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Abstract

Evaluating an LLM’s robustness against nu-
merical perturbation is a good way to know
if the LLM actually performs reasoning or
just replicates patterns learned. We propose
a novel method to augment math word prob-
lems (MWPs), producing numerical variations
at a large scale utilizing templates. We also pro-
pose an automated error classification frame-
work for scalable error analysis, distinguishing
calculation errors from reasoning errors. Our
experiments using the methods show LLMs are
weak against numerical variations, suggesting
they are not fully capable of generating valid
reasoning steps, often failing in arithmetic op-
erations.

1 Introduction

Recent LLMs (Achiam et al., 2023; Dubey et al.,
2024; Team et al., 2023, 2024) have reported high
accuracy rates on mathematical reasoning bench-
marks, including GSM8K and MATH (Cobbe et al.,
2021; Hendrycks et al., 2021). However, a natural
concern is that the models just follow surface pat-
terns observed in their pretraining data rather than
performing mathematical reasoning (Levy et al.,
2024; Valmeekam et al., 2024a,b; Jiang et al., 2024;
Guo et al., 2024).

Perturbing superficial elements like names of
individuals or specific numbers does not change
how the problem should be solved. If an LLM can
perform reasoning in solving a math question, it
should give correct answers with similar reasoning
steps for both the original and its perturbed one.
Recent studies (Srivastava et al., 2024; Qian et al.,
2024; Li et al., 2024; Mirzadeh et al., 2024) evalu-
ated models’ robustness against the perturbations
based on this hypothesis.

These studies have the following limitations: a)
the size of the introduced variations was limited,
b) they did not discuss ranges of numerical val-
ues such as digit sizes, and c) they did not distin-

guish reasoning errors and computational errors
and could not explain the source of errors.

To address the limitations, we propose a scalable
method to augment a math word problem (MWP)
dataset by changing numerical values based on tem-
plate questions. To analyze the impact of digit sizes
on models’ mathematical reasoning, we generate
two distinct subsets by controlling the range of the
replaced values, one with questions containing a
small number of digits and the other with questions
containing a large number of digits. We construct a
new dataset, GSM-ALT, generating 2,000 variants
for each original question from GSM8K. Moreover,
we propose a novel framework for automated er-
ror analysis to distinguish two sources of errors:
logical reasoning and numerical calculation.

2 Related Work

Despite strong performance on math benchmarks,
researchers are questioning whether current bench-
marks can adequately evaluate the reasoning abili-
ties of language models.

Levy et al. (2024) expanded questions by adding
non-essential contents, showing that models’ per-
formance decreases when the number of tokens
in a problem increases. PlanBench (Valmeekam
et al., 2024a,b) is a benchmark to evaluate planning
and reasoning capabilities. Their findings suggest
that even the state-of-the-art models still struggle
with this. Srivastava et al. (2024) functionalized the
math questions to create a dynamic dataset, provid-
ing a robust evaluation metric against potential data
leakage to models’ pretraining. Jiang et al. (2024)
demonstrated that the models’ high accuracy de-
pends on a specific token bias, and the models’
reasoning capability depends on recognizing cer-
tain superficial patterns. Berglund et al. (2024) and
Guo et al. (2024) constructed reversal versions of
the original questions and showed that the current
models performed poorly on the reversal ones.
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3 Method

3.1 Question Template Development

To develop a new dataset to assess the model’s
robustness against numerical variations, we manu-
ally generate new variants based on templates (Fig-
ure 1) composed from the questions of an existing
dataset1.

A question from an existing dataset (e.g.,
GSM8K) has tuples of (question Q, solution S).
Q is a natural language text describing a question
to be solved. S contains the process P and the
final answer A. P shows a gold process for solving
the question Q step by step, including equations. A
stores a numerical value as a gold outcome from the
P . Given (Q,S), we first replace all the numerical
values in the Q with variables to get Qabs, which
is the abstracted Q. We apply the same operation
to S and get Sabs. We keep variables consistent be-
tween Qabs and Sabs. Sabs contains Pabs and Aabs,
representing the abstracted P and A. The Qabs and
Sabs constitute a question template T .

