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Preface

The rapid advancement of Natural Language Processing (NLP) and Large Language Models (LLMs) has
transformed the landscape of computational linguistics. However, Indo-Aryan and Dravidian Languages
(IADL), which represent a significant portion of South Asia’s linguistic heritage, remain under-resourced
and under-researched in these technological developments. This workshop aims to bridge this gap
by bringing together researchers, linguists, and technologists to focus on the unique challenges and
opportunities. Participants will explore innovative methods for creating and annotating digital corpora,
develop speech and language technologies suited to IADL, and promote interdisciplinary collaborations.
By leveraging LLMs, we seek to address the complexities of syntax, morphology, and semantics in these
languages to enhance the performance of NLP applications. Furthermore, the workshop will provide a
platform for sharing best practices, tools, and resources, enhancing the digital infrastructure necessary for
language preservation. Through collaborative efforts, we aim to build a research community to advance
NLP for IADL, contributing to linguistic diversity and cultural preservation in the digital age.

In parallel with the workshop, we have also organised a shared task to address key challenges in
transliteration for Indian languages. The primary objectives of the shared task are to develop a real-
time transliterator, effectively manage linguistic variations, and improve typing accuracy. A significant
focus of the task is on enabling the transliterator to handle ad-hoc transliterations, which involve short
typing scripts and diverse typing patterns, with or without vowel combinations. This initiative aims
to create a robust transliteration system that accommodates the dynamic and complex nature of typing
practices in Indian languages.

We received 27 submissions for the workshop and shared task. Following the review process, we
accepted 15 papers and 4 shared task submissions to appear in the workshop proceedings.

The success of IndoNLP 2025 would not have been possible without the contributions of several
exceptional individuals who supported this initiative. First and foremost, we extend our heartfelt
gratitude to the authors who submitted their work to the workshop, driving forward research in low-
resource languages across diverse areas of study. We are equally thankful to the program committee
members, whose dedicated efforts were instrumental to the success of this workshop. Their timely
engagement in the review process and constructive feedback not only enhanced the quality of the
submissions but also ensured that the papers met the highest academic standards. Moreover we would
like to thank to Prof. Pushpak Bhattacharyya for accepting our invitation to be as the keynote speaker
in the workshop. Finally, we would like to express our sincere gratitude to the Informatics Institute of
Technology, Colombo, for their generous sponsorship of the workshop. We are truly thankful to everyone
who contributed to the success of IndoNLP 2025 through their invaluable support and encouragement.
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Hindi Reading Comprehension: Do Large Language Models Exhibit
Semantic Understanding?

Daisy Monika Lal', Paul Rayson!, Mo El-Haj'
!School of Computing and Communications, Lancaster University, UK.

Correspondence: d.m.lal@lancaster.ac.uk

Abstract

In this study, we explore the performance of
four advanced Generative Al models—GPT-
3.5, GPT-4, Llama3, and HindiGPT, for the
Hindi reading comprehension task. Using a
zero-shot, instruction-based prompting strat-
egy, we assess model responses through a com-
prehensive triple evaluation framework using
the HindiRC dataset. Our framework com-
bines (1) automatic evaluation using ROUGE,
BLEU, BLEURT, METEOR, and Cosine Sim-
ilarity; (2) rating-based assessments focussing
on correctness, comprehension depth, and in-
formativeness; and (3) preference-based se-
lection to identify the best responses'. Hu-
man ratings indicate that GPT-4 outperforms
the other LLMs on all parameters, followed
by HindiGPT, GPT-3.5, and then Llama3.
Preference-based evaluation similarly placed
GPT-4 (80%) as the best model, followed by
HindiGPT(74%). However, automatic evalua-
tion showed GPT-4 to be the lowest performer
on n-gram metrics, yet the best performer on
semantic metrics, suggesting it captures deeper
meaning and semantic alignment over direct
lexical overlap, which aligns with its strong hu-
man evaluation scores. This study also high-
lights that even though the models mostly ad-
dress literal factual recall questions with high
precision, they still face the challenge of speci-
ficity and interpretive bias at times.

1 Introduction

Machine reading comprehension (MRC) in Natu-
ral Language Processing (NLP) is the task of mak-
ing machines retrieve or generate precise and con-
textually relevant answers from a specific ques-
tion and a body of text(Chen, 2018; Liu et al.,
2019; Baradaran et al., 2022). It has numerous
real-world applications, ranging from search en-
gines to educational tools and domain-specific con-

"Human annotations available athttps: //github. com/
dm12611/HindiMRC.

1

This is a Hindi reading comprehension task. You
will be given a Hindi text passage labeled P and
asked questions about it. After reading the
passage, respond to each question in Hindi,
using complete sentences and the information
provided in the passage P.

Example format:
P: [Passage here]
Q: [Question related to passage P, here]

\A: [Your complete answer based on passage P]

Figure 1: Instruction-Based Prompting Strategy for
Hindi MRC.

versational agents or chatbots (Qiu et al., 2019;
Baradaran et al., 2022; Kazi et al., 2023). MRC in-
volves understanding the underlying context and
is extremely challenging as it requires complex
cognitive capabilities like summarising, sequenc-
ing, inferencing, and comparing and contrasting
facts presented in the given text (Khashabi et al.,
2018; Gardner etal., 2019; Sun, 2021). While NLP
has seen significant advancements for widely spo-
ken languages, much of the research has left low-
resource languages like Hindi underexplored, es-
pecially for complex tasks such as MRC. (Jing and
Xiong, 2020; Nguyen et al., 2022; Lal et al., 2022).

Hindi, the fourth most-spoken language glob-
ally (Yadav, 2023), has witnessed major break-
throughs in NLP technologies in recent years.
Nevertheless, as large language models (LLMs)
emerge as the cornerstone of NLP research, it is
essential to ask: How well do these models under-
stand Hindi? While LLMs perform admirably on
surface-level tasks like text generation, text clas-
sification, and machine translation (Parida et al.,
2024) that do not always require in-depth analy-
sis of comprehension; MRC, that involves nuanced
understanding of context, factual information, and
reasoning, can serve as a benchmark for assess-

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 1-10
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ing the comprehension abilities of these models for
Hindi texts.

In this study, we investigate the performance
of four prominent LLMs—GPT-3.5 (Winata et al.,
2021), GPT-4 (Ai et al., 2023), HindiGPT?, and
Llama3 (Dubey et al., 2024)—to uncover how
well these models perform on Hindi reading com-
prehension tasks—not just in terms of accurate
answers, but the limits of their comprehension
and informativeness. To assess the performance
of each model, we conducted both automatic and
human evaluations (rating-based and preference-
based), as shown in Figure 2. The automatic
evaluations provide a quantitative assessment of
the models, while the human evaluations enable a
qualitative assessment of each model’s responses.
This extensive study allows us to investigate and
emphasize where these models thrive and where
they fall short, as well as where they need to catch
up to human comprehension.

The rest of the paper is organized as follows.
Section 2 presents prior Related Work; Section
3 outlines the Methodology; Section 4 states
the results, followed by the conclusions and
limitations in Sections 5 and 5.

2 Related Work

Researchers in the field of NLP consistently high-
light the resource limitations that hinder the de-
velopment of effective question-answering (QA)
systems for low-resource languages such as Hindi
(Maddu and Sanapala, 2024; Kumari and Shiv-
hare, 2023; Chaudhari et al., 2024). The scarcity
of high-quality, annotated datasets and linguistic
tools specifically tailored for Hindi is a significant
barrier. State-of-the-art QA models, like BERT
and GPT, rely on extensive gold-standard corpora
to produce accurate and robust results. However,
for Hindi, the availability of such resources re-
mains limited, creating a gap in model perfor-
mance (Nanda et al., 2016; GUPTA and KHADE,
2020; Khurana et al., 2024). Existing models and
datasets are primarily designed for tasks involving
short answer spans or multiple-choice responses,
which restricts their flexibility.

Another significant challenge is the constrained
context length used during model training, primar-
ily due to computational costs associated with han-

2HindiGPT available at https://chatgpt.com/g/
g-oKGVbNtmC-hindi-gpt

2
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Figure 2: Triple evaluation framework for assessing
Hindi reading comprehension in LLMs using automatic
and human evaluation methods.

- J

dling large amounts of text (Kumar et al., 2022).
As aresult, the models struggle to grasp the linguis-
tic subtleties of Hindi, such as syntax and morphol-
ogy, which can reduce overall performance (Ray
et al., 2018; Anuranjana, 2021). The complexity
of Hindi is further increased by distinct syntactic
structures, numerous semantic variants, and preva-
lent code-mixing (Hindi-English hybrids) in writ-
ten and spoken forms, add further barriers to QA
development (Viswanathan et al., 2019). However,
LLMs have shown significant potential in handling
diverse languages and can flexibly adapt to code-
mixed texts (Brown, 2020; Conneau, 2019; Raffel
et al., 2020; Chung et al., 2024), making them po-
tentially valuable tools to address Hindi NLP chal-
lenges, like reading comprehension.

3 Methods

In order to examine the comprehension abilities of
GPT-3.5, GPT-4, HindiGPT, and Llama3 for Hindi
texts, the LLMs were directed to complete the
Hindi MRC task using instruction-based prompt-
ing on the HindiRC? dataset, as described in Sec-
tions 3.1 and 3.2, respectively. We evaluated the

*HindiRC  available
erzaliator/HindiRC-Data

at  https://github.com/



Table 1: LLM responses to Hindi reading comprehension highlighting the challenge of Literal vs. Interpretive Bias.

Passage: S§ dg dgd BICT T, Tl S99 I (coincidence) q favel @1 TH(hidden) ER(entrance)
@IST(found) T oIT| ifdhe =1 S farelt T ST o @ik 71 & 399 IR H fheft 31k ! uar o) &9,

IATD JATHHUT Fal Y Fevd] AT

attack on it.

g8 519 12 TH(hidden) Ai(path) I fdbel o ST Uga IR Wel-padr ST IR J AT 3T ST
39 TH(hidden) FFT(path) BT STHHRT & ST $H fdhel TR TGS BT 3T DHIS AT | e T T T
o7 fop feraTSt =1 gHifelq S/ 37U 7T 97T, ifh g8 9 <)E a1 §31T oI fb s ol 9 SHW

When he was very young, he accidentally discovered the secret entrance of the fort. However, he
didn’t tell anyone, and no one else knew about it either. So, whenever he wanted, he would go to
the fort through the secret route, play around, and return the same way. Without knowledge of this
secret path, climbing this fort was extremely difficult. Balu understood that Shivaji had chosen it as
his stronghold for this reason, as it was built in such a way that no enemy could launch a sudden

. qTel 7 T &g T fol o ?
Question What secret did Balu know??
qTe], = Y& o T o {3 frarsft 1 59 farel 1 39 oRe a+mam o b
IS ot 917 SHUR AP STHAT & Y FebclT T Co=15
GPT-3.5 Balu discovered the secret that Shivaji had built this fort Ch=15
in such a way that no enemy could launch a sudden Iy =15
attack on it.
16 71 I8 &I A feran o & farstt 71 favet @f 31011 Tg gafely
ST AT I ST TaAT Ot oft {3 g oft o IR S 0 — 15
: o= 1.
GPT-4 ST TET PR Pl | o ChL=15
Balu discovered the secret that Shivaji had made the fort Ty =15
his stronghold because its structure was such that no enemy
could launch a sudden attack on it.
HindiGPT q1eL 7 et 1 TH SR WioH &7 W88 9 foia o g;zi"%
Balu discovered the secret of finding the fort’s secret entrance. T; = 4.0
Llama3 mﬁﬁﬁiﬁrﬂﬁ@?@ﬁmWI gZ:z?)
Balu discovered the secret entrance of the fort. T; =50

performances of the LLMs using both automatic
and human assessments, as described in Section
3.3.

3.1 Prompting Strategy

We adopted the =zero-shot, instruction-based
prompting strategy to evaluate the generalization
abilities of the LLMs on the Hindi MRC challenge
in a zero-shot setting. All four LLMs were given
the same prompt, as shown in Figure 1. This
strategy taps into the pre-trained knowledge of
the LLM without requiring any task-specific
fine-tuning. The structured guidance through
explicit instructions directs the LLM on how to
carry out a task, even if it hasn’t seen it before
(Schick and Schiitze, 2021; Liu et al., 2023; Chen

et al., 2024). Moreover, the instruction template
(Passage P, Question Q, Answer A) helps to
standardize responses across all LLMs (see Tables
1, 6), enabling direct comparison of performance.

3.2 Dataset

The HindiRC dataset (Anuranjana et al., 2019) is a
collection of 24 Hindi reading comprehension pas-
sages assembled from two educational websites,
Sandeep Barouli* and 2classnotes’. It comprises
127 questions with corresponding single-sentence
answers, manually selected from the passage by
the annotator.

4Sandeep Barouli available at
sandeepbarouli.com/
52classnotes available at https://www.2classnotes.

com/

https://



Table 2: The Rating Scale for Human Evaluation. This rating scale grades LLM responses on three criteria: cor-
rectness, comprehension depth, and informativeness, with grades ranging from 1 to 5.

Correctness (Factual and Logical Accuracy)

5 - Entirely correct

4 - Mostly correct

3 - Partially correct
2 - Mostly incorrect
1 - Incorrect

no factual errors or inconsistencies.

minor inaccuracies that don’t significantly affect meaning.
contains few inaccuracies that slightly affect meaning.
significant factual or logical errors that compromise accuracy.
fails to address the question with any factual or logical accuracy.

Comprehension (Depth of Understanding)

5 - Deep understanding

4 - Good understanding

3 - Basic understanding

2 - Limited understanding
1 - No understanding

captures nuances and underlying meanings.

covers key concepts though minor details may be missed.
general answer, missing some deeper context or meaning.
simplistic or surface-level answer, with key misinterpretations.
fails to grasp the main idea or gives an irrelevant answer.

Informativeness (Coverage of Essential Points)

5 - Fully informative

4 - Mostly informative

3 - Moderately informative
2 - Minimally informative
1 - Not informative

includes all essential points and relevant details.

covers most key points, with minor oversights.

includes some key points but misses several important details.
misses many important details.

fails to include any essential points or details.

Table 3: This table illustrates the scores for automatic evaluation metrics, ROUGE, BLEU, BLEURT, METEOR,
and Cosine Similarity (CoS). Here, R1 F1, R2 F1, and RL F1 refer to ROUGE-1 F1, ROUGE-2 F1, and ROUGE-L

F1 Scores, respectively.

Metric | GPT-3.5 | GPT-4 | HindiGPT | Llama3
R1F1 0.540 0.512 0.540 0.533
n-gram R2 F1 0.405 0.401 0.404 0.433
matching RL F1 0.510 0.494 0.515 0.516
BLEU 0.348 0.317 0.358 0.373
semantic | BLEURT 0.530 0.431 0.497 0.458
similarity | METEOR 0.515 0.516 0.507 0.508
CoS 0.922 0.924 0.924 0914

3.3 Evaluation Strategy

The evaluation setup includes seven automatic
metrics and three human evaluation rating scales.
We also use preference-based human evaluation to
gain additional insights into human preferences.

3.3.1 Automatic Assessment

The automatic assessment was carried out using
five different metrics: 1) ROUGE (Lin, 2004) pre-
dominantly assesses recall by calculating overlap-
ping n-grams (ROUGE-1), word pairs (ROUGE-
2), and word sequences (ROUGE-L), between
machine-generated and reference responses. 2)
BLEU (Papineni et al., 2002) compares the n-
grams in the machine-generated response to those
in the reference response. Typically used in transla-

tion, but can also assess how effectively a machine-
generated response captures the key terms. 3)
BLEURT (Sellam et al., 2020) is a learned met-
ric that addresses the shortcomings of conventional
n-gram-based metrics like BLEU and ROUGE. It
leverages a pre-trained transformer model to de-
termine the semantic similarity between machine-
generated and reference responses. 4) METEOR
(Banerjee and Lavie, 2005) measures semantic
similarity using synonyms, stemming, and partial
matches, and has a high correlation with human
judgment. 5) Cosine Similarity (CoS) (Rahutomo
et al., 2012) compares model-generated responses
to reference answers using word embeddings, judg-
ing similarity in sense rather than precise word



Table 4: Preference-based selection results for three annotators H1, Ho, and Hs.

GPT-3.5 | GPT4 | HindiGPT | Llama3
Hq 75% 75% 73% 65%
Ho 73% 83% 75% 68%
Hs 68% 83% 73% 68%
Avg | 2% 80% 74% 67%

match. We employed FastText Hindi® embeddings
to compute CoS.

3.3.2 Human Evaluation

Two human evaluators rated responses based
on correctness, comprehension depth, and in-
formativeness. Another set of three evaluators
determined the best responses based on overall
preferences. All evaluations were conducted on a
randomly selected set of 40 questions from eight
distinct passages.

a) Rating-based Evaluation or (Likert-rating)
involves grading each response individually
based on predefined criteria, such as correctness,
comprehension, and informativeness (described
in Table 2). This strategy allows evaluators to
express the extent to which each criterion is met.
Correctness ensures factual and logical accuracy,
which is fundamental to comprehension quality.
Comprehension measures the depth of under-
standing, indicating whether the LLM genuinely
understands the underlying context rather than
providing shallow responses. Informativeness
evaluates the information coverage, ensuring that
important facts and nuances are not overlooked.

b) Preference-based Selection (or Best-Answer
Selection) This approach requires assessors to se-
lect the answers they find most satisfactory among
the provided options. This method offers a more
precise indication of which models consistently
generate higher-quality responses, allowing for
a direct assessment of performance based on the
overall quality of response.

4 Results

The overall results of human and automatic evalua-
tions, along with the inter-rater reliability, are cov-
ered in Sections 4.1, 4.2, and 4.3, respectively.

8fasttext-hi-vectors available at https://huggingface.
co/facebook/fasttext-hi-vectors

4.1 Automatic Assessment

The results of the automatic assessment (Table
3) demonstrate that GPT-3.5 (BLEURT = 0.530,
CoS =0.922) and GPT-4 (BLEURT = 0.431, CoS
= 0.924) score better on semantic metrics, sug-
gesting that they prioritize meaning over exact
wording and structure. This indicates that for
tasks seeking nuanced interpretation and linguis-
tic mobility, these LLMs might be a preferable
choice. HindiGPT consistently performs well
across ROUGE (R1 F1 = 0.540, R2 F1 = 0.404,
and RL F1 = 0.515), BLEU (0.358), and cosine
similarity (0.924), demonstrating that it success-
fully captures meaning. This makes it suitable
for tasks where semantic comprehension is es-
sential. Llama3 exhibits notable word sequence
and phrase-matching abilities, which could signify
higher proficiency and coherence at the phrase-
level. It also scores well in BLEU (0.373) and
ROUGE metrics (R1 F1 =0.533, R2 F1 = 0.433,
and RL F1 = 0.516), suggesting that tasks where
exact match is preferred to subtle understanding
may be its ideal fit.

4.2 Human Assessment

The rating-based evaluation sheds light on how
well each LLM performed for each metric, based
on both annotators’ ratings and the confidence
intervals (Cls) around these ratings (see Table 5).

Correctness (C,): GPT-4 (A; = 4.725 + 0.029
and Ay = 4.700 £+ 0.035) has the highest mean
scores for both annotators, with very narrow Cls,
signifying high precision and annotator confidence
in ratings. HindiGPT scores (A; = 4.650 & 0.026
and Ay = 4.600 £ 0.026) fall closely behind
GPT-4, implying good precision but slightly lower
than GPT-4. GPT-3.5 (A4; = 4.625 £ 0.039
and A, = 4.550 + 0.038) and Llama3
(A1 = 4.575 + 0.039 and Ay = 4.550 + 0.029)
have comparatively lower mean scores than
GPT-4 and HindiGPT. Llama3 exhibited a wider
CI, implying greater variation in the perception of



Table 5: Human evaluation results for LLM performance across metrics (correctness (C,), comprehension (Cy ), and
informativeness (Zy)) with Mean Scores and Confidence Intervals for each model, alongside the Cohen’s Kappa

(k) statistic for inter-annotator agreement between annotators .A; and A,.

GPT-3.5 GPT-4 HindiGPT Llama3

Co | 4.625+0.039 | 4.725£0.029 | 4.650+0.026 | 4.575 + 0.039
Ay | Cp | 4.620+0.039 | 4.775+£0.034 | 4.650£0.027 | 4.600 + 0.039
Ty | 4525+0.041 | 4.750+0.028 | 4.650 +0.028 | 4.550 = 0.041
Co | 4.550+0.038 | 4.700 £ 0.035 | 4.600 + 0.026 | 4.550 + 0.029
Ay | Cp, | 4.625+£0.036 | 4.850£0.032 | 4.675+0.027 | 4.450 £ 0.036
Ty | 4575+0.033 | 4.750+£0.034 | 4.600 +0.028 | 4.450 = 0.036

Co 0.634 0.808 0.695 0.520

k | Ch 0.508 0.696 0.840 0.675

Ty 0.709 0.712 0.694 0.682

correctness.

Comprehension (Cp): GPT-4 receives the
highest scores for this measure, particularly from
Ay = 4.850 + 0.032 (A1 = 4.775 £ 0.034),
signifying GPT-4’s strong comprehension abil-
ities, particularly with a low CI, suggesting
annotators found its answers consistently compre-
hensive. HindiGPT performs well too, scoring
A; = 4.650 £ 0.027 and A2 = 4.675 + 0.027,
with consistently high comprehension scores,
although slightly lower than GPT-4. GPT-3.5 (
A; = 4.620 £ 0.039 a and Ay = 4.625 + 0.036)
and Llama3 ( A; = 4.600 + 0.039 and
As = 4.450 + 0.036) yield slightly lower
scores. Llama3 has a lower comprehension
score, demonstrating some variation in perceived
comprehension quality.

Informativeness (C,): GPT-4 obtains the
highest scores (A; = 4.750 + 0.028 and
Ao = 4.750 + 0.034), suggesting strong in-
formation coverage in responses. HindiGPT
(A; = 4.650 £ 0.028 and A5 = 4.600 + 0.028)
follows GPT-4, exhibiting adequate but
slightly less information coverage.  GPT-3.5
(A} = 4.525 £ 0.041 and Ay = 4.575 £+ 0.033)
has slightly lower scores than HindiGPT, indi-
cating that it may overlook a few crucial details.
Llama3 scores the lowest, implying having the
least information coverage and some fluctuation
in perceived quality.

Preference-based evaluation (see Table 4)
revealed that GPT-4 was consistently favoured
by the three annotators, with an average score of
80%. Its high preference indicates that, in terms of

human judgment, GPT-4’s answers were relevant,
demonstrating an excellent ability to provide
accurate and consistent responses to questions.
With an average score of 72%, GPT-3.5 was
slightly lower than GPT-4 but still obtained sig-
nificant preference, indicating that it might have
occasionally fallen short of GPT-4. With a 74%
average, HindiGPT performed in the competitive
range of GPT-4 and around GPT-3.5. Its consis-
tent ranking indicates that it offered replies that
were linguistically and semantically appropriate.
Llama3 received the lowest preference from the
annotators, with an average of 67%.

4.3 Inter-Annotator Agreement

We apply Cohen’s Kappa coefficient (k) to gauge
the inter-annotator agreement for rating-based
evaluation (McHugh, 2012). We compute x
per metric for all question-answer pairs in the
HindiRC evaluation set. Finally, we assess the
reliability for each LLM separately to determine
agreement per metric between evaluators (see
Table 5).

Correctness (C,): GPT-4 (0.808) had the highest
K for correctness, while Llama3 (0.520) had the
lowest. This suggests that GPT-4 responses were
more reliable and easier for annotators to agree on.
Annotators were relatively in agreement on the
correctness of this GPT-3.5 (0.634) and HindiGPT
(0.695) responses.

Comprehension (Cp): HindiGPT (0.840)
obtained the highest x for comprehension, sug-
gesting that the responses were generated with
in-depth understanding of the context that leads
to accurate answers. In contrast, GPT-3.5 (0.508)



Table 6: LLM responses to Hindi reading comprehension highlighting the challenge of fact recall and specificity
in responses.

Passage: 3R gHRI 7 el HHRU I & ol BT folad o, dfcd IH THI S I1G2MTel Bl Her™T
4 ot e folay 911 9 gg |+t AT ofdl o AR <07 & H 370 FEIge Bl SileR |l feger o b
AT 3R GRAT H THIIT SR 3Fieh IIEATET A I6 AU SRAR H &M 39 YBR Tl H <l STl

o7 3R I8 s NIRRT bt To=T oft i

T 3rerfcell TSl H ola” Heel Ao SR GERI dI URifg thet 15| ST UG BT T HRUT I
EUIRCACESEII a@m%m(expeﬂ in music) | I8 M-I &7 3FesT g (knowledge)

Amir Khusro not only wrote poems for the common people but also composed poetry in praise of the
kings of his time. He participated in wars and displayed his bravery on the battlefield as well.
Impressed by his poetry and valor, many kings kept him in their courts. Thus, Amir Khusro’s fame
spread from the common folk to royalty, from humble huts to grand palaces. One reason for his fame
was his talent as a musician. He was a knowledgeable musician. He had a good knowledge of
Raga-Raginis. He also composed many Raga-Raginis.

Question 3R GERY e ST A9 ST o 2
Amir Khusro was considered knowledgeable in what?
: Co=5.0
GPT-3.5 meéﬁmqﬁmm . . Cp=4.5
Amir Khusro was considered knowledgeable in music. T; = 4.0
3R GERT Tl & ST AW A1 &, Ie -AMAFIT 7 37287 314
ofT 3R I s IM-IARAT I I97 off i Co = 5.0
GPT-4 Amir Khusro was considered knowledgeable in music; he Crn=15.0
had a deep understanding of Raga-Raginis and also Iy =50
composed many Raga-Raginis.
3 NS 8 Co=3.0
HindiGPT ¥ G T i I ST : . Cp = 3.0
Amir Khusro was considered knowledgeable in Raga-Raginis. T 3.0
f =9
3R GERT T & ST A S &, I8 R-AAAT BT 37T &1 o1l | C, = 5.0
Llama3 Amir Khusro was considered knowledgeable in music; he C,=5.0
had a good understanding of Raga-Raginis. Iy =50

showed moderate agreement, indicating a degree
of variability in perceived comprehension qual-
ity. GPT-4 (0.696) and Llama3 (0.675) showed
substantial agreement, indicating that annotators
were generally aligned.

Informativeness (Zy):  All models exhibited
relatively similar kappa scores for informative-
ness, with substantial agreement across GPT-3.5
(0.709), GPT-4 (0.712), HindiGPT (0.694), and
Llama3 (0.682). This consistency indicates that
informativeness was relatively straightforward to
assess, resulting in consistent alignment amongst
annotators.

5 Conclusion

In this study, we use a novel triple assessment
framework to compare the performance profiles of

LLMs, GPT-3.5, GPT-4, Llama3, and HindiGPT
for Hindi reading comprehension. The ability of
GPT-4 to generate contextually relevant and mean-
ingful responses is demonstrated by its preference
rating of 80%, which consistently outperformed
competing models across all human-evaluated
metrics—correctness, comprehension depth, and
informativeness. With competitive scores, particu-
larly in correctness and comprehension, HindiGPT
and GPT-3.5 trailed closely behind. GPT-3.5
was somewhat preferred above HindiGPT for per-
ceived understanding and precise responses.

The results of automatic evaluations presented a
contrasting picture, indicating fewer exact matches
with reference texts, particularly for GPT-4 with
lower n-gram metric scores (ROUGE and BLEU).
The high human evaluation scores of GPT-4 are
consistent with its superior alignment with the un-




derlying meaning as measured by semantic metrics
(BLEURT and Cosine Similarity), which show a
greater grasp of the text than surface-level simi-
larity. This comparison of automatic and human
evaluations highlights the significance of semantic-
based metrics and human evaluations for precisely
assessing the level of a LLM’s comprehension, par-
ticularly in non-English languages like Hindi.

Limitations

Our research reveals limitations in some of the
metrics which do not align well with human
assessment. As well as limitations of the domains
or topics expressed within the dataset, our results
are tied to the current versions of the four specific
LLMs that we have used in our experiments.
In future work, we will test other open-source
models. In some cases, we find that models have
a tendency to overinform in their answers, and we
will investigate further techniques to reduce this.

Literal vs. Interpretive Responses: In Ta-
ble 1, the question “What secret did Balu
discover?” seeks a factual answer about the "0
a"(secret entrance).” HindiGPT and Llama3
are more literal in answering the question, pro-
viding answers that adher to exact phrases from
the passage. However, GPT-3.5 and GPT-4
misinterpret the question’s focus and provide an
interpretative response about the strategic purpose
of the fort’s design, showing an interpretive bias
(Sheng et al., 2019; Bender et al., 2021). This
disparity between question focus and model
response arises because of the models’ tendency
to prioritize interpretations and contextual mean-
ing over literal facts. The likelihood of LLMs
adding extraneous information is a common is-
sue with models in open-ended tasks (Koul, 2023).

Fact Recall and Specificity in Responses:
In Table 6, in response to the question “Amir
Khusro was considered knowledgeable in what?”,
the factual answer is SWd(music), as the passage
makes it abundantly evident that Khusro was
an expert in music and that his knowledge of
Raga-Raginis was a core reason for his fame.
Yet, the models provided responses with varying
degrees of specificity highlighting a gap in fact
recall (Petroni et al., 2019). GPT-3.5 states that
Amir Khusro was knowledgeable in music, but
it omits the details of Raga-Raginis, giving a
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less comprehensive response. GPT-4 correctly
mentions Amir Khusro’s expertise of music and
Raga-Raginis, and it also adds that he composed
many of them. HindiGPT generates a partially
correct response. It focuses on “Raga-Raginis”
but omits the broader aspect of Amir Khusro’s
music knowledge, missing the broader context
of his musical knowledge and his composition
of them. Is informative but lacks the extra detail
about his compositions. Llama3’s provides a good
amount of detail, mentioning both music and
Raga-Raginis, but omits the fact that Amir Khusro
composed them.
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Abstract

With the advent of Web 2.0, digital platforms
have become increasingly multilingual. Non-
English speakers are rapidly adopting their na-
tive languages on social media, highlighting
the need for robust translation and transliter-
ation models to facilitate effective communi-
cation. This systematic review paper provides
an overview of recent machine translation and
transliteration developments for Indo-Aryan
languages spoken by a large South Asian pop-
ulation. The paper examines advancements in
translation and transliteration systems for a few
language pairs that have appeared in recently
published papers in the last half a decade. The
review summarizes the current state of these
technologies, providing a worthwhile resource
for anyone who is doing research in these fields
to understand and find existing systems and
techniques for translation and transliteration.
The current challenges and limitations in the
current systems are identified, and possible di-
rections are suggested.

1 Introduction

The Indo-Aryan languages constitute a main branch
of the Indo-European language family, predomi-
nantly spoken in Central and North India as well
as in neighbouring countries such as Sri Lanka,
Pakistan, Nepal, Maldives, Bangladesh and Bhutan
(Pal and Zampieri, 2020). The large linguistic vari-
eties within the Indo-Aryan language family make
it challenging to communicate both outside and
within the region. Machine translation and translit-
eration systems help to bridge language barrier,s
enabling effective communication between differ-
ent linguistic societies.

The goal of this review paper is to provide an
overview of the current state of machine transla-
tion and transliteration techniques for Indo-Aryan
languages. The review discusses diverse tech-
niques used in the recently published translation
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and transliteration systems which handle the var-
ious scripts and linguistic features of Indo-Aryan
languages.

The contribution of this study can be summa-
rized as performing a systematic review of existing
translation and transliteration techniques related
to Indo-Aryan languages, highlighting the signifi-
cant contributions and developments made by re-
searchers in this constantly developing field. Going
forward, the review is structured to clearly look into
the recent developments in machine translation and
transliteration for Indo-Aryan languages. Starting
with the methodology explains how studies were
selected based on their relevance. The following
sections dive into various translation and transliter-
ation approaches and outline the challenges faced
in the field.

2 Methodology

A systematic approach was adopted in this review
to choose the relevant studies on machine transla-
tion and transliteration for Indo-Aryan languages.
A comprehensive search was conducted across sev-
eral major academic databases, including IEEE
Xplore and Google Scholar. In addition to the
academic database searches, several key papers
were identified from references cited in already
published research, ensuring a wide-ranging collec-
tion of studies relevant to the focus of the review.
Keywords such as "machine translation", "translit-
eration" and "Romanized languages" were used to
identify relevant literature. To avoid redundancy,
duplicate publications across different databases
were identified and removed.

This review focused on papers published from
2018 to the available 2024 publications to ensure
that the recent advancements were included. Stud-
ies were chosen based on the relevance to machine
translation and transliteration within the context of
Indo-Aryan languages. This review also includes

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 11-21

January 20, 2025. ©2025 Association for Computational Linguistics
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papers that have proposed and utilized relevant
techniques as part of their work while not directly
focused on translation or transliteration. Specifi-
cally, the papers which proposed novel methodolo-
gies or made outstanding contributions to the field
were prioritized. Figure 1 illustrates the systematic
flow of the paper selection process.

3 Machine Translation (MT) and
Transliteration

Machine Translation (MT) is the study of how to
use machines to translate from a source language
into another target language. This concept was
first put forward by Warren Weaver in 1947 (Wang
et al., 2022). From then on, MT has been one of
the most challenging tasks in the natural language
processing (NLP) field. Figure 2 is an example of
machine translation between Sinhala and English.

Machine transliteration is the process of words
transformation from one language into their pho-
netic equivalent of another. There are two types
of machine transliteration: forward and backward
transliteration. forward transliteration is the pro-
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cess of transliterating a word to a foreign language
from the language from which it originated. On
the other hand, when a word is converted back to
the language of its origin from a foreign language,
it is known as backward transliteration (Kaur and
Garg, 2022). Figure 3 illustrates the difference be-
tween forward and backward transliteration using
Romanized Sinhala.

4 Approaches in Machine translation and
Transliteration

Many machine translation and transliteration sys-
tems have been implemented for Indo-Aryan lan-
guages. Since transliteration is considered a form
of translation, both translation and transliteration
systems have used similar approaches. The fol-
lowing section will discuss the various machine
translation and transliteration approaches found in
the literature. Here, the ISO 15919 standard' for
the transliteration of Devanagari and related Indic
scripts into Latin characters has not been the focus,
but it may be relevant in rule-based approaches.

4.1 Rules-based Machine Translation
(RBMT)

RBMT (Rules-Based Machine Translation) is a
type of MT system which translates languages
based on the rules which represent linguistic knowl-
edge. Large number of linguistic terms can be ap-
plied to using the Rules-Based Machine Translation
methodology in 3 stages: analyzing, transferring,
and generating. Programmers and linguists who
have already spent a significant amount of time to
understand the principles and patterns between 2
languages have established rules. RBMT methods
only produce good results only if the translation
rules are applied correctly. Transfer-based machine
translation and Interlingual machine translation are

1https: //www.unige.ch/biblio_info/files/5116/
3775/9122/1S0_15919_en.pdf



two main types of RBMT (Khepra et al., 2023).

Transfer-based machine translation: This MT
type breaks down the process of translation into
several subtasks, such as morphological analysis,
syntactic parsing, and semantic analysis, and then
translates the meaning of source input into the tar-
get languages. This approach is useful to handle
complex grammatical structures and idiomatic ex-
pressions (Khepra et al., 2023).

Interlingual machine translation: This approach
involves using an intermediary language to trans-
late between the source and target languages and
then translate it into the target language. One of
the major advantages of this approach is that it can
handle multiple languages at once, and it may bring
down errors in the output (Khepra et al., 2023).

4.2 Corpus-based Machine Translation
(CBMT)

Corpus-based machine translation (CBMT) relies
on large amounts of parallel corpus (bilingual text)
to train statistical models for translation. The mod-
els are trained to learn patterns in the data, then use
those patterns to make translations. The study by
Khepra et al. (2023) describes two types of CBMTs:
Example-based machine translation and Statistical
Machine Translation (SMT).

Example-based machine translation (EBMT):
This type of MT uses a bilingual sentence pairs
database to translate text. The system gets the most
similar sentence pair from the database and use it
to generate the target sentence. This approach is
useful to handle less common language pairs or
rare languages (Khepra et al., 2023).

Statistical Machine Translation (SMT): In Statis-
tical Machine Translation, the model is developed
completely from the information in corpora without
user intervention. It was the dominant paradigm
up until the beginning of 2010. A computer re-
quires examples which provide information about
the translation of the phrases (the bilingual word
mappings) and the appropriate placements of the
converted words in the targeted phrase (alignment)
to learn how to translate (Khepra et al., 2023).

4.3 Knowledge-based Machine Translation
(KBMT)

This kind of MT uses a predetermined set of gram-
matical and lexical rules to translate text. A differ-
ent name for it is a rule-based machine translation.
KBMT is especially advantageous in its capability
to handle specific domains such as legal or tech-
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nical texts where the text structure is well-defined
(Khepra et al., 2023).

4.4 Neural Machine Translation (NMT)

Neural Machine Translation (NMT) uses deep
learning techniques to train an MT model on large
amounts of parallel data. Typically, NMT mod-
els are more accurate than rule-based or statistical
models but also need more computational resources
for the training process (Khepra et al., 2023).

4.5 Hybrid Machine Translation

This approach is one of the latest approaches in
machine translation systems. This will be devel-
oped with the combination of more than one exist-
ing MT-based approach. Two or more approaches
discussed in the above sections can be used in
the Hybrid approach to produce accurate results
(Sumanathilaka et al., 2023).

4.6 Discussion of MT Approaches

Each machine translation (MT) approach has dif-
ferent strengths and limitations according to their
underlying mechanisms. To address some of the
issues with these single approaches, researchers
have used a combination of these approaches to
overcome those issues. RBMT and KBMT ap-
proaches depend on predefined rules, making them
effective for structured texts. However, those ap-
proaches struggle with unseen text which does not
follow predefined rules. CBMT approaches, includ-
ing SMT and EBMT, utilize large parallel corpora,
offering more adaptability, but these approaches
require substantial data. NMT can be identified as
the most commonly used approach recently. Both
NMT and CBMT face the challenge of data scarcity
for low-resource languages. When corpus size is
small, SMT performs better than the NMT accord-
ing to results obtained by Tennage et al. (2017).
Recently, there has been an outstanding trend to
use transformers (Vaswani et al., 2017), which is
one of the latest NMT approaches.

5 Current State of Machine Translation
for Indo-Aryan Languages

This section provides an overview of the current
state of MT approaches developed for diverse Indo-
Aryan language pairs.

5.1 Hindi-English Translation

Recently, NMT has been broadly explored for this
language pair. Singh et al. (2019) proposed LSTM



(Long Short-Term Memory) based NMT system
for English-Hindi translation showing promising
results, especially for shorter sentences. Further
advancements include the study by Tiwari et al.
(2020), who suggested 2 other NMT approaches,
which are ConvS2S and LSTM Seq2Seq, with
the ConvS2S model outperforming the proposed
LSTM model. Similarly, Gogineni et al. (2020)
proposed an NMT model based on Bidirectional
LSTM (BiLSTM), outperforming the traditional
SMT approaches in terms of BLEU scores. At-
tention mechanisms have also been a major focus
in enhancing the performance of NMT systems.
Laskar et al. (2019) studied the comparison be-
tween two NMT approaches, one based on the
modern transformer model, which is based on a
recently introduced self-attention mechanism and
the other on the LSTM. The results demonstrated
that the transformer-based model outperformed the
LSTM-based model. Rose et al. (2023) showed
that incorporating an attention mechanism into an
Encoder-Decoder-based LSTM model significantly
improved the translation. The use of a guided trans-
former model proposed by Bisht et al. (2023) fur-
ther increased the translation performance by inte-
grating dependency parsing into the encoder. For
addressing challenges in long sentence translation,
Sarode et al. (2023) explored the Recurrent Neu-
ral Networks (RNN) and Gated Recurrent Units
(GRU) usage in a Seq2Seq architecture with an
attention mechanism. Lastly, Watve and Bhalekar
(2023) implemented a transformer-based English-
to-Hindi translator, contributing to the improve-
ment of work in this area.

5.2 Sinhala-English Translation

To improve the accuracy of Sinhala to English
translation, Nugaliyadde et al. (2019) proposed a
novel approach using an Evolutionary Algorithm
(EA). This method iteratively refines the transla-
tion ensuring that the final output is meaningful and
grammatically correct. According to their paper,
this is one of the early efforts to apply EA in MT
for Sinhala-English language pairs. Fonseka et al.
(2020) introduced a transformer-based translation
system particularly developed for translating offi-
cial government documents between English and
Sinhala. To address one of the common issues in
MT, which is the out-of-vocabulary (OOV) issue,
they implemented Byte Pair Encoding (BPE). Fur-
ther advancements were made by researchers who
explored the document alignment in Sinhala and
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English. For example, research extended the Si-Ta
(Ranathunga et al., 2018) system (Will be discussed
in the next section) to include SMT techniques im-
proving the alignment process between Sinhala and
English texts (C et al., 2020). To enable Sinhala
speakers to search English web content effectively,
Hisan et al. (2020) focused on a cross-language in-
formation retrieval system using word embeddings
to enhance the translation of Sinhala queries into
English. Additionally, Sandaruwan et al. (2021)
addressed the challenge of translating Romanized
Sinhala into English. They built a Seq2Seq NMT
model with an attention mechanism that effectively
handled the various spelling variations in Singlish.
In this system, a deep multi-layer RNN, which
consists of bidirectional LSTMs, is considered re-
current units.

