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Abstract

Large Language Models (LLMs) enhanced
with tool use and APIs improve task perfor-
mance but often misuse them, leading to ineffi-
ciency and unnecessary cost. We propose Self
Knowledge-Tracing for Tool Use (SKT-Tool),
a method enabling LLMs to assess their capa-
bilities and make informed API usage decisions
using knowledge tracing (KT). Our teacher-
student framework helps LLMs optimize API
calls in real-time without fine-tuning. Experi-
ments across multiple datasets show that SKT-
Tool significantly reduces API calls while main-
taining accuracy, offering a scalable and cost-
effective solution for tool-augmented LLMs.
We conclude by analyzing shortcomings in this
method and identifying directions for future
work.

1 Introduction

Large Language Models (LLMs) have recently
achieved a great number of remarkable abilities
when incorporated with external tools like Applica-
tion Programming Interfaces (APIs) (Parisi et al.,
2022; Patil et al., 2023). However, two problems
emerge: current LLM agents often struggle choos-
ing which tools to use on different problems (Li
et al., 2023), and also that much of current research
focuses solely on the API choice (Qin et al., 2023;
Lietal., 2023; Chen et al., 2024; Tang et al., 2023),
where an LLM indiscriminately calls tools during
tests, which may not align with real-world scenar-
10s (Ning et al., 2024; Qiao et al., 2023). This can
result in redundant API calls, leading to extra com-
putation and even possible monetary loss in cases
where every API call costs money, thus substan-
tially reducing the usefulness of tool-augmented
LLM Agents in real-world applications. Further-
more, the introduction of tools tends to decrease
the performance of LLMs across general datasets
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Sample Student Teacher Dialouge
& I Generated Question: What can you use to absorb spilled milk from a floor?
I Generated Answer Choices: (0) Use a sponge (1) Use a book.

Student: To answer the question of what can be used to absorb spilled milk
from a floor, | will not rely on any API. Based on general knowledge and
common household items, the best option to absorb spilled milk is: A sponge.
A book can be used but is not optimal as it can get damaged. Since this
question can be answered using general knowledge without relying on any
APIs, there is no need for a function call. In fact, | didn't use any of the
provided functions in my response.

understand that common household knowledge is sufficient for this type of
question. Recognizing that a sponge is the most effective option
demonstrates their problem-solving skills, while mentioning a book shows an
understanding of alternative materials, albeit less practical. This suggests
strong reasoning but highlights a potential weakness in discerning the most

@ Teacher Feedback: The student answered correctly, indicating they

effective choices. Moving forward, the student should continue to leverage
their general knowledge for everyday scenarios like this while being cautious
of relying on APIs for simple inquiries, as no additional information was
necessary in this case

Figure 1: Example dialogue from the synthetic genera-
tion process. This is a sample of the interaction string
that is passed onto our student model for reference.

when they have to decide whether or not tool use is
appropriate (Ning et al., 2024).

Existing approaches fine-tune LL.Ms to choose
APIs (Ning et al., 2024; Schick et al., 2023; Hao
et al., 2023; Yang et al., 2023) but overlook the
model’s inherent capabilities.

In this paper, we propose Self Knowledge-
Tracing for Tool use (SKT-Tool) which offers a
solution involving a Student-Teacher framework.

2 Related Work

2.1 Tool Use in Large Language Models

WTU-Eval (Ning et al., 2024) introduces a bench-
mark designed to evaluate whether LLMs can dis-
cern their ability boundaries and decide on tool
usage accordingly. The findings of WTU-Eval
highlight a critical gap: most current approaches as-
sume that an LLM must invoke an API without first
evaluating whether the model is capable of solving
the task on its own. The study demonstrated that
LLMs frequently misuse tools when unnecessary,
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Figure 2: Visualization of our system’s workflow. In Phase 1, the teacher generates n questions to assess the
student’s ability. In Phase 2, the student answers actual task/dataset questions. Then, the top-k£ most similar Phase 1
interactions are retrieved and appended to the question. The student model then performs on its own capabilities

before attempting to solve the question.

leading to performance degradation in tasks that do
not require external computation.

TRICE (Qiao et al., 2023) introduces a method
of teaching LLMs to use tools through continu-
ous feedback. Their findings also introduce the
problem of LLMs dropping in question-answering
accuracy when introduced to tools due to confusion
over how to use them, and they employ an exten-
sive feedback mechanism that relies on instruction-
tuning and Reinforcement Learning to align the
LLMs behavior towards appropriate tool use.

SKT-Tool differs by employing knowledge trac-
ing, where the Teacher LLLM generates targeted
questions to assess the Student’s capabilities, un-
like prior methods relying solely on task feedback.
It optimizes through Inference-Time Optimization
instead of fine-tuning or reinforcement learning.
Unlike TRICE, which focuses only on accuracy,
SKT-Tool also reduces API calls while aiming to
maintain accuracy.