3.2 Variant Set Generation

Given a template T of an original question, we
generate variants by replacing the variables in T
with random values. ti denotes a variant generated
from T , consisting of question Qi, solution Si. Si

contains the process Pi and final answer Ai. To
ensure variant validity, we must replace the values
with satisfying some constraints (Figure 1). For
example, an answer should be positive and whole
when it represents the number of objects. Interme-
diate values appearing in the process Pi also need
to satisfy the constraints as well. We manually
define constraints for each template. Variants are
accepted only if they satisfy the constraints.

Suppose models conduct only superficial pattern-
based inference instead of reasoning. In that case,
they perform poorly in solving questions contain-
ing numbers that are rare in their training, such as
large digit numbers. To examine this hypothesis,
we control the replaced values within two ranges
for each question template, to obtain two variant
sets: 1-99 (namely, the Easy variant set) and 1-
9,999 (namely, the Hard variant set).

4 Experimental Settings

We use GSM8K as the base dataset for our experi-
ment. GSM8K consists of MWPs for primary and

1Appendix I discusses automation of this process.

Models GSM8K GSM-ALT
Base Easy Hard

Llama-3-8b-Instruct 0.880 0.646 0.289
Llama-3.1-8b-Instruct 0.908 0.736 0.345
Llama-3.1-70b-Instruct 0.972 0.888 0.521
Mistral-7b-Instruct-v0.3 0.620 0.373 0.194
Deepseek-math-7b-rl 0.964 0.808 0.467
Wizardmath-7b-v1.1 0.868 0.629 0.347

Table 1: Accuracy scores

secondary school students and involves only the
four basic arithmetic operations.

We randomly sample 250 questions from the
GSM8K training set to create 250 question tem-
plates manually. Given the templates, we generate
1,000 hard variants and 1,000 easy variants for each
template. As a result, our new dataset GSM-ALT
consists of the Hard and Easy variant set, each
containing 250,000 variants.

We use accuracy as a primary evaluation metric.
For the original instances from the base dataset
(original GSM8K), we use a standard accuracy.
For generated variants from our dataset, we first
calculate the accuracy for each template variant
set containing 1,000 variants, and then we average
them over all the 250 templates.

The target models to be evaluated include
generic models (Llama-3-8b-Instruct, Llama-3.1-
8b-Instruct, Llama-3.1-70b-Instruct, Mistral-7b-
Instruct-v0.3) and math models that were fine-
tuned on mathematical contents (Deepseekmath-
7b-rl, Wizardmath-7b-v1.1).

Regarding the generation settings, we use greedy
search to maximize the reproducibility and stability
of results. To minimize the influence of few-shot
examples while ensuring that the model can per-
form mathematical reasoning, we adopt the zero-
shot CoT prompting for solution generation and
extract the final answer in the same way as Kojima
et al. (2022) for generic models. As for math mod-
els, we adopt the specifically designed prompts,
which are recommended on their Web pages. The
prompts used in the experiment can be found in
Appendix E.2.

5 Results

Table 1 shows the results of each model’s accuracy
evaluated on the original GSM8K, and our GSM-
ALT. The lowest scores are highlighted in boldface.
GSM-ALT results show scores from the Easy vari-
ant set and the Hard variant set. All models showed
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Fabian is shopping at a nearby supermarket. He wants to buy 5 kg of 
apples and 3 packs of sugar. One kilogram of apples costs $2, and one 
pack of sugar is $1 cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Final Answer 𝑨: 13

Process 𝑷: The apples cost Fabian 5 kg * $2/kg = $<<5*2=10>>10.
One pack of sugar costs $2 - $1 = $<<2-1=1>>1.
So, Fabian will pay $1/pack * 3 = $<<1*3=3>>3 for sugar.
In total, Fabian needs to pay $10 + $3 = $<<10+3=13>>13.