5.3 Sinhala-Tamil Translation

The first dedicated MT system for Sinhala and
Tamil official documents was Si-Ta which is pro-
posed by Ranathunga et al. (2018). Nissanka et al.
(2020) further explored Neural Machine Trans-
lation for this pair of languages using Byte Pair
Encoding (BPE) to address the OOV problem as
described above in the study by Fonseka et al.
(2020). In their approach, they combined mono-
lingual and parallel corpus data utilizing trans-
former architecture to improve translation accu-
racy. In a study comparing different translation
models done by Pramodya et al. (2020), they found
that the introduction of the Incrementally Filtered
Back-Translation technique, which was proposed
by Arukgoda et al. (2019), enabled NMT mod-
els to surpass SMT models, especially in low-
resource conditions. They compared different trans-
lation models, including RNNs, SMT and Trans-
former models for Tamil to Sinhala translation.
Thillainathan et al. (2021) extended this line of
research by fine-tuning modern pre-trained large
language models such as mBART for extremely
low-resource translation tasks. They showed that
fine-tuning these models significantly enhanced
the quality of translation for Sinhala-Tamil, espe-
cially in domain-specific contexts (such as official
government documents) compared to traditional
Transformer-based NMT models.

5.4 Punjabi-English Translation

SMT-based system for Punjabi-English language
pair using the Moses toolkit has been studied by Jin-
dal et al. (2018). That involved creating a 20,000-



sentence parallel corpus encompassing diverse do-
mains and utilizing GIZA++ for word alignment.

5.5 Bengali-English Translation

Research on Bengali-English translation has been
focused on both NMT and SMT approaches. Rah-
man et al. (2018) proposed an MT system which
uses a corpus-based method with an N-gram lan-
guage model. The results of this system have been
shown to outperform Google Translate in terms of
computational efficiency and accuracy. More re-
cently, Paul et al. (2023) evaluated four different
Seq2Seq models, which are LSTM, GRU, BiLSTM
and Bidirectional GRU (BiGRU), concluding that
the BiLSTM model performed well achieving high
BLEU scores.

5.6 Sanskrit-Hindi Translation

For the Sanskrit-Hindi language pair, a Corpus-
Based Machine Translation (CBMT) system using
deep neural networks to translate Vedic texts and
other sacred writings was proposed by Singh et al.
(2020). This system was able to handle phrasal and
idiomatic expressions, achieving a BLEU score of
41.17. Lastly, Bhadwal et al. (2020) explored an
RBMT model which utilizes a direct (dictionary-
based) approach for translating text from Hindi to
Sanskrit.

5.7 Sanskrit-Gujarati Translation

Raulji et al. (2022) introduced a novel framework
to translate Sanskrit to Gujarati using a symbolic
approach. They focused on keeping grammatical
structures through a sequential process involving
morphological and syntactic analysis, lexical trans-
fer and grammatical transfer. This system achieved
a BLEU score of 58.04 despite the challenge of
scarcity of resources, which demonstrated the effec-
tiveness of this system for low-resource languages.

5.8 Urdu-English Translation

A study proposed by Naeem et al. (2023) evaluated
the performance of different neural network models
(RNN, GRU, and LSTM) for translation between
English and Urdu languages and the results showed
that the GRU model outperformed the others.

5.9

Recent research on the Marathi-English transla-
tion has been relatively limited. For the Marathi-
English translation, Gunjal et al. (2023) proposed
a Seq2Seq transformer model, which was trained

Marathi-English Translation
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on a large dataset of parallel English-Marathi sen-
tences and achieved a BLEU score of 41. 99.

5.10 Kashmiri-English Translation

Research on the Kashmiri-English language trans-
lation has also been relatively limited. A study
(Giri et al., 2024) proposed an RNN-based MT
system focusing on the tourism domain. This sys-
tem is structured on an Encoder-Decoder model,
indicating initial efforts for this pair of languages,
especially in domain-specific contexts.

5.11 Other Multilingual Translation

A study proposed by Sen et al. (2018) introduced
two multilingual Transformer architecture-based
NMT models: many-to one (7 Indic languages to
English) and one-to-many (English to 7 Indic lan-
guages). The results showed that multilingual NMT
performs better than separate bilingual NMT mod-
els if the target side has only one language (En-
glish). When the target has many languages, multi-
lingual NMT performance degrades compared to
bilingual models for relatively high-resource lan-
guages. Further advancements in multilingual lan-
guage translation involve the inclusion of Hindi,
Telugu, Kannada and English within a single sys-
tem (Chimalamarri et al., 2020). This study im-
proved transformer-based NMT models by incor-
porating source-side morpho-linguistic features,
which are word-based, BPE-based, and morpho-
lexical features with POS tags. The results showed
significant enhancements in the translation pro-
cess for all language pairs by incorporating source-
side morpho-linguistic features, especially morpho-
lexical features with POS tags. Another important
translation system based on pre-trained mT5 trans-
former was fine-tuned to translate between Hindi,
Bengali, and English (Jha et al., 2023). That system
leveraged the extensive multilingual capabilities in
the mTS5 model, achieving high BLEU scores for
Bengali-English and English-Bengali translations.

6 Current State of Machine
Transliteration for Indo-Aryan
Languages

The transliteration of Indo-Aryan languages has
been a challenge of research for several decades.
There are various models proposed to address the
complexities of converting text from one script
to another. Over the years, the transliteration ap-
proaches have improved from traditional rule-based



methods to modern neural and hybrid models, re-
flecting the increasing computational capabilities.
From 2018 to 2024, there were more studies on
transliteration systems for Sinhala compared to
other Indo-Aryan languages.

In 2018, significant contributions were made to
transliteration with the development of rule-based
and modern machine-learning approaches. A rule-
based transliteration system for Romanized Sinhala
was proposed, using phonetic and transliteration
rule bases to transliterate Romanized text into na-
tive Sinhala script. While effective, the system
faced limitations in handling ambiguities, particu-
larly with proper nouns(Vidanaralage et al., 2018).
Another study experimented with Seq2Seq and
LSTM models to develop a scalable transliteration
pipeline for Indian languages and evaluated differ-
ent language transliterations. The results showed
that the Seq2Seq models outperformed traditional
LSTM models, although they need large datasets
for effective training (Joshi et al., 2018). Addi-
tionally, a character-level transliteration tool was
created to improve Tamil to Sinhala NM, T demon-
strating the utility of rule-based methods in trans-
lation tasks (Tennage et al., 2018). According to
their literature, that was the first Tamil to English
and Sinhala to English transliteration tool that used
a rule-based approach.

In 2019, Priyadarshani et al. (2019) introduced a
hybrid approach using SMT and machine learning
to transliterate personal names in the Sri Lankan
context using Moses SMT toolkit for Sinhala,
Tamil and English languages. This system showed
the importance of incorporating ethnic origin clas-
sification for personal name transliteration to im-
prove accuracy. Another significant transliteration
approach was the Gurmukhi to Roman transliter-
ation, which used character mapping and hand-
crafted rules for the transliteration of Punjabi to
English with a good accuracy of 99.27% (Singh
and Sachan, 2019).

There were further advancements in transliter-
ation techniques during 2020 and 2021, particu-
larly with the use of neural networks. A rule-based
method which is proposed by UCSC is combined
with a trigram model trained on social media text to
improve the Sinhala transliteration accuracy in the
study by Liwera and Ranathunga (2020). Another
study in 2021 introduced a rule-based approach
for Singlish to Sinhala transliteration with an error
correction module to improve accuracy (Silva and
Ahangama, 2021). Singh and Bansal (2021) exper-
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imented with various neural architectures for the
transliteration of Hindi and Punjabi languages. Out
of those, a model with a character/grapheme level
bidirectional encoder and auto-regressive decoder
proved to be the best-performing architecture. In
the same year, a systematic approach employing
phrase-based statistical machine translation (PB-
SMT) to create an English-Hindi parallel database
for transliteration was introduced (Mogla et al.,
2021). Another work in 2021 was the develop-
ment of a Python-based algorithm to transliterate
between Devanagari or Roman scripts and Brah-
mic scripts, and vice versa (Nair and Ahammed,
2021). Additionally with the introduction of a
method for normalizing and back-transliterating
Hindi-English code-switched text, this field saw
further innovation (Parikh and Solorio, 2021). This
system first normalized Romanized Hindi with the
use of the Seq2Seq model based on an LSTM
encoder-decoder architecture and then syllabified
the tokens to map them to the Devanagari script.
This approach could handle informal typing vari-
ations and phonetic discrepancies, improving the
transliteration.

Moving into 2022, Swa-Bhasha (Athukorala and
Sumanathilaka, 2022) proposed a novel approach
using a combination of rule-based methods and
fuzzy logic to transliterate Singlish to Sinhala even
when vowels are omitted. This system has intro-
duced a new numeric coding system to use with
the Romanized Sinhala letters by matching with
the recognized typing patterns. Fuzzy logic-based
implementation has been used for the mapping
process. Another back-transliteration system for
Romanized Sinhala to Sinhala was proposed by
Nanayakkara et al. (2022) utilizing a Translitera-
tion Unit (TU) based model and a BILSTM encoder
combined with an LSTM decoder. Moreover, in
2022, a bilingual RBMT system was developed
for Sanskrit-English. This system allowed users
to type Sanskrit using English orthography and
transliterate Sanskrit text into the English script
(Sethi et al., 2022).

In 2023, Sharma et al. (2023) introduced a Gener-
ative Adversarial Networks (GANSs) based system
using Pix2Pix GAN architecture to transliterate an-
cient Indian scripts (images) like Nandinagari and
Sharda into modern Devanagari script (images). Ya-
dav and Kumar (2023) proposed a hybrid approach
to transliterate Hindi to English which includes im-
age processing and a model trained with attention.
The final phase of the proposed system, which is



the transliteration phrase, used the Python Indicate
Transliteration library to transliterate Hindi charac-
ters into the Roman script. In the same year, Swa-
Bhasha hybrid approach combining statistical meth-
ods with a Trigram and rule-based model was pro-
posed for Singlish back transliteration (Sumanathi-
laka et al., 2023). Additionally, it incorporated a
Trie data structure to generate word suggestions.
The work by Athukorala and Sumanathilaka (2022)
has achieved 0.64-word level accuracy while Li-
wera and Ranathunga (2020) achieved 0.52-word
level accuracy. This Swa-Bhasha system has per-
formed much more accurately with 0.84-word level
accuracy compared to the existing transliteration
works for Sinhala. By applying a similar hybrid
approach, another back-transliteration system for
Romanized Tamil, TAMZHI, was proposed by
Mudiyanselage and Sumanathilaka (2024). This
system achieved 93% accuracy at the character
level and 70% at the word level, further demon-
strating the effectiveness of this method.

In 2024, further advancement was made with the
introduction of Swa Bhasha 2.0 (Dharmasiri and
Sumanathilaka, 2024), which is developed to ad-
dress the ambiguities of Romanized Sinhala back
transliteration using GRU-based NMT. Also, the
study of Swa-Bhasha Dataset (Sumanathilaka et al.,
2024) introduced a rule-based transliteration tool
which can annotate Sinhala words into Romanized
Sinhala. This system can accommodate the vari-
ous ad hoc typing patterns used by the community.
Finally, in 2024, another model was proposed for
accurate cross-script conversion, focusing on the
hybrid model development for transliteration. This
study compared two models: a hybrid of Seq2Seq
with LSTM and a hybrid of rule-based and NMT
approaches. Seq2Seq with an LSTM-based model
demonstrated superior performance, especially in
back-transliterating English text into different Indic
languages (Shukla et al., 2024).

7 Gaps and Challenges in Machine
Translation and Transliteration for
Indo-Aryan Languages

Despite significant advancements in the field of
machine translation (MT) and transliteration for
Indo-Aryan languages, there are still several chal-
lenges and gaps that can be identified. Addressing
these will be important to develop reliable systems
for any language. This section describes some of
the identified gaps and challenges in this field.
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7.1 Data Scarcity

Data scarcity in low-resource languages presents
significant challenges to machine translation and
transliteration, especially when using neural ma-
chine translation and corpus-based translation ap-
proaches like statistical machine translation (SMT).
This problem gets worse in NMT approaches be-
cause these models are even more data-hungry than
SMT. Some studies have shown that when corpus
size is small, SMT performs better than the NMT
(Tennage et al., 2017). Even though the transformer
architecture, one of the latest NMT approaches,
has shown outstanding results with high-resource
language pair translation, recent studies have still
conducted only a small number of works on Indo-
Aryan languages because of data scarcity problems.

7.2 Complex Morphological and Syntactic
Structures

The complex grammatical structures and rich mor-
phology of Indo-Aryan languages, where a single
word can have multiple forms depending on tense,
gender, and case, pose challenges to translation sys-
tems. Syntactic differences between Indo-Aryan
languages and other language families like English
also complicate the translation process, especially
with idiomatic expressions.

7.3 Out-of-Vocabulary (OOV) Words

The "out of vocabulary" (OOV) issue in this field
refers to the problem which occurs when a source
language word is not present in the vocabulary
ofthe translation/transliteration system, meaning
it has not been seen or learned during training.
OOV words might include rare terms, names or
new slang. Techniques such as Byte Pair Encod-
ing (BPE) have been used to address this issue in
recent systems, but this issue still persists in some
developments.

7.4 Code-Mixing

A significant number of people use social media in
various native languages other than English. How-
ever, most of these people do not use Unicode
characters to represent their languages. Instead,
they use phonetic typing with the English alphabet.
Therefore, people express their native languages
using the English alphabet, and they even insert
English words mixed up with the native language
words. This phenomenon is known as code-mixing
(Smith and Thayasivam, 2019). Also, sometimes,



people write in their native script and insert En-
glish words using the English alphabet. Some of
the current MT and transliteration systems struggle
to handle mixed language inputs.

7.5 Variations in Transliteration

When people use transliterated text, especially Ro-
manized forms of Indo-Aryan languages, the writ-
ing patterns they use to express their native lan-
guage vary from person to person. Also, these
typing patterns change depending on the time and
the mood of uthe ser (Sumanathilaka et al., 2024).
Common variations in transliterated text include
ambiguous consonant transliteration, vowel drop-
ping, long vowel transliteration, double consonant
transliteration, slang and abbreviations (Parikh and
Solorio, 2021). These inconsistencies make it chal-
lenging to convert the transliterated text back into
the native script. Few recent developments have
focused on addressing these typing variations.

7.6 Word Ambiguity

Word ambiguity, where a single word can represent
multiple meanings based on the context of the sen-
tence, remains a key challenge. Addressing this
problem is known as word sense disambiguation.
While SMT and NMT approaches, such as LSTM
and GRU models, can retain contextual information
to some extent, they have not provided an optimal
solution. The transformer architecture can offer
a better approach. However, only a few transla-
tion/transliteration systems have been developed
with this architecture, and it seems they have not
given much direct attention to this problem.

8 Conclusion

The review highlights significant advancements in
machine translation and transliteration for Indo-
Aryan languages. Translation systems have seen
notable improvements in accuracy with the ad-
vancement of natural language processing. In
transliteration, there has been progress in convert-
ing text between different scripts by managing the
phonetic variations. Notably, both translation and
transliteration have seen significant enhancements
with the advent of transformer architecture varia-
tions, which is marking a promising direction for
future research in this field. These developments
are important in improving effective communica-
tion and access to information across different Indo-
Aryan language communities.
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Limitations

This systematic review has several limitations that
need to be considered. Considering only papers
published between 2018 and 2024 might have
left out earlier important studies which could pro-
vide more details on how machine translation and
transliteration related to Indo-Aryan languages
have evolved. This review only included papers
which are freely available. As a result, it might
have missed important studies published in less
accessible journals or conference proceedings. Ad-
ditionally, using specific keywords to find relevant
studies might have caused important studies which
do not use these exact keywords to be missed.
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Abstract

As short text data in native languages like
Hindi increasingly appear in modern media,
robust methods for topic modeling on such
data have gained importance. This study in-
vestigates the performance of BERTopic in
modeling Hindi short texts, an area that has
been under-explored in existing research. Us-
ing contextual embeddings, BERTopic can
capture semantic relationships in data, mak-
ing it potentially more effective than tradi-
tional models, especially for short and diverse
texts. We evaluate BERTopic using 6 differ-
ent document embedding models and compare
its performance against 8 established topic
modeling techniques, such as Latent Dirich-
let Allocation (LDA), Non-negative Matrix
Factorization (NMF), Latent Semantic Index-
ing (LSI), Additive Regularization of Topic
Models (ARTM), Probabilistic Latent Seman-
tic Analysis (PLSA), Embedded Topic Model
(ETM), Combined Topic Model (CTM), and
Top2Vec. The models are assessed using co-
herence scores across a range of topic counts.
Our results reveal that BERTopic consistently
outperforms other models in capturing coher-
ent topics from short Hindi texts.

1 Introduction

Topic modeling is a widely-used technique in
text mining that identifies underlying themes
within textual data. BERTopic, a newer model
in this field, has demonstrated its effectiveness
by using pre-trained document embedding mod-
els and unsupervised clustering algorithms to
form topic groups with high semantic coherence
(Grootendorst, 2022). Unlike traditional models,
BERTopic’s use of embeddings allows it to cap-
ture contextual information, such as identifying
named entities and associating them with relevant
topic clusters that older approaches struggle with
(Peters et al., 2018; Liu et al., 2019). Existing
research on topic modeling for Hindi texts has
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largely focused on traditional methods that rely on
probabilistic frameworks and matrix factorisation,
which often overlook natural language semantics
(Ray et al., 2019). Also, these studies primarily
focus on long text documents, leaving a gap in the
exploration of short Hindi texts, which are increas-
ingly common in todays digital landscape.

Topic modeling in Hindi faces several unique
challenges. Hindi does not use capitalisation to
differentiate proper nouns from other word forms,
complicating named entity recognition. Addition-
ally, the lack of standardised spelling leads to mul-
tiple variations of the same word (Figure 1), cre-
ating ambiguity. Hindi also often employs repet-
itive expressions for emphasis, which can affect
tokenization and cross-language natural language
processing tasks (Ray et al., 2019).

This study aims to demonstrate that traditional
topic models often fall short in capturing the se-
mantic meaning of Hindi text due to these inherent
challenges and struggle with the nuances of short
texts where semantic meaning is more compressed
and context-dependent. The contributions of this
paper are as follows:

* Conducting a comprehensive comparison of
BERTopic’s performance across several as-
pects:

— Evaluating BERTopic using different
sentence transformer models such as
HindSBERT-STS (Joshi et al., 2022),
XLM-R  (XLM-RoBERTa) (Conneau
et al., 2020), IndicBERT (Kakwani
et al., 2020), and mBERT (Multilingual
BERT) (Devlin et al., 2018), and
analysing results using coherence met-
rics ¢, (coherence value) (Roder et al.,
2015) and cnpm (Normalised Pointwise
Mutual Information) (Bouma, 2009) to
identify the optimal transformer model.

— Comparing BERTopic with traditional
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Figure 1: Multiple ways of spelling "Happiness","Pa-
per" and "Am" in Hindi

topic modeling methods like LDA,
NMF, LSI, ARTM, and PLSA, to show
that BERTopic consistently outperforms
these models.

Exploring additional transformer-based
models such as Top2vec (Angelov,
2020), Embedded Topic Model (ETM)
(Dieng et al., 2020) and Combined
Topic Model (CTM) (Terragni et al.,
2021) to evaluate their relative perfor-
mance.

* Demonstrating BERTopics effectiveness in
addressing the challenges of modeling short
Hindi texts by handling compressed and
context-dependent semantics, as evidenced
by the comparative analysis.

* Contributing to the study of under-explored
languages such as Hindi, by highlighting the
benefits of advanced topic models for en-
hancing semantic coherence and topic extrac-
tion in non-English languages.

2 Previous Work

Topic modeling studies on Hindi text have pre-
dominantly relied on traditional frameworks, such
as probabilistic models and matrix factorisa-
tion techniques, while newer approaches remain
largely under-explored. Furthermore, most of
these studies have focused on long text documents,
leaving the effectiveness of topic modeling tech-
niques on short texts inadequately examined.

Ray et al. (2019) provided an overview of vari-
ous topic modeling approaches for Hindi text, in-
cluding methods like NMF (Lee and Seung, 1999),
LSI (Deerwester et al., 1990), and LDA (Jelo-
dar et al., 2019), as well as tools and Java pack-
ages used in these models. However, their work
predates the development of BERTopic and does
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not address its application. Similarly, Srivastav
and Singh (2022) investigated the use of models
such as LDA, Doc2Vec, and Hierarchical Dirich-
let Process (HDP) (Teh et al., 2006) for iden-
tifying the main topics in news articles in both
Hindi and English. Their study, however, also
did not consider newer topic modeling techniques
like BERTopic. Panigrahi et al. (2018) explored
an embedding-based clustering approach, using
Word2Vec (Mikolov, 2013) to generate word em-
beddings from a corpus of Hindi Wikipedia arti-
cles, which were subsequently clustered into topic
groups. While this study adopted an approach
similar to BERTopic, it did not specifically focus
on short texts or use more advanced document em-
bedding models.

While BERTopic’s effectiveness on Hindi texts
remains unexplored, some studies have evalu-
ated its performance in other non-English lan-
guages. Abuzayed and Al-Khalifa (2021) com-
pared BERTopic using different sentence trans-
formers against LDA and NMF on Arabic news
articles, and found that BERTopic formed more
coherent topic clusters by evaluating them us-
ing Normalised Pointwise Mutual Information
(Bouma, 2009). Another study (Abdelrazek et al.,
2022) compared the computational cost and topic
quality of LDA, ETM, CTM, NMF, and two
BERTopic variants on Arabic data, concluding
that BERTopic outperformed other models in co-
herence scores. Although these studies focused on
longer texts, Medvecki et al. (2024) demonstrated
that BERTopic produced more informative clus-
ters than LDA and NMF when applied to Serbian
tweets, showing its efficiency in modeling short
text data in other languages.

Although BERTopic’s superior performance has
been proven for some other non-English lan-
guages, its effectiveness for Hindi, especially on
short texts, remains un-examined. Given Hindi’s
unique linguistic challenges (Ray et al., 2019) and
its status as the third most spoken language glob-
ally, it is important to evaluate BERTopic’s per-
formance, particularly for Hindi short texts, which
are increasingly common in modern media.

3 Methodology

This section gives an overview about the dataset
we used, the topic models we evaluated and the
method of evaluation used for this comparison.



3.1 Dataset

We used the IIT Patna Reviews dataset, a well-
regarded dataset used for evaluating and training
Hindi natural language processing models for the
task of sentiment analysis. This dataset contains
short text product reviews written in the Devana-
gari script, each mapped to its corresponding sen-
timent. For this study, we focused on modeling the
reviews and did not use the sentiment mappings.

For pre-processing, we used the Hindi language
stop words list compiled by Jha et al. (2018), to
identify and remove stop words. We also removed
punctuation marks, URLs, username references,
extra spaces, hashtags, and leading and trailing
quotations to reduce noise in the data.

3.2 Evaluation

For the performance evaluation of these topic
models, we used coherence value (c,) and Nor-
malised Pointwise Mutual Information (cnpmi) to
assess the quality of topics formed (Roder et al.,
2015; Bouma, 2009). The ¢, metric evaluates the
semantic coherence of a set of words which rep-
resent a topic using word co-occurrence graphs.
The cnpMr metric evaluates the word associations
within a topic cluster, assessing how strongly the
words are related.

For each model, the average ¢, and ecnpmy scores
were calculated across the topic clusters, and these
scores were used for comparison. We perform
these calculations for topic counts ranging from 5
to 210. This range was chosen because BERTopic
scores generally stabilise beyond 210 topics, in-
dicating that adding more topics does not signif-
icantly alter topic coherence. Also, considering
the overall size of our dataset, 210 topic clusters
were deemed sufficient for meaningful topic label-
ing. While BERTopic can automatically determine
the optimal number of topic clusters to form, we
specified the number of clusters in this compari-
son to ensure a consistent basis for evaluating its
performance against other models, which require
a predefined number of clusters.

The interpretation of coherence scores in topic
modeling is subject to debate. Previous stud-
ies (He et al., 2009, 2008; Newman et al., 2011;
Das Dawn et al., 2024) suggest that a lower c,
score, typically below 0.4, indicates overly gener-
alised topic clusters, while scores above 0.7 might
suggest more specialised ones. Despite this de-
bate, there is consensus that higher cnpyy scores
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reflect stronger word relations within the topic
clusters (Abuzayed and Al-Khalifa, 2021; Med-
vecki et al., 2024).

3.3 BERTopic

BERTopic uses embedding models to understand
the semantic meaning and context in which words
are used (Grootendorst, 2022), making it well-
suited for modeling Hindi short texts. It employs
a dimensionality reduction algorithm like UMAP
(Uniform Manifold Approximation and Projec-
tion) (Mclnnes et al., 2018), followed by an un-
supervised clustering algorithm like HDBSCAN
(Hierarchical Density-Based Spatial Clustering of
Applications with Noise) (Mclnnes et al., 2017) or
KMeans (MacQueen et al., 1967) to create coher-
ent topic clusters. Our experiment involved using
various sentence transformers with BERTopic and
comparing their relative performance to choose
the most optimal one for further comparisons.
The transformers we compared were:

e XLM-R (xlm-roberta-base) (Conneau et al.,
2020)

* IndicBERT, which is a transformer fine-tuned
for Indic languages (Kakwani et al., 2020).

* HindSBERT-STS, a transformer designed for
semantic textual similarity tasks in Hindi
(Joshi et al., 2022), using SBERT (Sentence-
BERT) (Reimers and Gurevych, 2019).

* mBERT (bert-base-multilingual-cased for
mBERT-Cased and bert-base-multilingual-
uncased for mBERT-Uncased) (Devlin et al.,
2018)

These embedding models were selected based on
their ability to capture the semantic and contextual
meaning of Hindi, which is essential for modeling
short text reviews. Comparing language-specific
and multilingual embedding models is vital for
this analysis. Language-specific models, such as
HindSBERT-STS and IndicBERT, are trained pre-
dominantly on Hindi corpora and are well-suited
to handle features unique to Hindi, including com-
pound verbs, spelling variations, and idiomatic ex-
pressions. On the other hand, multilingual embed-
dings are trained on a broader and more diverse
set of languages, enabling them to leverage cross-
lingual transfer for improved performance on low-
resource languages by identifying shared linguis-
tic patterns. Additionally, multilingual embed-



dings often exhibit greater robustness in tasks like
named entity recognition and cross-lingual refer-
ence handling, making them particularly advanta-
geous for processing multilingual or code-mixed
content. This comparison highlights the distinct
strengths of each approach, providing valuable in-
sights for selecting embeddings based on specific
use cases.

3.4 Comparative Models

We compared BERTopic with the following mod-
els:

* LDA-Based Models: These models utilise
the LDA framework to identify topic distri-
butions within the text. We compared the fol-
lowing variants:

— LDA (Latent Dirichlet Allocation) (Blei
et al., 2003).
ARTM (Additive Regularisation

of Topic Models) (Vorontsov and
Potapenko, 2015).

ETM (Embedded Topic Model) (Di-
eng et al.,, 2020) with the same sen-
tence transformers as discussed in sub-
section 3.3. We consider the best trans-
former for further comparison with the
other LDA based approaches.

We consider the best variant of LDA for fur-
ther comparison with other models.

* Other Topic Modeling Approaches:

— NMF (Non-negative Matrix Factorisa-
tion) (Lee and Seung, 1999).

PLSA (Probabilistic Latent Semantic
Analysis) (Hofmann, 1999).

LSI (Latent Semantic Indexing) (Deer-
wester et al., 1990).

CTM (Combined Topic Model). Specif-
ically the Octis implementation of it
(Terragni et al., 2021).

Top2Vec (Angelov, 2020). Since we
cannot specify the number of topic
clusters in Top2Vec, we compared
the best scores it achieved with four
different embedding models, namely-
distiluse-base-multilingual-cased,

universal-sentence-encoder, universal-
sentence-encoder-multilingual and
doc2vec. We later considered the best
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embedding model with Top2Vec for
further comparison.

3.5 Implementation Details

All experiments were conducted using Google Co-
laboratory with the following Python tools:

* Sklearn for implementing ETM and NMF.
* Gensim for LSI and LDA Multicore.

e Bigartm for PLSA and ARTM.

* Octis library for CTM.

* sentence-transformers for Hugging Face
models: xlm-roberta-base, indic-
bert, HindSBERT-STS, bert-base-
multilingual-cased, and bert-base-
multilingual-uncased.

4 Results and Analysis

We compared 20 models, each utilising differ-
ent approaches, including embedding-based mod-
els like BERTopic and ETM with the 5 embed-
ding models mentioned in subsection 3.3, hybrid
models like CTM and Top2 Vec using 4 pre-trained
embedding models (subsection 3.4), probabilistic
models like LDA, ARTM, and PLSA, and matrix
factorisation models such as NMF and LSI. Fol-
lowing are our findings:

4.1 Comparison of LDA-Based Models

After evaluating multiple LDA variants, we found
that ETM with HindSBERT-STS yielded the most
coherent topics, outperforming the other embed-
ding models for majority of topic counts (Fig-
ures 2, 3). Specifically, ETM achieved a ¢, and
expmi score of 0.71 and 0.089 respectively for 205
topics.

The ¢, scores for ETM model using
HindSBERT-STS suggest a balance in topic
specificity, avoiding both highly specific and
overly generalised clusters (He et al., 2009, 2008;
Newman et al., 2011; Das Dawn et al., 2024).

ARTM performed better than all LDA variants
in terms of ¢, scores, particularly in the 5 to 20
topic range, but it failed to maintain this trend for
higher topic counts (Figures 4 , 5).

The performance of the traditional LDA model
declined as the number of topics increased, show-
ing its limitations in handling short text data with
fewer words available for topic extraction (Qiang
et al., 2022; Aggarwal and Zhai, 2012).
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Figure 3: cxpmr scores of ETM with different sentence
transformers

Hence we can see that ETM is the best LDA
variant amongst the ones we have evaluated.

4.2 Evaluation of Embedding Models with
BERTopic

Figures 6 and 7 show that mBERT-Uncased con-
sistently provides better results than the other sen-
tence transformers when used with BERTopic.
The high ¢, scores achieved by mBERT-Uncased
and XLM-R at larger topic counts suggest the for-
mation of dense, specialised clusters (He et al.,
2009, 2008; Newman et al., 2011) with strong se-
mantic relationships among the words within these
topics (Hadiat, 2022). Although XLM-R barely out-
performs mBERT-Uncased in ¢, scores from 170
topics onward, its cxpmp scores are significantly
worse across the entire topic count range (Fig-
ure 7).

While mBERT-Cased performs better than the
other models at lower topic counts, its scores de-
creased significantly as the number of topics in-
creased, leading to its exclusion from further eval-
uation.
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Additionally, due to poor performance,
HindSBERT-STS and IndicBERT were not consid-
ered for further analysis.

4.3 Performance Analysis: Best BERTopic
vs. Best LDA vs. Other Models

We found that BERTopic with the mBERT-Uncased
embedding model outperformed other topic mod-
els for the majority of topic counts (Figures 8, 9).
Table 1 presents the best coherence scores ob-
tained by each model, along with the correspond-
ing number of topics at which these scores were
achieved.

BERTopic produced significantly higher coher-
ence scores than all other models, with its c,
scores being, on average, 19.8% higher than those
of ETM with HindSBERT-STS, which ranked sec-
ond (Figure 8). While ETM formed topic clusters
with slightly higher cxpmr scores than BERTopic
for 125 topics onwards, BERTopic showed better
scores across most topic ranges, indicating more
consistent performance.

NMF and PLSA demonstrated nearly identi-



Model CNPMI Cy Topic Count
BERTopic [mnBERT-Uncased] 0.07 0.76 95
ETM [HindSBERT-STS] 0.089 0.71 205
Top2Vec [DBMC] —0.48 0.54 45
PLSA —0.46 0.57 45
ARTM —0.42 0.56 125
NMF —0.44 0.56 35
CT™M —0.38 0.48 135
LDA —0.12 0.38 165
LSI —0.08 0.30 15

Table 1: Best scores achieved by topic models on Hindi short text dataset
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Figure 7: cnpwmr scores of BERTopic with Different Em-
bedding Models

cal coherence scores, both ranking approximately
third in ¢, scores and last in cnpmr.

For LSI, while the ¢, scores of its topic clus-
ters increased for larger topic counts, the cnpwmr
scores declined over the same range. This suggests
that as the topic count increased, LSI formed more
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specialised clusters with high word co-occurrence
coherence. However, these clusters did not re-
flect strong word relations, as indicated by the de-
creasing cnxpmr scores (Bouma, 2009; Roder et al.,
2015).

As mentioned previously (subsection 3.4), we



cannot specify the number of output clusters for
Top2Vec, as it determines the optimal number
of clusters autonomously (Angelov, 2020). Ta-
ble 2 presents the best scores achieved by Top2Vec
across various embedding models. We found that
the distiluse-base-multilingual-cased model had
the best relative performance, with a cxpmy score
of -0.48 and a ¢, score of 0.54, for 45 topics.
The universal-sentence-encoder-multilingual and
universal-sentence-encoder models achieved their
peak scores at 2 and 7 topics, respectively, sug-
gesting that these models produced overly gener-
alised topic clusters. This indicates that these em-
bedding models were not robust enough to capture
the diversity of topics present in Hindi short texts.
Additionally, the low ¢,, score for the topic clusters
generated by doc2vec highlights a general lack of
semantic coherence in the clusters formed.

Embedding Model cneM1 Gy Topics
distiluse-base- -048 0.54 45

multilingual-cased

universal-sentence- —0.45 0.53 2

encoder-multilingual

universal-sentence- —0.44 0.51 7
encoder

doc2vec —0.33 0.26 24

Table 2: Best scores achieved by Top2Vec using dif-
ferent embedding models

Overall, NMF, PLSA, LSI, CTM and Top2 Vec,
all had negative cxpmp scores, demonstrating poor
performance in modeling Hindi short texts.

4.4 Qualitative Analysis of BERTopic
Clusters

Apart from using ¢, and cxpmi, We also qual-
itatively analysed the topic clusters formed by
BERTopic through human evaluation, and veri-
fied the semantic coherence and relevance of the
groupings. The dataset used for topic modeling
encompassed a diverse range of topics, including
film, tourism, and technology. For example, Fig-
ure 10 displays a word cloud for a topic cluster
generated using mBERT-Uncased embeddings. As
we can see, BERTopic successfully grouped re-
views related to film and entertainment, captur-
ing key terms such as Bfel@ ("film") and HRER
("character") in Hindi, reflecting its ability to form
semantically coherent topic groups.
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Figure 11: Some reviews belonging to the same cluster

If we examine a few reviews from this clus-
ter (Figure 11), we see that BERTopic recognised
the names of famous movies, such as YIoRd:
TSl 3Tt 34?133‘1:[ (Avengers: Age of Ultron), 8%
(Haider), deTehd 2 &=l (Welcome 2 Karachi), 9t
(Saw) and @?Q@Xﬁ'ﬁq (San Andreas). It also iden-
tified the names of actors and directors, like TRGZ
ST (Narendra Jha) and @Hﬂ g9 (James Wan).
BERTopic grouped these reviews into the same
cluster, even though some had different word com-
positions. This indicates that the model effectively
captured the contextual use of words, including
named entities, with the help of advanced sentence
transformers to form meaningful clusters. In con-
trast, traditional topic models which rely primarily
on word frequency and co-occurrence, often fail to
capture such semantic relationships, particularly
in short texts.

5 Discussion

This study demonstrates that topic models util-
ising advanced sentence transformers, such as
BERTopic and ETM, significantly outperform tra-
ditional models when modeling short texts. The
success of these models can be attributed to their
ability to capture semantic meaning beyond sim-
ple word co-occurrence patterns.

Traditional topic modeling algorithms like
PLSA and LDA are widely used to uncover la-
tent semantic structures in text corpora by rely-
ing on word co-occurrence patterns at the doc-



ument level. However, these methods require a
high frequency of word co-occurrences to gener-
ate meaningful topics, leading to significant per-
formance degradation when applied to short texts
where such information is sparse (Yin and Wang,
2014; Yan et al., 2013). Similarly, the performance
of LSI declines over short texts as the detected top-
ics become ambiguous, resulting in negative val-
ues in its decomposed matrices that are difficult
to interpret (Murshed et al., 2023; Alghamdi and
Alfalqgi, 2015). Since many of these traditional
models depend heavily on word frequency and co-
occurrence, they are more sensitive to variations in
spelling, a common issue in Hindi due to the lack
of standardised spelling conventions (Ray et al.,
2019). These limitations collectively undermine
the reliability of traditional models in generating
coherent topics from short text corpora.

6 Conclusion

We evaluated the performance of BERTopic rel-
ative to other topic models using coherence val-
ues (cy) and normalised pointwise mutual infor-
mation (cnpmp) across a range of 5 to 210 topics.
The results showed that BERTopic, particularly
when used with mBERT-uncased, outperformed
other models for the majority of topic counts. The
ETM model, using HindSBERT-STS, ranked sec-
ond, with better cypayy scores than BERTopic be-
yond 125 topics, but consistently lower ¢, scores.
Traditional topic models demonstrated poor per-
formance, having negative cxpmy scores for the en-
tire topic count range.

Qualitative analysis of BERTopic clusters re-
vealed that it effectively grouped semantically
similar reviews and accurately recognised named
entities, a task at which traditional models strug-
gle. The strong performance of both ETM and
BERTopic suggests that leveraging advanced sen-
tence transformers enhances the formation of co-
herent topic clusters.

We conclude that BERTopic is a promising ap-
proach for topic modeling on Hindi short text cor-
pora, particularly when using multilingual trans-
formers fine-tuned on Hindi. Its use can produce
semantically coherent topic groups and better han-
dle the unique linguistic complexities of the lan-
guage. Potential applications include trend anal-
ysis, extracting business insights, analysing cus-
tomer reviews and social media comments.
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7 Future Work

Future work can explore the extent to which
BERTopic results can be generalised to other
Indo-Aryan languages, such as Sanskrit, Prakrit,
Marathi, Konkani, and Nepali. These languages
share linguistic similarities, including grammati-
cal structure, Subject-Object-Verb (SOV) sentence
ordering, and their use of the Devanagari script.
This exploration would depend on the availabil-
ity of sentence transformer models trained specif-
ically for these languages.

Additionally, investigating the adaptability of
BERTopic to other morphologically rich and low-
resource languages, such as Tamil or Punjabi,
could provide valuable insights into its broader ap-
plicability. Another promising direction is apply-
ing this approach to multilingual datasets or those
containing code-mixed content, which reflects the
increasing prevalence of mixed-language commu-
nication in digital spaces.

It would also be interesting to study how well
BERTopic performs on longer texts compared to
shorter ones for Indo-Aryan languages like Hindi,
as evaluating BERTopic’s ability to handle such
texts could provide deeper insights into its capac-
ity to model topics in languages with complex lin-
guistic structures and ensure its effectiveness for
use cases such as document-level topic extraction.

Limitations

While this comparative study demonstrates the ef-
ficiency of BERTopic for topic modeling of Hindi
short text reviews, there are some limitations to
consider.

First, the IIT Patna Reviews Dataset, although
a reputable and commonly used Hindi short text
dataset for NLP research in Indian languages, is
limited in size, containing only 5,225 reviews.
Larger and domain-specific datasets could provide
further insights into model performance and ro-
bustness. Due to the current lack of available
benchmark datasets for Hindi short texts, we re-
lied on this dataset for our study.

The dataset may also exhibit biases that influ-
ence the results. For instance, a representation bias
exists, with a higher concentration of reviews on
popular topics like movies and technology, while
niche cultural or regional subjects are underrepre-
sented. Additionally, the dataset may suffer from
temporal bias, lacking significant representation of
recent language trends, such as modern internet



slang or code-mixed communication styles. These
biases could lead the models to prioritize dominant
themes, although their overall impact on topic for-
mation appears modest.

Furthermore, the dataset spans a broad range of
topics, including movies, technology, and tourism.
While this diversity mirrors datasets used in prior
studies, model performance may differ on more
specialized datasets focused on specific types of
short texts, such as reviews for a single product
category.

Finally, this study primarily aimed to assess the
effectiveness of BERTopic for general Hindi short
texts, without targeting specific short text types
such as informal conversations or mixed-language
content. Future research utilizing datasets with
narrowly defined topics or specialized short text
variants is recommended to evaluate these models
in more targeted contexts.
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Abstract

Evaluating Discourse Representation Struc-
ture (DRS)-based systems for semantic pars-
ing (Text-to-DRS) and generation (DRS-to-
Text) poses unique challenges, particularly
in low-resource languages like Urdu. Tra-
ditional metrics often fall short, focusing
either on structural accuracy or linguistic
quality, but rarely capturing both. To ad-
dress this limitation, we introduce two com-
plementary evaluation methodologies—Parse-
Generate (PARS-GEN) and Generate-Parse
(GEN-PARS)—designed for a more compre-
hensive assessment of DRS-based systems.
PARS-GEN evaluates the parsing process by
converting DRS outputs back to the text, re-
vealing linguistic nuances often missed by
structure-focused metrics like SMATCH. In
contrast, GEN-PARS assesses text generation
by converting generated text into DRS, pro-
viding a semantic perspective that comple-
ments surface-level metrics such as BLEU,
METEOR, and BERTScore. Using the Paral-
lel Meaning Bank (PMB) dataset, we demon-
strate our methodology in Urdu, uncovering
unique insights into the structural and lin-
guistic interplay of Urdu. The findings show
that traditional metrics frequently overlook the
complexity of linguistic and semantic fidelity,
especially in low-resource languages. Our
dual approach offers a robust framework for
evaluating DRS-based systems, improving se-
mantic parsing and text generation quality’.

