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Abstract
Recent advancements in language representa-
tion learning primarily emphasize language
modeling for deriving meaningful representa-
tions, often neglecting style-specific consid-
erations. This study addresses this gap by
creating generic, sentence-level style embed-
dings crucial for style-centric tasks. Our ap-
proach is grounded on the premise that low-
level text style changes can compose any high-
level style. We hypothesize that applying this
concept to representation learning enables the
development of versatile text style embeddings.
By fine-tuning a general-purpose text encoder
using contrastive learning and standard cross-
entropy loss, we aim to capture these low-level
style shifts, anticipating that they offer insights
applicable to high-level text styles. The out-
comes prompt us to reconsider the underlying
assumptions as the results do not always show
that the learned style representations capture
high-level text styles.

1 Introduction

Learning meaningful representations of text has
received much attention recently as models pre-
trained on large corpora have become the standard
for extracting representations that capture prior
knowledge (i.a. Devlin et al., 2019; Radford and
Narasimhan, 2018). However, most pre-trained
models focus on general aspects, as they are trained
with causal or masked language modeling objec-
tives. Therefore, they are suboptimal for NLP tasks
focusing on a specific aspect, such as style. There
are many notable NLP tasks, such as identifying
chatbot-written text based on its style (e.g., Soto
et al. (2024)) or style transfer where models rely
on dedicated style representations (e.g., John et al.
(2019)).

Existing work on style transfer focuses on high-
level stylistic aspects such as sentiment (Shen et al.,
2017) or formality (Rao and Tetreault, 2018), tak-
ing style definitions based on the dataset’s structure.

Lyu et al. (2021) view those high-level text style
changes as compositions of more fine-grained, low-
level style changes. Generic style representations
incorporating low-level aspects such as lexical, syn-
tactic, semantic, and thematic stylistic traits (Mc-
Donald and Pustejovsky, 1985; DiMarco and Hirstt,
1993) but also high-level, composed stylistic traits
might significantly improve style-focused tasks.

Based on the hypothesis that low-level style
changes compose high-level style changes, this
work explores learning generic, sentence-level style
representations. We take a pre-trained encoder
model producing general-purpose representations
and fine-tune it to distinguish between low-level
stylistic changes using contrastive learning and
cross-entropy loss. We hypothesize that the re-
sulting text encoder generalizes to high-level styles,
applying the view by Lyu et al. (2021) on how low-
level stylistic changes compose high-level changes
to representation learning for styles.

We train our method using contrastive learning
and cross-entropy loss on the StylePTB dataset
(Lyu et al., 2021) comprising low-level, fine-
grained style changes to obtain high-level, generic
style embeddings. We evaluate our method by train-
ing a simple classifier on the representations of the
learned style. The results show an ambiguous pic-
ture of the resulting style embeddings, challenging
the underlying assumptions.

2 Related Work

Explicitly Learning Style Representations
Only a few works learn style representations ex-
plicitly. StyleDistance (Patel et al., 2024) uses a
contrastive triplet loss and synthetic parallel data
created by Large Language Models to learn generic
style representations, showing strong performance
in multiple benchmarks.

Style Representations as a Byproduct Text
style transfer is conducted by prominent models by
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disentangling content and style to learn separate
task-specific representations to control them inde-
pendently (Fu et al., 2018; Hu et al., 2017; Kim and
Sohn, 2020; John et al., 2019; Cheng et al., 2020).
Other text style transfer models learn content rep-
resentations and multiple decoders (one for each
style) (Shen et al., 2017; Fu et al., 2018). Another
group of models uses a structured style code to en-
force a particular style in the decoder, either given
as a structured code (Hu et al., 2017; Lample et al.,
2019) or learned (Fu et al., 2018; Kim and Sohn,
2020).

For text style classification, TextCNN (Kim,
2014) is the most widely used method (Ostheimer
et al., 2023). BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), fine-tuned for style
classification, are strong baselines.

In contrast, our proposed method learns style rep-
resentations at the sentence level from low-level,
linguistically motivated style changes. This is
much more fine-grained and allows applications
to unseen styles.

Contrastive Learning for Text Representations
To learn meaningful content representations on the
sentence level from unlabeled text corpora, the QT
model (Logeswaran and Lee, 2018) was introduced.
The QT model relies on the distributional hypoth-
esis to get meaningful content representations. It
uses a contrastive objective to map nearby (con-
text) sentences to similar and distant (non-context)
sentences to far-apart representations.

For fine-tuning sentence representations, notable
approaches are SimCSE (Gao et al., 2021) and
Mirror-BERT (Liu et al., 2021), incorporating min-
imal data augmentation with dropout. In con-
trast, SBERT (Reimers and Gurevych, 2019) uses
siamese and triplet network structures to generate
meaningful sentence representations for calculat-
ing semantic sentence similarities using standard
measures like cosine distance. Kim et al. (2021) im-
prove the quality of the sentence representations by
contrasting the representations of different layers
of BERT (Devlin et al., 2019).

However, these approaches focus on improving
the sentence-level representations for general lan-
guage understanding or semantics. We, in contrast,
focus on the style of the sentences.