Original Template

Fabian is shopping at a nearby supermarket. He wants to buy x kg of 
apples and y packs of sugar. One kilogram of apples costs $z, and one 
pack of sugar is $p cheaper than one kilogram of apples. How much 
Fabian needs to pay for the items he wants to buy ?

Process 𝑷𝒂𝒃𝒔: The apples cost Fabian x kg * $z/kg = $(x*z).
One pack of sugar costs $z - $p = $(z-p).
So, Fabian will pay $(z-p)/pack * y = $((z-p)*y) for sugar.
In total, Fabian needs to pay $(x*z) + $((z-p)*y) = $(x*z + (z-p)*y).

Final Answer 𝑨𝒂𝒃𝒔: x*z + (z-p)*y

z – p > 0Constraints: In this question template, we have the constraint that the 
price of one pack of sugar should be a positive number, thus

Solution 𝑺

Question 𝑸 Question 𝑸𝒂𝒃𝒔

Solution 𝑺𝒂𝒃𝒔

Figure 1: Example of Question Template Development

a significant performance drop in GSM-ALT from
the base GSM8K. The drop was observed in both
the Easy and the Hard variant sets. Even the two
math-specialized models, especially Wizardmath-
7b-v1.1, showed lower scores by more than 0.2 on
the Easy and more than 0.5 on the Hard.

This result shows that numerical variations al-
ways degrade performance in both the Hard and the
Easy variant sets. The fact that the Easy variant set
degrades the performance indicates that the models
are weak even against the numbers whose range is
similar to the base GSM8K. Moreover, we found
clearer score drops from the GSM8K scores in the
Hard variant set than in the Easy variant set, sug-
gesting the computational difficulty affects models’
reasoning.

6 Error Analysis on Solutions

To identify the source of errors, we classify errors
into two types: calculation errors and reasoning
errors. If an incorrect solution only contains fail-
ures in calculations, we call it a calculation error. If
an incorrect solution contains incorrect reasoning
steps, we label it a reasoning error regardless of its
incorrect calculations.

As GSM-ALT will be larger than its original
dataset, manually checking each generated solu-
tion is not practical, and thus, we propose a novel
framework that automatically classifies errors into
calculation or reasoning errors.

6.1 Error Analysis Framework

To classify errors, we first transform a predicted
solution Ŝi into its abstracted form Ŝi

abs, which con-
tains the abstracted P̂ i

abs and Âi
abs. If Ŝi is incorrect

because of a reasoning error, its transformed P̂ i
abs

should contain a reasoning error resulting in incor-
rect Âi

abs. If Ŝi contains a calculation error with
correct reasoning steps, P̂ i

abs and Âi
abs should be

correct. Thus, checking if Âi
abs is correct should

give a proxy to determine the sources of errors.
In our framework, an LLM transforms a Ŝi into

the Ŝi
abs, as shown in Figure 2. Then, we can au-

tomatically check if Âi
abs is correct by comparing

it with its gold answer Aabs from our templates.
An input to the LLM is a model’s predicted solu-
tion Ŝi, its question Qi, and its abstracted ques-
tion Qabs available from our templates. We auxil-
iaryly input the Qabs guiding the LLM to use vari-
ables consistently, inspired by Gaur and Saunshi
(2023). An output from the LLM is an abstracted
solution Ŝi

abs. We show our prompt for this frame-
work in Appendix G. We employ Qwen2-math-72b-
instruct (Yang et al., 2024) for this transformation.

We confirmed the LLM could obtain the ab-
stracted solutions at 90% success rate on average
in our preliminary experiment (Appendix F).