2.2 Knowledge Tracing for tool use

Our study explores the concept of knowledge trac-
ing (KT), a technique originally used in education
to track and predict students’ learning progress
(Corbett and Anderson, 2005). Given that LLMs
often struggle understanding their capabilities in
the context of Tool Use, it is intuitive to utilize
knowledge tracing in this scenario.

By applying KT principles, an LLM can eval-
uate its own strengths and weaknesses before de-
ciding to call an external API. For example, if a

model consistently struggles with math problems
but performs well in general reasoning, it can deter-
mine whether using a calculator API is necessary.
This self-awareness reduces unnecessary API calls
and ensures that external tools are only used when
needed.

3 Method

In this section, we detail our technical approach to
creating SKT-Tool. Our framework is divided into
2 subsections: (1) the teacher model and synthetic
data generation; (2) the student model, Retrieval-
Augmented Generation (RAG) and knowledge trac-
ing, Fig. 2 provides a visual overview of the sys-
tem architecture. As seen in Fig. 2, we set up
two language models to converse with each other,
where one acts as the teacher and the other is the
student. Our framework aims to improve the stu-
dent’s model ability to decide whether or not it
should call an API and answer QA datasets cor-
rectly with APIs.

3.1 Teacher Model and Synthetic Data
Generation (Phase 1)

We define the Teacher Model to be a more capable
LLM with the following responsibilities:

* Synthetic Data Generation. The Teacher
receives a description of an existing task,
along with k& samples from the task dataset.
The teacher is also provided with the list of
tools/APIs that the student will have access
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to when approaching this task. The teacher is
then prompted to generate n synthetic ques-
tions that test the student in such a way as
to gain insight into the student’s capabilities
relevant to the task.

* Probing the Student. The teacher model asks
the generated questions to the student, storing
feedback on the correctness of the student’s
answers. This first part of the conversation
chain, where the teacher probes the student’s
answering capabilities, serves as the basis for
our KT mechanism and effectively avoids the
cold start problem by knowledge tracing be-
fore evaluation. We refer to this synthetic
question history as S.

The teacher’s synthetic data generation and prob-
ing process will be referred to as Phase 1 of the
framework.

3.2 Evaluation of Student Model (Phase 2)

We define the Student Model to be the model that
will be evaluated on the specified task, and may be
the same model as the teacher model. In phase 2,
the Student Model will use the generated conversa-
tion history to effectively choose API usage.

¢ Retrieval Augmented Generation (RAG)
(Gao et al., 2023) for knowledge tracing. As
shown in Figure 2, for each question g asked
to the student during the evaluation step, we
use RAG to identify the five most semantically
similar questions to ¢ in S. We append the
associated conversations of these questions to
the question prompt in few-shot fashion.

4 Experiments

4.1 Settings

To evaluate our method’s effectiveness in different
scenarios, we use a single dataset as the task per
experiment. This task, from which a sample is
given to the teacher model, is the same as the one
to be solved by the student.

4.2 Datasets

To simulate questions asked by real-life users to
LLMs, we use two types of datasets in our testing
(where dev sets are used whenever possible):

¢ General QA Domain. We select four
knowledge-based datasets with diverse ques-
tion types: MLQA (Lewis et al., 2019), Triv-
1aQA (Joshi et al., 2017), PIQA (Bisk et al.,

2019), and HotpotQA (Yang et al., 2018). For
HotpotQA, we exclude the context paragraphs,
including only the question in the query, as the
student model has access to the WikiSearch
tool.

* Math QA Domain. To account for problem-
solving tasks, we focus on math-based
datasets as they test quantitative and logi-
cal reasoning abilities. Our math dataset
pool includes AQUA-RAT (Ling et al., 2017),
GSMS8K (Cobbe et al., 2021), MathQA
(Amini et al., 2019), and SAT-Math from
AGIEval (Zhong et al., 2023).

For each task, we sample 250 questions from
relevant datasets in both the General and Math
categories.

4.3 Tools

We define our tool pool to include APIs that
are most likely to be used based on the datasets
above: Google Translation API!, WolframAl-
pha API” Bing Web Search API®, and Wikipedia
Search API*.

4.4 Models

We compare results from our method using three
models with increasing capability as our student:
Llama 3.1-8B (Grattafiori et al., 2024), GPT-3.5
(OpenAl, 2023), and GPT-40 (OpenAl, 2024),
while our teacher model remains GPT-40 through-
out experimentation.

4.5 Maetrics

We evaluate our results using 3 different metrics:

* Accuracy. Accuracy of the Student on the
given task. All datasets consist of 250 ques-
tions.