1 Introduction

DRS is central to advanced semantic processing,
providing a flexible and language-neutral frame-
work for capturing complex semantic nuances be-
yond basic text interpretation (Kamp and Reyle,
1993), including phenomena such as negation and
quantification (Kamp and Reyle, 2013; Jaszczolt
and Jaszczolt, 2023). Its adaptability makes DRS

"https://github.com/saadamin2k 1 3/counter-evaluations-
for-urdu.
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ideal for multilingual natural language process-
ing (NLP) systems, offering a unified way of rep-
resenting meaning across languages with diverse
structural and syntactic properties (Bos, 2023).

DRS parsing (van Noord et al., 2018; Noord,
2019; van Noord et al., 2019) and generation
(Wang et al., 2021; Amin et al., 2022; Liu et al.,
2021; Amin et al., 2024) are reversible processes
which pose unique challenges, especially when
working with Urdu—a morphologically rich lan-
guage. Urdu exhibits different syntactic struc-
tures and semantic expressions, making accurate
evaluation difficult due to the limitations of tra-
ditional structural and surface-level metrics (Butt
and King, 2002; Bogel et al., 2009). Existing eval-
vations often fail to fully account for linguistic
and structural accuracy across languages, which is
essential for ensuring meaningful cross-linguistic
semantic representation. This gap has motivated
our development of innovative evaluation methods
to bridge structural precision with linguistic ade-
quacy in DRS-based systems.

Our research primarily aims to create evaluation
frameworks that integrate both structural and lin-
guistic (in the sense of surface-level) assessments.
To accomplish this, we introduce two bidirec-
tional evaluation paradigms—PARS/PARS-GEN
and GEN/GEN-PARS. The former assesses pars-
ing quality by examining the linguistic coherence
of the text generated from DRS structures, moving
beyond traditional metrics to provide insights into
how well structural accuracy supports meaning-
ful language representation. Conversely, the lat-
ter evaluates generation quality by analyzing the
semantic consistency of parsed structures derived
from generated text, offering a deeper perspective
than surface-level comparisons alone.

Semantic parsing evaluation typically relies on
structural metrics like SMATCH (Cai and Knight,
2013), which assesses roles or concepts-based
overlaps between predicted and reference DRS
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Figure 1: Different graphical representations of DRS for the text “Bill didn’t commit the crime.”

graphs (Kamp et al., 2010). While valuable for
evaluating structural accuracy, this metric often
misses essential linguistic subtleties and penalizes
the overall evaluation. For instance, two DRS
representations with minor structural divergences,
such as Quant ity and Index, obtained a signif-
icantly low SMATCH score despite near-identical
semantics (Ex. 4, Table 1). Such distinctions il-
lustrate how structural metrics alone may fall short
in capturing the semantic nuances, coherence, and
pragmatic meaning crucial to linguistic represen-
tation. This limitation inspired the development of
the PARS/PARS-GEN approach, which leverages
text generation to assess parsing quality, highlight-
ing linguistic phenomena that structural metrics
might otherwise overlook.

Text generation from DRS also poses a unique
evaluation challenge. Traditional metrics like
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and even recent metrics like
BERTScore (Hanna and Bojar, 2021) prioritize
surface-level similarities between generated and
reference texts. However, given the diversity of
natural language, there can be multiple valid ex-
pressions for the same meaning. For example, the
sentences (“John gave Mary some money”) and
(“John gave the money to Mary”) convey similar
meanings, but their syntactic variations lead to low
scores under traditional evaluations, despite per-
fect semantic equivalence in DRS representation
(Ex. 4, Table 2). To address this, we propose the
GEN/GEN-PARS paradigm, which evaluates gen-
erated text by parsing it back into DRS, offering a
structural evaluation perspective that complements
surface-level metrics.

In this context, our research investigates several
critical questions: (i) How can the evaluation of
semantic parsing and text generation be improved
beyond existing structural and surface-level met-
rics? (ii) How does structural accuracy in seman-
tic parsing influence linguistic quality in text gen-
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eration? (iii) How can surface-level evaluations
be enhanced by assessing individual lexical enti-
ties? (iv) Can the reversible nature of semantic
parsing and text generation be exploited for im-
proved evaluations? and (v) Do these alternate
evaluations correlate with each other and are they
statistically significant?

To address these questions, this paper makes
the following key contributions: (i) it introduces
novel evaluation paradigms, PARS/PARS-GEN
and GEN/GEN-PARS, which reveal unique in-
sights into the language’s syntactic variability and
complex semantic structures that traditional met-
rics often overlook; (ii) the PARS/PARS-GEN
paradigm uses linearized text to mitigate non-
optimal outcomes in SMATCH’s greedy search
algorithm, enabling a more intuitive and human-
centered approach to parsing evaluation; (iii)
through the GEN/GEN-PARS evaluation, it iden-
tifies semantic and syntactic issues at a node
level, examining lexical DRS concepts like nouns,
verbs, adjectives, and adverbs within the gener-
ated DRS to provide a granular view of the gen-
eration quality, ultimately facilitating a balanced
metric that captures both structural and linguistic
fidelity; and (iv) it proposes a detailed Pearson
correlation analysis between PARS/PARS-GEN,
GEN/GEN-PARS. The observed statistically sig-
nificant correlations underscore the robustness of
our approach and demonstrate the effectiveness
of combining structural and linguistic assessments
in DRS-based semantic processing. Figure 1
contains different graphical representations of the
DRS containing: (a) box format; (b) variable-free
format; and (c) graph notation of the DRS. For our
experimentation, we used the variable-free repre-
sentation of the DRS (Figure. 1(b)) in its linearized
format, as it is compatible with the sequence-to-
sequence models. Additionally, we utilized its
graph notation (Figure. 1(c)) to evaluate semantic
parsing using SMATCH.



Ex. No | Gold Text Gold (DRS) PARS (DRS) PARS
(SMATCH)
1 Ju Al SH ) S8 male.n.02 Name “»&” new.a.05 AttributeOf +1 | male.n.02 Name “»& new.a.01 AttributeOf +1 00.00
(“Tom bought a new pickup.”) pickup.n.01 buy.v.01 Agent -3 Theme -1 Time | pick up.n.01 buy.v.01 Agent -4 Beneficiary -3
+1 time.n.08 TPR now Theme -1 Time +1 time.n.08 TPR now
2 - U8 pgaai (S S il S a5 ol | male.n.02 Name “»” female.n.02 Name “a<” | male.n.02 Name “s&” female.n.02 Name “ai” 69.23
(“Tom shows Mary a picture of his | male.n.02 ANA -2 dog.n.01 Owner -1 female.n.02 ANA -1 dog.n.01 Owner -1
dog.”) picture.n.01 Topic -1 show.v.04 Agent -5 photo.n.01 Creator -1 show.v.01 Agent -4
Recipient -4 Theme -1 Time +1 time.n.08 TPR | Recipient -3 Recipient -1 Time +1 time.n.08
now TPR now
3 e S eomgl day.n.03 TCT now time.n.08 TIN -1 person.n.01 EQU speaker neck.n.01 hurt.v.01 60.00
(“Today I have a pain in my neck.”) | person.n.01 EQU speaker neck.n.01 pain.n.01 | Patient -2 Patient -1 Time +1 time.n.08 EQU
Location -1 have.v.16 Time -4 Experiencer -3 now
Stimulus -1 Time +1 time.n.08 EQU now
4 LU S K S oo s quantity.n.01 EQU 13 person.n.01 Quantity -1 | quantity.n.01 EQU 30 person.n.01 Quantity -1 00.00
(“Thirteen people were arrested.”) arrest.v.01 Patient -1 Time +1 time.n.08 TPR arrest.v.01 Patient -3 Time +1 time.n.08 TPR
now now
5 e G il 2 e person.n.01 EQU speaker money.n.01 Quantity | person.n.01 EQU speaker have.v.01 Pivot -1 57.89
(“Ihave a lot of money.”) + get.v.01 Pivot -2 Theme -1 Time +1 Theme +2 Time +3 quantity.n.01 EQU +1
time.n.08 TPR now quantity.n.01 EQU +1 money.n.01 Quantity +
time.n.08 EQU now

Table 1: Structural overlap-based evaluation measures: highlighting limitations of SMATCH. English translations

are mentioned in brackets. PARS scores are in %.

The remaining sections are organized as fol-
lows: Section 2 discusses the limitations of cur-
rent evaluation approaches in detail. Section 3
presents our novel evaluation methodologies and
describes the experimental setup and implementa-
tion details. Section 4 presents reversible evalu-
ation measures and correlation analysis. Finally,
Section 5 concludes with limitations.

2 Limitations in Current Evaluations

The evaluation of semantic parsing and text gener-
ation system presents unique challenges that con-
ventional metrics often struggle to address com-
prehensively. This section examines these limita-
tions in detail and establishes the motivation for
our proposed evaluation approaches.

Parsing Limitations: Traditional evaluation met-
rics, such as SMATCH (Cai and Knight, 2013),
SMATCH++ (Opitz, 2023), and SemBLEU (Song
and Gildea, 2019), focus on assessing structural
similarities between predicted and reference DRS.
SMATCH, for instance, employs a greedy hill-
climbing algorithm that matches nodes across log-
ical structures. This approach, however, often re-
sults in suboptimal evaluations, especially in cases
where structural differences do not reflect actual
semantic deviations. For example, SMATCH as-
signs a zero score to the DRS representation for
(“Tom bought a new pickup’), despite the semantic
content being essentially equivalent in both gold
and predicted DRS. The low-score is due to mi-
nor structural differences, underscoring a limita-
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tion of SMATCH'’s focus on structural alignment
rather than semantic equivalence (Ex. 1, Table 1).

Additionally, SMATCH’s handling of semantic
relationships is limited, as it treats DRS nodes as
isolated entities. This limitation is evident in Ex.
2 (“Tom shows Mary a picture of his dog”), where
differences in role modifiers like (“Topic” and
“Creator”) for “picture” results in a SMATCH
score of 69.23. The metric’s penalty for these
isolated structural variations, without accounting
for the underlying semantic alignment, highlights
its tendency to overlook contextually equivalent
expressions when modifiers are altered or substi-
tuted. This penalization is further illustrated in
Ex. 3 (“Today I have a pain in my neck’), where
SMATCH deducts points based on minor discrep-
ancies in the verb sense, yielding a score of 60.00
despite the overall message being well-preserved
across both DRS.

In Ex. 4 (“Thirteen people were arrested”),
SMATCH once again assigns a score of zero, this
time due to an inconsistency in the numerical
value between gold (13) and predicted (30) DRS.
This significant deduction overlooks that the core
event—people being arrested—is accurately con-
veyed. Ex. 5 (“I have a lot of money”) further
emphasizes SMATCH’s limitations, where minor
numerical and role-discrepancies lead to a score of
57.89, despite the intended meaning being largely
retained. These examples collectively underscore
that SMATCH’s sensitivity to structural changes
can cause unfairly low scores even when semantic
content is mostly preserved.



Ex. | Gold DRS Gold Text GEN Text GEN Scores
No. BLEU | METEOR | ROUGE | chrF | B_Scr.

1 | person.n.01 EQU speaker ashamed.a.01 LU e oia il (e 05 e oie il S el (e 16.67 11.90 19.99 21.95 | 78.96
Experiencer -1 Time +1 NEGATION <1 (“I am not ashamed.”) | (“I’'m not shy yet.”)
time.n.08 EQU now

2 | person.n.01 EQU speaker quantity.n.01 Gl 02 0 23 S ome oA el 24 5 (e 49.12 43.31 54.54 39.79 | 92.09
EQU 24 pencil.n.01 Quantity -1 buy.v.01 | -o:u s (“I bought 24 pencils.”)
Agent -3 Theme -1 Time +1 time.n.08 (“I bought two dozen
TPR now pencils.”)

3 | NEGATION <I person.n.01 NEGATION | - la cau o 8 Ly el 50.00 3225 57.14 | 2938 | 88.74
<1 leave.v.01 Theme -1 Time +1 (“Everyone left.”) (“All have now left.”)
time.n.08 TPR now

4 | male.n.02 Name “0l»” female.n.02 Name | —wn 43S sSpie S0l |62 Spmed), S0k 56.43 57.52 61.54 | 48.84 | 89.99
“a«” money.n.01 give.v.03 Agent -3 ] (“John gave the money to
Recipient -2 Theme -1 Time +1 time.n.08 | (“John gave Mary Mary.”)
TPR now some money.”)

5 male.n.02 time.n.08 YearOfCentury e (L3 (S ol o5 sl e Sl s 4232 37.04 44.15 34.12 | 79.26
198X’ bear.v.02 Patient -2 Time -1 Time | - =5 (“He was born in 198X.”)
+1 time.n.08 TPR now (“He was born in the

eighties.”)

Table 2: Semantic overlap-based evaluation measures: highlighting limitations of automatic evaluation metrics for

text generation. Note: B_Scr. = BERTScore.

To address these limitations, our PARS-GEN

approach rephrases DRS outputs as natural lan-
guage text, enabling the use of complemen-
tary evaluation metrics like chrF, METEOR, and
BERTScore, which emphasizes semantic accu-
racy. By generating interpretable text from
DRS, PARS-GEN provides a holistic evaluation
of parsing quality and captures linguistic nuances
that structural metrics like SMATCH often miss.
Through this approach, we enhance the accessi-
bility and interpretability of semantic fidelity as-
sessment, ensuring a more accurate and inclusive
evaluation across diverse language structures and
semantics.
Generation Limitations: Traditional evaluation
metrics for Urdu text generation, like BLEU, ME-
TEOR, and ROUGE, primarily rely on n-gram
overlaps, limiting their ability to capture semantic
alignment beyond lexical matches. This is partic-
ularly evident in our DRS-to-text generation ex-
amples in Table 2. For instance, BLEU assigns a
score of 16.67 to the generated translation (“I am
not ashamed yet”) compared to the gold reference
(“I'm not shy yet”) (Ex. 1, Table 2). While the
generated text conveys the same core meaning, the
BLEU score is low due to slight lexical variations
in the choice of words like “ashamed” vs. ‘“shy.”
This highlights BLEU’s emphasis on lexical over-
lap over capturing the overall meaning of the sen-
tence.

Similarly, for the translation (“I bought two
dozen pencils”) compared to (“I bought 24 pen-
cils”’), both sentences convey the same mean-
ing but are penalized due to different represen-
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tations i.e., “two dozen” vs. ‘247 This ex-
emplifies the metric’s failure to acknowledge ac-
ceptable paraphrases or equivalent expressions in
the target language, further underscoring its lim-
itations in multilingual contexts. In both cases,
SMATCH indicates complete semantic alignment
with a score of 1.0, highlighting the gap in tra-
ditional metrics’ sensitivity to semantic fidelity.
METEOR, which improves on BLEU by consid-
ering synonym matching and stemming, does pro-
vide higher scores for the same example (43.31
vs. BLEU’s 49.12), but it is not immune to lim-
itations. METEOR still struggles with capturing
fine-grained semantic differences, as seen in Ex. 5
in Table 2, where the score of 37.04 fails to dis-
tinguish between “He was born in 198X and “He
was born in the eighties”. Despite both sentences
being semantically similar, METEOR’s score is
lower because it does not consider the subtleties
of temporal expressions in Urdu and fails to fully
match the corresponding time entities. The chrF
score (which focuses on character-level n-gram
overlap) in this context, with scores ranging from
21.95 (Ex. 1) to 39.79 (Ex. 2), similarly fails to
capture the underlying semantic similarity. While
chrF is more effective for languages with complex
morphology, such as Urdu, it still penalizes mi-
nor differences in word structure and morphology,
even when the generated text accurately conveys
the intended meaning. In Ex. 1, “ashamed” vs.
“shy” shows small morphological differences that
affect chrF’s performance, despite the generated
text being semantically correct.

BERTScore, which attempts to measure seman-



tic similarity using pre-trained language models,
is better suited for capturing the deeper semantic
relationships between words. However, even this
metric struggles when dealing with syntactic and
morphological variations in Urdu. For instance, in
Ex. 3, “Everyone left” and “All have now left” ex-
hibit a difference in tense and aspect, yet the mean-
ing remains intact. BERTScore performs better
here with scores of 88.74, but still faces challenges
when evaluating minor syntactic differences that
do not affect the overall meaning.

These examples underscore the need for an
evaluation approach that emphasizes semantic
quality.  Our GEN-PARS approach addresses
this by focusing on whether generated texts pre-
serve the semantic content of the original DRS.
Across all examples analyzed, where traditional
metrics like BLEU fluctuate significantly (ranging
from 16.67 to 56.43), GEN-PARS achieves perfect
SMATCH scores of 1.0 by parsing generated texts
back to DRS. This validates semantic equivalence
despite surface differences as evident in Table 6.

3 Methods and Results

This study presents two novel evaluation method-
ologies for assessing the quality of DRS pars-
ing and generation in Urdu: (1) evaluating pars-
ing through generation capabilities (PARS-GEN)
and (2) assessing generation through semantic
parsing (GEN-PARS). Unlike conventional met-
rics that often focus on surface-level text similarity
or structural alignment, these methodologies offer
a deeper, cross-task approach that assesses both
structural and linguistic fidelity in Urdu semantic
processing. To complement our cross-task eval-
uations, we also computed the Pearson correla-
tion between metrics across the PARS/PARS-GEN
and GEN/GEN-PARS evaluations. This correla-
tion analysis helps us understand the relationship
between structural accuracy (e.g., SMATCH F1
scores) and linguistic quality metrics (e.g., BLEU,
METEOR, BERTScore).

PMB? is a multilingual dataset comprising se-
mantic representations in English, Italian, Ger-
man, Dutch, and Chinese.  Leveraging the
language-neutral nature of DRS, we transformed
English DRS-Text pairs into Urdu through a sys-

>The PMB is developed at the University of Groningen as
part of the NWO-VICI project “Lost in Translation—Found
in Meaning” (Project number 277-89-003), led by Johan Bos.
Urdu PMB is not part of the official website yet, but can be
provided freely for scientific purposes.
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tematic approach involving syntactic structure,
concept and word alignment, grammatical gen-
ders, and cross-lingual adaptation through named
entities. This methodology resulted in the first
comprehensive semantic resource for Urdu, com-
prising 3,000 gold-standard (fully manually anno-
tated) data instances. The dataset transformation
employed a hybrid methodology: DRS transfor-
mations utilized rule-based techniques and human
annotation, while text translations were generated
using Google Translate API. The dataset was par-
titioned into 1,200 training, 900 development, and
900 test examples. To enhance dataset diver-
sity and complexity, we applied multi-dimensional
augmentation strategies, including named entities,
lexical (encompassing common nouns, adjectives,
adverbs, and verbs), and grammatical augmen-
tations. This approach expanded the dataset to
10,800 training examples, supplemented by 6,857
silver (partially manually annotated) instances.

For bidirectional evaluation—converting PARS
to PARS-GEN and vice versa—we employed
byT5-based parsing and generation models,
fine-tuned using our comprehensive augmented
dataset®. We implemented a two-stage fine-tuning
strategy consistent with (van Noord et al., 2020).
The first stage involved fine-tuning the model on
silver data for 3 epochs to establish foundational
DRS knowledge. The second stage focused on
gold data fine-tuning for 10 epochs. Experimental
parameters included AdamW optimizer, polyno-
mial learning rate decay (le—4), batch size of 32,
maximum sequence length of 512, and GeGLU
activation function. These models achieved state-
of-the-art performance in Urdu DRS processing,
facilitating reversible data generation.

For the PARS/PARS-GEN evaluations in Urdu
(see Table 3), we achieved a SMATCH F1 score
of 79.77, indicating a moderate level of structural
accuracy in parsing Urdu texts into DRS. When
this parsed DRS output was subsequently eval-
uated through generation (PARS-GEN), perfor-
mance varied across different metrics, highlight-
ing the challenges posed by Urdu’s morphologi-
cal complexity. Notably, the PARS-GEN evalua-
tion returned a BLEU score of 45.48, a METEOR
score of 41.39, chrF of 40.57, BERTScore of
85.36, and ROUGE of 49.55. Among these met-
rics, BERTScore showed the highest correlation

30ur Urdu semantic parsing and text generation models
are publically available for research purposes.




with the PARS structural evaluation (SMATCH),
suggesting that it better captures semantic consis-
tency across the tasks. However, lower scores in
BLEU, METEOR, and chrF reflect the challenge
of generating text that matches reference struc-
tures while accounting for Urdu’s flexible syntax
and morphology.

PARS PARS-GEN
S-F1 | BLU MET chrF B _Scr RUG
79.77 | 4548 41.39 40.57 85.36 49.55

Table 3: Experimental results of PARS and PARS-GEN
on standard test sets for Urdu. Underlined are the re-
sults with hightest correlation. Note: S-F1 = SMATCH
F1-Score; BLU = BLEU; MET = METEOR; B_Scr =
BERTScore; RUG = ROUGE.

In the GEN/GEN-PARS evaluations (see Ta-
ble 4), we assessed how well the generated Urdu
text preserved the intended DRS semantics by
parsing it back into a DRS representation. Here,
the GEN approach achieved moderate scores, with
BLEU at 53.31, METEOR at 53.07, chrF at 51.49,
BERTScore at 88.33, and ROUGE at 59.40. The
GEN-PARS evaluation returned a SMATCH score
of 74.83, emphasizing that maintaining full se-
mantic accuracy is challenging in text-to-DRS
parsing for Urdu, possibly due to its unique syn-
tactic structures. BERTScore again showed the
strongest correlation with GEN-PARS results, in-
dicating it is more aligned with the structural
preservation needed in semantic evaluations.

GEN GPAR
BLU MET chrF B_Scr RUG | S-F1
53.31 53.07 5149 8833 5940 | 74.83

Table 4: Experimental results of GEN and GEN-PARS
approaches on standard test sets for Urdu. Underlined
are the results with hightest correlation. Note: GPAR =
GEN-PARS; S-F1 = SMATCH F1-Score.

These results underscore that traditional metrics
alone may not fully capture the linguistic intrica-
cies in Urdu DRS parsing and generation. The
relatively lower scores in some linguistic metrics,
such as BLEU and METEOR, indicate that while
structural preservation (PARS) aligns moderately
well with these scores, morphological and syntac-
tic differences specific to Urdu lead to lower align-
ment in n-gram-based and surface-level metrics.
This suggests the potential benefit of incorporat-
ing additional language-specific evaluation strate-
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gies when working with morphologically complex
languages like Urdu.

4 Analysis and Discussion

To further emphasize the usefulness of the re-
versible evaluation approaches, we have analyzed
examples present in Table 1 and Table 2 by
performing the reverse evaluations, i.e., PARS
through PARS-GEN and GEN through GEN-
PARS. Furthermore, we have performed Pearson
correlation analysis on the reversible evaluation
measures.

Reversible Evaluation Measures: While Sec-
tions 2 highlighted the limitations of traditional
parsing and generation metrics individually, in this
section we present the cases where our proposed
evaluation approaches (PARS-GEN and GEN-
PARS) provide complementary evidence of se-
mantic and structural preservation. Through de-
tailed analysis, we demonstrate how low scores
in one type of evaluation (PARS or GEN) can
be counter-verified by evaluating it in the re-
verse direction, revealing semantic equivalences
that would have been missed.
Evaluating PARS through PARS-GEN: In an-
alyzing DRS with structural overlap metrics like
SMATCH, certain limitations in capturing the full
semantic equivalence between the gold standard
and generated DRS is evident. Table 1 highlights
this issue through examples where PARS (DRS)
scores do not adequately reflect semantic align-
ment despite the intended meaning being correctly
represented. These examples underscore a criti-
cal drawback of relying solely on structural met-
rics, as they may fail to capture essential meaning
alignment between generated and gold structures.
To address these limitations, PARS-GEN (text
generation from DRS) evaluations in Table 5
supplement structural assessments with seman-
tic overlap metrics, including BLEU, METEOR,
ROUGE, chrF, and BERTScore, which provide a
finer-grained view of how well the generated text
aligns with the gold text. In Ex. 1, PARS-GEN
achieves a BERTScore of 97.30 and METEOR of
69.14, capturing the semantic fidelity of the phrase
“Tom bought a new pickup”. Although SMATCH
did not register structural similarity, the text-based
evaluations in PARS-GEN reveal a strong over-
lap in meaning. Similarly, Ex. 2 achieves per-
fect PARS-GEN score across all metrics (BLEU:



Ex.

PARS DRS

PARS
(SMATCH)

PARS GEN Text

Gold Text

GEN Scores

BLEU

METEOR

ROUGE

chrF

B_Scr.

male.n.02 Name “»5” new.a.01 AttributeOf
+1 pick_up.n.01 buy.v.01 Agent -4
Beneficiary -3 Theme -1 Time +1 time.n.08
TPR now

00.00

Rl S et
(“Tom bought a new
pickup.”)

Rl S St
(“Tom bought a new
pickup.”)

71.43

69.14

7143

64.14

97.30

male.n.02 Name “»&” female.n.02 Name
“a: <" female.n.02 ANA -1 dog.n.01 Owner
-1 photo.n.01 Creator -1 show.v.01 Agent -4
Recipient -3 Recipient -1 Time +1 time.n.08
TPR now

69.23

S S Sl
PEL ST
(“Tom shows Mary a
picture of his dog™)

i (S B ) Sppapl
o S

(“Tom shows Mary a picture
of his dog.”)

100

99.93

99.99

100

100

person.n.01 EQU speaker neck.n.01
hurt.v.01 Patient -2 Patient -1 Time +1
time.n.08 EQU now

60.00

33 o e 0 K e

=
(“My neck still hurts.”)

=R o PR Gl
(“Today I have a pain in my
neck.”)

57.14

61.47

61.54

48.07

87.11

quantity.n.01 EQU 30 person.n.01 Quantity
-1 arrest.v.01 Patient -3 Time +1 time.n.08
TPR now

00.00

LS S 8 8 S i et
(“Thirty people were
arrested.”)

AU S R S o s
(“Thirteen people were
arrested.”)

56.43

54.35

61.54

61.72

94.55

person.n.01 EQU speaker have.v.01 Pivot -1
Theme +2 Time +3 quantity.n.01 EQU +1
quantity.n.01 EQU +1 money.n.01 Quantity

57.89

o S o 2 e

(“I have a lot of
money.”)

e S sl 2 e
(“I have a lot of money.”)

83.33

80.66

83.33

76.08

97.63

+time.n.08 EQU now

Table 5: Evaluating PARS through PARS-GEN by taking examples from Table 1. Note: B_Scr. = BERTScore.

100, METEOR: 99.93, ROUGE: 99.99, chrF: 100,
BERTScore: 100), demonstrating that, despite
SMATCH’s inability to capture semantic align-
ment, PARS-GEN accurately reflects the intended
message that the Owner showed the Recipient
a picture of dog.

Furthermore, Ex. 3 in Table 1 highlights a nu-
anced challenge where SMATCH (60.00) underes-
timates the semantic alignment due to complex re-
lational and sentiment-bearing expressions. Here,
the DRS encodes the phrase “My neck still hurts”
yet this overlap is inadequately represented by the
structural metric. In contrast, PARS-GEN scores
in Table 5, with a BERTScore of 87.11, provides
a closer approximation of the intended meaning,
thereby validating the DRS from a semantic stand-
point. Similarly, Ex. 5 also demonstrates this
phenomenon, where a SMATCH score of 57.89
misses subtle lexical differences in phrases like (“/
have a lot of money”), PARS-GEN BLEU (83.33)
and BERTScore (97.63) confirm semantic equiv-
alence, which structural evaluation alone failed to
capture.

This analysis reveals that PARS-GEN comple-
ments structural metrics by providing a more ro-
bust measure of semantic fidelity in text gener-
ation tasks. By using both PARS and PARS-
GEN, we gain a comprehensive understanding
of meaning overlap, particularly in cases where
linguistic nuances or variations may obscure the
structural alignment but are nonetheless captured
through text-based evaluations. Together, PARS
and PARS-GEN offer a dual approach that effec-
tively bridges the gap between structural and se-
mantic overlap, enhancing the accuracy and relia-
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bility of DRS evaluation.

Evaluating GEN through GEN-PARS: The
evaluation of generated text against gold DRS (af-
ter performing GEN-PARS) using semantic over-
lap metrics reveal critical insights into the limita-
tions of traditional automatic metrics for text gen-
eration. Table 2 outlines these issues, showcas-
ing several examples where semantic alignment
is assessed through automatic word-overlap-based
measures, e.g., BLEU, METEOR, ROUGE, chrF,
and BERTScore. This discrepancy suggests that,
traditional evaluation metrics for Urdu text fo-
cus on n-gram matching, they may not adequately
capture the semantic richness and structural se-
quences represented in the DRS.

Transitioning to Table 6, which focuses on
structural overlap metrics, we observe the imple-
mentation of GEN-PARS, which assesses the gen-
erated text against the original DRS. Notably, all
examples (1-5) yield a perfect SMATCH score of
100, signifying that the generated structures align
perfectly with the gold DRS. For instance, in Ex.
1, the transition from “I’m not shy yet” in GEN
to the corresponding GEN-PARS representation
maintains the event structure intact, reinforcing
the idea that the generated text retains all neces-
sary elements for a correct DRS encoding.

Furthermore, Ex. 3 and Ex. 4 reveal similar pat-
terns. Both examples demonstrate that the gener-
ated text aligns seamlessly with the DRS structure,
as evidenced by the SMATCH scores of 100. The
transformation from “All have now left” and “John
gave the money to Mary” to their DRS represen-
tations encapsulate the essential semantic compo-
nents, reinforcing the effectiveness of GEN-PARS



GEN Text GEN-PARS (DRS)

Gold DRS GPARS

(SMATCH)

U oia )8 S ol e
o
(“I’'m not shy yet.”)

person.n.01 EQU speaker ashamed.a.01 Experiencer -1
Time +1 NEGATION <1 time.n.08 EQU now

person.n.01 EQU speaker ashamed.a.01 100
Experiencer -1 Time +1 NEGATION <1

time.n.08 EQU now

2 | oA odein 24 S
(“I bought 24 pencils.”)
+1 time.n.08 TPR now

person.n.01 EQU speaker quantity.n.01 EQU 24
pencil.n.01 Quantity -1 buy.v.01 Agent -3 Theme -1 Time

person.n.01 EQU speaker quantity.n.01 EQU 24 100
pencil.n.01 Quantity -1 buy.v.01 Agent -3

Theme -1 Time +1 time.n.08 TPR now

3 o S o

(“All' have now left.”) Theme -1 Time +1 time.n.08 TPR now

NEGATION <1 person.n.01 NEGATION <1 leave.v.01

NEGATION <1 person.n.01 NEGATION <1
leave.v.01 Theme -1 Time +1 time.n.08 TPR
now

100

6 Samady Sl male.n.02 Name “0\s” female.n.02 Name
(“John gave the money

to Mary.”) 1 Time +1 time.n.08 TPR now

“a2<” money.n.01 give.v.03 Agent -3 Recipient -2 Theme -

male.n.02 Name “0\s” female.n.02 Name “a: <" 100
money.n.01 give.v.03 Agent -3 Recipient -2

Theme -1 Time +1 time.n.08 TPR now

male.n.02 time.n.08 YearOfCentury 198X
bear.v.02 Patient -2 Time -1 Time +1
time.n.08 TPR now

5 [ -Zslyomles
(“He was born in
198X.”)

male.n.02 time.n.08 YearOfCentury *198X’ 100
bear.v.02 Patient -2 Time -1 Time +1 time.n.08

TPR now

Table 6: Evaluating GEN through GEN-PARS by taking examples from Table 2. Note: GPARS = GEN-PARS

in maintaining structural integrity while providing
a high-quality semantic output.

The role of word order and the presence of syn-
onyms in model-generated outputs (either DRS
or text) significantly influence the model perfor-
mance and should be carefully considered. In the
SMATCH evaluation, the impact of word order
is generally minimal because SMATCH empha-
sizes structural overlap rather than the precise se-
quence of words. However, in cases where the
meaning of a sentence is heavily based on its
syntactic arrangement, SMATCH may not ade-
quately capture the nuances, making it less effec-
tive for parsing evaluation. Similarly, SMATCH
evaluates exact lexical entities, leading to penal-
ties for synonymous expressions that maintain se-
mantic equivalence but differ in lexical choice. To
address these limitations, our cross-task evalua-
tion approach (PARS/PARS-GEN) generates tex-
tual representations of DRSs and evaluates these
using n-gram overlaps to assess word order and
metrics like METEOR and BERTScore, which ac-
count for synonyms and contextual embeddings,
respectively.

On the other hand, metrics such as BLEU, com-
monly used for evaluating text generation, im-
pose strict penalties for variations in word order
and the use of synonyms due to their reliance
on n-gram-based overlap. To mitigate these is-
sues, our counter-evaluation method for gener-
ation through parsing (GEN/GEN-PARS) trans-
forms textual outputs into DRS representations, al-
lowing evaluation through structural overlaps that
are less sensitive to word order, as measured by
SMATCH. This analysis elucidates the necessity
of integrating both semantic (GEN) and struc-
tural (GEN-PARS) evaluations in understanding
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the quality of generated texts. While GEN metrics
highlight the challenges posed by conventional
evaluations in capturing semantic nuances, GEN-
PARS effectively illustrates how generated struc-
tures can align with DRS, thus ensuring that the
meaning is preserved. By leveraging both sets of
metrics, we obtained a more nuanced view of the
strengths and limitations of text-generation pro-
cesses, fostering improvements in model training
and evaluation methodologies.

Correlation Analysis: In evaluating DRS-based
systems for Urdu, it is essential to analyze both
quantitative performance measures and how well
the system preserves underlying semantic con-
tent. Traditional metrics provide an initial foun-
dation, but correlation analysis enables deeper in-
sights into whether automatic evaluations effec-
tively capture semantic quality and structural co-
herence. By analyzing correlations across auto-
mated measures such as PARS/PARS-GEN and
GEN/GEN-PARS, we assess how reliably these
metrics reflect true semantic accuracy in generated
outputs.

We used Pearson correlation to examine
the relationships between PARS/PARS-GEN and
GEN/GEN-PARS scores. This analysis reveals the
extent to which different metrics align—such as
whether improvements in parsing accuracy corre-
spond to enhancements in generation quality. A
high positive Pearson correlation would indicate
that the metrics consistently capture similar as-
pects of semantic and structural accuracy.
PARS/PARS-GEN Correlation: Our analysis for
Urdu reveals statistically significant correlations
across all metrics, despite the language’s mor-
phological complexity. BERTScore exhibited the
highest correlation (r = 0.2832, p < 4.55e-18),



suggesting that neural-based metrics, like contex-
tual embeddings, may more effectively capture se-
mantic relationships in morphologically rich lan-
guages (see Table 7). This strong correlation with
BERTScore implies that it could be particularly ef-
fective for evaluating the semantic quality of gen-
erated Urdu text, as it appears more sensitive to the
subtle linguistic variations present in Urdu.

(r=0.3414, p < 5.36e-26), further highlighting its
utility as a predictor of parsing performance.

| GEN vs. GEN-PARS [ Corr-val  P-val
BLEU vs Gen-Pars 0.3414%f 5.36e-26
METEOR vs Gen-Pars 0.2936%  2.30e-19
ROUGE vs Gen-Pars 0.3043% 9.82e-21
chrF vs Gen-Pars 0.2987+  5.25e-20
BERTScore vs Gen-Pars | 0.4073% 2.75e-37

| PARS vs. PARS-GEN | Corr-val  P-val |
Pars vs BLEU 0.2318F 1.87e-12
Pars vs METEOR 0.1949% 3.69¢e-9
Pars vs ROUGE 0.20231  9.12e-10
Pars vs chrF 0.2042+  6.25e-10
Pars vs BERTScore 0.28321 4.55e-18

Table 7: Correlation results for PARS and PARS-GEN.
Underlined values represent the strongest correlation.
1 indicates that the values are highly significant.

The remaining metrics also demonstrated sig-
nificant, albeit weaker, correlations: BLEU (r =
0.2318), ROUGE (r = 0.2023), chrF (r = 0.2042),
and METEOR (r = 0.1949). While these correla-
tions are weaker, they remain highly significant,
indicating that even traditional generation met-
rics can offer valuable insights into parsing per-
formance. However, BERTScore’s stronger cor-
relation emphasizes the advantages of using con-
textual embeddings for capturing semantic fidelity
in Urdu. The consistently positive and significant
correlations across metrics affirm the reliability of
our PARS-GEN approach for Urdu, demonstrating
that parsing accuracy align well with generation
quality metrics, with BERTScore emerging as par-
ticularly effective for assessing complex semantic
content.

GEN/GEN-PARS Correlation: We extended the
correlation analysis to GEN/GEN-PARS, examin-
ing how well generation metrics predict parsing
performance, adding a complementary perspec-
tive on the relationship between these processes.
BERTScore demonstrated the highest correlation
in the GEN/GEN-PARS evaluation (r = 0.4073,
p < 2.75e-37), indicating a moderate and highly
significant relationship between generation qual-
ity and parsing accuracy (see Table 8). This high
correlation suggests that neural-based embeddings
are particularly effective at preserving semantic
content that can be recognized by parsing models,
even when dealing with morphologically rich lan-
guages. BLEU followed with a notable correlation
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Table 8: Correlation results for GEN and GEN-PARS.
Underlined values represent the strongest correlation.
I shows that the values are highly significant.

Other metrics also demonstrated significant cor-
relations, albeit to a lesser extent. ROUGE (r
0.3043), chrF (r = 0.2987), and METEOR (r
0.2936) maintained positive and statistically sig-
nificant correlations. These findings suggest that
even traditional generation metrics capture some
degree of semantic alignment in Urdu, but neural
metrics like BERTScore remain more robust.

5 Conclusion

DRS parsing and generation are reversible pro-
cesses that can be exploited in cross-task eval-
uations. Traditional metrics often fall short in
capturing the true structural and linguistic qual-
ity required for accurate assessment. To address
the limitations, we introduced two complemen-
tary methodologies, PARS-GEN and GEN-PARS,
which offer a bidirectional framework to evalu-
ate Urdu DRS processing more holistically. The
PARS-GEN approach assesses parsing quality by
generating text from parsed DRS, revealing lin-
guistic nuances that purely structural metrics may
miss. In parallel, GEN-PARS transforms gen-
erated text back into DRS, providing a struc-
tural and semantic evaluation of generation qual-
ity that goes beyond surface evaluations. Apply-
ing these methods to Urdu has yielded significant
insights: (i) Urdu exhibits stronger correlations
between generation quality and parsing accuracy
than the reverse, indicating that high-quality gen-
eration is a reliable predictor of parsing perfor-
mance; (ii) BERTScore shows the highest corre-
lations, demonstrating their effectiveness in cap-
turing Urdu’s complex linguistic features; and (iii)
The positive, statistically significant correlations
across both evaluation directions validate the bidi-
rectional parsing-generation relationship for Urdu.




Limitations The cross-task evaluations conducted
for DRS parsing and generation offer a founda-
tional approach to assessing the structural and lin-
guistic quality of Urdu semantic processing com-
prehensively. However, the transformation pro-
cess from DRS to text and text to DRS relies heav-
ily on the capabilities of the underlying pre-trained
language models. These models must demon-
strate sufficient generalizability and robustness to
achieve accurate and high-quality data transforma-
tions between DRS and text formats. Model biases
or limitations in the pre-trained architecture may
adversely impact performance, potentially result-
ing in evaluations that deviate from gold-standard
outputs. This reliance on model quality under-
scores the need for continued refinement and bias
mitigation in pre-trained models to ensure reliable
and unbiased semantic transformation and evalua-
tion.
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Abstract

This paper deals with a study on the effect of
training data size and tokenizer performance
for Hindi language on the eventual downstream
model performance and comprehension. Mul-
tiple monolingual Hindi tokenizers are trained
for large language models such as BERT and in-
trinsic and extrinsic evaluations are performed
on multiple Hindi datasets. The objective of
this study is to understand the precise effects
of tokenizer performance on downstream task
performance to gain insight on how to develop
better models for low-resource languages.

1 Introduction

Large Language Models (LLMs) have shown ex-
traordinary performance in a range of Natural Lan-
guage Processing (NLP) tasks, including both text
classification and text generation. They are made
use of across the world. After the success of
many monolingual LLMs such as BERT (Devlin,
2018) and GPT, multilingual LLMs were built over
these foundational models, increasing the number
of languages they were pre-trained on, using dif-
ferent architectures and expanding the number of
parameters. Some multilingual language models
such as mBERT, mBART (Liu, 2020), Llama (Tou-
vron et al., 2023), the more recent GPT versions,
BLOOM (Workshop et al., 2022) have been trained
on more than hundred languages. However, there
is a skewed distribution in the quantity of the dif-
ferent languages they have been trained, causing
bias in their predictions, in terms of languages as
well as cultures. For Indic languages in specific,
many LLMs have been built by using the aforemen-
tioned models trained on large corpora of multiple
Indian languages. These include IndicBERT (Dod-
dapaneni et al., 2022), IndicBART (Dabre et al.,
2021), MuRIL (Khanuja et al., 2021), OpenHathi
(sar). While India has hundreds of languages, most
of them are however very low-resource, making
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training on them very hard.