6.2 Results

Table 2 shows the results of error classification by
our framework. Values in the table indicate the pro-
portion of solutions classified as calculation errors
or reasoning errors out of all solutions predicted by
the models. Values in parentheses indicate the pro-
portion of solutions classified as calculation errors
or reasoning errors out of incorrect solutions.

In the Base set, most incorrect solutions are due
to reasoning errors. However, they changes to cal-
culation errors in the Easy and Hard variant sets
except for the Mistral. This trend is especially evi-
dent in the Hard variant set, where more than 69%
come from calculation errors. This result suggests
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Template

Buy X pens of $Y.
How much in total?

Question Solution
Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃!"#

Answer 𝐴!"#

Buy 4 pens of $3.
How much in total?

Question

Variant LLM

Predicted solution

Solution
Each pen costs $3.
So, total expense is 
$3*4=$12.

12

Process 𝑃#$
Answer 𝐴$$

Abstracted solution

Each pen costs $Y.
So, total expense is 
$Y*X.

Y*X

Process 𝑃#!"#$

Answer 𝐴$!"#$

Match? Reasoning
error

Calculation
error

Yes
No

𝑆"! 𝑆""#$!

𝑄! 𝑄"#$
𝑆"#$

Figure 2: Error classification framework

Base set Easy variant set Hard variant set
calculation err. reasoning err. calculation err. reasoning err. calculation err. reasoning err.

Llama-3-8b-Inst. .024 (20.0%) .096 (80.0%) .185 (52.3%) .169 (47.7%) .491 (69.1%) .220 (30.9%)
Llama-3.1-8b-Inst. .020 (21.7%) .072 (78.3%) .153 (57.9%) .111 (42.1%) .487 (74.4%) .168 (25.6%)
Llama-3.1-70b-Inst. .012 (42.9%) .016 (57.1%) .070 (62.5%) .042 (37.5%) .399 (83.3%) .080 (16.7%)
Mistral-7b-Inst.-v0.3 .096 (25.3%) .284 (74.7%) .279 (44.5%) .348 (55.5%) .406 (50.4%) .400 (49.6%)
Deepseek-math-7b-rl .012 (33.3%) .024 (66.7%) .131 (68.2%) .061 (31.8%) .413 (77.5%) .120 (22.5%)
Wizardmath-7b-v1.1 .032 (24.2%) .100 (75.8%) .255 (68.5%) .117 (31.5%) .489 (74.9%) .164 (25.1%)

Macro avg. .033 (25.0%) .099 (75.0%) .179 (59.0%) .141 (41.0%) .448 (71.6%) .192 (28.4%)

Table 2: Error rate per error type and variant set

that the limited capability of arithmetic calcula-
tion is indeed a major issue of LLMs in solving
mathematical problems rather than the reasoning
capability of generating a valid process of solving
steps when the numerical values in the questions
are large.

Looking at the reasoning errors, all the models
get more errors in both the Easy and Hard variant
sets than the Base set. The same as calculation
errors, the trend is evident in the Hard variant set.
This result suggests that variants also introduce
harmful changes in reasoning steps in addition to
complex calculations, which result in incorrect so-
lutions. Moreover, variants with larger digit sizes
are more likely to introduce errors in reasoning
steps.

Mistral shows different behavior from the oth-
ers because its performance is considerably worse
(Table 2). Mistral is the worst in mathematical
reasoning. Note that a calculation error is consid-
ered only when a solution has valid reasoning steps.
Thus, a lower number of calculation errors does not
necessarily mean Mistral is good at calculation.

7 Conclusion

We proposed a novel method to augment MWP
datasets, which produces a dataset for evaluating

LLMs’ robustness against numerical variations at a
large scale. Using our templates, anyone can easily
generate thousands of variants from one original
question in the GSM8K, which was not possible
with any preceding proposals. We also proposed
an automated error classification framework for
detailed error analysis, distinguishing calculation
errors from reasoning errors.

