work, our results across
nearly all models and datasets (see Appendix C) in-
dicate that performance in one-shot settings can
vary between significant performance improve-
ments and significant performance degradation,
depending on the selected example. This con-
tradiction raises the question of what qualities of
in-context examples can lead to such significant
performance degradation in one-shot settings, and
whether these have any impact when used within a
k-shot setting.

Our analysis in one-shot settings across different
permutations indicates that one-shot performance
is more sensitive to the selected example than pre-
viously thought.

5.2 Exemplar Selection
We are interested in whether we can apply our sam-
pling method to selecting in-context examples. Us-
ing our sampling method, each exemplar appears at

66



Figure 4: Performance with Llama2-13B on QNLI
dataset, using in-context subsets containing the highest-
performing and lowest-performing data points on aver-
age from subsection 5.1, along with a random baseline.
Results represent 20 permutations, with standard devia-
tion displayed as the shaded region for each line.

different k’s under different permutations. There-
fore, we are effectively averaging out different or-
derings and k’s. It follows that we would expect
exemplars associated with high average accuracy
within different permutations to be associated with
higher model performance overall, while being ro-
bust across orderings and different k’s Further, we
would expect exemplars with low average accura-
cies to consistently lead to poor performance.

Given the token limitations of context windows
and computational time associated with increasing
k, to increase the example candidate set, we use Z-
score as a means to compare examples across trials.
This allows us to limit context to k = 20 while
increasing the overall candidate set and accounting
for the impact of using different selected examples
in each trial. We perform the sampling procedure
described in section 3 with Llama2-13B on QNLI
and perform the following calculation.

For a given trial t, we compute the average accu-
racy associated with each example e, denoted µe.
We then take the mean over all example averages
in the trial, µt = 1

kΣ
k
e=1µe with standard devia-

tion σt =

√
Σk

e=1(µe−µt)
k . Finally, we compute

the Z-score for each example in the trial, where
Z = µe−µt

σt
After computing scores for all trials,

we identify points with a Z-score Z > 1 ∨ Z < 1,
and select the 6 examples with the highest and low-
est scores as our high and low set, respectively. We
report results using each set, as well as a random

baseline for in-context learning in Figure 4 using
the same sampling procedure as in subsection 5.1.

When using points identified via Monte Carlo
sampling as consistently high or low performing,
we see a greater robustness to ordering sensitivity
across k’s, as evidenced by the minimal variance
exhibited by these subsets. This is contrasted with
the random baseline which exhibits high variance
across different k’s and orderings.

Interestingly, whereas our experiments in sec-
tion 5.1 showed numerous instances where one-
shot performance was worse than zero-shot perfor-
mance, we do not observe this occurring with the
lowest average performing data points. Rather, we
see performance maintained at a zero-shot level.
Further, while high-performing examples consis-
tently performs above zero-shot accuracy and ex-
hibit greater stability over varying k across permu-
tations, the random selection exhibited the high-
est performance for k > 1. This was an unex-
pected result: using our Monte Carlo-based selec-
tion method led to more robust performance across
k examples, but it resulted in an overall perfor-
mance decrease compared to random sampling.

Our results when selecting in-context examples
that on average had high or low scores across
Monte Carlo permutations indicate that subsets
comprised of points at each end of the spectrum
exhibit lower sensitivity to ordering and number of
demonstrations. While this may be promising in
terms of identifying methods to increase robustness
of in-context learning performance, the random se-
lection baseline exhibited both higher overall per-
formance and higher variance across orderings and
number of examples. This raises the question of
whether there is an existing performance vs. ro-
bustness tradeoff, and of what qualities contribute
to example deviation from the mean performance,
as well as how methods can identify examples that
possess these qualities that also lead to higher per-
formance gains.

6 Conclusion

In this work, we proposed a Monte Carlo-based
sampling method to investigate previous guidance
regarding number of examples to use and one- vs.
zero-shot settings. We further investigated whether
this method could be used to select in-context exam-
ples, finding a performance vs. robustness tradeoff.

67



7 Limitations

Our results are reported on models up to 13B pa-
rameters due to constraints posed by our available
computational resources. We acknowledge this as
a limitation, however, as our results are consistent
across the model sizes we utilized, we believe our
results should generalize to larger models.