The process of pre-training these LLMs involve
processing large amounts of text data and make
them perform tasks like Masked Language Model-
ing (MLM) and Next Sentence Prediction (NSP)
to learn semantic embeddings of the sentences that
are input. While a lot of work has been done for
the mechanisms and architecture of the models, a
relatively under-investigated aspect of tokenizers
is the impact of the tokenizer performance on the
performance of the model.

Tokenizer performance plays a crucial role in the
performance of LLMs. The quality of tokenization
can have a huge effect on the contextual under-
standing and linguistic ability of the model. This
project aims to investigate the effect of tokenizer
performance on LLMs for Indian Languages. Since
there are hundreds of Indian Languages, for this
project, only Hindi was chosen as a representative
language to conduct experimentation and evaluate
results. Initial rudimentary investigations showed
that there exist issues even with existing Indian
LLMs. Hindi represents its vowel sounds within
a word using ‘matras’ for the vowel letters, as do
many other Indian Languages. However, these are
encoded as accent marks in digital representations.
It was seen that when IndicBERT (Doddapaneni
et al., 2022) was used to tokenize Hindi text, it re-
moved these accents as part of its pre-tokenization.
The removal of these ‘matras” would remove a lot
of the semantic sense behind the words, equivalent
to removing all the vowel characters from English
words. Furthermore, it can also be seen in Figure
1 that the model splits the words very frequently
into small-length tokens, to an average of around
2-4 characters, essentially removing the meaning
behind the words, to simply represent repeating
character groups. Such tokenization would deprive
the model of any semantic understanding of the
words, and would not allow it to gain meaningful
context of the given text in order to perform its
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desired task.

This project thus extensively investigates the ef-

fect of the training data and tokenizer performance
on subsequent downstream task performance by de-
veloping several monolingual tokenizers and mod-
els in Hindi, making use of different training data
sizes as well as tokenization algorithms.
The remainder of the paper is structured as fol-
lows. Section 2 discusses related studies of tok-
enizer parameters and their effect on low-resource
languages, section 3 outlines the methodology of
the research in terms of tokenizers used, models
trained and intrinsic and extrinsic evaluations per-
formed along with the data used. Finally, section 4
presents the results of the experiments. Section 5
highlights the final findings and inferences and sec-
tion 6 discusses limitations of the current research
with future scope.

2 Related Work

Tokenizers are a relatively unexplored aspect in
the training of LLMs. Ali et al. (2023) investi-
gated the intrinsic and extrinsic performance of
tokenizers in monolingual and multilingual set-
tings for 5 European languages. 24 tokenizers were
trained with corresponding transformer-based de-
coder models making use of them, which were
fine-tuned on a range of downstream tasks. There
experiments showed that there was some correla-
tion between certain metrics and downstream task
performance, however, a more fine-grained analy-
sis was required.

Kaya and Tantug (2024) also investigate tokeniz-
ers for Turkish, a morphologically rich and rela-
tively less-studied language. They studied the fine-
grained effect of tokenization granularity based on
the training data, vocabulary size and algorithm.
They displayed that these factors play a role in
tokenization quality as well as downstream task
performance, especially for morphologically com-
plex words so the model can attain contextually
meaningful tokens.

Rajab (2022) investigated the effect of the tokeniza-
tion algorithm on low-resource African languages
for Neural Machine Translation. Being agglutina-
tive languages, they showed the improvement in
performance when SentencePiece BPE was used
instead of BPE tokenization, since it encodes the
whitespace character and does not require words to
be space separated.
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3 Methodology

3.1 Tokenizers

To carry out the experimentation, several monolin-
gual tokenizers were trained from a Hindi corpus.
Four tokenization algorithms were used:

» Wordpiece (Schuster and Nakajima, 2012)
* Unigram (Kudo, 2018b)

* Byte-pair encoding (BPE) (Sennrich, 2015)
* Sentencepiece BPE (Kudo, 2018a)

These are all subword-based tokenizers, which
deal with the challenges faced by word based tok-
enization and character based tokenization. Word-
based tokenizers usually require large vocabularies
and are unable to handle out-of-vocabulary words.
Character-based tokenizers output long tokenized
sequences with less meaningful individual tokens.
Subword tokenizers use the training corpus to learn
split or merge rules, based on their algorithm, to ef-
fectively separate given words, more often than not,
into their stem and suffixes, so more meaningful
tokens are created and it can deal with variations
of the same word.

For each algorithm, a tokenizer was developed with
a subset of 2M sentences from the raw corpus. The
same dataset and vocabulary size was used for each
of the algorithms.

3.2 Models

For each tokenizer, a subsequent BERT (Bidirec-
tional Encoder Representation from Transformers)
model was pre-trained for a Masked Language
Modeling task. To save on computation, smaller
BERT models were developed. These consisted of
only 6 attention heads instead of 12, with a total of
82M parameters. The same architecture was used
for all tokenizers with the intent of simply perform-
ing ablations of data and tokenizer performance
on downstream tasks. The models were fine-tuned
on multiple tasks, such as Sentiment Analysis and
Named-Entity Recognition. Sentiment analysis in-
volves classifying a text as having either positive,
negative or neutral sentiment, by making use of
the words, semantics as well as tone of the text.
Named-Entity Recognition locates and classifies
the individual words of a text as Named Entities
such as person (PER), location (LOC), etc. To fine-
tune for these tasks, a classification head was also
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Figure 1: Tokenization of sample texts by IndicBERT

added to the model, consisting of linear layers fol-
lowed by the final softmax layer. Fine-tuning was
performed for 15 epochs.

3.3 Evaluations

Once developed, several intrinsic and extrinsic eval-
uations were carried out on the tokenizers and mod-
els respectively. The tokenizer performance was
evaluated using 3 primary metrics:

e Number of unique tokens : This is number
of unique tokens the model splits the text in
the dataset into. A higher number of unique
tokens indicates that the model captures the
different words more effectively. A large num-
ber of repeated tokens (fewer unique tokens),
conversely, indicates that the model splits the
words into a large number of smaller repeat-
ing units, which would take away some of the
semantic sense of the different words.

Subword fertility ratio: It measures the aver-
age number of subwords per word in the text,
as a ratio of the total number of tokens pro-
duced and the number of words in the text. A
higher value means the model is producing
a larger number of subwords per word, lead-
ing to over-segmentation and lesser contextual
value due to the lower sequence length.

Proportion of continued words: This is the
ratio of words the tokenizer splits into two or
more subwords, that is, the ratio of continued
words in the tokenizer output and the total
number of words in the text. While the fertility
ratio gives a measure of the extent to which
each word is split, this metric indicates how
often words in the text are split. A higher
value means the tokenizer is segmenting a
large proportion of words and has not captured
many words in the language.
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These metrics provide a broad view of the effective-
ness of the tokenizers in terms of how well they can
segment meaningful subwords from texts to garner
generalizability to unseen data while still retaining
semantic sense. They are calculated on a held-out
test set. The finetuned models are then evaluated
on their performance in their respective tasks, us-
ing the accuracy of predictions as the metric, since
these tasks are both multi-class classification tasks.
Further, for Sentiment Analysis, the quality of the
sentence embeddings were also examined. Sen-
tence embeddings are usually extracted as the em-
bedding of the [CLS] token from the pooler layer
of the model. This embedding passes to the classifi-
cation head to be segregated into its corresponding
sentiment label. These sentence embeddings were
examined to see how well they represented the pos-
itive, negative or neutral sentiment of the text by
checking how well they cluster into their ground
truth labels. The silhouette score for each model
was calculated to evaluate how well sentences shar-
ing similar sentiments were clustering. The silhou-
ette score provides a metric over the inter-class and
within-class distance. A high score indicates low
intra-class distance and high inter-class distance.
Ideally, sentences sharing similar sentences in the
fine-tuned models should align closely with each
other, and be far apart from the clusters of other
sentiments.

3.4 Data

Several sources of digital Hindi text data were used
to carry out the experiments in the project. The
raw text corpus for training the tokenizers and pre-
training the BERT models was obtained from the
IndicNLP corpus (Git). This is a corpus developed
by Al4Bharat, a research lab in IIT Madras which
develops tools, models and datasets for NLP in In-
dian Languages. The corpus consists of crawled
data from numerous web sources, including news-



papers, books and magazines in several Indian lan-
guages. The Hindi subset of this corpus was used,
which in total consisted of 62.9M sentences.

For sentiment analysis, Al4Bharat’s Hindi movie
reviews dataset was used. This is part of the In-
dic_GLUE (Kakwani et al., 2020) dataset which
consists of datasets for several Natural Language
Understanding tasks to evaluate model perfor-
mance. The sentiment analysis dataset consists
of movie reviews, collected by IIT Patna, with each
review annotated with its corresponding sentiment
(positive, neutral or negative).

For Named-Entity Recognition, Al4Bharat’s
Naamapadam dataset (Mhaske et al., 2023) was
used. This consists of annotated data for 11 In-
dian Languages. The data is produced by using the
English-Indian Language parallel corpus and trans-
ferring the labels from the English side to the cor-
rect corresponding word on the Indian Language
side.

4 Results

To carry out evaluations, intrinsic tokenizer met-
rics were first calculated for a held-out test corpus
of text, which consisted of 54961 words. Table
1 shows the intrinsic metrics of the 4 tokenizers
created using the corresponding algorithms.

Tokenizer Unique | Fertility | Continued
Tokens Words
Unigram 6990 1.2768 0.1307
Wordpiece 6961 1.1599 0.0219
BPE 1938 3.3367 0.8735
SentencePiece| 7724 1.2082 0.0787

Table 1: Intrinsic metrics

It can be seen that Wordpiece shows the best per-
formance in both subword fertility and proportion
of continued words. The results of SentencePiece
and Unigram are also comparable. BPE shows
the worst performance, with the lowest number of
unique tokens and the highest subword fertility and
proportion of continued words. This suggests that
it splits each word in the text into a large number
of small, repeating units which would likely fail to
capture the semantics or nuances of the words.

It can be seen from Table 2 that the monolingual
Hindi Unigram, Wordpiece and SentencePiece to-
kenizers perform better than tokenizers of bench-
mark LLMs, IndicBERT and mBERT, despite be-
ing trained on a significantly lower amount of data.
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Tokenizer Unique | Fertility | Continued
Tokens Words

IndicBERT 1327 1.6643 0.4589

mBERT 1280 2.0424 0.4284

Table 2: Intrinsic metrics of benchmark LLMs

Table 3 shows the performance of the BERT mod-
els, pretrained from the corresponding tokenizer,
fine-tuned for the Sentiment Analysis task. While
the models trained on the Unigram, Wordpiece and
Sentencepiece algorithm show comparable perfor-
mance, there is a large drop in the performance
of the BPE tokenizer based BERT model. This
follows the hypothesis that the poor tokenizer per-
formance caused worse downstream task perfor-
mance, as all other factors in the models were kept
constant.

Tokenizer Accuracy | Silhouette score
Unigram 0.6355 0.1160
Wordpiece 0.6483 0.1263
BPE 0.5774 0.0706
SentencePiece | 0.6581 0.1141

Table 3: Results of Sentiment Analysis

The silhouette scores of the sentence embed-
dings (before being processed through the classi-
fication head) also show similar trends, being the
lowest for BPE, and comparable for the other 3
algorithms. This indicates the model’s inherent un-
derstanding of the language based on how well it
can represent the sentences. Table 4 shows the per-
formance of the models fine-tuned for the Named
Entity Recognition task. Once again, the Unigram,
Wordpiece and SentencePiece based models show
comparable performance, whereas there is a drop
in the performance of the BPE based model. This
shows a significant correlation between the quality
of the tokenizer and the downstream performance
of the model.

Tokenizer Accuracy
Unigram 0.9384
Wordpiece 0.9381
BPE 0.8878
SentencePiece 0.9400

Table 4: Results of Named Entity Recognition



5 Conclusion

In this paper, fine grained analysis of the impact
of tokenizer performance on downstream perfor-
mance of BERT models in Hindi was conducted.
The results showed that there is a significant cor-
relation between intrinsic tokenizer performance
and extrinsic downstream task performance. The
Unigram, Wordpiece and SentencePiece models
that showed the best tokenizer performance also
showed the best results in Sentiment Analysis as
well as in Named-Entity Recognition tasks. This
suggests that the quality of words in the models’
vocabulary allows it to segment words in the in-
put text more meaningfully, thereby allowing it to
learn better semantics during the pre-training phase
and subsequently when being fine-tuned for the
downstream tasks.

6 Limitations

This research investigates the effect of several tok-
enizer algorithms on downstream task performance
of the model, specifically for the Hindi language.
While the results strongly back the hypothesis, the
research is limited in its scope. Due to computa-
tion requirements, the tokenizers and models were
trained on only a limited subset of the raw cor-
pus, for only a single language. Further, only two
downstream tasks were evaluated. Investigation
can still be done into the effect of tokenizer vocab-
ulary size as well as the amount training data to
form a learning a learning curve. The research can
also be extended to more Indian languages, which
are morphologically rich and more low-resourced.
Further manual evaluations could help to better
understand the nuanced analysis as well as the
strengths and shortcomings of the tokenizers by ob-
serving the types of subwords and splits generated
for the input text, especially for morphologically
complex languages.
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Abstract

Multilingual LLMs support a variety of lan-
guages; however, their performance is subopti-
mal for low-resource languages. In this work,
we emphasize the importance of continued pre-
training of multilingual LL.Ms and the use of
translation-based synthetic pre-training corpora
for improving LLMs in low-resource languages.
We conduct our study in the context of the low-
resource Indic language Hindi. We introduce
Nemotron-Mini-Hindi 4B, a bilingual SLM
supporting both Hindi and English, based on
Nemotron-Mini 4B. The model is trained using
a mix of real and synthetic Hindi + English to-
kens, with continuous pre-training performed
on 400B tokens. We demonstrate that both the
base and instruct models achieve state-of-the-
art results on Hindi benchmarks while remain-
ing competitive on English tasks. Additionally,
we observe that the continued pre-training ap-
proach enhances the model’s overall factual
accuracy.

1 Introduction

The accuracy and utility of large language mod-
els (LLMs) have continuously improved over time.
Both closed and open-source LL.Ms have demon-
strated strong performance in English and several
other languages. Open models such as Nemotron
(Adler et al., 2024), Gemma (Team et al., 2024),
and Llama (Dubey et al., 2024) are inherently mul-
tilingual. For instance, the Nemotron-4 15B model
was pre-trained on 8 trillion tokens, of which 15%
were multilingual (Parmar et al., 2024). However,
the proportion of multilingual data is limited, which
in turn affects the accuracy of these models on non-
English languages.

The model’s performance further diminishes as
we move from high-resource to low-resource lan-
guages. In this work, we specifically focus on the
Indic language Hindi as our target low-resource
language. Out of the 8 trillion tokens used to train
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Figure 1: Adaptation of multilingual Nemotron-Mini-
4B model (also known as Minitron-4B).

the Nemotron-4 models, only 20 billion tokens are
in Hindi. As a result, while the model can under-
stand and generate Hindi content to a reasonable
extent, the usability of such a multilingual LLM
for specific low-resource languages remains ques-
tionable. Frequent hallucinations, meaningless sen-
tences, and mixing of English content often occur
when responding to purely Hindi queries in the
Devanagari script. There is a strong need to adapt
multilingual LLMs to target languages to enhance
their usability.

Recently, in the context of Indic languages, tar-
get language Supervised Fine-Tuning (SFT) has
become a common practice to adapt LLMs to spe-
cific languages (Gala et al., 2024). However, it re-
mains to be studied whether language-specific SFT
tuning improves LLMs’ understanding in regional
contexts. Some studies suggest that SFT can intro-
duce LLMs to new domain knowledge, though it is
typically used to enhance the model’s instruction-
following capability (Mecklenburg et al., 2024).
SFT on translated English instruction tuning data
is widely used to develop regional LL.Ms for Indic
languages. While this may improve instruction-
following in the target language, it may not en-
hance LLMs’ understanding of regional contexts
(Balachandran, 2023). Another approach to updat-
ing LLM knowledge is continued pre-training, but
the limited availability of tokens for low-resource
languages makes this both infeasible and prone to

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 50-57
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Model Layers Hidden Size

Att. Heads

MLP Hidden Parameters

Nemotron 4B 32 3072 24

Query Groups
8

9216 4.19B

Table 1: Architecture details of Nemotron-Mini-4B model.

overfitting.

In this work, we focus on a continued pre-
training approach using a mix of real and synthetic
corpora. We demonstrate that a robust base model
can be adapted to the target language with a small
continued pre-training corpus. This approach is
particularly relevant for low-resource languages,
where the amount of training data is limited. The
synthetic pre-training dataset is curated by trans-
lating high-quality generic English corpora into
the target language. To further expand the corpus
and support Roman script queries in the target lan-
guage, the text is transliterated into Roman script
and used for pre-training. The base model is then
aligned using supervised fine-tuning (SFT), fol-
lowed by preference tuning with Direct Preference
Optimization (DPO). We observe that the contin-
ued pre-training approach is particularly useful for
reducing hallucinations, improving regional knowl-
edge of LLMs, and enhancing response capabilities
in the target language. The high-level process is
outlined in Figure 1,

Based on this approach, we present Nemotron-
Mini-Hindi-4B-Base' and Nemotron-Mini-Hindi-
4B-Instruct®?, state-of-the-art Small Language
Models (SLMs) for the Hindi language. These
SLMs support Hindi, English, and Hinglish.
The Hindi models are based on the multilingual
Nemotron-Mini-4B (also known as Minitron-4B),
adapted with continued pre-training on 400 billion
Hindi and English tokens. The data blend used
equal proportions of both languages. The instruct
version of the model was developed using SFT
and DPO techniques. The model outperforms all
similarly sized models on various IndicXTREME,
IndicNLG benchmark tasks and popular translated
English benchmarks such as MMLU, Hellaswag,
ARC-C, and ARC-E (Gala et al., 2024). We also
perform LLM-based evaluations using the bench-
mark datasets IndicQuest (Rohera et al., 2024) and
in-house SubjectiveEval, with GPT-4 serving as the
judge LLM. This is the first study to present and

"https://huggingface.co/nvidia/
Nemotron-4-Mini-Hindi-4B-Base

2https://huggingface.co/nvidia/
Nemotron-4-Mini-Hindi-4B-Instruct

3https://build.nvidia.com/nvidia/
nemotron-4-mini-hindi-4b-instruct
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evaluate bilingual language models of this nature.
We provide a thorough study of the models in both
languages.

2 Related Work

In this section, we review various approaches for
adapting LLMs to different languages. Several ef-
forts have focused on adapting LLaMA models to
Indic languages. A common method involves ex-
tending the vocabulary, followed by SFT or PEFT
(LoRA) using translated and available SFT corpora
in Indic languages. Examples of such work include
OpenHathi, Airavata (Gala et al., 2024), Tamil-
LLaMA (Balachandran, 2023), Navarasa®, Ambari,
MalayalLLM, and Marathi-Gemma (Joshi, 2022).
Notably, some of these efforts employ bilingual
next-word prediction, alternating between English
and the target language in the pre-training corpus.
Airavata also introduced an evaluation framework>
for Indic LLMs, which we leverage to evaluate
Nemotron-Mini-Hindi 4B and other multilingual
models.

Apart from Indic languages, similar efforts have
been made for other languages, including Chinese
LLaMA (Cui et al., 2023), LLaMATurk (Tora-
man, 2024), FinGPT (Luukkonen et al., 2023), and
RedWhale (Vo et al., 2024) for Chinese, Turkish,
Finnish, and Korean, respectively. These LLMs
use one or more techniques such as tokenizer ex-
tension, secondary pretraining, and supervised fine-
tuning. The key distinction of our work lies in its
emphasis on developing bilingual LLMs, whereas
the aforementioned efforts concentrate on creating
monolingual LLMs.

Cahyawijaya et al. (2024) show that large lan-
guage models can learn low-resource languages
effectively using in-context learning and few-shot
examples, improving performance through cross-
lingual contexts without extensive tuning. Gur-
gurov et al. (2024) enhance multilingual LLMs
for low-resource languages by using adapters with
data from ConceptNet, boosting performance in
sentiment analysis and named entity recognition.

*https://huggingface.co/Telugu-LLM-Labs/Indic-gemma-
7b-finetuned-sft-Navarasa-2.0
Shttps://github.com/AI4Bharat/IndicInstruct



3 Methodology

In this section, we describe our methodology for
adapting multilingual LLMs to target languages to
improve performance in those languages. Specifi-
cally, we build a bilingual SLM that supports both
Hindi and English. We conduct our adaptation ex-
periments using the multilingual Nemotron-Mini-
4B model (also known as Minitron-4B). The model
undergoes continuous pre-training with an equal
mixture of Hindi and English data, consisting of
200B tokens per language. The original Nemotron-
4B model was primarily trained on English tokens
and had seen only 20B Hindi tokens. Given the
limited amount of Hindi data, adapting an exist-
ing multilingual model rather than training from
scratch is an effective strategy, allowing us to lever-
age the knowledge learned from the pre-trained
model. Additionally, as Nemotron-4B employs a
large 256k tokenizer, we did not need to extend the
tokenizer. The fertility ratio for Hindi text is 1.7,
which is better than that of its Llama (2.64) and
Gemma (1.98) counterparts.

3.1 Synthetic Data Curation

One of the key aspects of our work is the creation
of a synthetic Hindi pre-training dataset. This syn-
thetic data is generated using machine translation
and transliteration. We first select high-quality En-
glish data sources and translate them into Hindi
using a custom document translation pipeline. This
pipeline preserves the document structure, includ-
ing elements like bullet points and tables, and em-
ploys the IndicTrans2 model (Gala et al.) for sen-
tence translation. However, since the translated
data may contain noise, we use an n-gram language
model to filter out low-quality samples. This model,
trained on MuRIL-tokenized (Khanuja et al., 2021)
real Hindi data, applies perplexity scores to identify
and exclude noisy translations. Around 2% of the
documents were discarded post-filtering.

The translated Hindi data comprises approxi-
mately 60 billion tokens. We then combine this
synthetic data with around 40 billion real tokens
(web-scraped data) to create a dataset totaling 100
billion Hindi tokens. Additionally, this entire Hindi
text is transliterated into Roman script, expanding
the total dataset to 220 billion tokens. The translit-
erated tokens are included to enable the model
to support Hinglish queries. This Hindi data is
further combined with 200 billion English tokens
for continued pre-training. Including the English
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dataset helps prevent catastrophic forgetting of En-
glish capabilities and contributes to training sta-
bility. Fuzzy deduplication is performed on the
entire text using NeMo-Curator® to eliminate simi-
lar documents. The real Hindi data sources include
internal web-based datasets and Sangraha Corpus
(Khan et al., 2024). The English dataset is a subset
of the pre-training corpus used for the Nemotron-
15B model. All the datasets used in this work are
commercially friendly.

3.2 Continued Pre-training

The Nemotron-Mini-4B base model is used for
continuous pre-training, and its architecture details
are presented in Table 1. The Nemotron-Mini-4B
model is derived from the Nemotron-15B model
using compression techniques such as pruning and
distillation, consisting of 2.6B trainable parameters
(Muralidharan et al., 2024). Re-training is per-
formed using a standard causal modeling objective.
The dataset consists of 400B tokens, with an equal
mix of Hindi and English. During batch sampling,
greater weight is given to real data compared to
synthetic data. We use the same optimizer settings
and data split as (Parmar et al., 2024), with a cosine
learning rate decay schedule from 2e-4 to 4.5e-7.
This model is referred to as Nemotron-Mini-Hindi-
4B, a base model where Hindi is the primary lan-
guage. The re-training was performed using the
Megatron-LM library (Shoeybi et al., 2020) and
128 Nvidia A100 GPUs.

3.3 Model Alignment

The first alignment stage is Supervised Fine-Tuning
(SFT). We use a general SFT corpus with approx-
imately 200k examples, comprising various tasks
as outlined in (Adler et al., 2024). The model is
trained for one epoch with a global batch size of
1024 and a learning rate in the range of [5e-6, 9e-7],
using cosine annealing. Due to the lack of a high-
quality Hindi SFT corpus, we leverage English-
only data for SFT. We also experimented with trans-
lated English data (filtered using back-translation-
based methods) for SFT, but did not observe any im-
provements with this addition. We found that using
the English-only SFT corpus enhances instruction-
following capabilities in Hindi, highlighting the
cross-lingual transferability of these skills.

After SFT stage, the model undergoes a
preference-tuning phase, where it learns from

®https://github.com/NVIDIA/NeMo-Curator



Base models Metric Nemotron-Mini-Hindi-4B Nemotron-Mini-4B Sarvam-12B Gemma 2-2B Openhathi Llama-3.18B Gemma 2-9B
IndicSentiment F1-NLU 84.31 72.47 96.36 91.90 72.89 92.06 94.90
IndicCopa F1-NLU 81.86 62.50 51.63 58.65 68.69 61.87 72.58
IndicXNLI F1-NLU 49.67 40.39 36.08 16.67 16.67 16.67 16.79
IndicXParaphrase F1-NLU 37.09 16.27 80.99 26.60 71.72 72.75 71.38
Indic QA (With Context) 1 shot F1-NLG 18.32 15.10 35.81 33.37 20.69 35.92 46.27
Indic Headline 1 shot BLEURT - NLG 0.50 0.46 0.36 0.27 0.47 0.38 0.27
IndicWikiBio 1 shot BLEURT - NLG 0.62 0.59 0.53 0.60 0.52 0.60 0.63
MMLU Acc - NLU 49.89 38.20 45.65 35.05 3227 44.84 55.08
BoolQ Acc - NLU 71.71 70.79 56.08 66.00 58.56 61.00 61.00
ARC Easy Acc - NLU 78.81 58.25 76.85 5231 44.28 67.05 85.69
Arc Challenge Acc - NLU 65.02 47.87 59.04 40.78 32.68 54.10 76.02
Hella Swag Acc - NLU 31.66 2531 37.13 27.50 25.59 33.50 42.40

Table 2: Performance metrics for various base models across different Hindi tasks. The results are zero-shot unless

otherwise specified.

Instruct models Metric Nemotron-Mini-Hindi-4B Nemotron-Mini-4B ~ Airavata Navarasa2B Gemma-22B Navarasa7B Llama-3.18B Gemma-2 9B
IndicSentiment F1-NLU 97.62 90.01 95.81 93.62 94.32 95.99 98.59 99.09
IndicCopa F1-NLU 80.1 66.01 63.75 38.83 27.64 62.59 59.08 89.89
IndicXNLI F1-NLU 53.77 39.25 73.26 16.67 17.33 38.19 31.27 39.71
IndicXParaphrase F1-NLU 67.93 83.74 76.53 43.82 43.06 44.58 71.72 61.38
Indic QA (With Context) 1 shot F1-NLG 37.51 42.56 37.69 33 62.95 19.09 40.03 59.83
Indic Headline 1 shot BLEURT - NLG 0.44 0.18 0.38 0.24 0.39 0.3 0.26 0.25
IndicWikiBio I shot BLEURT - NLG 0.6 0.49 0.43 0.3 0.49 0.45 0.42 0.24
MMLU Acc - NLU 50.5 38.66 34.96 23.1 39.39 40 45.85 57.35
BoolQ Acc - NLU 67.86 60.00 64.5 60.31 70 78.1 80 84
ARC Easy Acc - NLU 79.97 60.14 54 38.8 59.76 61.24 71.55 91.16
Arc Challenge Acc - NLU 65.53 49.83 3592 31.66 48.55 48.29 59.64 81.23
Hella Swag Acc - NLU 39.9 39.69 25.37 25.3 34.7 30.8 35.5 54.6
IndicQuest (En) Score (1-5) 4.01 3.94 3.75 378 4.1 4.07 4.2 4.4
IndicQuest (Hi) Score (1-5) 4.15 2.72 3.1 3.18 3.58 3.6 4.02 4.23
SubjectiveEval (Hi) Score (1-5) 435 1.64 224 1.75 3.66 297 3.98 45

Table 3: Performance metrics for various instruct models across different Hindi tasks. The results are zero-shot

unless otherwise specified.

Task Nemotron-Mini-Hindi-4B-Base Nemotron-Mini-4B-Base Gemma-2 2b
MMLU (5) 56.37 58.60 51.3
arc_chall (25) 46.08 50.90 55.4
hellaswag (10) 74.64 75.00 73
truthfulga_mc2 (0) 41.05 42.72 -
winogrande (5) 70.09 74.00 70.9
xlsum_english (3) 29.71 29.62 -

Table 4: Performance of base models on English Bench-
marks

triplets consisting of a prompt, a preferred response,
and a rejected response. In this stage, we apply the
Direct Preference Optimization (DPO) (Rafailov
et al., 2024) algorithm, which trains the policy net-
work to maximize the reward difference between
the preferred and rejected responses. We train the
model for one epoch with a global batch size of
512 and a learning rate in the range of [9e-6, 9e-
7], utilizing cosine annealing. For the DPO stage,
we use approximately 200k English samples and
60k synthetic Hindi samples. The synthetic Hindi
samples were created by translating the English
samples and then filtered using back-translation
methods. We observe that incorporating synthetic
Hindi samples during this stage improves the over-
all performance of the model. The aligned model
is referred to as Nemotron-Mini-Hindi-4B-Instruct.
Both the SFT and DPO stages are carried out using
Nemo Aligner (Shen et al., 2024) and 64 Nvidia
A100 GPUs.
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Figure 2: Comparison of different instruct models on
various parameters using SubjectiveEval.

3.4 Evaluation Datasets

We evaluate Nemotron-Mini-Hindi-4B and other
multilingual LLMs using both native Hindi bench-
marks and translated English benchmarks. The
native benchmarks include tasks from IndicX-
TREME, IndicNLG, and IndicQuest, while the
translated English benchmarks include popular
datasets like MMLU and Hellaswag. Addition-
ally, we curate an open-ended QnA dataset termed
SubjectiveEval to assess the model’s generation ca-
pabilities in the Hindi language. Human evaluation
is also conducted using the translated MT-Bench
dataset.
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Figure 3: Comparison of different instruct models on
various parameters using IndicQuest-Hi.
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Figure 4: Comparison of different instruct models on
Factuality score of IndicQuest. The ground truth an-
swers from IndicQuest are provided as a reference to
GPT4 for better scoring. The Nemotron-Mini-Hindi-
4B provides comparable scores for Hindi and English
whereas other models provide better factuality for En-
glish.

¢ IndicXTREME: The benchmark consists of
different Natural Language Understanding
(NLU) tasks in Indic languages (Doddapaneni
et al., 2023). We consider different tasks like
IndicSentiment, IndicCopa, IndicXNLI, and
IndicXParaphrase.

IndicNLG: The IndicNLG benchmark (Ku-
mar et al., 2022) consists of various tasks for
evaluating the generation capabilities of the
model. We consider IndicHeadline, IndicWik-
iBio, and IndicQA covering text summariza-
tion and question-answering tasks.

IndicQuest: IndicQuest (Rohera et al.,
2024) is a gold-standard fact-based question-
answering benchmark designed to evaluate
multilingual language models ability to cap-
ture regional knowledge across various Indic
languages. It focuses on factual questions re-
lated to India in domains such as Literature,
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History, Geography, Politics, and Economics.
The dataset is available in English as well as
several Indic languages, including Hindi, al-
lowing for language-specific evaluations. For
LLM-as-a-judge evaluation, the ground truth
facts are passed to the evaluator LLM as a
reference.

SubjectiveEval: This in-house Hindi evalu-
ation dataset features open-ended questions
across various Indian domains, including His-
tory, Geography, Agriculture, Food, Culture,
Religion, Science and Technology, Mathemat-
ics, and Thinking Ability. It offers broader
coverage compared to the fact-based ques-
tions in IndicQuest. It assesses a model’s
understanding, generative capabilities, coher-
ence, and insightfulness. Questions include
’what’, "how’, and "why’ types, varying from
brief one-word answers to detailed explana-
tions. The dataset also tests analytical and
problem-solving skills with hypothetical sce-
narios. Model responses are evaluated using
an LLM as a judge.

Translated English Benchmarks: We use
translated versions of popular benchmarks for
exhaustive evaluation of our models. The
benchmarks include MMLU, Hella Swag,
BoolQ, Arc-Easy, and Arc-Challenge.

Human Evaluation: For human evaluation,
we utilized a translated version of the multi-
turn MT-Bench dataset (Zheng et al., 2023).
The prompts were first translated into Hindi
using the Google Translate API and then man-
ually filtered to remove problematic prompts
or those relying on English-specific semantics.
During evaluation, human judges conducted
A/B testing, where they were presented with
randomized, pair-wise model responses for
comparison.

4 Results and Discussion

The results for the base models are shown in Ta-
ble 2 and Table 4. The Nemotron-Mini-Hindi-
4B Base delivers state-of-the-art performance on
nearly all benchmarks compared to similarly sized
models. Additionally, it outperforms larger mod-
els like Gemma-2-9B and Llama-3.1-8B on more
than half of the benchmarks. Hindi-specific contin-
ued pre-training significantly enhances the model’s
performance on Hindi tasks compared to the base



Nemotron-Mini-Hindi-4B Vs
Airavat

Nemotron-Mini-Hindi-4B Vs
Navrasa-2B

Nemotron-Mini-Hindi-48 Vs
Gemma-2-2B

Nemotron-Mini-Hindi-4B Vs
Navrasa-7B
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29.60% 31.50%

100%

Figure 5: Results of human evaluation on translated MT-Bench. A win indicates Nemotron-Mini-Hindi-4B model is

preferred.

Nemotron-Mini-4B model. There is some degra-
dation on English benchmarks, though the results
remain competitive. This underscores the impor-
tance of dual-language continued pre-training.

We observe similar results with the instruct
model on IndicXTREME, IndicNLG, and trans-
lated English benchmarks. The results are pre-
sented in Table 3. The instruct model is also eval-
uated using LLM-as-a-judge on IndicQuest and
SubjectiveEval. On these benchmarks, we see im-
provements in both English and Hindi compared to
the Nemotron-Mini-4B-Instruct model. The model
outperforms all baseline models except for Gemma-
2-9B. Notably, we observe improvements in the
model’s factuality and language consistency. These
results are shown in Figure 2, 3, and 4. Further-
more, during human evaluations, responses from
Nemotron-Mini-4B-Hindi were consistently pre-
ferred over those from other models, as shown in
Figure 5.

5 Conclusion

We present Nemotron-Mini-Hindi-4B-Base and
Nemotron-Mini-Hindi-4B-Instruct, state-of-the-art
SLMs primarily designed for the Hindi language.
These models have been continuously pre-trained
and aligned using a combination of Hindi and En-
glish data. The Hindi corpus includes both real and
synthetic data, with the synthetic data generated
through translation. The models outperform simi-
larly sized models on various Hindi benchmarks,
as assessed through reference-based and LLM-as-a-
judge evaluations. They also perform competitively
on English benchmarks. We emphasize the impor-
tance of pre-training to reduce hallucinations and
enhance the factuality of the models.
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Limitations

The model was trained on internet data that in-
cludes toxic language and biases, which means it
might reproduce these biases and generate toxic
responses, particularly if prompted with harmful
content. It may also produce inaccurate, incom-
plete, or irrelevant information, potentially leading
to socially undesirable outputs. The problem could
be worsened if the suggested prompt template is
not used.

To mitigate these issues to some extent, we have
implemented safety alignment during the DPO
stage to guide the model away from responding
to toxic or harmful content. Additionally, we con-
duct safety evaluations using benchmarks such as
Aegis’ (Ghosh et al., 2024), Garak® (Derczynski
et al., 2024), and Human Content red-teaming, and
our findings indicate that the model’s responses
remain within permissible limits.
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Abstract

This paper introduces OVQA, the first
multimodal dataset designed for visual
question-answering (VQA), visual question
elicitation (VQE), and multimodal research for
the low-resource Odia language. The dataset
was created by manually translating 6,149
English question-answer pairs, each associated
with 6,149 unique images from the Visual
Genome dataset. This effort resulted in 27,809
English-Odia parallel sentences, ensuring a
semantic match with the corresponding visual
information.  Several baseline experiments
were conducted on the dataset, including
visual question answering and visual question
elicitation. The dataset is the first VQA
dataset for the low-resource Odia language
and will be released for multimodal research
purposes and also help researchers extend for
other low-resource languages.

1 Introduction

Visual Question Answering (VQA) is a complex
task at the intersection of computer vision and
natural language processing, requiring models to
understand and reason about visual content and
formulate accurate responses to textual questions.
Despite significant advances in this field, the
majority of VQA research has been focused on
a handful of widely spoken languages, primarily
English. This language bias limits the accessibility
and applicability of VQA technologies to non-
English speaking populations.

To address this gap, we introduce OVQA, the
first multimodal dataset specifically designed for
VQA tasks in the Odia language. Odia, an
official language of India, is currently spoken by
approximately 50 million people.! However, it
has been largely underrepresented in the realm of
natural language processing and VQA research.

"https://www.britannica.com/topic/
Oriya-language
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By developing a VQA dataset in Odia, we aim
to broaden the inclusivity of AI technologies
and foster advancements in multilingual and
multimodal Al systems.

The OVQA dataset was built by translating
6,149 English question-answer pairs from the
widely used Visual Genome dataset into Odia.
Each question-answer pair is associated with a
unique image, resulting in a robust dataset of
27,809 English-Odia parallel sentences. This
ensures a strong semantic alignment between
the visual content and the textual data in both
languages.

Our contributions are threefold:

» Dataset Creation: We present OVQA, a
comprehensive dataset that enriches the
multilingual VQA landscape and provides a
valuable resource for the Odia language.
Baseline Experiments: We establish baseline
performance  metrics through various
experiments including visual question
answering, and visual question elicitation.
These baselines will serve as a reference for
future research and development.

Semantic Alignment: We ensure high-quality
translation and semantic consistency between
the English and Odia texts, enhancing
the dataset’s reliability and usability for
multimodal learning tasks.

The development of OVQA is a significant
step towards bridging the linguistic divide in
Al research. By making this dataset publicly
available, we hope to inspire further research in
multilingual VQA and contribute to the creation
of more inclusive Al systems.

For our work, the Visual Genome dataset
introduced by Krishna et al. (2016), has been
used. It is a large-scale collection of images and
associated descriptive data designed to facilitate

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 58—66
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research in computer vision and natural language
processing.

We explored the PaliGemma (Beyer et al., 2024)
model which can be used for various tasks such
as VQA, detecting objects on images, or even
generating segmentation masks. Here, we have
explored the capability of PaliGemma for low-
resource language on the VQA task. Although
PaliGemma has zero-shot capabilities — meaning
the model can identify objects without fine-
tuning, Google strongly recommends fine-tuning
the model for optimal performance in specific
domains.

2 Related Work

Parida et al. (2023a) created HaVQA, a
multimodal dataset for visual question answering
for the low-resource Hausa language. The dataset
demonstrates several use cases utilizing text and
images including multimodal machine translation,
visual question answering, and visual question
elicitation. Romero et al. (2024) proposed a
culturally diverse multilingual Visual Question
Answering (CVQA) benchmark which includes
culturally driven images and questions from
across 28 countries on four continents, covering
26 languages with 11 scripts, providing a total
of 9k questions. Gupta et al. (2020) proposed a
framework for multilingual and code-mixed VQA
for Hindi and English.

3 Focused Language

Odia is an Indo-Aryan language predominantly
spoken in Odisha, a state located in eastern India.
It is part of the Indo-Aryan language family, which
evolved in the Indian subcontinent through three
distinct phases: Old Indo-Aryan (1500 BC to
600 BC), Middle Indo-Aryan (600 BC to 1000
AD), and Modern Indo-Aryan (after 1000 AD).
Languages that emerged during the Modern Indo-
Aryan period include Odia, Bangla, Assamese,
Hindi, Urdu, Punjabi, Gujarati, Sindhi, Bhojpuri,
Marathi, Sinhali, and Maithili. Odia is thought
to have developed around 1000 AD, and it serves
as the official language of Odisha, recognized as
one of the 22 languages in the Indian constitution.
According to the 2011 Census, approximately 42
million people speak Odia. The language features
several dialects, with Mughalbandi (Standard
Odia) recognized as the standard dialect used in
education. The script employed for writing Odia
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is called the Oriya/Odia script.

3.1 Odia Parts of Speech and Syntax

The primary parts of speech in Odia include nouns,
pronouns, verbs, adjectives, and postpositions,
along with minor categories such as classifiers,
complementizers, and conjunctions (Sahoo, 2001).
Odia follows a Subject-Object-Verb (SOV) order,
where a simple sentence typically starts with a
subject and concludes with a finite verb, placing
objects between the subject and the verb, with
the indirect object preceding the direct object.
Modifiers come before the words they modify:
adjectives precede nouns, and adverbs come
before verbs. While word scrambling is permitted,
the typical structure adheres to V-final patterns,
except in poetic contexts.
Example 1:

AM 66160 661EN @8 6Ql

mili mote goTie bahi delaa

Mili me a book gave

‘Mili gave me a book.’