Using the methods, we empirically showed that
the six LLMs we tested were weak against numeri-
cal variations, especially when the numerical val-
ues were large. This finding is consistent with
previous studies (Srivastava et al., 2024; Qian et al.,
2024; Li et al., 2024; Mirzadeh et al., 2024), but
we confirm it with more variants. Our error analy-
sis uniquely identified that calculation errors con-
tributed to a substantial proportion of incorrect solu-
tions, suggesting LLMs’ incapability of arithmetic
operations is the main source of limited capabilities
in math word problems. Moreover, we found that
LLMs still fail in their reasoning steps, especially
when they encounter variants with larger numer-
ical values. Given our findings, it is still hard to
say that current LLMs are robust against numerical
variations.
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8 Limitations

Variant Generation As we do not manually
check every single variant generated from our tem-
plate, our variants can contain some combinations
of numbers that are not necessarily realistic in our
real-world common sense. For example, there
might be an apple that sells for more than 1,000
dollars. In our experiment, we accepted such vari-
ants. The reasons we made the compromise are:
a) In some question templates, it is hard to gener-
ate enough variants if we strictly follow common
sense. b) We believe that in the background of
mathematical reasoning, models should strictly fol-
low the conditions stated in the questions instead
of common sense. c) Through a check on sam-
pled solutions generated by models, we found that
common sense issues will not affect the model’s
reasoning in most cases.

Another limitation is that the number of possi-
ble variants is limited in some of the templates,
so there are some duplicated variants for such a
template. This limitation is especially evident in
the Easy variant set, where the range of numerical
variation is more limited than the Hard variant set.
We present the full results in the main body of the
paper and put the results of the templates with no
duplications in Appendix A.

Error Analysis Framework When we manually
inspected the generated solutions, we found differ-
ent reasoning patterns depending on the numerical
variations. Moreover, we also observe different
groups of reasoning patterns specific to one of the
sets (Easy or Hard)2.

Our error analysis framework is based on a clas-
sification approach, distinguishing between calcu-
lation errors and reasoning errors. Thus, it can-
not identify what kind of failures happen within
the reasoning errors. We also could not identify
any reasonable clusters and their interpretations be-
cause it required a lot of human resources. It is an
interesting future direction to extend our automatic
error analysis framework, enabling it to cluster and
aggregate the reasoning patterns, mitigating the
limitation of our classification-based analysis.
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A Results of the templates with no
duplications

Models GSM8K GSM-ALT
Base Easy Hard

Llama-3-8b-Instruct 0.840 0.507 0.156
Llama-3.1-8b-Instruct 0.880 0.604 0.193
Llama-3.1-70b-Instruct 0.978 0.819 0.355
Mistral-7b-Instruct-v0.3 0.587 0.238 0.104
Deepseek-math-7b-rl 0.957 0.706 0.307
Wizardmath-7b-v1.1 0.891 0.489 0.223

Table 3: Accuracy scores (for 92 templates without
duplications)

As explained in Section 8, duplicated varia-
tions might be generated for some templates. We
counted the number of duplicated variants gener-
ated per template. We found that most templates
have a small number of duplications, and only 92
templates (in 250 templates) contain no duplicated
variants. To make our conclusions more rigorous,
we removed those templates with duplications and
presented the results of the remaining templates
here (Table 3 and Table 4). According to the fil-
tered results, we could get the same findings and
conclusions as in Section 5 and Section 6.2.

B Dataset Lisence

The original GSM8K was distributed under the
MIT license. We plan to make our templates pub-
licly available under the MIT License.

C Computational Environment

All of our experiments were conducted on a GPU
server implementing AMD EPYC 9654 2.4GHz
× 2 Socket, 768GiB RAM, NVIDIA H100 SXM5
94GB HBM2e × 4. Our project’s total hours spent
on the server were approximately 480 hours, in-
cluding preliminary experiments.