Acknowledgments

We thank the reviewers for their helpful feedback.
This research was supported in part by NSF III
#2007492.

References
Stella Biderman, Hailey Schoelkopf, Quentin Gregory

Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020a.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Javier Castro, Daniel Gómez, and Juan Tejada. 2009.
Polynomial calculation of the shapley value based
on sampling. Computers & Operations Research,
36(5):1726–1730.

Ting-Yun Chang and Robin Jia. 2023. Data curation
alone can stabilize in-context learning. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),

pages 8123–8144, Toronto, Canada. Association for
Computational Linguistics.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023a. How many demonstrations do you need for
in-context learning? In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11149–11159, Singapore. Association for Computa-
tional Linguistics.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKe-
own, and He He. 2023b. On the relation between
sensitivity and accuracy in in-context learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 155–167, Singapore.
Association for Computational Linguistics.

William Dolan, Chris Quirk, Chris Brockett, and Bill
Dolan. 2004. Unsupervised construction of large
paraphrase corpora: Exploiting massively parallel
news sources.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Amirata Ghorbani and James Zou. 2019. Data shapley:
Equitable valuation of data for machine learning. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2242–2251.
PMLR.

Qi Guo, Leiyu Wang, Yidong Wang, Wei Ye, and Shikun
Zhang. 2024. What makes a good order of examples
in in-context learning. In Findings of the Association
for Computational Linguistics: ACL 2024, pages
14892–14904, Bangkok, Thailand. Association for
Computational Linguistics.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The Winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online

68

https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.452
https://doi.org/10.18653/v1/2023.acl-long.452
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.18653/v1/2023.findings-emnlp.745
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.18653/v1/2023.findings-emnlp.12
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://proceedings.mlr.press/v97/ghorbani19c.html
https://proceedings.mlr.press/v97/ghorbani19c.html
https://doi.org/10.18653/v1/2024.findings-acl.884
https://doi.org/10.18653/v1/2024.findings-acl.884
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846


and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086–8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Sasan Maleki, Long Tran-Thanh, Greg Hines, Ta-
lal Rahwan, and Alex Rogers. 2013. Bound-
ing the estimation error of sampling-based shapley
value approximation with/without stratifying. CoRR,
abs/1306.4265, 2(1).

Irwin Mann and Lloyd S Shapley. 1962. Values of large
games. 6: Evaluating the electoral college exactly.
RAND Corp., Santa Monica, CA, USA, Tech. Rep.
RM-3158-PR.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11048–11064,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Tai Nguyen and Eric Wong. 2023. In-context ex-
ample selection with influences. arXiv preprint
arXiv:2302.11042.

Quora. 2017. [link].

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671, Seattle, United States.
Association for Computational Linguistics.

Stephanie Schoch, Ritwick Mishra, and Yangfeng Ji.
2023. Data selection for fine-tuning large language
models using transferred shapley values. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 4: Student
Research Workshop), pages 266–275.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Liang Wang, Nan Yang, and Furu Wei. 2024. Learning
to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1752–1767, St. Julian’s, Malta. Association for Com-
putational Linguistics.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022. Emer-
gent abilities of large language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2023. Self-adaptive in-context learn-
ing: An information compression perspective for in-
context example selection and ordering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1423–1436, Toronto, Canada. Association for
Computational Linguistics.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 39818–39833. PMLR.

69

https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://doi.org/10.18653/v1/2022.emnlp-main.759
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/2024.eacl-long.105/
https://aclanthology.org/2024.eacl-long.105/
https://aclanthology.org/2024.eacl-long.105/
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://doi.org/10.18653/v1/2023.acl-long.79
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://proceedings.mlr.press/v202/ye23c.html
https://proceedings.mlr.press/v202/ye23c.html


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
2022a. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068.

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022b. Ac-
tive example selection for in-context learning. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9134–
9148, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Model Parameters

Pythia (Biderman et al., 2023)
160M
1.4B

OPT (Zhang et al., 2022a)
350M
1.3B

GPT-Neo (Black et al., 2021)
1.3B
2.7B

LLaMa2 (Touvron et al., 2023)
7B
13B

Table 1: Models used in our experiments. We select a
range of different model families and parameter sizes.
Parameter range is upper bounded based on available
compute.