* AccN. Accuracy of the Student accounted for
unneeded API calls, which we refer to AccV.
The Student is considered to be incorrect if
they use an API on a question that was previ-
ously shown to not require an API, regardless
if their answer was correct or not.

"https://cloud.google.com/translate/docs/reference/rest

“https://developer.wolframalpha.com/

3https://www.microsoft.com/en-us/bing/apis/bing-web-
search-api

*https://www.mediawiki.org/wiki/API:Search
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. . k (n = 32) n (k = 16)

Task - LLM Metric Baseline 4 33 8 64
Accuracy 0.536 0.516 0.512 | 0.536 0.496

PIQA Llama-3.1 API Calls 177 114 104 48 43
AccN 0.4 038 0412 | 0.448 0.428
Accuracy 0.912 0.832 0.832 | 0.884 0.868

MLQA GPT 4o API Calls 43 7 4 12 16
AccN 0.812 0.824 0.82 | 0.848 0.836
Accuracy 0.628 0.668 0.636 | 0.66 0.652

MLQA GPT 3.5 API Calls 137 16 17 9 14
AccN 0.432 0.652 0.636 | 0.652 0.64
Accuracy 0.756 0.792 0.772 | 0.776  0.756

PIQA GPT 3.5 API Calls 1 0 0 0 0
AccN 0.752 0.792 0.772 | 0.776  0.756

Accuracy 0.576 046 0512 | 0.472 0.5

AQUA-RAT GPT 3.5 API Calls 67 22 18 31 23
AccN 0.514 0.448 0.508 | 0.448 0.488

Table 1: Baseline vs. SKT-Tool varying £ and n, 250 Questions per task.

» API Calls. The total number of questions in
which the student used an API throughout an
entire task.

4.6 Baseline

To evaluate baseline results, we give the LLM ac-
cess to tools and prompt it to answer the dataset
with no additional instructions. The baseline per-
formance aims to evaluate the ability of LLMs to
decide on their own when to use tools.

4.7 Implementation Details

To test the generalizability of our model, we eval-
uate our metrics across two different variables: k
and n, where k is the number of samples from the
task given to the teacher before question genera-
tion, and n is the number of samples the teacher
generates. We test values of k € {4,32} while
keeping n = 32, and values of n € {8,64} while
keeping k = 16.

5 Results and Analysis

5.1 Across the Datasets

Our method significantly reduces unnecessary API
calls across multiple datasets. In MLQA, GPT-3.5
reduced API calls by up to 85%, while GPT-40
achieved a 90% reduction. This suggests that the
model learns to answer multilingual questions in-
dependently rather than over-relying on translation
tools. However, accuracy improvements were in-
consistent, particularly for GPT-40, where MLQA
accuracy slightly declined.

For PIQA, the impact was less pronounced. API
calls dropped by 73% for Llama3.1, but the rele-
vance of the synthetic conversation history varied,
leading to limited accuracy gains. Similarly, in

AQUA-RAT, API usage decreased, but accuracy
also declined—Ilikely due to the teacher model gen-
erating misleading mathematical feedback. Further-
more, we noticed a significant difference in API
calls for PIQA during our ablation tests when vary-
ing k versus n. This could be due to the combina-
tion of RAG, the quality of synthetically generated
questions, and the LLM repeatedly calling the API
for undesirable results.

Overall, our framework successfully reduces re-
dundant API calls, demonstrating its effectiveness
in optimizing tool use. However, we observed
no consistent accuracy improvements. The rela-
tionships between accuracy, k, and n vary across
datasets, indicating the need for further experimen-
tation to refine synthetic question generation and
improve overall model performance.

6 Conclusion

We introduce a framework that helps LLMs as-
sess their API usage, reducing calls by up to 50%
while maintaining accuracy. After running mul-
tiple tests on the interaction history generated by
the teacher model, we found that each interaction
history appended incurred an average of 300 addi-
tional input tokens. The additional input tokens for
5 questions through RAG are not high enough to
exceed smaller models’ context windows. Though
accuracy improvements are limited, our approach
enables smaller models to use tools efficiently, low-
ering costs and expanding practical applications,
particularly for weaker, newly-developed LLMs.
We also believe that future work in refining the
prompting methods for teacher feedback will help
improve the student’s final accuracy.
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7 Limitations and Future Work

The efficacy of SKT-Tool is heavily dependent on
the capability of the student model. Our method
relies on long question histories being appended
to prompts, and smaller models like Llama 3.1 8B
struggle due to the large context. This is especially
true for Math datasets. Our results also may signif-
icantly change when not using a powerful teacher
model such as GPT-40, which we used. Due to
time constraints, we were unable to run full exper-
iments on "Multi" setting tests, but we plan to in
the future. We also believe the inconsistencies in
results indicate a flaw in our method of prompting
and implementation, which we aim to fix.