D Large Language Models

We list all of the LLMs used in our experiments.
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Base set Easy variant set Hard variant set
calculation err. reasoning err. calculation err. reasoning err. calculation err. reasoning err.

Llama-3-8b-Inst. .033 (20.0%) .130 (80.0%) .279 (56.6%) .214 (43.4%) .573 (67.9%) .271 (32.1%)
Llama-3.1-8b-Inst. .033 (27.3%) .087 (72.7%) .252 (63.6%) .144 (36.4%) .601 (74.5%) .206 (25.5%)
Llama-3.1-70b-Inst. .000 (00.0%) .022 (100.0%) .125 (69.1%) .056 (30.9%) .516 (80.0%) .129 (20.0%)
Mistral-7b-Inst.-v0.3 .098 (23.7%) .315 (76.3%) .385 (50.5%) .377 (49.5%) .477 (53.2%) .419 (46.8%)
Deepseek-math-7b-rl .011 (25.0%) .033 (75.0%) .217 (73.8%) .077 (26.2%) .529 (76.4%) .163 (23.6%)
Wizardmath-7b-v1.1 .043 (40.0%) .065 (60.0%) .383 (75.0%) .128 (25.0%) .586 (75.4%) .191 (24.6%)

Macro avg. .036 (24.8%) .109 (75.2%) .274 (62.3%) .166 (37.7%) .547 (70.4%) .230 (29.6%)

Table 4: Error rate per error type and variant set (for 92 templates without duplications)

Generic LLMs

• Llama-3-8b-Instruct
https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

• Llama-3.1-8b-Instruct
https://huggingface.co/meta-llama/
Llama-3.1-8B-Instruct

• Llama-3.1-70b-Instruct
https://huggingface.co/meta-llama/
Llama-3.1-70B-Instruct

• Mistral-7b-Instruct-v0.3
https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

LLMs for mathematical domain

• Deepseekmath-7b-rl
https://huggingface.co/deepseek-ai/
deepseek-math-7b-rl

• Wizardmath-7b-v1.1
https://huggingface.co/WizardLMTeam/
WizardMath-7B-V1.1

E Prompt Design

E.1 Zero-shot or Few-shot?
We used zero-shot CoT prompting to generate the
solutions. The reasons are as follows: a) In our
preliminary experiments, we found that few-shot
examples do not necessarily improve the model’s
performance on mathematical reasoning, some-
times even degrading the accuracy. This might
be because today’s LLMs have already been suf-
ficiently trained on similar MWPs, so providing
random few-shot examples is just a kind of con-
straint and hinders the model’s reasoning (Tam
et al., 2024). b)The influence of few-shot exam-
ples on the model’s reasoning is difficult to assess.
For example, if two models perform differently

Generation Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.

Figure 3: The prompt for generic models (generating
solutions)

Answer Extraction Prompt – generic models

SYSTEM: You are an assistant that solves math word problems.

USER: {question} + Let’s think step by step.
ASSISTANT: {model’s completion}

USER: Therefore, what is the final answer? Only write the final 
answer without any texts.

Figure 4: The prompt for generic models (extracting
final answer)

under the same prompt and few-shot examples, it
might be because this set of examples works for one
model but not for the other. Therefore, we consider
that few-shot CoT is not suitable for evaluation.

E.2 Prompts used for main experiments
For the generic LLMs, we developed prompts for
solution generation (Figure 3) and answer extrac-
tion (Figre 4) based on the prompts used in Kojima
et al. (2022).

For Deepseekmath-7b-rl and Wizardmath-7b-
v1.1, we employed prompts based on templates
suggested on their web pages. Figure 5 and 6 show
them. In extracting answers from solutions gen-
erated by the two math models, we could simply
use regular expressions since they always generate
solutions in a fixed format.