3 Method

This section describes the underlying assumptions
of the proposed method to compute (sentence-level)
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Figure 1: Our training objective pushes sentence rep-
resentations of the same style close together. In this
example, reviews (in orange) are pushed close together,
and sentences of one Bible version (in blue) are pushed
close together, while the representations of different
styles (Bible vs reviews) are pushed to be far apart.

style representations of texts and the method itself.

Assumption 1 Low-level stylistic changes can be
composed to form high-level styles in line with
previous work (Lyu et al., 2021).

Assumption 2 Learning style embeddings can be
achieved by contrasting different styles (Patel et al.,
2024).

We combine the aforementioned assumptions to
come up with the following method.

Method The core idea—illustrated in Figure 1—
is to embed the data into a space where texts of
the same style resemble each other, while texts
of different styles are easily distinguishable. For-
mally, we want to learn a neural encoder f mapping
any two input sentences x and x̃ onto vector rep-
resentations f(x) and f(x̃) such that f(x) ≈ f(x̃)
if and only if x and x̃ are of the same style:
style(x) = style(x̃) = s. To achieve this, we first
form pairs of sentences, some equal and others of a
different style. Then, we use a contrastive objective
to push the vector representations of sentences of
the same style closer together and ones of different
styles far apart.

For a given sentence x with style(x) = s, our
set of candidate sentences Xcand contains sentences
of the same style and different style(s): Xcand =
Xs ∪Xs. We employ a simple architecture to com-
pute the similarity between the outputs f(x) and
f(x̃), namely the inner product f(x)⊤f(x̃). Other
functions to consider are, e.g., the cosine similar-
ity or kernel functions. We compute the similarity
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using a simple architecture to avoid learning a rich
similarity measure compensating for the encoder
producing poor style representations.

Therefore, we have the following formulation
for the probability of each candidate sentence x̃ ∈
Xcand to have the same style as x:

p(x̃|x,Xcand) =
exp[f(x)⊤f(x̃)]∑

x̃′∈Xcand exp[f(x)⊤f(x̃′)]
(1)

Our training objective is to maximize the proba-
bility of identifying all sentences x̃ ∈ Xcand where
style(x) = style(x̃) = s for each sentence x in the
training data D:

∑

x∈D

∑

x̃∈Xs

log p(x̃|x,Xcand) (2)

We also experiment with a cross-entropy loss
and its combination with a contrastive loss.

4 Experiments

In this section, we describe how we evaluated the
effectiveness in learning style representations for
multiple styles.

4.1 Experimental Setup

Fine-Tuning Data We use the StylePTB (Lyu
et al., 2021) dataset containing 21 individual and
32 compositional fine-grained style changes to train
our generic text style embeddings.

Evaluation Data We evaluate the learned style
embeddings on datasets that take a data-driven ap-
proach, containing high-level stylistic changes, to
define a text style. These are used in many re-
cent works on text style transfer. We experiment
with the Bible corpus (Carlson et al., 2018) with
eight different styles of the Bible (249K sentences),
Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) (Rao and Tetreault, 2018) (113K sen-
tences) in two styles, a collection of Shakespeare
plays in Shakespearean and modern English (Xu
et al., 2012) (42K sentences), Amazon (558K) and
Yelp (448K) sentiment datasets1 (two styles each).
We follow prior work by using the existing train-
dev-test splits.

Training We experiment with both
RoBERTaLarge (Liu et al., 2019) and BERTLarge
(Devlin et al., 2019) as pre-trained encoders for

1https://github.com/lijuncen/Sentiment-and-Style-
Transfer

f . The sentence representation is the activation
from the last hidden layer for the “CLS” token. We
add a linear transformation and a l2 normalization
before applying the objective function. Training
stops after a maximum of 10 epochs, and the best
model is used based on the loss on the validation
dataset. Hyperparameters were chosen using the
loss on the validation dataset. We used a batch
size of 16, a learning rate of 1e-5 with a linear
warmup for the first 10% steps, followed by a
linear cooldown for the remaining steps. We used
an Adam optimizer and a dropout rate of 0.1. A
logistic classifier is trained on the training data and
evaluated on the test data using the representations
obtained by the encoder f .

Batch Construction We initially experimented
with contrasting more than two styles per batch.
However, this resulted in no meaningful represen-
tations. Therefore, we resorted to two styles per
batch. We use a random sampler with replacements
to randomly select sentences of each style. We also
use two random samplers without replacement: one
where we assure for each style pair that only un-
seen sentence pairs are contrasted and one where
we only assure on the corpus level that per epoch,
the sentences are only contrasted once. Half of
the batch consists of style s while the other half
contains style s.

Obtaining Generic Style Embeddings To get
generic style embeddings, we fine-tune pre-trained
encoders f on StylePTB (Lyu et al., 2021) and
apply the resulting encoders to the previously
mentioned high-level style datasets. The hypoth-
esis is the following: Since StylePTB contains
fine-grained (and compositional) style changes, it
should also generalize to high-level and unseen
styles.