A Additional Background

In-Context Learning: In-context learning en-
ables pre-trained models to learn an unseen task
using a set of exemplars concatenated in the con-
text window. Formally, given a test example x,
in-context learning concatenates K demonstration
examples to the task instruction I , where S =
{xπ(i), yπi}Ki=1 denotes the example set given some
order π.

Monte Carlo Sampling: Within the context
of data valuation, the underlying idea of Monte
Carlo sampling is to sample random permutations
of the data points and iterate from the first to last
element in each permutation. Specifically, for p
Monte Carlo iterations, a dataset D is randomly
permuted. Following, these methods scan from the
first element of the permutation to the last element
of the permutation and compute the performance
of the model at each timestep. In data valuation,
Monte Carlo sampling methods are used to calcu-
late the marginal contribution of each data point
averaged over a number of permutations.

B Experiment Setup Details

We adapt the Language Model Evaluation Harness
package (Gao et al., 2023) to conduct our experi-
ments. All experiments use the package’s default
prompts for each dataset.

Details on models and datasets used can be found
in Table 1 and Table 2, respectively.

Notably, the upper bound of the parameter range
for models is due to our resource constraint, as each
experiment is run using a single NVIDIA A100

70

https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622


Dataset Task #Train #Val #Classes

MNLI (Williams et al., 2018) Natural Language Inference 393k 9.82k 3
MRPC (Dolan et al., 2004) Paraphrase Detection 3.67k 408 2
QNLI (Wang et al., 2018) Natural Language Inference 105k 5.46k 2
QQP (Quora, 2017) Paraphrase Detection 364k 40.4k 2
RTE 1 Textual Entailment 2.49k 277 2
SST-2 (Socher et al., 2013) Sentiment Analysis 67.3k 872 2
WNLI (Levesque et al., 2011) Natural Language Inference 635 71 2
Hellaswag (Zellers et al., 2019) Commonsense Reasoning 39.9k 10k 4

Table 2: Datasets used in our experiments. We use the distributions available from Huggingface (Lhoest et al.,
2021), and use the respective validation sets to measure performance.

GPU.
For each dataset, we utilize the splits available

from Huggingface. As the GLUE benchmark
datasets do not have labeled test sets, we use the
validation sets for evaluation. Additionally, as we
are performing inference after the addition of ev-
ery example within each permutation, we follow a
protocol from prior work and sub-sample 256 in-
stances from the validation set to control inference
overhead (Lu et al., 2022).

C Additional results

This appendix contains:

• Additional scatter plots (section 5.1)

• Single trial averages overlaying individual per-
mutations (section 5.1)

71



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 5: One-shot in-context learning performance on the Hellaswag dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 6: One-shot in-context learning performance on the MNLI dataset across 5 trials. Each blue point represents
the accuracy using the first in-context example of a permutation, with 20 permutations per trial. The red points
indicate the zero-shot performance of the model. Results indicate that zero-shot settings can outperform one-shot
settings, dependent upon the selected in-context example.

72



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 7: One-shot in-context learning performance on the MRPC dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 8: One-shot in-context learning performance on the QNLI dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 9: One-shot in-context learning performance on the QQP dataset across 5 trials.

73



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 10: One-shot in-context learning performance on the RTE dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 11: One-shot in-context learning performance on the SST-2 dataset across 5 trials.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 12: One-shot in-context learning performance on the WNLI dataset across 5 trials.

74



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 13: Performance of each model on Hellaswag dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 14: Performance of each model on MNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

75



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 15: Performance of each model on MRPC dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 16: Performance of each model on QNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

76



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 17: Performance of each model on QQP dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 18: Performance of each model on RTE dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

77



(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 19: Performance of each model on SST-2 dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

(a) Pythia-160M (b) Opt-350M (c) Opt-1.3B (d) GPT-Neo-1.3B

(e) Pythia-1.4B (f) GPT-Neo-2.7B (g) Llama2-7B (h) Llama2-13B

Figure 20: Performance of each model on WNLI dataset. In each plot, the red line indicates the averages of all
permutations for one trial, overlaying blue lines for individual permutations.

78