F Performance of Transformation to
Abstracted Solutions

To validate the performance of our error analysis
framework, we had to know how well Qwen2-math-
72b-Instruct could correctly transform a model’s
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Error Types OverallCalculation Reasoning

Llama-3-8b-Instruct 93% (26/28) 68% (15/22) 82% (41/50)
Llama-3.1-8b-Instruct 95% (38/40) 80% (8/10) 92% (46/50)
Llama-3.1-70b-Instruct 97% (38/39) 91% (10/11) 96% (48/50)
Mistral-7b-Instruct-v0.3 100% (23/23) 59% (16/27) 78% (39/50)
Deepseek-math-7b-rl 97% (38/39) 91% (10/11) 96% (48/50)
Wizardmath-7b-v1.1 97% (37/38) 83% (10/12) 94% (47/50)

Macro avg. 96% 79% 90%

Table 5: Abstracted solution transformation success rate

Generation Prompt – Deepseekmath-7b-rl

USER: {question} 
Please reason step by step and put your final answer within 
\boxed{}.

Figure 5: The prompt for Deepseekmath-7b-rl (geneart-
ing solutions)

Generation Prompt – Wizardmath-7b-v1.1

USER: Below is an instruction that describes a task. Write a 
response that appropriately completes the request.
### Instruction:
{question}
### Response: 
Let's think step by step.

Figure 6: The prompt for Wizardmath-7b-v1.1 (generat-
ing solutions)

solution into an abstracted form.
For this preliminary experiment, we constructed

a small dataset for each LLM we employed in our
main experiment (Section 4). For each model, we
randomly sampled 50 incorrect solutions obtained
from the results of the main experiment and man-
ually categorized them into calculation errors or
reasoning errors. For the evaluation, we manually
checked whether the LLM could correctly trans-
form the models’ original solutions into abstracted
forms according to the following criteria: a) the
abstracted process exactly reflects the reasoning
process in the original solution, b) the variable
assignment in the abstracted solution should be
correct, c) the abstracted final answer correctly rep-
resents the abstracted process.

The results are shown in Table 5. The table
shows the success rate (percentages) of Qwen2-
math-72b-Instruct’s transformation on solutions
predicted by different models in terms of the error
type we manually categorized. Fractions in paren-
theses indicate the specific number we checked (the
numerator is the number of successful transforma-
tions, and the denominator is the total number). It

Transformation Prompt

SYSTEM: Given the numeric version of a math question and its solution as 
references, you are a helpful assistant designed to copy the numeric solution to get 
a solution to the symbolic version of that question.
Instructions:
- Symbolic solution should strictly copy the numeric solution no matter whether it 
is correct or not.
- After completion of the solution, output the final answer with "###". The final 
answer should be a sole mathematical expression represented by variables appear 
in the symbolic question.
- Mathematical expression in the symbolic solution should not be represented in 
the format of LaTeX.

{few-shot examples}

USER: {target solution}

Figure 7: The prompt for solution transformation

demonstrates that Qwen2-math-72b-Instruct can
correctly obtain symbolic solutions and answers
from 90% of the instances overall. Based on the
results, we consider our method to be reasonably
valid for our purpose.

G Prompt Design for Error Analysis
Framework

Figure 7 presents the prompt used to transform a
predicted solution into the abstracted form.

H Case Study in Error Analysis

Through our manual inspection of the generated so-
lutions for variants generated from the template, we
identified that there were groups of reasoning pat-
terns due to numerical variations. Figure 8 shows
an example of the reasoning patterns we observed.
This example is taken from outputs from Llama-
3.1-70b-Instruct. The solutions in the figure show
the different typical reasoning patterns identified
by the underlined fonts. The performance of the
easy variants generated from the same template of
the example was 66.6% of accuracy (666 correct
solutions), and there were 334 incorrect solutions
consisting of 286 calculation errors and 48 reason-
ing errors. For its Hard set variants, accuracy was
at 0%. Its incorrect solutions consist of 145 calcu-
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Question: At a laundromat, it costs $50 for a washer and a quarter for every 3 minutes in the dryer. Samantha does 23 
loads of laundry in the wash and then divides all the washed clothes equally into 21 separate dryers. If she lets the dryers 
run for 28 minutes each, how much does she spend altogether?