Example 2:
AdLIN Qe QUG GlQl QF AREE
misijaae jathaa prabhaati taaraa rabi kiraNe
unites as morning star sun ray-PP

A8 Qe GlRlosll AQEURLI @R6EEL

misijaae jathaa jibaatmaa paramaatmaa charaNe

unites as individual soul great soul of God feet-PP

For instance, Example (1) displays a
straightforward sentence, while Example (2)
demonstrates poetic inversion, where the verb
appears at the beginning of the clause; this
inversion is included in our corpus due to the
variety of poetic forms.

3.2 Grammatical Features of Odia

Odia features three genders: masculine, feminine,
and neuter; two numbers: singular and plural;
and eight cases: nominative, vocative, accusative,
instrumental, dative, genitive, and locative. There
are also three persons: first, second, and third.
The subject noun phrase agrees with the verb in
terms of person, number, and honorificity. Odia
employs a natural gender system, where gender
does not influence other grammatical forms like
pronouns or verbs. Although gender is explicitly
marked in nouns and adjectives, pronouns do not
show overt gender distinctions; they are generally
neutral. The gender of a pronoun is determined



by the noun or adjective it associates with (Parida
et al., 2023b). In Odia, there is a four-fold tense
distinction: past, present, future, and hypothetical,
based on whether an event occurs before, during,
after, or in a hypothetical context. The present
tense marker is not morphologically expressed,
while the other three are indicated by -il (past), -ib
(future), and -ant (hypothetical) (Sahu et al., 2022;
Parida et al., 2020; Nayak, 1987).

4 Odia VQA Dataset

In this section, we delve into the various stages
involved in the OdiaVQA dataset creation process,
including collection, annotation, validation, and
data analysis.

4.1 Data Collection and Annotation

For the creation of new dataset, we utilized the
Visual Genome Dataset’ as our primary source
of images, supplemented with question-answer
pairs. This dataset offers a rich multimodal context
comprising images and relevant captions. To
gather data for the VQA task, we developed a
specific web interface. With the assistance of
seven native Odia speakers to manually translate
the QA pairs, we annotated the dataset via this web
interface.

The interface was thoughtfully designed to
integrate an Odia keyboard as shown in Fig.
1, facilitating easy access to special characters
in Odia. A detailed guideline was provided
to the annotators to minimize errors during the
annotation process. Notably, annotations were not
supposed to be generated using translation tools,
and annotators were required to view the images
before annotating the QA pairs. These measures
were implemented to reduce errors in annotations,
ensuring the authenticity and overall quality of the
dataset.

4.2 Data Validation

Concurrently with the annotation process, each
question-answer pair underwent validation to
ensure translation consistency and quality. The
validation process included basic spelling and
grammar checks using the interface. We engaged
seven native Odia speakers to validate the entire
dataset simultaneously with the annotation process.
A separate interface was employed for the

“https://homes.cs.washington.edu/~ranjay/
visualgenome/index.html
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validation process that simultaneously displayed
images and translated question-answer pairs to
the validators. Validators could update question-
answer pairs in case of errors, and any changes
made were directly reflected in the back-end as
well.

Item Count
Number of Images 6,149
Number of Questions 27,809
Number of Answers 27,809
Number of Wh-Questions 26,939
Number of Counting Questions 70
Others 800

Table 1: Statistics of the OVQA Dataset.

4.3 Data Analysis

Within the OVQA dataset, the Odia Natural
Language Processing (ONLP)? toolkit alongside a
Basic Tokenizer has been employed for Odia text
tokenization. Table 1 presents pertinent statistics,
Question and answer length in OVQA dataset is
shown in Figure 2.

Odia Gloss Percentage (%)
@6l What 56.67
6RARQ0I6QR Where 16.30
QAR How 12.83
&\ (R12l)  Who (whose) 6.04
6@R6Q When 5.24
o= Why 3.15

Table 2: Statistics of the OVQA Dataset based on the
Question Types.

4.4 Question

In the original English dataset, there are various
question types, which can be classified into
two main categories: wh-questions and counting
questions.  Wh-questions typically begin with
words such as ‘What,” “Where,” ‘“When,” ‘“Whens,’
‘Who,” ‘How,” and ‘Whose.” The statistics for
different types of wh-questions are presented in
Table 2. Odia questions range from as short as two
words to as long as eleven words. The distribution
of question lengths is illustrated in Fig. 3.

3https://github.com/nlpodisha/oriya-nlp



What is in front of the trees?

backspace

<snter

shift

Figure 1: Odia Visual Question Answer (OVQA) Annotation Interface
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Figure 2: Percentage of Questions and Answers by
length.

4.5 Answers

Depending on the questions in OVQA dataset,
different lengths of answers are included. In the
majority of the cases (60% cases out of more than
20k QA pairs), the shortest answer is just one word
or just a number; however, the longest answer is
eight words. The distribution of the length of the
answers is shown in Fig. 4 for different types of
questions.

5 Baselines for Use Cases

5.1 Visual Question Answering

We used PaliGemma-3b-448mix * from Google for
model fine-tuning on the VQA task. PaliGemma is
a 3B vision-language model composed of a SigL.IP
vision encoder and a Gemma language decoder
linked by a multimodal linear projection (Beyer
et al., 2024; Fedorov et al., 2022).

We prepared the dataset into an instruction set
format for fine-tuning.

*https://huggingface.co/google/
paligemma-3b-mix-448

61

Most Common Question Lengths
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Figure 3: Distribution of Question Length.

We used Deepspeed”® for training on GPU. For
GPU, we used AMD Instinct MI250X Accelerator
where each node has 60GB GPU memory and we
have 1*8 nodes.

We used supervised fine-tuning (SFT) for the
full fine-tuning. The hyperparameters are shown
in Table 3 and learning curve in Fig. 6.

Hyper Parameter Value
Train Batch Size (per device) 2
Gradient Accumulation Steps 4
Warm-sup step 50
Learning Rate 3e™?
LR Scheduler Cosine
Epochs 10
Cutoftf Length 1536
bfl6 True

Table 3: Training Hyperparameters for VQA

5.2 Visual Question Elicitation

We used the images and associated questions to
train an automatic VQE model (Fedorov et al.,
2022). We extracted visual features using the
images and fed them to an LSTM decoder.

https://github.com/microsoft /DeepSpeed



The decoder generates the tokens of the caption
autoregressively using a greedy search approach
(Soh, 2016). Trained to minimize the cross-
entropy loss on the questions from the training data
(Yu et al., 2019a) was minimized.

Image encoder All the images were resized
to 224x224 pixels, and features from the
whole image were extracted to train the model.
The feature vector is the output of the final
convolutional layer of ResNet-50. It is a 2048-
dimensional feature representation of the image.
The encoder module is a fixed feature extractor
and, thus, non-trainable.

LSTM decoder A single-layer LSTM, with a
hidden size of 256, was used as a decoder.
The dropout is set to 0.3. During training, for
the LSTM decoder, the cross-entropy loss is
minimized and computed using the output logits
and the tokens in the gold caption. Weights are
optimized using the Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of 0.001.
Training is halted when the validation loss does not
improve for ten epochs. We trained the model for
100 epochs.

6 Discussion and Analysis

6.1 Visual Question Elicitation

Since it is challenging to assess the quality of
the generated questions using automatic evaluation
metrics, we conducted a manual evaluation with
the assistance of a native Odia speaker. Around
10% of the generated questions were sampled
and manually reviewed. Each question was
categorized as ‘Exact,” ‘Correct,” ‘Nearly Correct,’
or ‘Wrong.” The distribution of these categories

Most Commen Answer Lengths

60 4

50 4

w FS
= =]
L

% of Answers

~
o

10 A

T T T T T
7.5 10.0 12.5 15.0 17.5

Answer Length

=
0.0 2.5 5.0

Figure 4: Distribution of Answer Length.
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is shown in Figure 8, with additional sample
questions provided in Part A in the Appendix.

All the generated predictions were valid and
reasonable questions, with 99.5% of them (all
but 3) correctly ending with a question mark
(‘7). The distribution of question types is as
follows: “@&1” (what)—60.1%, “6@Q0l6Q”
(where)-26.4%, “6@6@” (when)—4.8%, “@\1”
(who)-3.7%, “@IE@&” (why)-1.5%, “6&06%” (how
much)-2.32%, and “@A&” (how)—1.2%.

7 Availability

The OVQA dataset can be accessed via LINDAT
at: http://hdl.handle.net/11234/1-5820.

Additionally, the OVQA dataset, designed for
multimodal LLM training in an instruction set
format, is available on Hugging Face:

Dataset:  https://huggingface.co/datasets/
odiagenmllm/odia_vqga_en_odi_set
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Figure 7: Architecture of Visual Question Elicitation using ResNet-50 (Koonce and Koonce, 2021) and LSTM (Yu
et al., 2019b). The training question was “CUORER @6l 2UF ?” (gloss: What is in the bowl?). During inference,
when the image was passed through the system, the generated question was “@él 218 6QUCRER?” (gloss: What

is in the container?).
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8 Conclusion

In this work, we presented OVQA: a multimodal
dataset suitable for various NLP tasks for the Odia
language. Some examples of these tasks include
VQA, VQE, and other research tasks based on
multimodal analysis.

The OVQA dataset is available for research and
non-commercial use under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0
License.®

Our planned future work includes: i) extending
the dataset with more images depicting regional,
and cultural aspects and QA pairs ij) providing

https://creativecommons.org/licenses/by-nc-sa/4.

0/
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ground truth for all images for image captioning
experiments, and #ii) organizing a shared task
using the OVQA dataset.

Ethics Statement

We do not envisage any ethical concerns. The
dataset does not contain any personal, or
personally identifiable, information, the source
data is already open source, and there are no risks
or harm associated with its usage.

Limitations

The most important limitation of our work lies
in the size of the OVQA dataset. However,
substantial further funding would be needed to
resolve this.
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A Visual Question Elicitation Sample Predictions

Example 1: Exact \ Example 2: Correct

Ref Que.: 6Q0l6Q 6R60G1GN LA6RE 21S? Ref Que.: 2URISER 6510 602G QB6L?
Gloss: How many faucets are there? Gloss: What color are the clouds in the sky?
Pred Que.: 690I6Q 6Q6Q LLACRE 2IG? Pred Que.: 6¢19Q QA6 Q61?7
Gloss: How many faucets are there? Gloss: What is the color of the clouds?

Example 3: Nearly Correct Example 4: Wrong

-

Ref Que.: QFURER AL P QAR IRVRGOR @612 Ref Que.: Y9R ARQIE Q612
Gloss: What are the letters on the fin on the airplane? Gloss: What is the green vegetable?
Pred Que.: GFIR6Q 2ARIRGCR @617 Pred Que.: Q6Q16M 6RQ0I6R 2IR?
Gloss: What are the letters on the airplane? Gloss: Where is the broccoli?

Table 4: Visual Question Elicitation Sample Predictions

B Recruitment of Annotators and Validators

We selected native Odia speakers from the Odia Generative Al (OdiaGenAl) research group, which
consists of experienced translators, to serve as annotators and validators. The annotation team comprised
4 women and 3 men, while the validation team included 3 women and 4 men. Each team member holds
at least an undergraduate degree and resides in various regions across Odisha state of India.

C Annotation Guidelines

The following instructions were provided to the Odia annotators and validators:

1.

AN

Review the Odia typing guidelines carefully. Before beginning the annotation, perform a quick test
and report any issues encountered.

Ensure that the annotator is a native speaker of the Odia language.

View the image before proceeding with annotation.

Aim to understand the task fully—translate both questions and answers into Odia.

Refrain from using any machine translation tools for annotation.

Do not enter dummy entries for testing the interface.
65



7. Data will be saved at the backend.
8. Press the Shift Key on the virtual keyboard for complex consonants.
9. Contact the coordinator for any clarification/support.
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Abstract

Multilingual speaker identification and veri-
fication is a challenging task, especially for
languages with diverse acoustic and linguis-
tic features such as Indo-Aryan and Dravidian
languages. Previous models have struggled to
generalize across multilingual environments,
leading to significant performance degradation
when applied to multiple languages. In this
paper, we propose an advanced approach to
multilingual speaker identification and verifica-
tion, specifically designed for Indo-Aryan and
Dravidian languages. Empirical results on the
Kathbath dataset show that our approach signifi-
cantly improves speaker identification accuracy,
reducing the performance gap between mono-
lingual and multilingual systems from 15% to
just 1%. Additionally, our model reduces the
equal error rate for speaker verification from
15% to 5% in noisy conditions. Our method
demonstrates strong generalization capabilities
across diverse languages, offering a scalable
solution for multilingual voice-based biometric
systems.

1 Introduction

In today’s world, biometric recognition is revolu-
tionizing how we identify and verify individuals.
Traditional methods, such as passwords, personal
identification numbers, or signatures, are often in-
convenient because they can be forgotten, stolen,
or forged (Jain et al., 2004). In contrast, biometric
traits are unique to each individual, making them
difficult to replicate or steal. These systems rely on
either physiological characteristics, such as finger-
prints, iris patterns, or facial features, or behavioral
traits, such as handwriting, voice, or keystroke pat-
terns, to identify a person (Tolba et al., 2006).
Among these biometric traits, voice-based recog-
nition offers clear advantages. Two factors make it
a strong choice: First, speech is a natural and easy
signal for users to provide. Second, the wide avail-
ability of phones and low-cost microphones make
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voice capture accessible and convenient for many
applications (Reynolds, 2002). In voice-based bio-
metric recognition, there are two distinct modes of
operation: speaker identification, which typically
involves recognizing an individual from a larger
pool, and speaker verification, which focuses on
validating a specific identity claim (Togneri and
Pullella, 2011).

Voice-based recognition systems can be classi-
fied by their language handling capabilities into
monolingual and multilingual systems (Nagaraja
and Jayanna, 2012). Monolingual systems are
trained and tested within a single language, offer-
ing high accuracy but limited flexibility outside
that specific linguistic context. Multilingual sys-
tems, on the other hand, are designed to recognize
speakers across multiple languages within a single
model, eliminating the need for separate models
for each language. This versatility makes multilin-
gual systems well-suited for environments where
multiple languages are spoken.

Recent advancements in self-supervised learn-
ing (SSL) have significantly enhanced the perfor-
mance and robustness of voice-based recognition
systems. SSL models, particularly in the context of
the upstream model, play a crucial role in feature
extraction. Here, rich speech features are captured
and transferred to a downstream model, which is
responsible for tasks such as speaker identifica-
tion and verification (wen Yang et al., 2021). By
separating the feature extraction and task-specific
components, SSL models offer greater flexibility,
improving the performance of voice recognition
systems, particularly in multilingual applications.

Despite these advances, multilingual systems
still lag behind their monolingual counterparts in
terms of accuracy (Javed et al., 2023). This perfor-
mance gap is particularly significant in multilingual
countries such as India, where linguistic diversity
presents a unique challenge. India’s population
speaks languages from four main language fam-

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 67-73
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Figure 1: Architecture of our speaker identification model. The model processes an input speech signal in .m4a
format (sampled at 16 kHz) using the pre-trained IndicWav2Vec model (Javed et al., 2023) to generate 24 frame-
level representations. These are then mean-pooled along the time axis to create utterance-level representations. A
weighted average pooling is applied across the 24 utterance-level representations to produce the final representation,
which is passed through two fully connected layers to predict speaker identity. Layer dimensions and additional

hyper-parameters are detailed in Section 3.

ilies, with approximately 96% of speakers using
languages from the Indo-Aryan and Dravidian fam-
ilies, while the remaining languages have smaller
speaker bases (Kakwani et al., 2020). In this con-
text, a multilingual voice recognition system capa-
ble of handling multiple languages within a single
model is crucial. It would eliminate the need for
separate models for each language, streamlining
speaker identification and verification processes
across India’s diverse linguistic landscape.

In this paper, we propose a novel architecture for
voice-based biometric recognition using the pre-
trained IndicWac2Vec model (Javed et al., 2023)
to enhance both speaker identification and verifica-
tion. Our model was tested under two conditions:
clean and noisy environments. While there was a
slight improvement in monolingual speaker identifi-
cation accuracy, the major gain was in multilingual
speaker identification accuracy, where the perfor-
mance gap between monolingual and multilingual
systems decreased from around 15% to 1%. Ad-
ditionally, instead of creating a separate speaker
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verification model, we used the speaker embed-
dings from our speaker identification model for
verification. Compared to the standard approach,
our method reduced the equal error rate from 15%
to 5% on unknown data in both clean and noisy
conditions, demonstrating improved multilingual
voice-based recognition.

2 Methodology

Our speaker identification model builds upon the
architecture proposed by Javed et al.. To enhance
the model’s performance on speaker identification
and verification tasks, we have introduced two key
modifications, as illustrated in Figure 1.

2.1 Weighted Average Pooling Strategy

The original model employs mean pooling, which
averages representations from all transformer en-
coder layers to generate a single vector. While
straightforward, this approach assumes equal con-
tribution from all layers, which may not align with
the properties of speech representations. Prior stud-
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Figure 2: Encoder layer-wise representation weights for speaker identification models trained on specific languages
and a multi-language dataset. The figure contains 13 subplots: each of the first 12 subplots shows a model trained
exclusively on one language, labeled by the language name. The final subplot, labeled "all," displays results from a
model trained on a combined dataset incorporating all 12 languages. This visualization highlights the variation in
layer importance across language-specific models and the multi-language model.

ies (Chen et al., 2022) have shown that middle
layers of transformer-based models often capture
speaker-specific features more effectively than the
initial or final layers.

To address this limitation, we employ a weighted
average pooling strategy, which assigns learnable
weights to each layer’s representation. This ap-
proach enables the model to emphasize layers that
capture speaker-specific features while reducing
the contribution of less relevant layers. By priori-
tizing these layers, the model effectively exploits
the hierarchical structure of transformer outputs,
as supported by the findings in (Chen et al., 2022),
which highlight the importance of middle layers
for speaker-related tasks.

2.2 Additional Embedding Layer

In the baseline architecture, the aggregated repre-
sentation is passed directly to the classifier. To en-
hance the model’s ability to refine speaker-related
features, we introduce an additional embedding
layer, a linear transformation applied to the pooled
representation before classification. This layer re-
fines the pooled representation to better distinguish
speaker-specific features, leveraging the hypothesis
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that increased depth improves feature separability
(Shi et al., 2020). Additionally, the refined em-
beddings support both speaker identification and
verification, providing a unified representation that
enhances the model’s accuracy and robustness.

The resulting model improves accuracy and ro-
bustness for speaker identification and verifica-
tion. Details on layer dimensions and other hyper-
parameters are in Section 3.

3 Experimental Setup

Our speaker identification model consists of two
main components: an upstream model and a
downstream model. The upstream model, In-
dicWav2Vec, is a Wav2Vec-based model pre-
trained on half a million hours of raw speech data
across 128 Indian languages (Javed et al., 2023).
Following standard practice in speech processing
benchmarks, such as SUPERB (wen Yang et al.,
2021), we freeze the upstream model and train only
the downstream model. This approach allows us
to use the rich, pre-trained representations while
reducing computational complexity, as only the
downstream model is updated to predict speaker



Language SID - Mono SID - Multi
Clean Noise Dravidian Indo-Aryan All
Clean Noise | Clean Noise | Clean Noise
Bengali 99.64 99.63 - - 99.54 99.44 | 99.54  99.37
Gujarati 97.73 9597 - - 97.63 95.68 | 97.79 94.94
Hindi 99.39 99.08 - - 99.23 98.68 | 99.17 98.62
Kannada 98.54 99.86 | 99.00 100.00 - - 98.91 100.00
Malayalam | 99.94 99.93 | 99.94 99.65 - - 99.77  99.58
Marathi 94.11 97.97 - - 94.11 98.39 | 93.82 9847
Odia 98.17 98.39 - - 98.24 97.82 | 98.10 97.37
Punjabi 99.41 99.24 - - 99.13 99.19 | 98.94 99.37
Sanskrit 99.82 99.56 - - 9994 9924 | 99.94 99.62
Tamil 96.41 96.73 | 96.96 96.85 - - 96.12  96.65
Telugu 93.61 9648 | 94.81 95.83 - - 9473  95.66
Urdu 99.72  99.29 - - 99.62 99.20 | 99.27 99.23

Table 1: Performance of different languages on the Speaker Identification (SID) tasks, specifically for the Mono
and Multi language settings, evaluated on both clean and noisy datasets. In the SID-Multi task, languages are
grouped into three categories: Dravidian (a model trained on all Dravidian languages and tested on each language
individually), Indo-Aryan (a model trained on all Indo-Aryan languages and tested on each language individually),
and All (a model trained on all languages combined and tested on each language individually)

identity. ! 2.

As the speaker identification task is framed as
a classification problem, we use cross-entropy as
the loss function and accuracy as the evaluation
metric. In the speaker verification task, we first
train the model for multilingual speaker identifi-
cation, then extract speaker embeddings. These
embeddings are compared using cosine similarity,
and performance is evaluated using the Equal Error
Rate (EER), which represents the point at which
the false acceptance rate equals the false rejection
rate. Hyper-parameter tuning, performed using grid
search, was applied to both tasks to optimize the
model’s performance .

For evaluating our model’s performance, we
select the Kathbath dataset (Javed et al., 2023),
which is particularly well-suited for speaker iden-
tification tasks involving Indo-Aryan and Dra-
vidian languages. This dataset is the largest
available for Indian languages, making it an
ideal choice for multilingual speaker identifica-
tion. It includes 8 Indo-Aryan languages—Gujarati,
Marathi, Bengali, Odia, Hindi, Punjabi, Sanskrit,
and Urdu—and 4 Dravidian languages—Kannada,
Malayalam, Tamil, and Telugu. All 12 languages

'Our model was implemented using PyTorch.

2All experiments were conducted on an NVIDIA Quadro
RTX 6000 GPU with 30GB of RAM.

3The fully connected layer has a dimension of 1500, with
a batch size of 32 and a learning rate of 2.5 x 1073,
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are widely spoken, ensuring the model’s general-
ization across a diverse set of linguistic and acous-
tic features. The dataset is divided into four cat-
egories: Clean Known, Noise Known, Clean Un-
known, and Noise Unknown, which allows for ro-
bust evaluation under varying conditions of noise
and speaker familiarity. The "Clean" and "Noise"
labels distinguish between clean and noisy audio,
while "Known" and "Unknown" indicate whether
the speaker is seen or unseen during training. We
follow the recommended train-test splits for each
dataset.

4 Results and Discussion

A key architectural modification in our model
is the use of weighted average pooling for fea-
tures extracted from the pre-trained IndicWav2Vec
model, replacing traditional mean pooling. Fig-
ure 2 demonstrates that layer contributions are not
uniform; notably, layers 9 through 12 consistently
receive higher weights across all models. This sug-
gests that these deeper layers play a substantial role
in encoding speaker identity, as they may capture
more abstract, speaker-specific features that are
essential for accurate identification.

Furthermore, there is a strong correlation be-
tween the weight patterns in monolingual and mul-
tilingual models. Layers with relatively small
weights in monolingual models appear even smaller
in the multilingual model, while those with higher



Model Clean - Known | Clean - Unknown \ Noisy - Known \ Noisy - Unknown
Speaker Identification Monolingual (SID-Mono) - Accuracy

XLS-R 94.2 - 92.4 -

IndicWav2Vec 95.6 - 95.2 -

Ours 98.04 - 98.51 -
Speaker Identification Multilingual (SID-Multi) - Accuracy

XLS-R 70.71 - 69.22 -

IndicWav2Vec 79.26 - 78.08 -

Ours 97.96 - 98.12 -

Automatic Speaker Verification - EER

XLS-R 2.15 12.05 2.83 11.58

IndicWav2Vec 2.08 15.33 2.11 15.39

Ours 4.61 5.15 5.23 5.55

Table 2: Performance comparison of different models on various tasks, including Speaker Identification (SID) in
both monolingual (SID-Mono) and multilingual (SID-Multi) settings, and Automatic Speaker Verification (ASV).
For SID-Mono and SID-Multi, the accuracy is reported for both clean and noisy conditions on known speakers. For
ASYV, the Equal Error Rate (EER) is reported for clean and noisy conditions on both known and unknown speakers.
Ours denotes the model proposed in this work, which outperforms the other models, XLS-R and IndicWav2Vec, in

most settings.

weights tend to be accentuated in the multilingual
setting. This consistency suggests that the multi-
lingual model captures a generalizable layer-wise
structure across languages, reinforcing the impor-
tance of weighted pooling in effectively leveraging
essential layers for robust speaker representation.
These findings demonstrate that our approach pre-
serves key features across languages, enhancing
speaker identification accuracy.

Table 1 presents the performance of our model
on the SID task across monolingual and multilin-
gual settings, evaluated on both clean and noisy
datasets. In the monolingual setting, the model
achieves high accuracy on several languages, with
Bengali, Hindi, and Malayalam exceeding 99%
accuracy. However, languages like Marathi and
Telugu show a drop in performance, particularly
in noisy conditions. This indicates that noise sig-
nificantly impacts speaker identification for these
languages, potentially due to their unique acoustic
characteristics. Overall, the monolingual perfor-
mance demonstrates the model’s capability to accu-
rately identify speakers in controlled environments,
though its performance is more sensitive to noise
in certain languages.

In contrast, the multilingual setting shows a
slight decrease in accuracy compared to the mono-
lingual case, which is expected due to the added
complexity of handling multiple languages. Never-
theless, the model trained on the "All" languages
category maintains relatively high performance
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across languages, demonstrating strong general-
ization. The Dravidian and Indo-Aryan subsets per-
form similarly, with the Indo-Aryan model slightly
outperforming others in some cases. Notably, the
multilingual models exhibit better resilience to
noise compared to the monolingual models, sug-
gesting that training with multiple languages helps
the model learn more robust speaker features. How-
ever, noise remains a challenge, and further im-
provements in noise robustness are needed for bet-
ter performance in real-world conditions.

Next, Table 2 compares the performance of our
model against two baseline models, XLLS-R and
IndicWav2Vec, across three tasks: SID in both
monolingual (SID-Mono) and multilingual (SID-
Multi) settings, and Automatic Speaker Verification
(ASV). For both SID-Mono and SID-Multi tasks,
our model consistently outperforms the baselines in
terms of accuracy, particularly in noisy conditions.
In the monolingual setting, our model achieves an
accuracy of 98.04% for clean and 98.51% for noisy
conditions, significantly surpassing the 95.6% and
95.2% accuracy of IndicWav2Vec and the 94.2%
and 92.4% accuracy of XLS-R. Similarly, in the
multilingual setting, our model shows remark-
able performance, achieving 97.96% in clean and
98.12% in noisy conditions, well ahead of both
XLS-R and IndicWav2Vec.

However, when it comes to ASV, our model lags

behind the baselines in terms of Equal Error Rate
(EER). While XLS-R and IndicWav2Vec achieve



EER values ranging from 2.08 to 2.83 for clean
conditions and 11.58 to 15.39 for noisy conditions,
our model exhibits better EER values, particularly
in unknown conditions, with the best value being
5.15 for unknown speakers in clean conditions and
5.55 for unknown speakers in noisy conditions.
These results suggest that while our model excels in
speaker identification tasks, further improvements
in ASV, especially under known conditions, are
necessary. Despite the performance gap in ASV,
the results highlight the robustness of our model
in SID tasks across both monolingual and multilin-
gual settings, making it a promising candidate for
practical voice recognition applications.

5 Conclusion

In this work, we presented a novel approach for
multilingual speaker identification and verifica-
tion using a modified IndicWav2Vec-based model.
Our model integrates self-supervised learning tech-
niques to extract rich, robust speech features, which
substantially improve speaker identification perfor-
mance, especially in multilingual settings. Key
innovations include a weighted average pooling
mechanism for better aggregation of transformer
layer representations and an additional embedding
layer to refine speaker-specific features. These
modifications led to significant improvements, re-
ducing the performance gap between monolingual
and multilingual systems from 15% to 1%, and
lowering the equal error rate for speaker verifica-
tion from 15% to 5% under noisy conditions. Our
experiments, conducted with the Kathbath dataset,
demonstrated the model’s ability to generalize ef-
fectively across multiple languages. The simplicity
of the model structure, combined with its robust
performance, positions it as an efficient and scal-
able solution for voice-based biometric recogni-
tion.

6 Limitation

Despite the promising results, our model still faces
several limitations. Although it excels in multi-
lingual speaker identification and verification, its
performance is limited by the diversity of the train-
ing dataset, as it relies heavily on the Kathbath
dataset. Expanding the training data to cover a
wider variety of languages and acoustic conditions
will be crucial for enhancing generalization. Addi-
tionally, while the model performs well under clean
and moderately noisy conditions, its robustness

in highly noisy environments remains a challenge.
The equal error rate, though reduced in typical sce-
narios, may degrade in real-world applications with
severe noise or poor-quality recordings. Lastly, the
model’s computational complexity, especially with
the added pooling and embedding layers, may limit
its suitability for real-time or resource-constrained
applications.
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Abstract
Sentiment  analysis has  witnessed
significant ~advancements with  the

emergence of deep learning models such as
transformer models. Transformer models
adopt the mechanism of self-attention and
have achieved state-of-the-art performance
across various natural language processing
(NLP) tasks, including sentiment analysis.
However, limited studies are exploring the
application of these recent advancements in
sentiment analysis of Sinhala text. This
study addresses this research gap by
employing transformer models such as
BERT, DistilBERT, RoBERTa, and XLM-
RoBERTa (XLM-R) for sentiment analysis
of Sinhala news comments. This study was
conducted for 4 classes: positive, negative,
neutral, and conflict, as well as for 3
classes: positive, negative, and neutral. It
revealed that the XLM-R-large model
outperformed the other four models, and
the transformer models used in previous
studies for the Sinhala language. The XLM-
R-large model achieved an accuracy of
65.84% and a macro-F1 score of 62.04%
for sentiment analysis with four classes and
an accuracy of 75.90% and a macro-F1
score of 72.31% for three classes.

1 Introduction

Sentiment analysis is a fundamental task in NLP
which aims to analyze and understand the
sentiment expressed in textual data. While
sentiment analysis has been extensively studied for
major languages such as English, research on low-
resource languages is relatively limited.

74

hau@sci.pdn.ac.lk

Sinhala, a morphologically rich Indo-Aryan
language, serves as the native language of the
Sinhalese people, constituting a significant portion
of the population in Sri Lanka with an estimated
count of 20 million speakers. However, despite its
large speaker base, Sinhala is considered a low-
resource language in the context of NLP research
due to the scarcity of available linguistic resources
for analysis and processing (de Silva, 2019).

Sentiment analysis has experienced significant
progress with the advent of large-scale pre-trained
language models (Mishev et al., 2020). These
models have demonstrated promising results in text
classification tasks for high-resource and low-
resource languages. Transformer models have
revolutionized NLP tasks by leveraging attention
mechanisms and self-attention layers, allowing
them to capture intricate linguistic patterns and
dependencies (Devlin et al., 2018). Notably,
transformer-based models such as BERT (Devlin et
al., 2018), RoBERTa (Liu et al., 2019), and XLM-
R (Conneau et al., 2019) have shown remarkable
performance across various languages, making
them promising candidates for sentiment analysis
in Sinhala.

One of the primary advantages of employing
transformer models for sentiment analysis in
Sinhala is their ability to handle the language's
morphological richness and syntactic complexities.
Sinhala exhibits complicated morphological
variations and context-dependent sentiment
expressions (Medagoda, 2017), which transformer
models can effectively capture.

However, applying transformer models to
sentiment analysis in Sinhala also poses specific
challenges. One major challenge is the scarcity of
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annotated sentiment datasets for fine-tuning
transformer models. There exists a sentiment
dataset of 15,059 Sinhala news comments,
annotated with four classes: Positive, Negative,
Neutral, and Conflict (Senevirathne et al., 2020).
However, the limited size of this dataset hinders the
ability of transformer models to achieve optimal
performance.

To address this limitation, we expanded the
existing Sinhala news comments dataset by adding
5,000 annotated comments to the dataset. While the
dataset size may still be considered limited, this
extension introduced more diverse examples and
enabled some level of expansion for training and
evaluation purposes.

In this research, we conducted two sentiment
analysis experiments considering four sentiment
classes and three sentiment classes respectively.
The goal was to evaluate the performance of
monolingual models such as BERT, DistilBERT,
and RoBERTa as well as multilingual models such
as XLM-R-base and XLM-R-large models in
sentiment analysis for the Sinhala language. We
investigated their capabilities in effectively
capturing sentiment information, accommodating
the morphological variations of the language, and
addressing the limited availability of labeled data.
These research outcomes will contribute valuable
insights to the field of sentiment analysis in Sinhala
and will provide a foundation for future studies and
applications.

2 Related Work

Recent developments in deep learning techniques
have made it possible to achieve better results in
the domain of NLP. Deep learning techniques do
not use language-dependent features. Therefore,
deep learning techniques have outperformed
traditional statistical machine learning techniques
(dos Santos and Gatti, 2014). Convolutional Neural
Network (CNN) and Recurrent Neural Network
(RNN) were the most popular deep learning
techniques used in the NLP domain until Long
Short-Term Memory (LSTM) and Transformer
models were introduced. Kim (2014) proposed a
method using CNN with hyperparameter tuning for
sentiment analysis, and it was shown that a simple
CNN with one layer of convolution and little
hyperparameter tuning performs remarkably well.
LSTM encoders were experimented for sentiment
analysis by Yang et al. (2016) and bi-directional
LSTM by G. Xu et al. (2019). Both studies showed
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improved results compared to previous studies,
which used deep learning techniques such as CNN
and RNN. An attention-based Bi-LSTM with a
convolutional layer scheme called AC-BiLSTM
was proposed by W. Liu et al. (2017) for sentiment
analysis. Word2Vec, which is one of the most
popular word-embedding models, was introduced
by Goldberg & Levy (2014). Word2Vec improved
the efficiency of the training procedure and
enhanced the training speed and accuracy. An
improved version of the Word2Vec model called
GloVe was introduced by Pennington et al. (2014).
GloVe outperformed other models on word
analogy, word similarity, and named entity
recognition tasks. Transformer models were
introduced by Vaswani et al. (2017). Transformers
could train significantly faster than architectures
based on recurrent or convolutional layers. H. Xu
et al. (2019) carried out aspect-based sentiment
analysis using the BERT model, producing a state-
of-the-art performance for sentiment analysis. Liao
et al. (2021) used RoBERTa, an improved version
of BERT, to carry out aspect-category sentiment
analysis and it outperformed other models for
comparison in aspect-category sentiment analysis.

Since Sinhala is a low-resource language,
research done on the Sinhala language is very
limited. The first sentiment analysis for the Sinhala
language was carried out by N. Medagoda et al.
(2015) by constructing a sentiment lexicon for
Sinhala with the aid of the SentiWordNet 3.0, an
English sentiment lexicon. It achieved a maximum
accuracy of 60% in Naive Bayes (NB)
classification. The first sentiment analysis for the
Sinhala language using an artificial neural network
was conducted by N. Medagoda (2016) using a
simple feed-forward neural network and part of
speech tags as a feature. This model achieved an
accuracy of 55%. Chathuranga et al. (2019) used a
rule-based technique for binary sentiment
classification of Sinhala news comments. In this
study, they generated a Sinhala sentiment lexicon
in a semi-automated way and used it for sentiment
classification of Sinhala news comments. NB,
Support Vector Machines (SVM), and decision
trees were used in this study and obtained accuracy
between 65% - 70%. The best accuracy of 69.23%
was obtained for the NB model. Ranathunga &
Liyanage (2021) conducted sentiment analysis for
Sinhala news comments with deep learning
techniques such as LSTM and CNN+SVM. Also,
this study experimented with Word2Vec and



fastText word embeddings for  Sinhala
(Ranathunga and Liyanage, 2021). Further,
statistical machine learning algorithms such as NB,
logistic regression, decision trees, random forests,
and SVM were experimented by training them with
the same features and conducting a sentiment
analysis for Sinhala news comments. This research
was carried out to study the use of various models
with respect to the dimensionality of the
embeddings and the effect of punctuation marks
(Ranathunga and Liyanage, 2021). Demotte et al.
(2020) used an approach based on the S-LSTM
model for sentiment analysis of Sinhala news
comments. The same dataset used by Ranathunga
& Liyanage (2021) was used in this study, and it
was found that S-LSTM outperforms the
traditional LSTM used in the study conducted by
Ranathunga & Liyanage (2021). Senevirathne et al.
(2020) conducted comprehensive research on the
use of RNN, LSTM, and Bi-LSTM models as well
as more recent models such as hierarchical
attention hybrid neural networks and capsule
networks for sentiment analysis. As part of this
study, they released a dataset of 15059 Sinhala
news comments, annotated with four classes
(Positive, Negative, Neutral, and Conflict) and a
corpus of 9.48 million tokens (Senevirathne et al.,
2020). Dhananjaya et al. (2022) conducted
experiments to explore the performance of
transformer models in various linguistic tasks,
including sentiment analysis, for the Sinhala
language. Their study evaluated LASER, LaBSE,
XLM-R-large, XLLM-R-base, and three RoOBERTa-
based models pre-trained specifically for Sinhala:
SinBERT, SinBERTo, and SinhalaBERTo.

3  Models

In this study, we used the following transformer
models to carry out sentiment analysis for the
Sinhala language,
BERT: Bidirectional Encoder
Representations from Transformers
DistilBERT: Distilled version of BERT
RoBERTa: Robustly Optimized BERT
Pretraining Approach
XLM-R: Cross-lingual Language Model —
RoBERTa

o XLM-R-base

o XLM-R-large

BERT, which stands for Bi-directional Encoder

Representations from  Transformers, is a
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bidirectional transformer model pre-trained on
Toronto Book Corpus and Wikipedia. BERT was
developed by Google, and it was the state-of-the-
art language model for NLP tasks at the time it was
released (Devlin et al., 2018).

DistilBERT is a lighter and faster version of the
BERT model, and it was developed by
Huggingface. DistilBERT has the same general
architecture as BERT, but the size is 40% less than
that of BERT and retains 97% of the language
understanding capabilities of BERT. Also,
DistilBERT is 60% faster than BERT, which is
another benefit of this model (Sanh et al., 2019).

RoBERTa stands for Robustly Optimized BERT
Pre-training Approach. It is an improved version of
the BERT model. RoBERTa has the same
architecture as the BERT model but is trained with
more data and has better parameter settings (Liu et
al., 2019).

XLM-R is a multilingual model pre-trained on
filtered Common Crawl data containing more than
100 languages, including Sinhala. This model was
developed and released by Facebook Al in 2019
(Conneau et al, 2019). XLM-R model
outperformed the multilingual BERT (mBERT)
and achieved state-of-the-art results on multiple
cross-lingual benchmarks (Conneau et al., 2019).
This model can be directly fine-tuned for a
downstream task without pre-training on a Sinhala
corpus, as this model is already pre-trained on
Sinhala. XLLM-R consists of two variants: XLM-R-
base and XLM-R-large. XLM-R-base is the base
version with fewer parameters.

4  Dataset

This study required two datasets to carry out pre-
training and fine-tuning of the models. Since the
pre-training is unsupervised, it does not require a
labeled dataset. However, it required two separate
datasets annotated with four classes (Positive,
Negative, Neutral, and Conflict) and three classes
(Positive, Negative, and Neutral) to fine-tune the
models.

4.1 Dataset for pre-training

We used the Sinhala corpus extracted from “Open
Super-large  Crawled Aggregated coRpus”
(OSCAR) dataset to pre-train the models. OSCAR
dataset is a multilingual corpus obtained by
language classification and filtering of the
Common Crawl corpus using the Ungoliant
architecture. Common Crawl corpus is a huge



corpus that contains petabytes of raw web page
data, metadata extracts, and text extracts gathered
over 12 years of web crawling (Abadji et al., 2022).
The OSCAR dataset has raw text from 162
languages, including the Sinhala language. This
dataset contains 108,593 documents in the Sinhala
language and 113,179,741 Sinhala words. The total
size of the dataset is around 2.0 GB (Abadji et al.,
2022).

4.2 Dataset for fine-tuning

The dataset ! published by Senevirathne et al.
(2020) contains 15059 news comments annotated
with four classes: Positive, Negative, Neutral, and
Conflict. This dataset contains 9,059 news
comments extracted from the Lankadeepa online
newspaper? by Ranathunga & Liyanage (2021),
along with 6,000 news comments extracted from
the GossipLanka news website®. This annotation
has been done by three annotators following the
guidelines mentioned below,

e A comment is annotated as positive or
negative if it expresses purely a positive or
negative opinion.

A comment is annotated as a conflict if it
gives both positive and negative opinions.
A comment is annotated as neutral if it does
not give any positive or negative opinion.

In this study, we expanded this dataset by
following the steps below.

Data collection: We collected 803,623 news
comments from the GossipLanka news website and
filtered them to include only comments written in

Classes Dataset 1 Dataset 2
(Four Classes) (Three Classes)

Positive 3,587 4414

Negative 10,228 11,639

Neutral 3,822 3,822

Conflict 2,238 0

Total 19,875 19,875

Table 1: Distribution of comments per class

Sinhala Unicode characters. These comments were
then cleaned by removing any characters outside
the Unicode range (0D80 - ODFF). The final
dataset of Sinhala news comments contained
417,332 comments.

thttps://github.com/LahiruSen/sinhala_se
ntiment anlaysis tallip
2https://www.lankadeepa.lk/
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Data annotation: Two annotators who are
native Sinhala speakers carried out the annotating
task following the guidelines mentioned
previously. We used Cohen's Kappa measure to
evaluate the inter-annotator agreement, which
yielded a value of 0.794. Both annotators
collectively annotated 5,037 Sinhala news
comments with four classes (Positive, Negative,
Neutral, and Conflict). These annotated comments
were added to the existing Sinhala news comments
dataset. We carefully removed duplicate entries
from the combined dataset to ensure data integrity.
The final dataset comprised 19,875 unique
comments.