4.2 Results
In Table 1, we summarize our style classification
results. Using pre-trained BERT and RoBERTa
encoders as f , we apply a logistic regression for
classification without fine-tuning, serving as our
baseline. Baseline accuracies for datasets like
Yelp, Amazon, GYAFC, and Shakespeare (two
styles each) are already nearly 80% or higher. The
Bible dataset, with eight styles, exhibits lower ac-
curacy, as expected. Generally, BERT outperforms
RoBERTa in style classification. Our approach
considers three sampling strategies (Section 4.1),
crucial for contrastive loss performance.
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Random Sampler Pairwise Sampler Corpus Sampler
Dataset PT CEL CEL+CL CL CEL+CL CL CEL+CL CL

B
E

R
T

Yelp 94.3 92.9 90.5 90.1 72.9 87.0 71.4 88.1
Amazon 77.4 74.9 72.1 74.5 59.6 68.3 58.1 69.3
GYAFC 88.4 88.0 82.1 82.1 71.5 86.2 74.3 78.3
Shakespeare 85.7 86.4 83.4 83.5 75.1 83.7 73.7 81.7
Bible 50.9 52.8 42.9 46.7 31.1 52.4 33.9 41.2

R
oB

E
R

Ta

Yelp 86.2 87.5 85.3 74.2 55.1 50.8 56.0 71.9
Amazon 75.2 67.1 64.4 60.3 54.1 65.4 55.9 58.1
GYAFC 79.4 85.5 80.2 76.3 55.5 59.0 60.4 66.9
Shakespeare 80.1 85.1 81.7 76.1 64.8 74.0 67.4 77.6
Bible 55.9 60.8 53.8 44.4 18.9 24.2 19.1 38.5

Table 1: Shown is the style classification accuracy of a logistic regression fitted to the two text encoders f BERT
and RoBERTa as a pre-trained (PT) encoder, fine-tuned on StylePTB and applied to the mentioned datasets using a
Cross-Entropy Loss (CEL), Contrastive Loss (CL), or both (CEL+CL) with the three mentioned sampling strategies.

Fine-tuning BERT and RoBERTa with the cross-
entropy loss yields slight accuracy improvements
for the Shakespeare and Bible corpora. More-
over, fine-tuning RoBERTa further enhances accu-
racies on Yelp and GYAFC. However, incorporat-
ing the contrastive loss reduces accuracy compared
to cross-entropy fine-tuning. Solely fine-tuning
with a contrastive loss also leads to less accuracy.

4.3 Discussion

While fine-tuning an encoder f on the StylePTB
dataset using cross-entropy loss slightly improves
some settings’ accuracy, contrastive learning does
not. These findings of our study question the rep-
resentational capacity of the learned style embed-
dings, especially for contrastive learning.

Contrastive Objective Is Too Aggressive Con-
trary to our expectations, applying the contrastive
loss does not improve the accuracy compared to the
cross-entropy loss across various settings we ex-
plored. One possible reason is that the contrastive
loss might push dissimilar styles too far apart. Con-
trary to previous work (Patel et al., 2024), we do not
use synthetic parallel data but contrast non-parallel
data. This might hamper the model’s ability to
learn the relationship between different styles and
style levels.

RoBERTa’s “CLS” Tokens Need Fine-Tuning
The improvements with the cross-entropy loss can
be attributed to the fact that the “CLS” token is not
pre-trained using the next sentence prediction task
and, therefore, any fine-tuning might improve the
“CLS” token representations.

Differentiated Picture for Cross-Entropy Loss
One possible reason for the differentiated results
can be seen in the examples from StylePTB in Ta-
ble 2. While some low-level changes, like info
addition, relate directly to a formality change, oth-
ers, such as tense changes, do not align with the
investigated styles. Mixing low-level styles may
confuse the encoding mechanisms that distinguish
higher-level styles.

Aspect Original Transferred
Info addi-
tion

Morgan Free-
man did the
new one

Morgan Free-
man did
perform the
new one.

To future
tense

It is also plan-
ning another
night of origi-
nal series.

It will be also
planning an-
other night of
original series.

Table 2: Examples from the StylePTB dataset

5 Conclusion

Learning generic, high-level text style represen-
tations from low-level, linguistically motivated
changes and generalizing to high-level styles ac-
cording to Assumption 1 by Lyu et al. (2021) using
contrastive learning according to Assumption 2 by
Patel et al. (2024) presents challenges. Although
the approach does not yield the expected results us-
ing contrastive learning, cross-entropy loss shows
improvements for some settings. However, our
approach does not yield the expected results com-
pared to previous work (Patel et al., 2024) using
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contrastive learning to learn generic style represen-
tations.

Limitations

One limitation of this study is the reliance on
the StylePTB dataset, which, to our knowledge,
is the only available dataset containing low-level
and composed stylistic changes. The dataset is re-
stricted to English, limiting the generalizability of
our findings to other languages. As style may man-
ifest differently across languages, a more diverse,
multilingual dataset would allow for broader appli-
cation and a more comprehensive evaluation of the
proposed method.

Additionally, our study focuses on contrastive
learning to capture text style representations. This
choice was made because it intuitively aligns with
the underlying assumptions of the task, but it may
not be the optimal approach for all settings.
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