Process: To find the total cost, let's break it down into steps.
1. First, we need to find the cost of washing 23 loads of laundry. Since it costs $50 for a washer, the total cost for 
washing is 23 * $50.
Total washing cost = 23 * $50 = $1150

2. Next, we need to find the cost of drying the clothes. Since Samantha divides the clothes
equally into 21 separate dryers, each dryer will have 23 / 21 loads. However, the cost of drying is based on the number 
of dryers and the time they run, not the number of loads. So, we'll focus on the number of dryers and the time. Since 
there are 21 dryers, and each dryer runs for 28 minutes, we need to find the total number of 3-minute intervals for all the 
dryers. We can do this by dividing the total minutes by 3.
Total minutes = 21 dryers * 28 minutes = 588 minutes
Total 3-minute intervals = 588 minutes / 3 = 196 intervals
Since it costs a quarter for every 3 minutes, we multiply the total intervals by the cost per
interval.
Total drying cost = 196 intervals * $0.25 = $49

3. Finally, we add the total washing cost and the total drying cost to find the overall cost. Total cost = Total washing cost
+ Total drying cost
Total cost = $1150 + $49
Total cost = $1199
So, Samantha spends $1199 altogether.

Example of Variant from Easy set

Example of Variant from Hard set
Question: At a laundromat, it costs $5274 for a washer and a quarter for every 2 minutes in the dryer. Samantha does 
8762 loads of laundry in the wash and then divides all the washed clothes equally into 8968 separate dryers. If she lets 
the dryers run for 8314 minutes each, how much does she spend altogether?

Process: To find the total cost, we need to calculate the cost of the washer and the cost of the dryer separately, then add 
them together.
1. The cost of the washer: Since Samantha does 8762 loads of laundry, and it costs $5274 for a washer, we can assume 
that the cost of the washer is a one-time payment. So, the cost of the washer is $5274.

2. The cost of the dryer: Samantha divides the clothes into 8968 separate dryers. Each dryer runs for 8314 minutes. The 
cost of the dryer is a quarter for every 2 minutes.

First, let's find the total number of minutes for all dryers:
8968 dryers * 8314 minutes = 74,555,072 minutes

Since the cost is a quarter for every 2 minutes, we need to divide the total minutes by 2:
74,555,072 minutes / 2 = 37,277,536 quarters

Now, let's convert the quarters to dollars (1 dollar = 4 quarters):
37,277,536 quarters / 4 = 9,319,384 dollars

Now, we add the cost of the washer and the cost of the dryer:
$5274 + $9,319,384 = $9,324,658
So, Samantha spends $9,324,658 altogether

Figure 8: Example of typical patterns in evaluation datasets

lation errors and 855 reasoning errors. The variants
of the template in the Hard variant set cause a clear
reasoning degradation.

We observed similar phenomena across other
models besides Llama-3.1-70b-Instruct. We hy-
pothesize that the reason why numerical variation
could cause such changes in reasoning patterns was
in the sizes of digits. As variants in the Hard vari-

ant set have more digits, LLMs get questions with
more tokens, which makes their output different.

I Necessity of Manual Operations in
Creating Question Templates

Although we have considered using regular expres-
sions and rule-based approaches to automate tem-
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plate creation, they have the following problems:
a) Not all numerical values in the original instance
are “symbolizable.” Some numbers in the instance
are specific; altering them would make the instance
ill-defined. b) As shown in Figure 1, when generat-
ing the template, it is necessary to keep the usage
of variable consistent between Qabs and Sabs. It is
hard to catch the relationship with rule-based re-
placement and requires human insight. Therefore,
we created the question templates manually.
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