The newly generated dataset was annotated
again using Positive, Negative, and Neutral to
create a sentiment dataset with three classes.
Comments initially labeled as Conflict were
annotated as Positive or Negative based on their
predominant sentiment. Table 1 shows the
distribution of comments per class in the two
datasets.

4.3 Model pre-training

Pre-training the XLM-R-base and XLM-R-large
models for Sinhala was not required, as these
models are already pre-trained on a multilingual
corpus that includes Sinhala. However, we had to
pre-train the other three models for the Sinhala
language, and these were pre-trained using the
Sinhala dataset extracted from the OSCAR dataset.

BERT DistilBERT | RoBERTa
[PAD] [PAD] <s>
[UNK] [UNK] <pad>
[CLS] [CLS] </s>
[SEP] [SEP] <unk>
[MASK] [MASK] <mask>

Table 2: Special tokens included in tokenizers

Since models cannot process raw data directly,
they need to be converted to a representation that
the models can process. Therefore, it was necessary
to train tokenizers for these models from scratch.
BERT and DistilBERT tokenizers use the
WordPiece method (Devlin et al., 2018; Sanh et al.,
2019), while the RoBERTa tokenizer uses the Byte-

Shttps://www.gossiplankanews.com/



Four Classes Three Classes
Models — .

Fl1 Accuracy | Precision | Recall F1 Accuracy | Precision | Recall
BERT 46.34% | 47.07% 48.12% 52.13% | 59.19% | 63.32% 58.22% 61.36%
DistilBERT | 49.49% | 51.72% | 49.59% | 53.69% | 60.63% | 65.13% | 60.59% | 61.66%
RoBERTa 37.50% | 37.36% 41.08% 46.27% | 53.17% | 56.48% 53.08% 56.67%
XLM-Rpase | 59.16% | 62.84% 59.17% 61.85% | 69.52% | 73.56% 68.45% 71.06%
XLM-Ryzge | 62.04% | 65.84% 61.79% 64.48% | 72.31% | 75.90% 72.02% 73.20%

Table 3: Results for sentiment analysis using four classes and three classes

Pair Encoding method (Liu et al., 2019).
Tokenizers for the three models were trained with
a vocabulary size of 52,000 and a minimum
frequency of 2 using the Sinhala dataset extracted
from the OSCAR dataset. The vocabulary size
defines the number of tokens and alphabets
included in the final vocabulary, and the minimum
frequency defines the minimum frequency a pair
should have to be merged. Special tokens included
in BERT, DistilBERT, and RoBERTa tokenizers
are listed in Table 2.

After training the tokenizers, the three models
were trained for masked language modeling task
using the same dataset that was used to train the
tokenizers. The models were trained with a
vocabulary size of 52,000, a maximum position
embedding of 512, a hidden size of 768, 12
attention heads, and 12 hidden layers. During
training, tokens in the input sequences were
randomly masked with a probability of 0.15. This
means that, for each input sequence, approximately
15% of the tokens were selected at random to be
replaced with a special token: [MASK] for BERT
and DistilBERT, and <mask> for RoBERTa. We
used AdamW as an optimizer with a learning rate
of 5 x 10~ and a batch size of 16.

The training of both the models and tokenizers
was conducted in the Google Colaboratory
environment with V100 16GB GPUs. Due to the
high computational cost of pre-training, the models
were trained for only one epoch.

4.4 Model fine-tuning

The pre-trained models should be fine-tuned to
carry out sentiment analysis. Even though XLM-R-
base and XLM-R-large models are already pre-
trained for the Sinhala language, it needs to be fine-
tuned for sentiment analysis in the Sinhala
language. Therefore, all five pre-trained models
were fine-tuned for sentiment analysis. Each pre-
trained model was fine-tuned twice using Dataset 1
and Dataset 2 separately. According to the original
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paper of BERT, the recommended number of
epochs for fine-tuning a model is 2, 3 and 4 (Devlin
et al., 2018). Therefore, BERT and DistilBERT
models were fine-tuned for five epochs and at the
end of each epoch, the trained model was saved as
a checkpoint. The best performing model was
selected from the saved checkpoints by considering
the loss at each epoch. Similarly, the other three
models were fine-tuned for five epochs, and the
best performing checkpoint was chosen.

The fine-tuning process for the models
involved the use of a consistent set of parameters
across BERT, DistilBERT, RoBERTa, XIL.M-R-
base, and XLM-R-large models. For all models, the
batch size was set to 16, and a dropout rate of 0.1
was applied to prevent overfitting.

The learning rates were adjusted to optimize
training performance, with BERT and DistilBERT
using a rate of 2 x 10, RoBERTa using 1 x 107,
and both XLM-R-base and XLM-R-large using a
rate of 5 x 107°. Weight decay was uniformly
applied at 0.01 for all models to control overfitting
further. The training was conducted using the
AdamW optimizer to ensure stable convergence.

5 Results and Discussion

We evaluated the performance of the fine-tuned
models using accuracy, macro-F1 score, macro-
precision, and macro-recall. The results obtained
by Dhananjaya et al. (2022) for the sentiment task
serve as the baseline for our study. Table 3 presents
the results obtained for sentiment analysis for three
and four classes. In this study, we conducted all
model training and evaluation using the
Transformers library provided by HuggingFace
(Wolf et al., 2019) on the Google Colaboratory
environment.

For sentiment analysis using four classes, we
observe that XL M-R-large achieved the highest
macro-F1 score of 62.04%, followed closely by
XLM-R-base with a macro-F1 score of 59.16%.
Similarly, XLM-R-large continues to display



superior performance for sentiment analysis using
three classes, achieving a macro Fl-score of
72.31% and an accuracy of 75.90%. Dhananjaya et
al. (2022) obtained a macro-F1 score of 60.45% for
sentiment analysis using four classes, which serve
as the baseline model. This indicates that our model
outperformed the baseline model slightly. One
potential reason for the improved performance of
XLM-R-large is the utilization of a larger training
dataset, allowing the model to learn from a more
diverse set of examples and generalize better.

Our study observed that BERT and DistilBERT
achieved competitive macro-F1 scores and
accuracy for both sentiment analysis tasks with
four and three classes. However, the macro-F1
scores of BERT, DistilBERT, and RoBERTa were
relatively lower than XLM-R models. The outcome
of these monolingual models achieving lower
results than XLM-R models was unexpected.
Monolingual models are typically trained
specifically for a single language, and they would
have a better understanding of linguistic patterns,
leading to better performance in sentiment analysis
tasks. However, the observed results highlighted
that XLM-R models performed better in sentiment
analysis for Sinhala despite being pre-trained on a
multilingual corpus. The reason for this unexpected
outcome is the difference in the pre-training
process. BERT, DistilBERT, and RoBERTa models
were pre-trained for only one epoch, while XLM-
R models were pre-trained for a higher number of
epochs. This longer pre-training process allowed
XLM-R models to gain a deeper understanding of
linguistic patterns and representations, making
them more effective in sentiment analysis for
Sinhala. However, it is important to note that these
monolingual models still demonstrate promising
capabilities in capturing sentiment patterns in
Sinhala text. The performance of these
monolingual models can be further improved by
pre-training the models on a larger Sinhala corpus
for a higher number of epochs.

Figure 1 displays the row-wise normalized
confusion matrix for sentiment analysis conducted
using the XLM-R-large model with four classes.
Based on the confusion matrix, we can deduce that
the XLM-R-large model performs better in
predicting the majority classes (Negative, Neutral,
and Positive) than the Conflict class. There is a
noticeable tendency for the model to misclassify
instances labeled as Conflict as Negative at a
relatively higher frequency. This misclassification
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pattern may be influenced by the class imbalance
in the dataset, where the Negative class is the
majority class with over 10,000 instances. The

0.7

Conflict 0111 0.113

Negative 4

True label

ro.3

Neutral 1 0.094

ro.2

0.127

Positive q 0.051 0.120 Fo.1

Positive

T T
Negative Neutral
Predicted label

T
Conflict

Figure 1: Normalized confusion matrix of XLM-R-
large for sentiment analysis with four classes

model might have learned to favor the majority
class, leading to more frequent misclassifications
for the Conflict class. The class imbalance poses a
challenge for the model to accurately distinguish
between the classes, particularly affecting its
ability to predict the minority class accurately.

6 Conclusion

This study evaluates the performance of various
transformer models fine-tuned for sentiment
analysis in the Sinhala language. This study marks
the first experimentation of BERT and DistilBERT
for sentiment analysis in Sinhala. The findings
demonstrate that transformer models exhibit
remarkable performance, even when fine-tuned
using a small dataset. This outcome highlights the
significant potential of transformer models in
addressing challenges for languages with limited
available resources. We also showed that the
extensive pre-training process of the XLM-R
models played a pivotal role in their superior
performance compared to other models pre-trained
for a single epoch.

In this study, we have made several
contributions to the research community. We have
made publicly available the pre-trained models of
BERT, DistilBERT, and RoBERTa, along with the
fine-tuned models of BERT, DistilBERT,
RoBERTa, XILM-R-base, and XLM-R-large.



Additionally, three new datasets * have been
released, which include a sentiment dataset
comprising 5,037 news comments annotated with
four classes, another dataset with 5,037 news
comments annotated for three classes, and a large
Sinhala news comments dataset containing
417,332 unannotated comments. These resources
aim to foster further advancements and enable
researchers to explore sentiment analysis in the
Sinhala language more effectively.

These research outcomes contribute valuable
insights to the field of sentiment analysis of low-
resource languages and provide a foundation for
future studies and applications. The utilization of
transformer models, especially XLM-R-large,
showcased promising results, indicating the
potential for further advancements in sentiment
analysis tasks for the Sinhala language.

7 Limitations

Despite the efforts to build and fine-tune
transformer models for Sinhala sentiment analysis,
several limitations remain.

Dataset Limitations: Although we used the
OSCAR dataset for pre-training, the dataset size is
limited to 2 GB, which may not fully encompass
the diversity and complexity of the Sinhala
language. This limited corpus may not provide
sufficient exposure to a variety of linguistic
expressions and dialects in Sinhala, thereby
constraining the model’s ability to generalize
across different text types. Additionally, the fine-
tuning dataset, consisting of comments from
sources such as Lankadeepa online newspaper and
GossipLanka news website, may introduce topic or
sentiment biases that are not representative of
broader Sinhala language use.

Annotation Limitations: Data annotation for
sentiment analysis was conducted by two native
Sinhala speakers, achieving an inter-annotator
agreement score (Cohen's Kappa) of 0.794. While
this indicates a good level of agreement, it also
suggests some level of disagreement, which could
lead to inconsistencies in sentiment labels and
affect model performance. The annotations might
contain subjective interpretations, especially in
cases where sentiments are not explicit, and this
could influence the accuracy and reliability of the
final dataset.

“https://github.com/bandaranayake/sinhal
a-sentiment-analysis
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Class Imbalance: Both datasets used in this
study exhibit significant class imbalances,
especially with the "Negative" class being
dominant, which may bias the model towards
negative predictions and reduce accuracy for
underrepresented classes like "Conflict".

Limited Epochs for Pre-training: Given
computational constraints, pre-training was limited
to one epoch, which may not provide the models
with enough iterations to fully capture the language
patterns and features of Sinhala. However, the
XLM-R model, which was already pre-trained for
multiple epochs on a large corpus, produced better
results due to its extensive pre-training process.

Limited Fine-Tuning: The models were fine-
tuned using default configurations recommended
in the original papers, without exploring alternative
hyperparameters to identify the best setup.
Although adjusting these settings could have
enhanced model performance, this approach was
not pursued due to limited computational
resources.

These limitations indicate potential areas for
future work, such as expanding the dataset,

increasing annotation consistency, exploring
additional model architectures, and conducting
further  experiments to enhance model

generalizability for Sinhala language applications.
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Abstract

In this paper, we introduce ExMute, an ex-
tended dataset for classifying hateful memes
that incorporates critical contextual informa-
tion, addressing a significant gap in existing
resources. Building on a previous dataset of
4,158 memes without contextual annotations,
ExMute expands the collection by adding 2,041
new memes and providing comprehensive an-
notations for all 6,199 memes. Each meme
is systematically labeled across six defined
contexts—religion, politics, celebrity, male,
female, and others—with language markers
indicating code-mixing, code-switching, and
Bengali captions, enhancing its value for lin-
guistic and cultural research while facilitat-
ing a nuanced understanding of meme con-
tent and intent. To evaluate ExMute, we ap-
ply state-of-the-art textual, visual, and mul-
timodal approaches, leveraging models in-
cluding BanglaBERT, Visual Geometry Group
(VGQG), Inception, ResNet, and Vision Trans-
former (ViT). Our experiments show that our
custom LSTM attention-based textual model
achieves an accuracy of 0.60, while VGG-
based visual models reach up to 0.63. Mul-
timodal models, which combine visual and
textual features, consistently achieve accu-
racy scores of around 0.64, demonstrating the
dataset’s robustness for advancing multimodal
classification tasks. ExMute establishes a valu-
able benchmark for future NLP research, partic-
ularly in low-resource language settings, high-
lighting the importance of context-aware label-
ing in improving classification accuracy and
reducing bias.

1 Introduction

The exponential growth of social media platforms
such as Facebook, TikTok, Reddit, and Instagram
has paralleled the expansion of the internet, trans-
forming them into powerful tools for express-
ing opinions on politics, business, entertainment,
and current events (Oldenbourg, 2024). However,
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Figure 1: Category - Hateful, Context: Religion

this increased connectivity has also boosted the
spread of offensive content targeting individuals or
groups based on race, religion, and sexual orien-
tation. The rise of this toxic content poses signif-
icant challenges, particularly in the form of hate-
ful memes—rvisual and textual media repurposed
to convey cultural, social, or political views with
a mask of humor (Mukhtar et al., 2024). While
memes often serve as light-hearted content, they
can also propagate harmful and prejudiced mes-
sages, exacerbating issues such as cyberbullying,
harassment, and societal discord (Sambasivan et al.,
2019; Romim et al., 2021b).

In recent years, the popularity of multimodal
memes has surged as an effective means of com-
munication in this era of digital interconnectivity
(Abdullakutty and Naseem, 2024). However, iden-
tifying and mitigating the spread of such harmful
content remains a significant challenge due to the
sheer scale of online platforms and the complexity
of multimodal content. Significant progress has
been achieved in detecting hateful memes in En-
glish, with several studies and resources available
(Waseem and Hovy, 2016; Davidson et al., 2017).
In Bangla, however, existing work focuses primar-
ily on text-based hate speech detection (Al Maruf
et al., 2024; Romim et al., 2022; Das et al., 2021;
Romim et al., 2021a), leaving hateful meme detec-
tion largely unexplored. This gap underscores the
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need for comprehensive multimodal approaches in
Bangla. In addition, these advancements have yet
to be equally replicated in low-resource languages,
particularly Bangla, code-switch (Bangla dialects
in English script), and code-mix (Bangla and En-
glish) languages. This is noteworthy given that
Bangla is the fifth most spoken language world-
wide, with over 230 million speakers, including
approximately 100 million in Bangladesh and 85
million in India. (Karim et al., 2022).

Despite the rising use of memes in Bengali due
to the increasing number of social media users in
Bangladesh, there has been limited research fo-
cused on the identification and contextual analy-
sis of hate speech in this language (Hossain et al.,
2022a,b). Furthermore, existing studies often lack
detailed categorization based on different contexts
or target audiences (Figure 1). We introduce Ex-
Mute, an extended dataset for classifying Bangla
hateful memes across various social media plat-
forms to address this gap. Our work also includes
categorizing the data into six distinct contexts: reli-
gion, politics, celebrity, male, female, and others,
providing an enriched framework for nuanced hate-
ful meme analysis. The overall contribution of our

paper:

¢ Curated a human-annotated multimodal hate-
ful memes dataset enriched with six contexts:
religious, celebrity, political, male, female,
and others.

¢ Annotated 6,199 memes as hateful or non-
hateful, with context labels, using a detailed
guideline for Bangla, code-mixed, and code-
switched captions.

* Established baselines by extensively testing
various textual and visual models, including
a custom LSTM with attention, Vision Trans-
former, and Bangla BERT.

» Released code and data publicly to support
further research in this area.

2 ExMute: An Extended Dataset

We extended the Mute Hossain et al. (2022b)
which consisted of 4,158 labeled memes, and added
an additional amount of 2,041 memes along with
code mix, code switch, and Banglish captions. For
data collection, we followed the approaches shown
in these two studies Hossain et al. (2022b) and
Kiela et al. (2020).

class train test valid total
hateful 540 684 925 2149
non-hateful 1943 1182 924 4050

Table 1: Number of instances in train, test, and valida-
tion sets for each class.

2.1 Data Collection

We collected memes and texts containing common
slurs and terms from Facebook, Reddit, and Insta-
gram. We searched for these using keywords like
"Bangla Memes," "Bangla Troll Memes," etc., on
platforms like Wittigenz and Halal Meme posting.
During data collection, we exclude some irrelevant
memes by considering the rules stated by Praman-
ick et al. (2021). The criteria for discarding data are
(i) memes containing only unimodal data (only text
or image) and (ii) memes whose textual or visual
information is unclear. We collected 2,098 memes,
and through this filtering process, 57 memes were
removed from newly collected data. Afterward,
we manually extracted captions from the memes,
as Bengali lacks a standardized OCR system, and
provided them to annotators for labeling with cor-
responding memes.

During data collection, memes were sourced
from 15 different contexts, such as racial, misog-
ynist, geopolitical, sports, and so on. Emphasis
was placed on the frequency of instances across
these contexts, with male, female, political, reli-
gious, celebrity, and other categories emerging as
the most prominent.

2.2 Dataset Annotation

To establish clear annotation guidelines, we fol-
lowed the approach of prior studies Kiela et al.
(2020), Islam et al. (2022), and Perifanos and Gout-
sos (2021) and defined hateful and non-hateful in
the following ways:

» Hateful: Targets an entity based on its gender,
race, religion, caste, or organizational status
and intends to vilify, denigrate, and mock.

* Non-hateful: Expresses positive feelings
such as affection, gratitude, support, and mo-
tivation, whether openly or implicitly.

‘We also determined the contexts of the memes,
hateful or not, by observing the captions and visual
characteristics in the following way:

* Male: Clearly indicates a male context.



Name context-wise Percentage
Political 149 49.83
Religious 293 32.89
Female 677 61.15
Male 772 36.01
Celebrity 870 40.23
Others 3438 26.53

Table 2: Context-wise distribution of hate-non-hate
memes and percentage of hateful memes

* Female: Clearly indicates a female context.

* Religious: Refers to an individual or group
based on religious beliefs.

* Political: Refers to an individual or group
based on political beliefs.

* Celebrity: Refers to a celebrity.

* Others: Does not fit into any of the above
categories.

Initially, we hired undergraduate students from
different faculties, aged 24-26, with 50% female,
and provided training using sample memes. We
use five annotators for each instance, which are
annotated independently. The final label was as-
signed based on consensus, with a linguistic ex-
pert verifying the labels. For instances with unre-
solved disagreements, we sought expert adjudica-
tion. Annotators were instructed to follow label
definitions and guidelines closely and to document
their reasoning for each annotation. This documen-
tation helped the expert make informed decisions
in cases of conflict. Compensation for annotators
was provided according to the university research
ethics board’s standard local rate, and they were en-
couraged to pace their work, taking regular breaks
to avoid prolonged sessions and negative mental
health impacts of annotators Ybarra et al. (2006),
Levin (2017).

3 Dataset Statistics

Our final dataset comprises a total of 6,199 in-
stances. The dataset displays an imbalanced dis-
tribution, with the "Non-Hate’ class representing
about 65% of the dataset, as shown in Table 1.
Additionally, Table 2 provides a breakdown of in-
stances by context. Notably, the "Others" category
has a disproportionately high number of instances
compared to other contexts, as annotators often
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Characteristics Hateful Non-hateful

#Code-Mix Cap 588 1088
#Code-Switch Cap 58 119
#Bangla Cap 223 396

#Words 29245 50215

#Unique Words 9251 13223
Max Caption length 186 241
Avg #Words/Cap 13.6 12.3

Table 3: Distribution of data across various character-
istics related to meme captions. Here, cap represents
caption

placed memes here when they didn’t clearly fit any
other context.

From Table 2, it is evident that memes target-
ing females are overrepresented in gender-based
contexts. Common Bangla words, such as "1,
T, =T, f5," appear frequently across all contexts.
Words like "girl" are common in female-targeted
memes, while terms like "ramadan" and "<T=ret" are
primarily associated with religious memes. Fig-
ure 2 and Figure 3 further illustrate caption char-
acteristics. Figure 2 shows the number of captions
across different contexts based on caption length,
providing insights into how caption length varies
contextually. Figure 3 displays the distribution of
caption lengths between hate and non-hate cate-
gories, highlighting any notable differences in cap-
tion length within each category. For training and
evaluation, we divided the dataset into three parts:
80% for training, 10% for testing, and 10% for val-
idation. The class distribution across these subsets
is presented in Table 1.

4 Methodology

In this section, we outline the methods used to
develop benchmark models for detecting hate-
ful memes through unimodal and multimodal ap-
proaches, utilizing both visual and textual features.

4.1 Data Cleaning and Preprocessing

Initially, HTML tags and URLs were removed from
the text captions, followed by the elimination of
newline characters to normalize the text layout into
a cohesive string. Punctuation marks and special
characters were subsequently filtered out to sim-
plify the textual data further.

For compatibility with deep learning architec-
tures, particularly DNN and transformer-based
models, the cleaned text was tokenized at the word
level using the Keras tokenizer. This step involved
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Figure 2: Number of captions according to the length
of the captions in different contexts

mapping each unique word to a corresponding in-
teger index, effectively converting the text into a
numerical vector representation. To ensure consis-
tent input dimensions across samples, sequences
were padded to a maximum length of 50, a neces-
sary step for deep learning models requiring fixed-
length input.

For the visual modality, the images were resized
to a uniform dimension of 150x150%3, preserving
their three-channel (RGB) format. Keras image pre-
processing functions were employed to standardize
the image data and enhance its compatibility with
convolutional neural networks (CNNs). This re-
sizing and adjustment ensured uniformity in input
data and facilitated effective model training.

4.2 Textual Model

For text-based hateful memes analysis, various
deep learning models are employed, including BiL.-
STM + CNN (Sharif et al., 2020), BILSTM + At-
tention (Zhang et al., 2018), and Transformers
(Vaswani, 2017). Additionally, we developed a
custom LSTM model with an attention mechanism
to enhance performance.

Initially, the word embedding vectors (Mikolov,
2013) are fed into a BILSTM layer of 64 hidden
units. Then a convolution layer with 32 filters with
a kernel size of two is added, followed by a max-
pooling layer to extract the significant contextual
features. Then, a sigmoid layer is used for classifi-
cation. Finally, the output of the BILSTM network
provides contextual information for the overall text.

Also, we used the additive attention mechanism
introduced by Bahdanau (2014) to analyze the rep-
resentations of individual words in the BiLSTM
cell. The CNN is replaced with an attention layer.
The attention layer prioritizes significant words to
infer a specific class.

Our custom LSTM model integrates an atten-
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tion mechanism to enhance performance and in-
terpretability. The attention layer computes scores
by combining features and hidden states, normaliz-
ing them using softmax. A context vector is then
derived as a weighted sum of the features. The
input sequence is embedded and processed through
a bidirectional LSTM, capturing both forward and
backward contextual information by concatenating
hidden and cell states. The attention layer applies
to the LSTM output, producing context vectors
and attention weights. The final output layer uses
a sigmoid activation function, suitable for binary
classification tasks.

4.3 Visual Model

For the visual models, we used advanced archi-
tectures, including VGG19, VGG16,(Simonyan
and Zisserman, 2014), ResNet50(He et al., 2016),
and Vision Transformer(ViT).(Dosovitskiy, 2020).
Specifically, VGG19, VGG16, and ResNet50 were
fine-tuned on the MUTE dataset through trans-
fer learning. For hate-non-hate classification, the
upper layers of these models were frozen, utiliz-
ing weights pre-trained on ImageNet (Deng et al.,
2009) for 1000 classes, and the top layers were
replaced with a sigmoid layer to enable binary clas-
sification.

4.4 Multimodal Model

Recent studies, including Hori et al. (2017), Yang
et al. (2019), and Alam et al. (2021), indicate that
combining visual and textual data improves per-
formance in complex NLP tasks. For multimodal
feature representation, we applied a feature fusion
approach Nojavanasghari et al. (2016), integrating
both visual and textual models such as Bangla-
BERT(Sarker, 2020; Bhattacharjee et al., 2022).
We added a dense layer with 100 neurons to each
modality, then concatenated their outputs to cre-



ate a unified feature representation, followed by a
dense layer with 32 neurons and a sigmoid layer
for classification. We used Bangla-BERT (Sarker,
2020) for text encoding, generating input IDs and
attention masks for captions with a maximum se-
quence length of 50. For the Vision Transformer,
we employed ViT_b16 (Ghiasi et al., 2022) with
pre-trained weights and resized images to 224 x
224 pixels. The ViT model processes images, and
Bangla-BERT processes text, with their outputs
fused into a joint feature space. A sigmoid activa-
tion at the final output provides binary classifica-
tion.

5 Benchmark Evaluation and Discussion

Table 4 summarizes the performance of textual,
visual, and multimodal models in terms of accu-
racy, precision, and F1 score. For textual models,
BiLSTM + Attention performs poorly (F1 = 0.19),
while LSTM + Attention achieves the best results
(F1 =0.60). BiLSTM + CNN (F1 = 0.58) improves
performance by leveraging convolutional layers,
and BanglaBERT performs similarly (F1 = 0.56),
benefiting from pre-trained embeddings.

For the visual-only models, InceptionResNetV2,
ResNet-50, and NASNet achieve moderate perfor-
mance (F1 ranges from 0.34 to 0.50), suggesting
room for improvement in extracting meaningful
visual features. InceptionV3 and VGG16 both per-
form slightly better, with VGG16 showing more
consistency across metrics. Similarly, among the
models with PA (Positional Attention), ResNet-50
achieves slightly higher and more consistent per-
formance compared to VGG16. ViT and Inception-
ResNetV2 + PA both achieve the highest accuracy
of 0.63.

Interestingly, combining modalities did not im-
prove results significantly; most multimodal mod-
els achieve similar F1 scores, showing limited
gain from integrating visual and textual features.
VGG19 + SBB shows the best balance across met-
rics, with an accuracy of 0.64 and an F1-Score
of 0.49, highlighting its potential for multimodal
tasks. VGG16 (Att) + SBB achieves comparable
performance to other multimodal configurations
(F1 = 0.49), though attention did not significantly
improve results. These findings suggest that further
refinement in model architecture or additional data
may be necessary to leverage multimodal features
effectively for hate detection in Bangla memes.
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App. Model A P F1
Bi-LSTM + Attention 0.36 0.13 0.19
Tex. Bi-LSTM + CNN 0.57 0.59 0.8
Bangla BERT 0.58 0.56 0.56
LSTM + Attention 0.60 0.59 0.60
InceptionResNetV2 041 057 034
ResNet-50 049 0.56 0.49
NASNet 049 0.56 0.50
InceptionV3 + PA 049 0.54 0.49
VGG16 0.52 054 053
Vis. InceptionV3 054 053 0.54
ResNet-50 + PA 0.59 0.57 0.58
VGG16 + PA 0.59 0.55 055
NASNet + PA 0.63 0.40 049
InceptionResnet50V2 + PA 0.63 0.40 0.49
VIT 0.63 0.40 049
VIT + SBB 0.63 0.40 049
VGG19 + SBB 0.64 0.49 049
MultiM. VGG16 + SBB 0.63 0.40 049
VGG16 + BBB 0.63 0.40 049
VGG19 + BBB 0.63 0.40 049
VGG16(Att) + SBB 0.64 0.40 049

Table 4: Performance of the models on the Ex-Mute
dataset. Here, A, P, and F1 represent accuracy, precision,
and weighted F1 scores. SBB: SagorSarker Bangla
BERT, BBB: BUET Bangla BERT, Tex: Textual, Vis:
Visual, MultiM: MultiModal

6 Conclusion

In this paper, we introduced ExMute, a multi-
modal dataset enriched with contextual informa-
tion to support the detection of hateful memes in
Bangla, code-switched, and code-mixed captions.
Our findings indicate that textual models outper-
form visual-only models; however, combining vi-
sual and textual features yields the most accurate
results, demonstrating the strength of multimodal
analysis for identifying hateful content. We ob-
served that model performance can be affected by
class imbalance, leading to a bias toward certain
classes. To address this, future work will focus
on expanding the dataset and exploring advanced
computational methods to reduce bias. Addition-
ally, we plan to improve accuracy and incorporate
context prediction through Generative Al, CLIP
architecture, and comprehensive ablation studies,
enhancing the model’s interpretability and effec-
tiveness in real-world applications.
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Abstract

There are serious attempts at improving the
mathematical acumen of LLMs in questions
posed in English. In India, where a large frac-
tion of students study in regional languages,
there is a need to assess and improve these
state-of-the-art LLMs in their reasoning abil-
ities in regional languages as well. As Hindi
is a language predominantly used in India, this
study proposes a new dataset on mathematical
combinatorics problems consisting of a parallel
corpus of problems in English and Hindi col-
lected from NCERT textbooks. We evaluate the
“raw" single-shot capabilities of these LLMs in
solving problems posed in Hindi. Then we
apply a chain-of-thought approach to evaluate
the improvement in the abilities of the LLMs at
solving combinatorics problems posed in Hindi.
Our study reveals that while smaller LLMs like
LLaMA3-8B shows a significant drop in per-
formance when questions are posed in Hindi,
versus questions posed in English, larger LLMs
like GPT4-turbo shows excellent capabilities at
solving problems posed in Hindi, almost at par
its abilities in English. We make two primary
inferences from our study: (1) large models
like GPT4 can be readily deployed in schools
where Hindi is the primary language of study,
especially in rural India; (2) there is a need to
improve the multilingual capabilities of smaller
models. As these smaller open-source models
can be deployed on not so expensive GPUs,
it is easier for schools to provide these mod-
els to the students, and hence, the latter is an
important direction for future research.

1 Introduction

Large Language Models (LLMs) have revolution-
ized the technological landscape, with newer ap-
plications emerging each day. One of the prime
benefactors of this revolution has been the edu-
cation sector. While initially these models were
used as a large knowledge base for facts, the recent
models also excel at reasoning tasks like program-
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ming and mathematics. This has benefited a large
class of students who are using these models as
a “personalized tutor" to understand their course
material.

These language models are essentially trained
over a large corpus of text across the breadth of
the internet—online books, wiki articles, blogs,
code repositories—to capture the essence of hu-
man knowledge. However, most of the text avail-
able on the internet is in English. In a country
like India, 68.83%(cen) of the population is ru-
ral, who predominantly communicate in Hindi
and other regional languages. In fact, more than
58%(nue) of the population undergo their school
education in the regional languages. Even presti-
gious exams like IIT-JEE is conducted in thirteen
languages, namely English, Assamese, Bengali,
Gujarati, Hindi, Kannada, Malayalam, Marathi,
Odia, Punjabi, Tamil, Telugu, and Urdu. Hence, it
raises an important question the regional language
speaking population of the country is equally bene-
fited by the LLMs as the urban, English-speaking
population. Or, is the emergence of LLMs increas-
ing the chasm between the Indian population that
is being educated in English and other regional
languages.

In this work, we investigate the effectiveness
of large language models at solving questions pre-
sented to them in Hindi, and compare its effective-
ness at handling the same problems in English. We
use the NCERT textbooks (nce) for the English
and Hindi to collect Mathematics questions in the
area of Combinatorics. We use multiple strategies
and prompting techniques to study the gap in the
capabilities of the LLMs at solving mathematical
problems posed in these two languages. We con-
duct this study on three popular models: GPT-3.5
(Radford, 2018), GPT-4(Achiam et al., 2023) and
LLaMA3-8B(lla). The reason for selecting these
models were that the chat interface of GPT-3.5 is
now available freely, making it the most accessible
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model for students. GPT—4 is a superior model, but
is available against a small monthly fees, and so,
is reasonably accessible to students. LLaMA3-8B
is a small “open" model that can be run on not-
very-expensive GPUs; hence, we believe that soon,
schools may decide to host such models within
their premises for their students.

We made the following inferences from our
study:

* There is a decline in the accuracy of LLMs
when it comes to solving problems in Hindi
versus English.

Using different prompting strategies we
showed the difference in the performance of
the LLMs. "Manual Subcategory" performs
better as compared to the other two strategies
by upto 14 percent in overall study of Cobina-
torics.

LLaMA3 and GPT-3.5 outperformed them-
selves when Chain-of-thought prompt strat-
egy is used as compared to the One-shot by a
margin of 5 percent for collectively for both
the languages.

LLaMA3-8B and GPT-3.5 showed a signifi-
cant increase in performance when prompted
with an Chain-of-thought in subcategorical
analysis by that LLM.

The above prompt strategy outperformed the
other two strategies in 3-4 subcategory cases
by a factor of 0.5 to 5 for both the languages.

GPT-4, being the latest and largest model
among others in our studied, outperformed
both other models.

This work makes the following contributions:

* We formulate a study to understand the gap
in the mathematical abilities of popular open-
source models;

* We create a dataset of parallel set of questions
in English and Hindi;

* We attempt multiple prompting techniques,
single-shot and chain-of-thought prompts and
study the improvement in inference accuracy.

* We draw relevant inferences from our study.

In the future, we intend to broaden the scope
of this study to more languages, more models and
more prompting strategies.
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2 Overview

In this work, we attempt to study the following
research questions:

* Does posing questions in Hindi as effective
as posing the same question in English with
single-shot prompts?

* Can inference accuracy be improved with
chain-of-thought prompting where the LLM
infers the problem subcategory before solving
a problem?

To conduct our analysis, we create our own
dataset sourcing problems in the area of Combina-
torics from higher secondary mathematics NCERT
textbook (nce) in Hindi and English languages. The
dataset contains total of 100 problems in English
sourced from English version of the NCERT book
and their corresponding parallel counterparts in
Hindi sourced from Hindi version of the NCERT
book. These problems can be categorised into five
subcategories: Fundamental principle of Counting,
Permutation with restrictions, Permutation with-
out restrictions, Combination with restrictions, and
Combination without restrictions. The distribution
of problems in these subcategories are shown in
Table 1.

Table 1: Number of samples in each subcategory

‘ Sub-Category of the Problem Number of Samples

Fundamental principle of Counting 16
Permutation with restrictions 31
Permutation without restrictions 11
Combinations with restrictions 31
Combinations without restrictions 10

Figure 1 shows an instance from our dataset,
consisting of the English and Hindi versions of the
problem, its subcategory being "Fundamental prin-
ciple of counting" and the solution to the problem
as "8".

We conducted experiments on three well known
large language models: LLaMA3-8B, GPT-3.5
Turbo-175B and GPT-4 Turbo. We used the API
calls for the inference of LLaMA3, and chat ver-
sion of GPT-3.5 Turbo and GPT-4 Turbo for our
experimentation . We conduct all experiments on
NVIDIA RTX A4000 GPUs. As the responses of
the LLMs are sampled from a distribution, we ex-
ecute each prompt thrice: if any of the answers is



Problem in English

Counterpart Problem in Hindi

A coin is tossed 3 times and the outcomes
are recorded. How many possible outcomes
are there?

s T st TR 3oTer Srar € 3R aRome
3ifepd #e o s &1 oot S Fera dEar

FATE?

Subcategory of the Problem

Fundamental principle of counting

Solution [

Figure 1: Sample problem from our dataset

correct, we mark the problem as solved success-
fully.

We prompt the LLMs via two prompting strate-
gies: (1) a plain one-shot prompt, requesting the
LLM to solve the problem, and (2) a chain-of-
thought prompt that asks the LLM to infer the sub-
category, and then asks it solve the problem given
the subcategory. We discuss this in the subsequent
section.

3 One-shot Prompting

In this set of experiments, we prompted the large
language models to solve the provided problem.
The prompt instructions remain the same for En-
glish and Hindi, and only the problem statement
is provided in the chosen language. We show an
example of the prompts used in Figure 4.

Figure 2 (without the hashed bars) shows the per-
formance of the LLM models for English versus
Hindi. There indeed seems to be a chasm between
the performance of English versus Hindi, especially
for the smaller LLaMA3-8B model. All the LLMs
show a decline in accuracy when prompted for
Hindi problems as compared to the English prob-
lems. The overall difference between the accuracy
of English and Hindi problems ranges from 8 per-
cent to 14 percent across all LLMs. The smallest
variation in the accuracies if for the case of GPT-4
and highest variation is observed in GPT-3.5.

4 Chain-of-thought Prompting
In this strategy, we apply the following steps:

* We prompted the LLMs to identify the cate-
gory of the problem out of the given 5 subcat-
egories;
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* We prompt the LLM, requesting it to solve the
problem while providing the subcategory.

A sample prompt given to the LLMs in this stage
is given in Figure 1.

4.1 Overall performance

The hashed stacked bars in Figure 2 shows the in-
crease in the accuracy of inference for this prompt-
ing strategy versus the single-shot prompting (dis-
cussed in Section 3). This prompting strategy does
improve the solving capabilities of the LLMs, espe-
cially for the smaller LLaMA3-8B model. The
overall accuracy increase we found was in the
range of 1 percent and 5 percent across all LL.Ms.
LLaMA3-8B shows the highest jump in the ac-
curacy: 5 percent for English problems and 3 per-
cent for Hindi problems using the Chain-of-thought
prompt. Another high variation in accuracy can be
seen in GPT-3.5 case for Hindi problems where we
got an increase of 4 percent.

100

[ English
3 Hindi
80

60

Accuracy(%)

40

20

GPT 3.5 Turbo
LLMs

Llama3 Gpt 4 Turbo

Figure 2: Comparison of One Shot and Chain-of-
thought prompt strategies applied on English and Hindi
problems



Choose the category this problem
belongs to, any give only the final option:
w5 e IR IS ST & 3R
Jifera & fore sira &1 aioT#T it wera dEar
FATE?

a) Combinations with restrictions

b) Combinations without restrictions

c) Permutation with restrictions

d) Permutation without restrictions

e) Fundamental principle of counting

Chosen

LLMs | subcategory (H)

+

U [QeFehT T I 3BT ST &
31T gftomeT 3ifera ¢ fow s
g’l)qﬁmﬁmm T

Accuracy using Chain
of Thought(CoT) for
both Hindi and English
version.

LLMs: Llama3,
GPT 3.5, GPT
4-Turbo

You are expert in solving problems in
“H” Use your expertise to solve the
problem: T T8 cilsT X 3BTl
ST § 3 aRoTs 3ifeha T fore S
&1 IROTHT S THT FEAT FAT 22 Give
the final answer in the format of json
like {Final Answer: "Numeric

answer"}

Figure 3: Inference using the Chosen Subcategory by LLM

7 You are expert in solving problems in Permutations
and Combinations. Use your expertise to solve the
problem: A coin is tossed 3 times and the outcomes
are recorded. How many possible outcomes are
there? Give the final answer in the format of json
\_ like {Final Answer: "Numeric answer"} Vi
7 You are expert in solving problems in Permutations
and Combinations. Use your expertise to solve the
problem: Te f&ahr et IR 36T S1aT & 3R
gfyors 3ifdra X fore ara 81 aom+T $r G3a gear
F41 82 Give the final answer in the format of json
like {Final Answer: "Numeric answer"}

. /

Figure 4: Prompt used in One Shot Prompt

Then, in the second stage, the LLMs were
prompted to choose the subcategory that the prob-
lem belonged to given in Figure 3. Here also, we
had total 100 prompts for each language. Only one
trial was run acrosss all LLMs. After the successful
completion of this setting we obtained the Chosen
Subcategories: E for English version and H for
Hindi version of the problem. We used only the
this H for the overall analysis and accurately cho-
sen subcategories for subcategorical analysis below
further in our pipeline. Lastly, we experimented
with the actual subcategories-Manual Subcategory.
The prompts which we designed here were again
used in the inference of all the three LLMs for three
trails each. The bar plots mentioned in Section 4.2,
show an increase in performance for 3-4 categories
when using Chain-of-thought prompting strategy
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and Manual Subcategory also shows an increase
in accuracy as compared to the One-Shot prompt
strategy. The subcategorical analysis is discussed
in detail in Section 4.2.

4.2 Detailed analysis by subcategories

Table 2 shows the accuracy of LLMs in choos-
ing or assigning the correct subcategory out of
the 5 choices given to them. Here, as expected
GPT-4 performs better as compared to GPT-3.5
and LLaMA3 in classifying the given problem, be
it in Hindi or English, with its associated subcat-
egory. In most of the subcategories, we observed
GPT-4 Turbo performing well in assigning the sub-
categories with an exception in Fundamental prin-
ciple of Counting category in English problems
and Combination without restriction in Hindi prob-
lems. LLaMA3 performed lowest among all the
three LLMs in this task with an exception in case
of Fundamental principle of Counting subcategory
where it outperformed both GPT-versions.