In the future, plan to further polish our frame-
work’s prompting methods to ensure optimal syn-
thetically generated questions that target concepts
within the task. We also aim to test the effects of
our frameworks on the "Multi" setting, and plan
to test our framework on more open-sourced mod-
els, a wider variety of tools, etc. to have a better
understanding of its efficacy.

Furthermore, we believe that, in future research,
more standardized benchmarks can be set for
LLMs’ decisions on whether or not tool usage is
necessary. We also believe that future research
should study how knowledge tracing can be a pow-
erful tool when applied to LLMs as scaffolding
rather than merely to humans.
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A Appendix

A.1 A. Datasets and Task Details

This section details the datasets used in our experi-
ments, including question distribution and prepro-
cessing.

A.1.1 General QA Datasets

Dataset ‘ Domain ‘ Sample Size
MLQA Multilingual QA 250
TriviaQA Knowledge-based QA 250
PIQA Physical Commonsense QA 250
HotpotQA Multi-hop Reasoning 250
General-Multi | Mixed (Shuffled) | 200 (50 each)

Table 2: General QA datasets used in experiments. Each
single dataset uses 200 samples, while the multi-task
setting takes 50 from each and shuffles them.

Dataset | Domain | Sample Size
AQUA-RAT Algebra, Arithmetic QA 250
GSM8K Grade-School Math QA 250
MathQA General Math QA 250
SAT-Math (AGIEval) Standardized Test Math 250
Math-Multi | Mixed (Shuffled) | 200 (50 each)

Table 3: Math QA datasets used in experiments. Each
single dataset uses 200 samples, while the multi-task
setting takes 50 from each and shuffles them.

A.1.2 Math QA Datasets
A.2 Prompt Templates

We used structured prompts for both the teacher
and student LLMs. Below, we provide an overview
of these templates.

A.2.1 Teacher Model Prompt For Generating
Synthetic Questions

Here’s the prompt we used to ask the teacher model
to generate test questions and their corresponding
answers:

You are a teacher with one student.
Your student is going to take a test.
Some of the questions in

the test require APIs, and

some are answerable by the student
itself.

Because we want to minimize API calls,
you will need to learn what questions
the student needs an API to answer,
and which it can answer itself.

We also want the student to answer
questions correctly.

To do this, you must learn what
questions can be solved by each API.

To do this, you will need to

learn the capabilities of the student.
For example, you will need to

learn the student's proficiency in
math to be able to determine in

which cases the student needs a
calculator API.

To learn the student's capabilities,
you will have the opportunity to
give your student a 'pre-test'.

You must generate question-answer
pairs for this pre-test such

that the student's answers teach you
about the student's capabilities
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and when it needs an API or not,
and also how specific APIs can
help solve types of questions.

To make sure that the pre-test
questions give relevant information,
you will be given a small sample

of the questions from the test.

You are not to copy the questions:
merely generate similar ones that
can be compared with.

The process for generating the

pre-test will consist of these steps:

1: You are given a sample of the
dataset, and the number of
questions to generate.

2: You will generate the required
number of questions to learn

the student's capabilities. In each
question, you should tell the
student which API to use, or

not to use one at all.

{Few-shot Examples}

Here is a description of the task:
{DESCRIPTION}

Here is a sample of the dataset:
{K SAMPLE QUESTIONS}

Here is the list of APIs that
the student has access to and
their descriptions:

{API List}

Generate {N} questions and do

not generate anymore. You can

write your thoughts but only include
them at the beginning and nowhere
else. When you write your questions,
start each question with a

singular newline so that the user
can use .split to get the text

for each question specifically.

Do not include any other newlines
except when before a question.

A.2.2 Student Model Prompt (Baseline)

Here’s our basic prompt for the student when es-
tablishing our baseline:

You are an AI-Student tasked with
answering questions to the best
of your ability.

You have access to tools (APIs)
but should only use them if
absolutely necessary.

Your goal is to minimize API
usage by answering questions
independently whenever possible.

### Rules for Deciding API Usage:
1. Only use an API if you cannot
answer the question without it.
2. Ensure the tool available is
relevant to the question.

3. Use only one API per question,
choosing the most suitable one.

Let’s begin!

A.2.3 Student Model Prompt (SKT-Tool)

In addition to the baseline prompt, we include the
interaction history during Phase 1 (3.1):

Here is a list of previous questions
you have answered, and some feedback
from an external teacher.

Use this information to determine
your own capabilities, and whether
to use an API on your next question.
Please only use it if you feel

that it's relevant. You may also use
it as an example for how to answer
questions. If you determine API

use is necessary, use one.

Here's the list of past interactions:
{Top 5 most similar synthetic questions}
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