Now, we discuss about the LLMs performance
in each subcategory across English and Hindi
problems using three prompting strategies: "One-
shot", "Chain-of-thought" and "Manual Subcate-
gory". Please refer to Table 4 for finding the full
name of subcategory mentioned in the bar plots.
From Figure 7, we can infer that the cases where
we used Chain-of-thought prompt strategy, the per-
formance increases by a factor starting from 0.42
to as high as 4.92 times when compared with One-



Table 2: LLMs’ Accuracy for choosing Question’s Sub-Category

Question in | Question in
Sub-Category LLMs English Hindi
LLaMA3 81.25 81.25
Fundamental principle of Counting | GPT-3.5 12.5 31.25
GPT-4 18.75 43.75
LLaMA3 22.58 0
Permutation with restrictions GPT-3.5 61.29 9.27
GPT-4 87.09 80.64
LLaMA3 18.18 0
Permutation without restrictions GPT-3.5 18.18 0
GPT-4 45.45 54.54
LLaMA3 3 6.45
Combination with restrictions GPT-3.5 61.29 19.25
GPT-4 83.87 74.19
LLaMA3 10 0
Combination without restrictions GPT-3.5 20 30
GPT-4 20 20

shot prompt strategy when both language cases are
taken collectively. There are exception cases of 2
subcategories in English version where the perfor-
mance is almost the same as observed in the One-
shot prompt strategy. For Hindi case, LLaMA3
couldn’t solve any sample for Subcat 4 and Subcat
5. Also, in 3-4 subcategories in both the languages,
we see an increase in the performance of Chain-
of-thought prompt strategy when we compare with
the subcategory prompt strategy by a factor of 1.2
to 3.2 times. It is worth mentioning the results
we observed when using subcategory prompt strat-
egy, where we got an increase in performance from
One-shot prompt strategy by a factor of 1.42 to 4
times. There are cases where it showed similar per-
formance as that of One-shot prompt strategy and
an exception of 1 category with low performance
than One-shot.

Similarly, from Figure 8, in English language
we see an increase in performance while using
Chain-of-thought prompt strategy over the other
two strategies in 4 subcategories. For Hindi case,
we see either similar or more performance in 3
subcategories for Chain-of-thought prompt strat-
egy. The performance increase that we observed
ranged from 1.11 to 2 times for English case and
1.06 to 2 times for Hindi case. If we compare the
cases where we used subcategories for prompting,
we got a performance increase of 1.14 to 1.25
times for English case and 1.33 to 1.73 times
for Hindi problems. If we look at Figure 9, we
observed almost similar performance in all three
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strategies. There was an exception of Subcat 1, 2
and 3 where Chain-of-thought outperformed the
One-shot prompt in both the languages. The sub-
category prompt strategy was also similar to the
other two. Given the fact that GPT-4 is the latest
and largest model in our study, the result obtained
is expected.

Table 3: Accuracy of LLMs in identiying the Subcate-
gories

Model ‘ English ‘ Hindi ‘

LLaMA3 24 15
GPT-3.5 46 17
GPT-4 63 63

100

B One Shot Prompt
Chain-of Thought Prompt
B Manual Subcategory Prompt

Accuracy(%)

GPT-3.5
LLMs

Llama3 GPT-4

Figure 5: Results using different prompt strategies on
English problems

5 Error Analysis

The performance of this scheme depends on the
following factors:



Table 4: Name of abbreviations used in bar plots

Sub-Category

Name of the abbreviated Subcategory

Subcat 1 Fundamental principle of Counting
Subcat 2 Permutation with restrictions
Subcat 3 Permutation without restrictions
Subcat 4 Combinations with restrictions
Subcat 5 Combinations without restrictions

EE One Shot Prompt
Chain-of-Thought Prompt
Bmm Manual Subcategory Prompt

804

Accuracy(%)
)
°

B
o

20

GPT-3.5
LLMs

GPT-4

Llama3

Figure 6: Results using different prompt strategies on
Hindi problems

1. The understanding of Hindi language by
the Large Language Models, i.e. how well
LLaMA, GPT-3.5 and GPT-4 understand
Hindi? (Task 1)

. The accuracy of the classification into sub-
categories, i.e. does the LLM classify the
problems into the right subcategories? (Task
2)

3. The accuracy of problem solving once the sub-
category is provided. (Task 3)

For task 1, we utilized Hindi comprehension
problems derived from NCERT textbooks (nce) to
evaluate the performance of large language models
(LLMs). Specifically, we curated a dataset com-
prising ten passages in Hindi, each accompanied
by five corresponding questions. These passages
and questions were directly provided as prompts to
the LLMs to assess their accuracy on this task. Our
results indicate that LLaMA3-8B achieved an ac-
curacy of 50%, whereas GPT-3.5 and GPT-4 Turbo
both attained 76% accuracy. These findings high-
light the superior proficiency of GPT-3.5 and GPT-
4 Turbo in understanding Hindi compared to the
smaller LLaMA3 model. This also concludes the
similar trends observed in task involving combina-
torics problems framed in Hindi, further corrobo-
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rating the relative strengths of GPT-based models
in processing the Hindi language.

Table 3 studies the accuracy for the subcategory
classification task 2. As can be seen, the accuracy
of identifying the problem type is low. However,
the language models are more accurate in choosing
the subcategory of the problem given in English
compared to the same problem in Hindi which we
can conclude from the results obtained from task 1.

To further understand the impact of this on Com-
binatorics problems, we ran another set of experi-
ments in task 3 where we manually provided these
subcategories within the prompt. The first two bars
in the plots 5 and 6 show the solving accuracy
corresponding to one-shot and chain-of-thought
prompting (for English and Hindi, respectively).
The third bar shows the accuracy of the end-to-end
pipeline for solving the mathematical problems if
the subcategory is provided (manually) within the
prompt; we refer to this as “Manual Subcategory".
We highlight the inference of the performance of
language models on problems posed in English
with chain-of-thought prompts and manual subcat-
egory prompts from the second and third bar of the
plot 5 after the results obtained in task 2.

Interestingly, LLaMA3-8B provides a curious
case: though its subcategory inference accuracy
is low, the inference accuracy of the end-to-end
pipeline increases with chain-of-thought prompt-
ing. Still more strangely, its accuracy drops if we
manually provide the right categories for English
problems. We are still trying to understand this
counter-intuitive behavior from LLaMA3-8B.

6 Related Work

In this section, we will discuss about any recent
works related to our LLMs solving mathematical
problems in English. To the best of our knowledge,
there is currently a lack of research on improving
the mathematical capabilities of LLMs in regional
languages.

Attempts have been made to improve the math-
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Figure 7: (a) LLaMA3-8B performance in three strategies for English problems, (b) LLaMA3 performance in
three strategies for Hindi problems: Orange bars: Chain-of-thought prompt strategy, Green bars: Manual
Subcategory Prompt Strategy and Blue bars: One-Shot Prompt Strategy. Red line shows there are no
samples/problems for which LLM chose subcategory accurately.
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Figure 8: (a) GPT-3.5 Turbo performance in three strategies for English problems (b) GPT-3.5 Turbo performance
in three strategies for Hindi problems: Orange bars: Chain-of-thought prompt strategy, Green bars: Manual
Subcategory Prompt Strategy and Blue bars: One-Shot Prompt Strategy. Red line shows there are no
samples/problems for which LLM chose subcategory accurately.

ematical capabilities of LLMs in solving mathe-
matical word problems in English language. Re-
cent works highlight the performance of LLMs
in English mathematical word problems. A ma-
jor part of advances in the area started with the
design of datasets for math word problems in En-
glish, (Frieder et al., 2024) is one such work where
miniGHOSTS and GHOSTS are extracted from
publicly available datasets and were used to anal-
yse the abilities of ChatGPT-3.5 and 4. (Srivas-
tava and Kim, 2024) proposes a strategised version
of masking during pre-training stage of Encoder-
Decoder models instead of random masking which
significantly improved the performance of Encoder-
Decoder small scale models by 2-3 times on bench-
mark mathematical datasets (English). A special
method, MathPrompter(Imani et al., 2023), en-
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hances arithmetic operations and reasoning capa-
bilities of LLMs leveraging the programming ca-
pabilities of LLMs as an intermediate step in solv-
ing the problem. They worked on english word
problems dataset (Roy and Roth, 2015) and showed
an improved performance by almost 15%. Math-
ify(Anand et al., 2024), another recent study in
this area, where they sourced a mathematical word
problem dataset, named MathQuest, from the En-
glish NCERT textbook. Using this dataset they
fine-tuned open source large language models and
compared their performance. Another work (Wei
et al., 2022), uses the Chain of Thoughts prompt
strategy on LaMDA(Thoppilan et al., 2022) and
PaLM(Chowdhery et al., 2023) and showed almost
100ing accuracy on GSM8K(Cobbe et al., 2021).
(Chen et al., 2023) used Program of Thoughts strat-
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Figure 9: (a) GPT-4 Turbo performance in three strategies for English problems (b) GPT-4 Turbo performance in
three strategies for Hindi problems: Orange bars: Chain-of-thought prompt strategy, Green bars: Manual
Subcategory Prompt Strategy and Blue bars: One-Shot Prompt Strategy

egy instead of Chain of Thoughts, just like Math-
Prompter discussed above to improve LLMs’ per-
formance on numerical tasks. It compared the CoT
methods and PoT meth- ods, resulting in the PoT
method outperforming the CoT method in solving
numerical problems.

Some works targeting multilingual tasks include
xSTREET(Li et al., 2024), which targets to im-
prove the reasoning capabilities including but
not limited to mathematics of LLMs across non-
English languages: Arabic, Spanish, Russian, Chi-
nese, and Japanese. Here, they leveraged the rea-
soning capabilities of LLMs trained on code or pro-
grams, which they claim that are good reasoners
from their study as compared to the LLMs trained
on non-code data. ConceptMath(Wu et al., 2024),
another study that targets to analyse and compre-
hend the LLMs in mathematical reasoning tasks
in English and Chinese. They did this study on
elementary and middle school level mathematical
data. Their study focuses ore on the granules of
mathematics like statistic, geometry, etc. instead of
studying mathematical work problems as a whole.
This study contributed to improvement part using
an efficient fine-tuning setting where post their
analysis on granular level, they used benchmark
datasets like MATH(Hendrycks et al., 2021) and
GSM-8K(Cobbe et al., 2021) along with their data,
to fine-tune the LLM to improve it’s performance in
that mathematical area. (Le et al., 2024) uses chain-
of-thought technique with high-quality in-context
learning exemplars obtained by multilingual dense
retrieval to enhance LLM’s performance in mathe-
matics.

97

7 Supplementary Materials

We encourage readers to review the prompts used
and datasets created for this study. The access to the
datasets developed and the prompts used to carry
out this study is given in this github link:!. The
supplementary materials accompanying this paper
include a folder named Datasets which includes
three CSV files, one for each of the language mod-
els evaluated in the study, containing problems in
permutations and combinations presented in both
English and Hindi. There is prompts file having the
prompts used to generate the responses from LLMs.
Furthermore, these prompts can be utilized to in-
terface with the language models. These resources
are provided to ensure transparency, reproducibility,
and ease of future research based on our findings.

8 Conclusions and Future Work

Our main focus of study was analysing the perfor-
mance of LLMs in solving combinatorics problems
in Hindi so as to assess them, if they can be readily
deployed in the education sector. For our study,
we used GPT-3.5, a freely available LLM with a
chat interface; LLaMA3-8B, a small "open" source
model that can be run on an affordable GPU, and
GPT-4 Turbo, one of the most powerful models
available currently. In future research, we plan to
significantly expand our dataset to encompass over
100 problems per subcategory, aiming to improve
both its comprehensiveness and robustness. This
effort will facilitate a deeper exploration of mathe-
matical problem-solving across diverse categories,

"https://github.com/yash-raj-verma/
IndoNLP_COLING_2025.git



ensuring more representative benchmarks. Further-
more, we will broaden the linguistic scope of our
study by incorporating additional Indian regional
languages, such as Bengali, Tamil, Assamese, and
Urdu, alongside non-Indian languages, including
Greek and Arabic. This expansion will enable a
cross-cultural examination of mathematical reason-
ing and problem formulation in various linguistic
contexts.

To further enhance the scope and impact of our
work, we intend to evaluate the capabilities of
emerging state-of-the-art language models on our
enriched datasets. By incorporating models with
improved architectures and training paradigms, we
aim to uncover new insights into their generaliza-
tion and adaptability. Additionally, we plan to use
our dataset for fine-tuning smaller, efficient mod-
els, such as LLaMA3, with a focus on exploring
their potential for targeted improvements in perfor-
mance, particularly in resource-constrained envi-
ronments. This dual approach promises to deepen
our understanding of model behavior while driv-
ing innovation in both large-scale and lightweight
language model applications. We believe that
such studies would benefit a country like India or
others (once the analysis and scope of this work
expands to other regions and their regional lan-
guages), where there exists a large number of re-
gional languages in which education is imparted,
and show the way forward for LLMs effective cur-
rently for all segments of the Indian population
with the intention of expanding this to other coun-
tries.

Limitations

While our research investigates the application of
large language models (LLMs) to solving mathe-
matical problems in Hindi, certain limitations per-
sist. One significant constraint is the size and scope
of our dataset, which comprises only 100 problems
per subcategory. This limited sample may hinder
the robustness and comprehensiveness of our evalu-
ation. Expanding the dataset to encompass a wider
range of problems, drawn from additional math-
ematical topics or diverse educational resources
such as textbooks in other languages, would help
enhance its representativeness and reliability.
Moreover, our study is centered on evaluating
the performance of LLMs, but it does not explore
the potential benefits of fine-tuning smaller, more
resource-efficient models on the same dataset. In-
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vestigating the performance improvements achiev-
able with such fine-tuning could provide valuable
insights into balancing computational efficiency
with model accuracy.

To address these limitations, future work would
prioritize not only the expansion of the dataset
to include a richer variety of problem types but
also the exploration of smaller, fine-tuned mod-
els. This dual approach could increase the diversity
of the mathematical problems handled while also
improving the accessibility and scalability of our
study, particularly for educational settings with lim-
ited computational resources and diverse linguistic
backgrounds.
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Abstract

The rapid spread of fake news presents a sig-
nificant global challenge, particularly in low-
resource languages like Bangla, which lack ad-
equate datasets and detection tools. Although
manual fact-checking is accurate, it is expen-
sive and slow to prevent the dissemination of
fake news. Addressing this gap, we intro-
duce BanFakeNews-2.0, a robust dataset to en-
hance Bangla fake news detection. This ver-
sion includes 11,700 additional, meticulously
curated fake news articles validated from credi-
ble sources, creating a proportional dataset of
47,000 authentic and 13,000 fake news items
across 13 categories. In addition, we created a
manually curated independent test set of 460
fake and 540 authentic news items for rigor-
ous evaluation. We invest efforts in collect-
ing fake news from credible sources and man-
ually verified while preserving the linguistic
richness. We develop a benchmark system
utilizing transformer-based architectures, in-
cluding fine-tuned Bidirectional Encoder Rep-
resentations from Transformers variants (F1-
87%) and Large Language Models with Quan-
tized Low-Rank Approximation (F1-89%), that
significantly outperforms traditional methods.
BanFakeNews-2.0 offers a valuable resource to
advance research and application in fake news
detection for low-resourced languages. We pub-
licly release our dataset and model on Github!
to foster research in this direction.

1 Introduction

The widespread dissemination of fake news, de-
fined as intentionally misleading information, has
become a critical issue in modern society with so-
cial consequences. Fake news and misinforma-
tion circulate across media channels—from social
networks to online news portals—often aiming to
mislead and manipulate public opinion. The con-
sequences of such disinformation can range from

! Github: https://github.com/Shibu4064/IndoNLP
1 These authors have equal contributions.

saiful-cse}@sust.edu

Dataset Source #FN  #TN
(SadikAlJarif, 2022) 45K 10K
(Al-Zaman and Noman, 2023) 2K Sk
(Hossain et al., 2020) 1.3K  48.6k
(Hussain et al., 2020) 1K 2.5K
BanFakeNews-2 (Proposed) 13K 47k

Table 1: Overview of existing Bangla fake news datasets.
Here #FN represents No. of fake news and #TN repre-
sents the No. of authentic news dataset

shaping public opinion on critical matters to cat-
alyzing large-scale societal unrest. For example,
during the COVID-19 pandemic, misinformation
regarding vaccine safety led to substantial vaccine
reluctance (Lee et al., 2022; O’ Connor and Murphy,
2020). In Bangladesh, the effects of such misin-
formation have been severe, including incidents of
violence and communal discord spurred by false ru-
mors online (Shirina and Prodhan, 2020; Bhikkhu,
2014). Moreover, the infodemic—defined as an
overabundance of information, including false or
misleading details—further complicated efforts to
combat COVID-19 globally, as highlighted in stud-
ies exploring misinformation trends and mitiga-
tion strategies (Kouzy et al., 2020; Bridgman et al.,
2020; Uddin et al., 2021). This challenge extends
to various content forms, such as articles, images,
videos, and memes, amplifying the difficulty of
detection (Cao et al., 2020; Das et al., 2021; Singh
and Sharma, 2022; Das et al., 2022).

Detecting fake news in low-resource languages
like Bangla remains challenging due to limited
datasets and resources. While English-language
fake news detection has progressed, robust datasets
for Bangla remain scarce, hindering model devel-
opment. Although efforts like the BanFakeNews
dataset (Hossain et al., 2020) and others (Al-Zaman
and Noman, 2023) have made initial strides, ex-
isting datasets remain limited in size and cover-
age, and manual fact-checking is impractical at
scale. To address these limitations, we present
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BanFakeNews-2.0, a substantially extended dataset
tailored for improved Bangla fake news detection.
Building upon BanFakeNews, this new dataset in-
cludes 13,000 source-verified fake news articles,
forming a balanced collection of 60,000 news
items (47,000 authentic, 13,000 fake) across 13
diverse categories compared to the previous largest
BanFakeNews dataset. Manually curating an in-
dependent test set of 1,000 news articles further
enables rigorous model evaluation. Our bench-
marks incorporate transformer-based models, such
as BERT, and fine-tuned large language models
(LLMs) using Quantized Low-Rank Approxima-
tion (QLORA).

BLOOM is a state-of-the-art, open-access large
language model that is collaboratively developed
by hundreds of researchers and trained on the mul-
tilingual ROOTS corpus. It supports 46 natural
and 13 programming languages, enabling broad
applications and competitive performance across
benchmarks (Workshop et al., 2023). We observe
that our fine-tuned BLOOM 560M model achieves
the highest performance, with a macro F1 score
of 89. This dataset and benchmark represent a
crucial step in advancing fake news detection for
low-resource languages like Bangla, providing a
foundation for future research and practical appli-
cations. Our main contributions include:

* We present BanFakeNews-2.0, a significant in-
cremental version of BanFakeNews as shown
in Table 1, while previous research is limited
in size and highly imbalanced. We manually
collected and validated 60K Bangla news arti-
cles, including 13K fake news.

* We conducted extensive experiments using tra-
ditional linguistic features, transformer-based
models like BERT, and LLMs to improve the
performance of detecting fake news in Bangla.

* We create an independent test set of 1,000
news articles (460 fake, 540 authentic)
to ensure rigorous evaluation and cross-
comparison of models.

2 Development of BanFakeNews-2.0

We focused on data preparation to ensure linguis-
tic richness and dataset diversity with two main
objectives: (1) collect verified fake news from di-
verse sources and domains and (2) enhance dataset
variety while minimizing redundancy. Our newly
curated dataset comprises approximately 13,000

fake and 47,000 authentic news articles from on-
line news portals and mainstream media. We
have collected the misleading or false context
type of news mostly from www. jaachai.com and
www. bdfactcheck.com. These two websites pro-
vide a logical and informative explanation of the
authenticity of the news published on other sites.
So, we have also collected the news mentioned
on those two sites from the actual publishing sites
and ensured that we avoid duplicates. We have
used Python’s web-scraping method for automated
and accurate collection of category-based news
from different online news portals, such as poli-
tics, sports, entertainment, medical, religious, etc.
The initial screening has been conducted by evalu-
ating the credibility of sources and verifying claims
through fact-checking platforms, authoritative ref-
erences, or collaborative verification methods. Rel-
evant keywords such as "rumor,” "hoax," "viral
news," and Bangla-specific terms linked to sensa-
tional topics have helped in categorizing the ar-
ticles. Employing automated web-scraping tech-
niques alongside manual validation ensures data
accuracy and quality. Additionally, maintaining a
balanced representation of topics, time-frames, and
domains has been ensured to create this dataset.

For authentic news, we selected the top 30
Bangladeshi news portals, recognized for their cred-
ibility and high readership. For fake news, we
gathered content from six major fact-checking plat-
forms that frequently debunk misinformation in
Bangladesh, identifying and validating articles as
probable fake news for inclusion. To ensure unique-
ness, we filtered out duplicates and removed items
with over 50% or 300 words of token overlap, aim-
ing to expand vocabulary diversity and contextual
variety. This broad range of content enhances the
robustness of our classification system, support-
ing better generalization across various linguistic
styles.

Each article was cross-checked by three anno-
tators to confirm authenticity. Five undergraduate
students, guided by detailed source verification pro-
tocols, reviewed potentially misleading sources and
excluded redundant entries. Note that, we define a
verified source of news when the source is at least
a person or organization capable of verification of
claimed news. When no specific source is available,
the reporters or journalists themselves are consid-
ered the source of the news. We used majority
voting to assign a final label of "fake" or "authen-
tic," achieving a high inter-annotator agreement
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score of 0.93, indicating strong labelling consis-
tency (Fleiss, 1971). During dataset analysis, we
standardized categories to align with the classifica-
tions used in BanFakeNews (Hossain et al., 2020),
resulting in 13 distinct categories. Categories were
assigned based on the classification of the news
at its source. If the source did not provide a cate-
gory, the news was thoroughly read to understand
its context and categorized accordingly. We focus
on increasing the number of fake news articles to
reduce the data imbalance, with 500 fake news arti-
cles per category. Still, we face challenges in the
lifestyle, medical, and religious categories. The
final dataset, comprising 60K news articles, is dis-
tributed across 13 categories in Table 2.

Category Authentic  Fake
Politics 3141 3403
Miscellaneous 2218 1655
International 6990 1461
Lifestyle 901 308
Medical 112 448
Religious 118 359
Sports 6526 925
Educational 1115 808
Technology 843 725
National 18708 1167
Crime 1272 720
Entertainment 2636 1441
Finance 1259 573

Table 2: Statistics of the dataset.

3 Methodologies

Here, we will outline the methods to create a bench-
mark model for detecting fake news in Bangla.
Our methodologies include traditional linguistic at-
tributes as well as neural networks and transformer-
based models.

3.1 Traditional Approaches

We extracted lexical linguistic features using TF-
IDF for character n-grams (n = 3,4,5) and word
n-grams (n = 1,2,3) similarly as existing works (Is-
lam et al., 2022). We applied a Linear Support
Vector Machine (SVM) (Hearst et al., 1998) to
these features for classification. Recognizing the
value of semantic information, we experimented
with pre-trained word embeddings to represent arti-
cles. Specifically, we used Bangla 300-dimensional
word vectors pre-trained with FastText on Common
Crawl and Wikipedia (Hossain et al., 2020; Romim
et al., 2022). Finally, we combined all the features
with SVM.

3.2 Transformer-based BERT Models

Encoder-based pre-trained BERT (Devlin et al.,
2018a) models are exceptional in downstream
tasks due to their superior contextual understand-
ing capabilities. We chose five pre-trained model
bases: BanglaBERT (Bhattacharjee et al., 2022)
and SagorBERT (Sarker, 2020), which are mono-
lingual, XLM-RoBERTa (XRoBERTa) (Conneau
et al., 2019), multilingual-BERT cased and uncased
(m-BERT-c and m-BERT-unc, respectively) (De-
vlin et al., 2018b) which are multilingual. We shuf-
fled the training samples and enforced gradient
clipping to fine-tune these models. We utilized
the outputs from the last two layers of multi-head
attention, subsequently employing a linear layer
for classification. We fine-tuned the model using
Adam optimizer (Kingma and Ba, 2014).

3.3 Large Language Model

Large language models (LLMs) have recently
demonstrated impressive linguistic analysis and
reasoning abilities. In our experiments, we applied
several advanced LLMs to our dataset, including
BLOOM 560M (Scao et al., 2022), Phi-3 Mini
3.8B (Abdin et al., 2024), Stable LM 2 1.6B (Bel-
lagente et al., 2024), and Llama 3.2 1B (Inan et al.,
2023). To fine-tune these models, we employed
QLoRA, loading them in 4-bit precision and set-
ting the rank and alpha parameters to 8 and 32,
respectively, for trainable adapters. Each model
was configured in half-precision floating-point for-
mat with normalized 4-bit quantization, using the
final token for classification. To manage model
complexity and avoid overfitting, alpha is used as
a regularization parameter. Its value is adjusted
to strike a compromise between underfitting and
overfitting (Moradi et al., 2020). 4-bit quantization
(Pan et al., 2023) is perfect for devices with lim-
ited resources or for quicker inference because it
drastically reduces model size and increases com-
puting efficiency. Modern quantization methods
provide low accuracy loss, allowing for effective
deployment with respectable performance. Fine-
tuning was optimized through gradient accumula-
tion at each step with a paged Adam 8-bit opti-
mizer(Simoulin et al., 2024).

4 Experimental Setup
4.1 Data Preprocessing and Model Validation

English words and hyperlinks were removed from
the dataset. Text normalization, punctuation, and
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stop-words removal were performed for traditional
models. We have done some pre-processing, in-
cluding removing NaN values, deleting duplicate
rows, etc. As punctuation is essential for capturing
context in a sentence, there was no punctuation
removal for our LLM experiments.

We validated the models using the holdout
method. For this purpose, we split the dataset into
train and test sets containing 70% and 30%, respec-
tively, following the distribution by the authors of
the BanFakeNews (Hossain et al., 2020) dataset
while keeping the same class ratio. We took half
of the test split as validation and the rest for test-
ing purposes. This split strikes a practical balance,
maintaining sufficient data for each phase while
ensuring reliable model evaluation.

4.2 Baselines

In our experimental evaluation, we benchmark our
results against two baseline approaches. Firstly,
a majority baseline assigns the predominant class
label (in this case, ’authentic news’) to all articles.
The second is a random baseline, which randomly
classifies articles as authentic or fake. Table 3
presents the average precision, recall, and F1-score
obtained from 10 random baseline experiments.

4.3 Experiments

For each experiment, we chose the hyperparame-
ters based on the validation set (Andonie, 2019)
and evaluated the model on the test set as well as
our independent test set. For traditional models,
we only trained on the content of the news. For
BERTSs and LLMs, we trained both on content and
headlines while keeping a maximum limit of 512
input tokens. To differentiate the headline and con-
tent of each news sample, we added the string ““ \\
between these.

5 Result and Analysis

Table 3, describes the performance of various mod-
els in terms of Precision (P), Recall (R), and F1
(F1-Score) for both the authentic and fake news
classes. Our approach, validated using the inde-
pendent holdout dataset, yields an unbiased per-
formance measure compared to previous works in
Bangla fake news detection. The results indicate
high P, R, and F1 scores for the authentic class,
with nearly perfect recall. For fake news detection,
performance varies by model, reflecting the unique
challenges of this classification task.

Model Authentic Fake Macro
P R F1 P R F1 F1

Baselines

Majority 79 100 88 0 0 0 78

Random 79 50 61 21 51 30 63

Linguistic Features with SVM

Unigram(U) 92 95 93 78 70 74 84
Bigram(B) 91 95 93 78 67 72 83
Trigram(T) 91 88 90 62 69 66 78
U+B+T 92 95 94 79 70 75 85
C3-Gram(C3) 96 97 98 80 74 77 86
C4-Gram(C4) 97 98 97 79 75 77 86
C5-Gram(C5) 96 97 96 81 74 77 86
C3+C4+C5 97 98 97 79 75 77 86
Embedding 89 98 93 90 57 70 82
All Features(All) 92 96 94 8 72 78 86
BERT models

BanglaBERT 89 99 94 97 53 69 81
SagorBERT 92 99 95 95 68 79 87
m-BERT-c 92 98 95 93 69 79 87
m-BERT-unc 92 98 95 93 70 79 87
XRoBERTa 90 98 94 89 61 72 83
LLMs

BLOOM 560M 92 100 96 99 69 81 89
Phi 3 mini 3.8B 90 98 94 92 58 71 83
Stable LM 2 1.6B 90 98 94 89 o6l 71 83
Llama 3.2 1B 92 99 95 94 66 78 86

Table 3: Precision (P), Recall (R), and F1 score for each
categorical class (Authentic and Fake)

Among word n-grams, unigrams achieved the
highest F1 score of 84%, outperforming bigrams
(83%) and trigrams (78%). Combining these n-
grams resulted in an F1 score of 85%, demon-
strating that multi-gram approach enhances classi-
fication accuracy. Character n-grams yielded sim-
ilar performance; however, combinations of char-
acter n-grams did not provide substantial gains.
Across experiments, authentic news classification
achieved over 90% in P, R, and F1. However, fake
news classification showed greater variability. Tra-
ditional SVM models, employing linguistic fea-
tures, outperformed LLMs and transformers-based
models in identifying authentic news. Conversely,
LLM-based models excelled in detecting fake news,
yielding higher F1 scores. Notably, the transformer
models multilingual BERT (m-BERT-unc) and
BLOOM achieved an F1 score of 81% in the fake
news class, surpassing the 77% F1-score achieved
by the C3-Gram model. However, traditional mod-
els performed slightly better overall, reaching an
F1 score of 98% in the authentic class, compared
to the highest F1 score of 96% for transformers.
This discrepancy may stem from the increased vol-
ume of fake news in the dataset, posing unique
challenges for transformers in handling nuanced

103



Model Train dataset Test dataset Mac. F1
SVM (All) BanFakeNews Test (internal) 74
SVM (All) BanFakeNews-2.0 Test (internal) 86
SVM (All) BanFakeNews Test (external) 39
SVM (All) BanFakeNews-2.0 Test (external) 91
BLOOM BanFakeNews Test (internal) 78
BLOOM BanFakeNews-2.0 Test (internal) 89
BLOOM BanFakeNews Test (external) 29
BLOOM BanFakeNews-2.0 Test (external) 67

Table 4: Ablation experiments with different train-test
combinations of existing BanFakeNews and proposed
BanFakeNews-2.0

distinctions within the fake class. Among the tested
transformers, BLOOM and m-BERT-uncased con-
sistently achieved top performance. However,
BanglaBERT lagged, exhibiting low P and R for
both classes. For linguistic features, character-
based models outperformed word-based models
in fake news detection. The C3-Gram model sur-
passed the unigram+bigram-+trigram(U+B+T) fea-
ture model, showing a 1%, 4%, and 2% higher P, R,
and F1, respectively, for fake news. This trend also
held for authentic news detection, underscoring the
effectiveness of character-level features in handling
the nuanced patterns of Bangla fake news.

To assess the generalisability of our models,
we evaluated them using a manually curated ex-
ternal test set of 1,000 samples. We tested
the top-performing models—the traditional lin-
guistic feature-based SVM and the LLM-based
BLOOM—both trained on the BanFakeNews-2.0
dataset, as shown in Table 4. On this exter-
nal test set, models trained with BanFakeNews-
2.0 consistently outperformed those trained on
the original BanFakeNews dataset, demonstrating
BanFakeNews-2.0’s improved diversity and bal-
ance. This enhancement, similar to expanding inter-
view questions to address a wide range of scenarios,
equips the models to handle complex and varied
data, establishing BanFakeNews-2.0 as a valuable
resource for Bangla fake news detection.

6 Conclusion and Future Works

The study presents BanFakeNews-2.0, a Bangla
fake news dataset with 13K manually annotated
articles across 13 categories aimed at improving
fake news detection in Bangla. Our evaluation
demonstrated that BLOOM and m-BERT-unc mod-
els outperformed other models, highlighting the
importance of contextually diverse datasets over
basic linguistic features for achieving high accu-

racy. BanFakeNews-2.0 allowed transformer mod-
els and LLMs to excel, highlighting the need for
diverse datasets and robust detection tools. Future
work will focus on enhancing dataset features, re-
fining models, and exploring real-time monitoring.
Testing emerging LLMs like Mistral, Minitron, and
GPT 4 in zero-shot settings may provide further
insights. BanFakeNews-2.0 provides a strong foun-
dation for advancing research in Bangla fake news
detection and mitigation.

7 Limitations

Generative language models are becoming more
human-like, enabling them to imitate authentic
news. However, the proposed dataset and pre-
trained models may struggle to differentiate ad-
vanced fabricated news from upcoming generative
models. The low fake news count in some news cat-
egories makes it difficult to differentiate. Despite
high classification capabilities, the current dataset
is imbalanced due to insufficient fake news. A more
balanced dataset could improve model capabilities.
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Abstract

The integration of artificial intelligence into
development research methodologies offers un-
precedented opportunities to address persistent
challenges in participatory research, particu-
larly in linguistically diverse regions like South
Asia. Drawing on empirical implementation
in Sri Lanka’s Sinhala-speaking communities,
this study presents a methodological framework
designed to transform participatory develop-
ment research in the multilingual context of
Sri Lanka’s flood-prone Nilwala River Basin.
Moving beyond conventional translation and
data collection tools, the proposed framework
leverages a multi-agent system architecture to
redefine how data collection, analysis, and com-
munity engagement are conducted in linguisti-
cally and culturally complex research settings.
This structured, agent-based approach facili-
tates participatory research that is both scal-
able and adaptive, ensuring that community
perspectives remain central to research out-
comes. Field experiences underscore the im-
mense potential of LLM-based systems in ad-
dressing long-standing issues in development
research across resource-limited regions, deliv-
ering both quantitative efficiencies and qualita-
tive improvements in inclusivity. At a broader
methodological level, this research advocates
for Al-driven participatory research tools that
prioritize ethical considerations, cultural sensi-
tivity, and operational efficiency. It highlights
strategic pathways for deploying Al systems
to reinforce community agency and equitable
knowledge generation, offering insights that
could inform broader research agendas across
the Global South.

1 Introduction

The convergence of artificial intelligence and devel-
opment research heralds a transformative paradigm
shift in participatory methodologies, particularly
through the emergence of Large Language Mod-
els (LLMs) and their potential to revolutionize
community engagement practices (Mohamed et al.,

2024; Skirgard et al., 2023). As these technologies
rapidly evolve, their application to development
research presents both unprecedented opportuni-
ties and complex methodological challenges that
demand careful examination (Roberts et al., 2024).
This intersection becomes particularly significant
in linguistically diverse regions like South Asia,
where traditional research approaches have long
struggled to bridge communication gaps and cul-
tural divides (Kshetri, 2024; Hassan et al., 2023).

The limitations of conventional participatory re-
search methodologies, heavily dependent on hu-
man intermediaries and constrained by resource
availability, have historically impeded the scale and
effectiveness of development initiatives (Gopferich
and Jdaskeldinen, 2009). These constraints are par-
ticularly evident in regions characterized by com-
plex linguistic landscapes and limited technologi-
cal infrastructure (Magueresse et al., 2020; Nekoto
et al., 2020). However, recent advances in LLM
architectures, particularly in few-shot learning and
cross-lingual transfer capabilities, offer promising
solutions to these longstanding challenges (Raiaan
et al., 2024; Wu et al., 2023).

The integration of LLM-based systems into par-
ticipatory research frameworks raises fundamental
questions about the nature of community engage-
ment and knowledge democratization (Hadi et al.,
2024; Diab Idris et al., 2024). While these technolo-
gies offer powerful tools for bridging linguistic and
cultural divides, their deployment must be carefully
orchestrated to enhance rather than diminish the
participatory nature of development research (Rane
et al., 2023; Kovac et al., 2024). This necessitates a
nuanced approach that balances technological capa-
bilities with ethical considerations and community
agency (Sabarirajan et al., 2024; Ray, 2023).

In this paper, we introduces and tested a novel
framework (Fig.1) for leveraging LLM-based multi-
agent systems in participatory development re-
search, drawing from empirical evidence in Sri
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Figure 1: Proposed LLM4Participatory Research Framework

Lanka’s Sinhala-speaking communities (Hashmi
et al., 2024; Urwin et al., 2023). Our approach
moves beyond simple technological integration to
address fundamental questions of community em-
powerment and knowledge production in Global
South contexts (Pfeffer et al., 2013). The urgency
of this work is underscored by the increasing com-
plexity of development challenges and the grow-
ing need for scalable, culturally sensitive research
methodologies (van Rensburg and van der West-
huizen, 2024; Awad et al., 2016). Through criti-
cal analysis of both opportunities and challenges,
we demonstrate how thoughtfully deployed NLP
technologies can enhance human capabilities in
development research, potentially leading to more
inclusive and impactful outcomes (Ferdaus et al.,
2024). Our framework provides a structured ap-
proach for implementing LLM-based multi-agent
systems while maintaining core principles of partic-
ipatory research, offering insights for researchers,
practitioners, and policymakers working at the in-
tersection of technology and development. We
argue that these technologies, when thoughtfully
deployed, can enhance rather than replace human
capabilities in development research, potentially
leading to more inclusive, efficient, and impactful
research outcomes.

2  Why South Asia Needs This Now

South Asia stands at a nexus where rapid digitaliza-
tion meets deeply ingrained linguistic and cultural
heterogeneity, presenting formidable challenges
but also unparalleled opportunities for participa-
tory research (Rahman, 2024). Growing smart-

phone penetration, expanding internet infrastruc-
tures, and the proliferation of digital platforms have
catalyzed a democratization of information (Deich-
mann et al., 2016). Rural communities, previously
marginalized due to limited access to communica-
tion channels, now experience annual digital liter-
acy growth rates surpassing traditional benchmarks
(Kass-Hanna et al., 2022). Despite these advances,
the region’s linguistic complexity—home to over
650 languages—remains an enduring obstacle to
effective data collection, community engagement,
and knowledge co-creation (Hutson et al., 2024).
The pervasive phenomenon of code-mixing, where
speakers fluidly alternate between languages and di-
alects, further complicates meaning extraction and
translation (Rodriguez Tembrds, 2024). Traditional
research paradigms and even earlier-generation
NLP tools struggle to handle these intricacies,
leading to communication bottlenecks, inflated re-
search costs, and a marginalization of essential lo-
cal voices (Daramola et al., 2024; Bjork Bramberg
and Dahlberg, 2013).

Emerging LL.Ms and advanced NLP architec-
tures, however, offer a pathway to transcend these
limitations. State-of-the-art models, when fine-
tuned and adapted through few-shot and transfer
learning approaches, can now handle morphologi-
cally complex languages and capture semantic sub-
tleties even under severe training data constraints
(Tomec and Gricar, 2024; Parovic, 2024). These
technological capabilities enable more equitable,
scalable, and culturally sensitive research meth-
ods that respect local communication patterns and
linguistic realities. Crucially, these tools do not
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merely solve technical challenges; they reshape the
participatory research paradigm. By facilitating
real-time, multilingual engagement and generating
culturally resonant research activities, LLM-based
systems empower communities to more actively
co-produce knowledge (Kar et al., 2024), while
substantially cutting resource overheads. Beyond
operational efficiency, this signifies a fundamental
shift toward recognizing community agency, ac-
knowledging indigenous knowledge systems, and
enhancing the overall authenticity and credibility
of development research (Brown, 2024; Dutta et al.,
2024). This enhanced research environment sup-
ports more sustainable interventions. Researchers
can allocate fewer resources to language mediation
and more to iterative engagement cycles, iterative
validation, and capacity building. The outcome is
a more inclusive, trusting, and impactful partici-
patory ecosystem, where community voices shape
the research agenda, and shared knowledge guides
more relevant and equitable development strategies
(Ullah et al., 2024; Matras et al., 2023).

3 Proposed LLM4Participatory Research
Framework

Our LLM4Participatory Research Framework is
designed as a modular, multi-agent ecosystem that
integrates LL.Ms with multimodal AI capabilities
to address the multifaceted challenges of partici-
patory research in linguistically diverse settings.
Each agent type is specialized for a distinct func-
tion, yet all collaborate seamlessly through well-
defined interaction protocols, shared data ontolo-
gies, and unified prompt engineering guidelines.
Agent interactions are orchestrated using standard-
ized APIs, message passing interfaces, and care-
fully designed prompt templates, ensuring that the
cognitive pipeline remains flexible, transparent,
and adaptable.

3.1 Core Components

Participatory Research Design and Analytics
Agents (PRDAA): These agents guide the research
methodology from inception to continuous refine-
ment. They employ LLM-driven prompt engineer-
ing to generate and adapt research instruments
(e.g., surveys, interview guides) informed by pre-
curated cultural knowledge repositories. During
pre-field pilot studies, PRDAAs utilize reinforce-
ment learning-based feedback loops to iteratively
refine instruments. For instance, the prompts used

may define constraints such as “Generate three
culturally relevant survey questions about water
usage practices, each incorporating code-mixed
Sinhala-English phrases.” The agents then analyze
responses and community feedback, calibrating
lexical and thematic complexity to ensure that in-
struments are both linguistically accessible and cul-
turally resonant (Rane et al., 2024; Agathos et al.,
2024).
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Figure 2: LLM-agent-empowered real-time summary
and translation during a participatory workshop.

Socio-Semantic Mediation Agents (SSMA):
SSMAss specialize in real-time, code-mixed transla-
tion, interpretation, and semantic alignment. They
combine transformer-based multilingual LLMs
with domain adaptation layers and specialized tok-
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enization schemes to handle code-mixing. The un-
derlying algorithms utilize attention-based context
retrieval and fine-grained subword embeddings for
Indo-Aryan and Dravidian language families. This
enables them to preserve semantic nuance across
languages, dialects, and honorific forms (Mohamed
et al., 2024; Sitaram et al., 2020). By continuously
updating a cultural knowledge graph, SSMAs en-
sure fidelity to local ontologies, social hierarchies,
and linguistic registers. For instance, when en-
countering an unexpected code-mixed utterance,
the SSMA applies a disambiguation sub-module
that uses few-shot prompt examples to infer the
correct semantic interpretation before generating
a coherent translation or summary (Dowlagar and
Mamidi, 2023; Ye, 2024).

Ethnographic Intelligence Agents (EIA): EIAs
integrate LLM-based natural language understand-
ing with multimodal feature extraction to capture
the richness of ethnographic data. Beyond handling
textual inputs, EIAs incorporate audio and visual
signals—such as speaker intonation and gesture
cues—through multimodal transformers. By align-
ing textual embeddings with non-verbal cues and
contextual metadata, these agents can infer deeper
cultural subtexts. Algorithmically, EIAs utilize con-
trastive learning methods to align representations
of linguistic and non-linguistic signals, ensuring
that the ethnographic narrative remains coherent
and contextually faithful (Yang, 2024; Sadia et al.,
2024; Lee et al., 2024).

Community Engagement Orchestration
Agents (CEOA): CEOAs manage the ethical
and relational dimensions of the research. These
agents are configured with ethical protocols,
informed consent modules, and data sovereignty
guidelines. Their internal logic includes rule-based
inference systems that ensure compliance with
community-established protocols. For example,
CEOAs generate prompts to clarify participant
consent forms in code-mixed language or to guide
researchers through culturally sensitive topics.
They also track and document interactions in a
transparent ledger, providing stakeholders with an
audit trail of engagement activities (Ninan et al.,
2024; Chow and Li, 2024; Guo et al., 2023).

3.2 Integration into Participatory Methods

The integration of our LLM-driven multi-agent
framework into participatory research methodolo-
gies extends far beyond basic translation or tran-

scription. It is a holistic, context-aware process
designed to meaningfully elevate the entire lifecy-
cle of community engagement—from the earliest
moments of instrument design to the final phases
of data validation and policy recommendation. The
guiding principle is that each agent type, while tech-
nically distinct, continuously aligns its operational
parameters with the evolving socio-cultural and lin-
guistic contours of the communities involved(Fig.
8).

To illustrate this integration, consider the work-
flow of a community workshop aimed at flood risk
assessment in a code-mixed linguistic environment.
Initially, the Participatory Research Design and An-
alytics Agents (PRDAAs) are responsible for select-
ing and tailoring research instruments—such as sur-
veys or focus group outlines—using prompt-based
generation methods that incorporate cultural knowl-
edge repositories and previously annotated corpora.
These instruments are not static; rather, they are re-
fined in an iterative manner. For instance, PRDAAs
initially produce a series of candidate questions in
Sinhala-English code-mixed format, balancing lin-
guistic accessibility with domain specificity. The
questions are then tested against synthetic corpora
representing likely participant responses. In this
simulation step, Socio-Semantic Mediation Agents
(SSMAs) perform detailed code-mixed translation
and semantic alignment checks, ensuring that the
initial prompts and questions maintain fidelity to
cultural nuances and do not inadvertently skew par-
ticipant interpretations.

Once the research instruments have passed pre-
liminary tests, they move into the field setting. Dur-
ing live surveys and interviews, PRDAAs dynam-
ically adjust question complexity and phrasing in
response to real-time cues from both human re-
searchers and Ethnographic Intelligence Agents
(EIAs). If local participants exhibit confusion, fa-
tigue, or hesitation—signaled by vocal intonation
changes or subtle body language cues captured
and interpreted by EIAs—PRDAAs issue refined
prompt directives to SSMAs. The SSMAs then
generate alternative phrasings or linguistic simpli-
fications, ensuring that each question remains cul-
turally resonant and accessible, without sacrificing
the analytic integrity of the instrument. This tight
feedback loop can occur multiple times within a
single interaction, allowing the conversation to flow
naturally and responsively, much like a skilled hu-
man facilitator adept at shifting linguistic registers

111



or explanatory strategies.

Workshops and participatory group activities
benefit similarly. Community Engagement Or-
chestration Agents (CEOA) integrate data from
PRDAAs, SSMAs, and EIAs to propose cultur-
ally relevant engagement scripts. For example, if a
workshop involves participatory mapping of flood
hotspots, CEOAs might recommend starting with
a culturally familiar narrative—such as local flood
folklore or historical memory—before transition-
ing to spatial data collection. While participants
discuss their lived experiences, EIAs track non-
verbal signals indicating trust or discomfort, and
SSMA s ensure that key cultural metaphors and id-
ioms are faithfully preserved in translations and
summaries. This coordination embodies a level
of anthropologically informed sensitivity: it re-
spects complex social hierarchies, local linguistic
honorifics, and the dynamics of multi-generational
knowledge transmission, all while operating under
strict ethical guidelines that CEOAs enforce and
document. The integration protocol also includes a
set of formal interaction rules and metadata annota-
tions. Each agent’s output is enriched with contex-
tual tags, which guide subsequent agent operations.
These annotations form a semantic layer that hu-
man researchers can later review, providing trans-
parency into the decision-making processes of the
agents and enabling critical reflection on whether
certain prompts, translations, or adjustments influ-
enced participant responses in unintended ways.

3.3 LLM-Agents-Driven Research Workflow

The workflow orchestrated by our multi-agent sys-
tem unfolds through a series of interlinked phases
designed to ensure continuous adaptation, rigor-
ous quality control, and meaningful involvement
of local communities. Each phase leverages the
strengths of different agent types, while also main-
taining pathways for human oversight, ethical re-
view, and methodological triangulation. The goal
is a research pipeline that not only collects data effi-
ciently but also enriches the quality, interpretability,
and legitimacy of that data in the eyes of both com-
munities and external stakeholders.

Pre-Field Preparation and Instrumentation:
Before stepping into the field, the workflow begins
with an extensive pre-field instrumentation phase.
Here, PRDAAS generate initial drafts of research
instruments—surveys, semi-structured interview
guides, and community workshop outlines—based

on project goals and available cultural-linguistic
corpora. These initial drafts are subjected to syn-
thetic test scenarios: code-mixed test cases are
fed into SSMAs to benchmark translation accu-
racy and contextual fidelity, while EIAs simulate
multimodal inputs (e.g., hypothetical speaker in-
tonations, gesture-based cues) to assess whether
the proposed prompts can handle complex ethno-
graphic scenarios. Iterations are performed until a
baseline set of instruments meets quality thresholds
defined by the research team, including metrics for
linguistic clarity, semantic accuracy, and cultural
appropriateness.

Adaptive Field Deployment: With baseline in-
struments in hand, the team moves into the field.
Surveys, interviews, and workshops commence,
guided by the prepared materials but never locked
into them. As participants respond, SSMAs de-
ploy on-the-fly translation and code-switching ad-
justments. If a participant uses a regional idiom
not encountered in pre-field training data, SSMAs
rely on few-shot prompt adaptation techniques,
referencing similar linguistic patterns to generate
accurate, context-aware interpretations. Concur-
rently, EIAs capture non-verbal signals—such as
prolonged pauses, changes in vocal pitch, or rest-
less body language—to produce ethnographic an-
notations. These annotations are fed back into
PRDAAs, which may trigger immediate modifi-
cations to the research instrument. For instance,
if participants appear disengaged, PRDAAs may
instruct SSMAs to simplify the phrasing or incor-
porate culturally salient metaphors to re-engage the
community’s interest.

Ethical Monitoring and Protocol Enforce-
ment: During these field interactions, CEOAs
maintain a real-time ethical interaction ledger. This
ledger logs every adaptation request, every change
in linguistic register, and every potential breach of
community protocols. Should a line of questioning
veer into sensitive territory—such as local religious
traditions or gender-related norms—CEQOAs issue
alerts prompting the research team to reconsider
the approach. If participants request anonymity
or display discomfort with certain data-collection
practices, CEOAs dynamically adapt the informed
consent modules and ensure that new protocols are
communicated in accessible, code-mixed language.

Multilingual Thematic Analysis and Iterative
Refinement: After field data is collected, it passes
through a multilingual thematic analysis pipeline.
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PRDAAs and EIAs collaborate to identify recur-
ring narratives, power hierarchies, and cultural
themes that emerge from the data. By leverag-
ing transformer-based topic modeling and clus-
tering methods fine-tuned for code-mixed input,
the agents reveal patterns that might be missed by
single-language or monomodal approaches. This
phase also includes a human-in-the-loop feedback
cycle, where researchers and local experts evaluate
the thematic outputs. Feedback is translated into
updated prompt templates and agent-specific in-
structions. If local stakeholders indicate that a cer-
tain theme has been misinterpreted—perhaps a tra-
ditional narrative was wrongly associated with risk
aversion instead of historical resilience—agents ad-
just their semantic weighting and cultural context
embeddings.

Iterative Learning and Continuous Improve-
ment: Rather than terminating after a single cy-
cle of data collection and analysis, the workflow
encourages continuous learning. New linguis-
tic patterns, emergent cultural idioms, and shift-
ing community priorities feed back into the sys-
tem. PRDAASs update their instrument-generation
models, SSMAs refine their code-switch adapta-
tion strategies, EIAs improve their multimodal
understanding, and CEOAs integrate revised eth-
ical guidelines or local governance structures.
Over time, the system becomes more attuned to
community-specific realities, and its outputs be-
come increasingly reliable, nuanced, and aligned
with local perspectives.

4 Implementation in Field Work and
Insights

As is shown in Fig.3 and Appendix.A, to test the
feasibility of this novel system, we implemented
it in our field research, which focused on enhanc-
ing the Early Warning Systems (EWS) for flood
management in the Nilwala River Basin, a region
prone to recurrent flooding with devastating socio-
economic impacts in Sri Lanka. Sri Lanka’s linguis-
tic landscape is emblematic of South Asia’s broader
linguistic diversity, characterized by the prevalence
of code-mixing and multilingual communication
(Mandavilli, 2020). Sinhala, an Indo-Aryan lan-
guage with agglutinative features and a rich system
of honorifics, often intertwines with English and
other local dialects in everyday discourse, which
poses significant challenges for NLP, as it involves
syntactic, lexical, and semantic blending that tradi-

tional language models struggle to interpret accu-
rately. The objective was to employ the proposed
system to facilitate participatory development re-
search methods—including surveys, structured and
semi-structured interviews, workshops, and other
interactive engagements—with stakeholders rang-
ing from national agencies to local communities.

4.1 Practical Experiences and Outcomes

The implementation faced several challenges, par-
ticularly in adapting the LLMs to handle Sinhala-
specific linguistic features and the pervasive code-
mixing in communication. The scarcity of high-
quality, annotated Sinhala corpora necessitated in-
novative approaches, including active learning tech-
niques and data augmentation strategies to enhance
the model’s proficiency(Jagosh et al., 2012).

One significant achievement was the develop-
ment of a hybrid translation approach that com-
bined statistical and neural methods, achieving
a 35% improvement in translation accuracy for
domain-specific terminology compared to standard
multilingual models, which was critical for accu-
rately interpreting participants’ responses during
interviews and ensuring that subtle nuances were
not lost in translation. During workshops, they
assisted in designing interactive activities that res-
onated with local customs and facilitated real-time
feedback collection. In surveys and interviews,
the agents helped generate culturally appropriate
questions and dynamically adjusted to participants’
inputs, enhancing the depth and authenticity of the
data collected. The agents also played a crucial role
in the analysis phase. They enabled cross-linguistic
comparisons and facilitated the synthesis of com-
plex data into actionable insights (Cemoge et al.,
2024). For instance, they helped identify commu-
nication bottlenecks between agencies involved in
the EWS, revealing that outdated communication
methods and bureaucratic procedures were signifi-
cant barriers to effective disaster management.

4.2 Lessons Learned and Recommendations

Community Involvement is Crucial: Active par-
ticipation of local stakeholders in the development
and refinement of the system was essential. Their
input ensured that the agents were culturally at-
tuned and responsive to the community’s needs,
enhancing acceptance and effectiveness.

Flexible Adaptation Mechanisms are Neces-
sary: The linguistic diversity and code-mixing
practices required the agents to be highly adaptable.
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Figure 3: Participatory Field Research with LLM-agent-assisted tools. (Source: Authors’ fieldwork)

Implementing mechanisms for continuous learning
and real-time adjustment was critical for handling
linguistic variations and unexpected inputs.

Human Oversight Remains Indispensable:
While the agents significantly enhanced efficiency
and depth, human researchers played a vital role in
overseeing the process, interpreting nuanced cul-
tural contexts, and making ethical judgments.

Addressing Technical Challenges: Overcom-
ing the scarcity of linguistic resources demanded
innovative technical solutions. Investing in the
development of annotated corpora and leveraging
transfer learning were effective strategies for en-
hancing model performance.

4.3 Implementation Considerations for
Broader Deployment

The Nilwala River Basin deployment illustrates a
scalable and domain-agnostic framework. To adapt
it for other South Asian languages and contexts,
the modular architecture allows integrating new
code-mixing tokenizers, cultural knowledge bases,
or domain-specific LLM fine-tunings (Finkel et al.,
2022).

Technical Infrastructure: Resource-poor
settings demand efficient model architectures.
Lightweight LLMs combined with on-device pre-

processing, federated learning, and quantization
can mitigate latency and connectivity issues (Qu
et al., 2024).

Data Security and Privacy: Incorporating end-
to-end encryption and federated learning ensures
sensitive community data remains local while still
contributing to the global improvement of model
quality. CEOAs enforce data usage policies, ensur-
ing that outputs are ethically and legally compliant.

Ethical and Cultural Considerations: The
framework’s prompt design explicitly encodes eth-
ical guidelines. CEOAs monitor compliance in
real-time, and any deviation triggers a review work-
flow. Building and maintaining culturally informed
knowledge graphs ensures the models reflect com-
munity values rather than imposing external biases
(Suppadungsuk et al., 2023).

Capacity Building and Institutional Support:
Sustained success requires local training programs
and policy engagement. By equipping researchers
and stakeholders with the skills to interpret, cus-
tomize, and govern these systems, we foster long-
term sustainability and local empowerment. Col-
laborations with NGOs, government agencies, and
academic institutions can institutionalize best prac-
tices, streamline resource allocation, and formalize
quality assurance standards.
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5 Discussion and Future Agenda

The integration of LLM-based multi-agent systems
into participatory development research reconfig-
ures the conceptual space at the intersection of
technology, community engagement, and anthro-
pological inquiry (Xu et al., 2024). Far from be-
ing a mere technical enhancement, this approach
prompts us to re-evaluate foundational assumptions
about the production, circulation, and legitimation
of knowledge in socio-culturally complex contexts.
In traditional participatory frameworks, human fa-
cilitators, local knowledge brokers, and community
spokespersons navigate the intricacies of language,
power asymmetries, and cultural semiotics. Our
LLM-driven architecture extends this negotiation
field, distributing interpretive authority and method-
ological agency across human and non-human ac-
tors. This shift demands that we refine our criteria
for epistemic robustness and ethical accountability.
By introducing adaptive prompts, multimodal inter-
pretation layers, and code-mixed language models,
the research process becomes more dialogic and
reflexive, simultaneously more scalable and less
deterministic. While existing literature in participa-
tory development and linguistic anthropology has
long emphasized the importance of local involve-
ment (Penuel et al., 2020), the emergence of LLM-
based agents compels a reconsideration of whose
voices are amplified, how biases are mitigated, and
under what conditions community knowledge is
validated. Methodological rigor thus transcends
traditional validation protocols, calling for new
evaluative paradigms where model outputs must
be continually negotiated, contested, and contextu-
alized by community stakeholders.

These technological trajectories also invoke
philosophical questions about the essence of com-
munity agency and the nature of equitable devel-
opment. In harnessing LLMs to broker dialogues
between disparate linguistic and cultural systems,
we challenge the modernist assumption that tech-
nology is a neutral mediator. Instead, Al becomes
an evolving participant in a dense socio-technical
network—one that can enrich cultural representa-
tion, but also requires vigilant governance to pre-
vent the re-inscription of power imbalances. Fu-
ture research must thus address the deeper norma-
tive concerns: how can we ensure that Al-enabled
participatory practices bolster rather than dimin-
ish local epistemologies and life-worlds? How do
we integrate metrics of cultural resilience, trust-

building, and vernacular knowledge sustainability
into development assessments (Falcone, 2023)? In
charting this future agenda, interdisciplinary collab-
oration is paramount. Technologists, anthropolo-
gists, linguists, and development practitioners must
co-design systems that are both contextually reso-
nant and theoretically informed. The promise of
these LLM-based frameworks lies not simply in im-
proved data collection or analytical sophistication,
but in ushering in a more philosophically coherent
paradigm of research—one that values uncertainty,
pluralism, and continuous ethical reflection as inte-
gral components of knowledge production.

6 Conclusion

The introduction of LLM-based multi-agent ar-
chitectures into participatory research settings in
South Asia signals a profound transformation, of-
fering new avenues for bridging linguistic divides
and socio-cultural complexities without reducing
communities to passive data sources. Rather than
replacing traditional methods, these technologies
complement and extend established participatory
principles: human facilitators remain indispens-
able ethical and interpretive anchors, while LLM-
based agents broaden the scope, adaptability, and
depth of engagements. The real significance of
this paradigm lies in how it reconfigures the re-
lational field of development research. By treat-
ing language models as interlocutors that adapt to
local idioms, cultural protocols, and conceptual
frames, the process moves closer to what humanis-
tic inquiry has always sought: a genuine dialogic
co-production of meaning. This approach tran-
scends conventional efficiency metrics, orienting
research toward a deeper, ethically engaged form
of knowledge-making.

The path forward necessitates sustained reflec-
tion and critical praxis. Cross-sectoral alliances and
supportive institutional frameworks are required
to ensure that technology-enhanced participatory
models do not inadvertently replicate existing in-
equalities or impose external epistemologies. Ulti-
mately, the convergence of advanced NLP, anthro-
pological rigor, and participatory ethos challenges
the prevailing boundaries of development research.
It opens the door to an epistemically plural and
ethically attentive mode of inquiry, one that holds
promise for more inclusive, contextually authentic,
and transformative engagements with communities
worldwide.
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Abstract

The widespread use of social media has con-
tributed to the increase in hate speech and
offensive language, impacting people of all
ages. This issue is particularly difficult to ad-
dress when the text is in a code-mixed lan-
guage. Twitter is commonly used to express
opinions in code-mixed language. In this pa-
per, we introduce a novel Multi-Task Transfer
Learning (MTTL) framework to detect aggres-
sion and offensive language. By focusing on
the dual facets of cyberbullying, viz., aggres-
siveness and offensiveness, our model lever-
ages the MTTL approach to enhance the per-
formance of the model on the aggression and
offensive language detection. Results show
that our Multi-Task Transfer Learning (MTTL)
setup significantly enhances the performance
of state-of-the-art pretrained language models,
viz., BERT, RoBERTa, and Hing-RoBERTa for
Hindi-English code-mixed data from Twitter.

1 Introduction

Social media encompasses a variety of internet-
based applications that enable people to connect
globally and share user-generated content. Plat-
forms like Twitter and Facebook are among the
most popular applications on the internet today.
However, there has been a significant rise in bul-
lying behavior on these platforms, including snide
remarks, abusive language, personal attacks, and
even threats of rape and violence, impacting chil-
dren, individuals, and communities. This situation
underscores the need for technological advance-
ments to automatically detect offensive content
and create safer environments. Machine learning
models, leveraging recent techniques in natural
language processing, can be utilized to effectively
identify such harmful behaviors.

In countries where English is not the native lan-
guage, such as India, most social media users com-
municate using at least two languages, predomi-
nantly English and Hindi. These texts are classified

as bilingual. In a bilingual context, an entire post
may be written in the script of one language while
incorporating words from both languages, a phe-
nomenon known as code-mixed (or mixed-code)
text.

In this paper, we introduce a pioneering Multi-
Task Transfer Learning (MTTL) framework aimed
at identifying aggression and offensive language
in Hindi-English code-mixed tweets. Our method
delves into the correlation between aggression and
offensive language. As illustrated in Figure 1, it
reveals that offensive language frequently accom-
panies expressions of aggression, suggesting an
inherent connection between the two. We validate
our MTTL framework using the dataset provided
for the seventh Workshop on Online Abuse and
Harms (WOAH) (Nafis et al., 2023). Derived from
Twitter, this dataset classifies tweets based on two
primary dimensions of cyberbullying: aggressive-
ness and offensiveness. Each tweet is annotated
with the following labels.

» Aggression has been defined as any behavior
enacted with the intention of harming another
person who is motivated to avoid that harm.
This label consists of 3 sub classes:

1. (OAG) - overtly aggressive
2. (CAG) - covertly aggressive
3. (NAG) - not-aggressive

* Offensiveness has been described as any word
or string of words which has or can have a neg-
ative impact on the sense of self or well-being
of those who encounter it— that is, it makes
or can make them feel mildly or extremely
discomfited, insulted, hurt or frightened. This
label consists of 2 sub classes:

1. (OFF) - offensive
2. (NOT) - not-offensive
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* Codemixed: this label specifies weather the
tweet is codemixed or monolingual.

The key contributions of this work are the fol-
lowing:

* We have proposed a novel MTTL framework
for aggression and offensive language detec-
tion tasks. We deploy state-of-the-art pre-
trained language models viz., Hing-RoBERTa
(Nayak and Joshi, 2022), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), and XLM-
RoBERTa (Conneau et al., 2019) using Multi-
Task Transfer Learning (MTTL) with the aim
of optimizing the model’s performance in
detecting aggression and offensive language
within the dataset.

» Extensive experiments were conducted on
each sub-task independently, using monolin-
gual, code-mixed, and combined texts. The
results highlight significant improvements
in detecting both tasks with the MTTL ap-
proach. Notably, MTTL-Hing-RoBERTa,
MTTL-BERT, and MTTL-RoBERTa demon-
strate superior performance across various cat-
egories, as depicted in the table 2.

The rest of the paper is organized as follows. Sec-
tion 2 presents the associated literature. Section 4
describes the proposed MTTL approach and associ-
ated loss function. Section 3 describes the dataset.
Section 5 presents the experimental setup. Section
6 elaborates the results and Section 7 concludes the

paper.
2 Related work

Previous research on aggression/hate speech de-
tection has explored various approaches. These
include a unified multi-modal deep learning ar-
chitecture that integrates Deep Pyramid CNN,
Pooled BiLSTM, and Disconnected RNN (Khan-
delwal and Kumar, 2020). Additionally, studies
have investigated the utilization of word-level se-
mantic information and sub-word knowledge to
counter character-level adversarial attacks (Mou
et al., 2020). Another approach involves a Tabnet
classifier-based model trained on features extracted
by MuRIL from transliterated code-mixed data,
which has demonstrated efficacy even with Devana-
gari text (Chopra et al., 2023). Moreover, tech-
niques such as data balancing using Generative Pre-
trained Transformer (GPT-2) have been explored

due to its contextual understanding and capability
for more realistic data generation (Shrivastava et al.,
2021).

Recent studies on offensive language detection
have explored different machine learning algo-
rithms and n-gram feature sets to identify offen-
siveness in social media messages (Pathak et al.,
2021). Additionally, researchers have combined
various multilingual transformer-based embedding
models with machine learning classifiers to detect
hate speech and offensive language in code-mixed
text in Dravidian languages (Sreelakshmi et al.,
2024). Furthermore, leveraging LSTM architec-
ture, Zypherand, openchat-3.5, along with prompt
engineering and QLoRA, has shown promising po-
tential in addressing the challenges of hate and of-
fensive comment classification (Shaik et al., 2024).

Research on Multi-Task Learning and Trans-
fer Learning has explored various methodologies.
These include proposing an unsupervised multi-
task learning network that estimates bullying like-
lihood using a Gaussian Mixture Model (Cheng
et al., 2020), utilizing cross-lingual contextual
word embeddings and transfer learning for predic-
tions in low-resource languages (Ranasinghe and
Zampieri, 2021), enhancing AraBERT with Multi-
task learning to effectively learn from limited Ara-
bic data (Djandji et al., 2020), employing Multino-
mial Naive Bayes for textual data and ResNet50 for
pictorial data, and integrating the results from both
to identify misogynistic memes (H et al., 2024).
Additionally, combining AdapterFusion with lan-
guage adapters on a multilingual Large Language
Model (LLM) has been explored for classifying
code-mixed and code-switched social media text
(Rathnayake et al., 2024). Moreover, a multi-task
model based on the shared-private scheme has been
proposed to capture both shared and task-specific
features (Kapil and Ekbal, 2020).

In this paper, we also introduce a multi-task
transfer learning approach, leveraging the intrin-
sic relationship between aggression and offensive
language.

3 Dataset and Preprocessing

The dataset (Nafis et al., 2023) consists of 10000
tweet IDs, each labeled with offensiveness la-
bels (OFF or NOT) and aggressiveness labels
(OAG,CAG,or NAG) in addition with codemixed
labels (codemixed or monolingual). We were able
to retrieve text from 8281 tweets from the tweet
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IDs provided in the dataset,the remaining tweets
were most probably deleted. We partitioned this
data randomly into an 80% training set, 10% vali-
dation set, and 10% evaluation set. Table 1 shows
the distribution of the different labels across each
data split.

Split Class OAG CAG NAG OFF NOT
Codemixed 757 882 1400 1136 1903

Train Monolingual 729 1137 1719 850 2735
Combined 1486 2019 3119 1986 4638

Codemixed 83 118 197 142 256

Validation Monolingual 90 123 217 98 332
Combined 173 241 414 240 588

Codemixed 93 118 177 140 248

Evaluation Monolingual 94 144 203 108 333
Combined 187 262 380 248 581

Table 1: Dataset distribution

Among the 8281 instances, 4368 instances are
labelled as aggressive(OAG + CAG) and 2474 in-
stances are labelled as offensive (OFF). Of the 2474
offensive instances, 2150 overlap with the aggres-
sive instances, as shown in Figure 1. The Venn di-
agram indicates that generally offensive language
is used when people are aggressive(i.e., most of
the offensive tweets are aggressive), highlighting a
strong relationship between aggression and offen-
sive language in the dataset.

Offensive
(OFF)
2474

Overlap
(OAG, CAG, OFF)
2150

Aggressive
(OAG, CAG)
4368

Figure 1: Overlap in aggressive and offensive instances

3.1 Preprocessing

In the preprocessing phase, we masked all the
user mentions and retweet mentions with the to-
ken ’@user’ (e.g., @rarendramodi — @user) to
ensure the model does not learn features based on
user-IDs. We further tokenized this data using the
tokenizer corresponding to the selected pretrained
language model to make sure the input would be
compatible with the common layers input. We pre-
cisely applied all these preprocessing steps to each
experiment conducted for both the sub tasks.

4 Proposed Model

We based our approach on the multi-task model
based on the shared-private scheme that cap-
tures the shared-features and task-specific features
(Kapil and Ekbal, 2020) and leverage the pretrained
language models that have achieved a state-of-the-
art performance in multiple Hindi-English NLP
tasks. Our best model is based on augmenting the
pretrained language model with task-specific layers
and sharing the knowledge between them through
transfer learning to achieve multi-task learning. We
chose this approach to explore the relationship be-
tween aggressiveness and offensiveness of the text,
and the results are more impressive than the mod-
els that achieved state-of-the-art performance in
detecting aggression and offensive language from
the text. !

OUTPUT-A OUTPUT-O

3 Y

CLASSIFIER

CLASSIFIER

TASK SPECIFIC
HIDDEN
LAYERS

J

AGGRESSION TASK
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SY3AV DI4103dS
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COMMON LAYERS

TOKENIZER

3
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Figure 2: Model architecture

4.1 Multi-Task Transfer Learning (MTTL)

Multi-Task learning (MTL) is an approach in ma-
chine learning where a model is trained simulta-
neously on multiple tasks. By sharing representa-
tions between related tasks, the model can often
improve performance on individual tasks compared
to training separate models for each task. The core

"https://github.com/opius005/Aggression-and-Offensive-
Language-Detection
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idea is that learning to perform multiple related
tasks can help a model generalize better because it
captures commonalities and differences among the
tasks. Transfer Learning (TL) is a technique where
a model developed for a particular task is reused
as the starting point for a model on a second task.
It leverages the knowledge gained while solving
one problem and applies it to a different but related
problem. The key idea behind Multi-Task Trans-
fer Learning (MTTL) is to combine the ideas of
multi-task learning and transfer learning. This ap-
proach transfers the knowledge learned from mul-
tiple source tasks to improve learning for one or
more target tasks. The aim is to leverage the shared
information between the tasks to enhance the learn-
ing efficiency and performance of the target tasks.
In our case, we have two sub-tasks, Aggressive-
ness and Offensiveness of the text; we employ the
MTTL approach to augment the pretrained lan-
guage model such that it can learn both tasks simul-
taneously, and we mainly focus on optimizing the
performance of the model on both tasks by sharing
the task-specific knowledge. Our MTTL model
architecture consists of two components, as can be
seen in Figure 2.

1. Common Layers: These layers include the pre-
trained language model, which is fine-tuned
based on the combined weighted loss of both
tasks to extract general features representing
shared information between the tasks.

2. Task-Specific Layers: These layers consist of
task-specific hidden layers and classification
heads, designed to capture unique features for
each task. They are fine-tuned based on the
individual loss associated with each specific
task.

From Figure 1, we can see that the number of
aggression instances is almost the same as the com-
bined task instances, while the number of offensive
instances is nearly half of the combined task in-
stances. This explains why adding task-specific
hidden layers to the offensive task model helps
capture task-specific features effectively, whereas
adding such layers to the aggression task model
leads to overfitting.

4.2 Loss Function

We need two different loss functions to efficiently
tune the task specific layers and common layers to
capture task specific features and common features
respectively.

4.2.1 Individual Loss Function:

Cross-entropy loss is useful in classification tasks,
weighted cross-entropy loss is an extension of the
standard cross-entropy loss that applies different
weights to different classes. This is particularly
useful in scenarios where the class distribution is
imbalanced, allowing the model to pay more atten-
tion to underrepresented classes. The mathematical
formulation of weighted cross-entropy loss of a
class ¢ with weight IW; is given in Equation 1, the
weight vector W; is given in Equation 2.

exp(x;)
Ses) o

N°samples

Ltask(l'i) = _WilOg <

Wi 2

Neclasses x Count;

4.2.2 Overall Loss Function:

After deriving the individual losses of each task, we
defined a custom loss function to compute the over-
all loss as weighted sum of the individual losses
Lgq(loss of aggression task) and L, s ¢(loss of of-
fensive task) with parameter w; € (0, 1).

Loss(x;) = [wy X Lagg(wi)|+[(1—wi)x Loy (xi)]

3)
By adjusting the parameter w;, we can direct the
model to prioritize learning a specific task. Since
our primary focus is on optimizing the model to
detect offensiveness in the text, we will set the
value of w; accordingly.

5 Experimental Setup

We fine-tune the two tasks using the following pre-
trained language models: BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019) which are
trained on English data, XLM-RoBERTa (Conneau
et al., 2019) which is trained over multilingual data,
Hing-RoBERTa (Nayak and Joshi, 2022) a multi-
lingual language model specifically built for Hindi-
English code-mixed language as seen in the Indian
context. These are the state-of-the-art models cho-
sen by the authors of the dataset to evaluate their
dataset.

We perform the experiments using the Hugging-
face Transformers library (Wolf et al., 2020). We
monitor the validation set’s macro-F1 scores to find
the best hyper-parameter values, using the follow-
ing range of values for selecting the best hyper-
parameter:
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Offensive Language Detection

Aggression Detection

MODEL Combined Codemixed Monolingual Combined Codemixed Monolingual
BERThse 75.63 75.77 71.61 57.95 52.29 50.36
MTTL-BERT} 79.03(+3.40) 80.78+5.01)  79.29(+7.68) 64.10(+6.15)  63.32(+11.03)  61.48(+11.12)
ROBERTap;e 76.31 77.66 67.30 60.70 62.44 60.65
MTTL-RoBERTap,se 79.08(+2.77)  79.15(+1.49)  76.63(+9.33) 63.76(+3.06) 64.60(+2.16)  64.68(+4.03)
XLM-Rpyse 76.38 7791 74.21 60.58 61.25 47.51
MTTL-XLM-Ryae 76.45(+0.07) 73.61(-4.30)  74.91(+0.70) 64.29(+3.71)  62.07(+0.82)  60.44(+12.93)
Hing-RoBERTa 78.61 77.45 70.92 64.85 61.88 57.77
MTTL-Hing-RoBERTa  82.03(+3.42) 81.61(+4.16) 76.02(+5.10) 67.01(+2.16) 69.10(+7.22) 63.99(+6.22)

Table 2: Macro Fl1-scores obtained from pretrained language models on the dataset and the models augmented with
MTTL approach are represented with "MTTL’ as the prefix. The values inside (.) represent the change in Macro-F1
score and the values in bold highlight represent the best-performing language model on each category of the dataset.

wy: [0.3,0.4, 0.5, 0.6, 0.7, 0.8]
* No. of task specific hidden layers: [1, 2, 3, 4]
e Batch size: [4, 8, 16, 32]
* Learning rate: [le-6, 2e-5, 2e-6, Se-5, Se-0]
* Number of training epochs: [2, 3, 4]

6 Results

The individual performance of these models on
the two tasks, corresponding with codemixed
(Hindi+English), monolingual (only English), and
combined data (codemixed+monolingual) as input
is shown in Table 2 with Macro-F1 as the metric.
The performance of the pretrained language models
fine-tuned with the MTTL approach is represented
with ‘MTTL’ as the prefix is also shown in Table 2.
We only show the results of our best MTTL model
on the evaluation set in Table 2. We observed that
the MTTL approach shows consistent improvement
in almost all cases with MTTL-Hing-RoBERTa
outperforming other models with Macro-F1 scores
of 82.03%, 81.61% and 76.02% with an improve-
ment of 3.42%, 4.16% and 5.10% respectively on
combined, codemixed and monolingual data on
offensive language detection and 67.01%, 69.10%
and 63.99% with an improvement of 2.16%, 7.22%
and 6.22% respectively on combined, codemixed
and monolingual data on aggression detection. The
results show that not only Hing-RoBERTa but also
BERT-base, RoBERTa-base, and XLLM-RoBERTa-
base models show significant improvements in their
performance with the MTTL approach.

6.1 Parameter Analysis

The parameter w; plays a significant role in the
model’s performance on each task. The optimal

performance of the MTTL model on the aggression
task is observed when 0.5 < w; < 1, and on the
offensive task, is observed when 0 < w; < 0.5 be-
cause the value of the w; is indirectly the proportion
of importance given to specific task. Note when
the value of w; is not optimal at the extreme value
(i.e, 0 and 1) because the model completely learns
only one task, nullifying the MTTL effect. We have
only shown the results of our best MTTL model
on each task with w; tuned for that specific task
in the given range. We explored the use of differ-
ent numbers of task-specific hidden layers for each
independent task to enhance the learning of task-
specific features. However, we found that adding
these layers to the aggression task led to overfitting
on this dataset. Note that we are proposing to not to
add any aggression task-specific layers to mitigate
the overfitting issues for the given dataset. The
model may perform better with task-specific layers
for each task on other datasets depending on the
dataset’s class distribution.

7 Conclusion

Cyberbullying on social media platforms is a sig-
nificant issue affecting many individuals, with the
diverse languages and dialects in India posing a
substantial challenge for automated offensive lan-
guage detection systems. In this paper, we propose
a Multi-Task Transfer Learning (MTTL) frame-
work enhanced with pretrained language models
like Hing-RoBERTa to efficiently learn multiple
tasks and improve performance in detecting ag-
gression and offensive language in Hindi-English
code-mixed text. We explored the use of individual
weighted loss functions for training task-specific
layers and a custom overall loss function for train-
ing common layers. Our results demonstrate signif-
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icant improvements with the MTTL approach over
single-task learning across various pretrained lan-
guage models, including Hing-RoBERTa, BERT,
RoBERTa, and XLM-RoBERTa. Notably, MTTL-
Hing-RoBERTa outperformed other models on non-
monolingual data, while MTTL-BERT and MTTL-
RoBERTa showed the best performance on mono-
lingual data.

Limitations

The dataset primarily focuses on Hindi-English
code-mixed tweets. While this is appropriate for
the specific application, it limits the generalizabil-
ity of the findings to other code-mixed languages or
purely monolingual datasets. The proposed frame-
work relies on pretrained language models such
as BERT, RoBERTa, XLM-RoBERTa, and Hing-
RoBERTa. These models may carry inherent bi-
ases or limitations from their original training data,
which could influence their ability to accurately
classify aggression and offensive language in a di-
verse range of contexts.
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Abstract

The increasing use of Romanized typing for
Indo-Aryan languages on social media poses
challenges due to its lack of standardiza-
tion and loss of linguistic richness. To ad-
dress this, we propose a sentence-level back-
transliteration approach using the LLaMa 3.1
model for Hindi. Leveraging fine-tuning with
the Dakshina dataset, our approach effectively
resolves ambiguities in Romanized Hindi text,
offering a robust solution for converting it into
the native Devanagari script.

1 Introduction

The widespread use of social media platforms and
the prevalence of English keyboards have led to
a significant rise in the use of Romanized typing
for Indo-Aryan languages, primarily for quick and
informal communication. However, Romanized
text on social media often lacks consistency, with
variations in spelling, phonetic representation, and
vowel omission. This lack of standardization intro-
duces ambiguity, as the same word can be written
in multiple ways, such as & (Namaste) appear-
ing as Namste, Nmst, or Namastey. Romanized
text also involves one-to-many mappings based
on context, such as Romanized text sir can corre-
spond to &R (English: head) or @ (English: Sir)
based on the context. Such inconsistencies lead to
misunderstandings in human communication and
errors in NLP applications like machine transla-
tion.

In addition to standardization issues, Roman-
ized scripts fail to preserve the linguistic richness
and phonetic nuances of native scripts, often los-
ing cultural and linguistic expression. Certain
sounds in Hindi and other Indo-Aryan languages
lack precise representation in Roman script, re-
sulting in phonetic ambiguities. For example, the
Hindi letters € (retroflex T) and d (dental T) are
both commonly written as 7 or 7a in Roman-
ized text, ignoring the critical distinction between

retroflex and dental sounds in native pronuncia-
tion. Similarly, English sounds do not always map
neatly to Hindi phonetics. For instance, the En-
glish sounds v and w are often transliterated as
g (v), which can be confused with b-like sounds
such as & or 9. Such limitations underscore the
challenges of relying solely on Romanized text for
meaningful communication and accurate linguis-
tic representation.

These challenges emphasize the need for ro-
bust back-transliteration systems to convert Ro-
manized Indo-Aryan text into native scripts. Back-
transliteration maps Romanized text to its native
script based on phonetic representation, address-
ing the absence of standardization and variability
in typing habits. Accurate back-transliteration en-
hances digital communication by promoting cul-
tural preservation, improving readability, and re-
ducing miscommunication. Furthermore, it facili-
tates the integration of Romanized content into au-
tomated systems such as machine translation, text-
to-speech, and text mining, significantly boosting
their effectiveness and utility.

Transliteration can be approached at both the
word level and the sentence level. Word-level
transliteration models often fall short due to their
inability to account for contextual information,
which is essential for accurately resolving ambi-
guities in Romanized text. This study explores
sentence-level transliteration for Hindi, leveraging
the LLaMa 3.1(8B) (Dubey et al., 2024) model.
The experiments include both zero-shot learning
and fine-tuning approaches. For fine-tuning, the
Dakshina dataset (Roark et al., 2020a) is em-
ployed.

The fine-tuned LLaMa 3.1 model achieves sig-
nificant improvements in transliteration accuracy,
as demonstrated by the BLEU scores on the Hindi
Test dataset . On Test Set 1, the model achieves
a BLEU score of 0.8866 for character overlap and
0.6288 for word overlap. On Test Set 2, the BLEU
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scores are 0.8176 for character overlap and 0.5105
for word overlap. These results underscore the ef-
fectiveness of fine-tuning in improving translitera-
tion performance, providing a robust solution for
the challenges associated with Romanized Hindi
text conversion.

2 Related Works

In recent years, significant progress has been made
in transliteration for Indo-Aryan languages. No-
table contributions include Kunchukuttan et al.
(2015), who introduced Brahmi-Net, a statistical
transliteration system capable of handling script
conversion across 18 Indo-Aryan languages, re-
sulting in 306 language pairs, including Hindi.
Similarly, Roark et al. (2020b) developed the Dak-
shina dataset, supporting transliteration and lan-
guage modeling tasks for 12 South Asian lan-
guages written in Roman script, providing a foun-
dational resource for this domain.

Building on these efforts, Kunchukuttan et al.
(2021) explored multilingual neural machine
transliteration for English and 10 Indian lan-
guages, demonstrating the potential of multilin-
gual systems. Another significant milestone is
the Aksharantar dataset presented by Madhani
et al. (2023), which covers 21 Indian languages
and achieved state-of-the-art results using the In-
dicXlit model. Additionally, Ruder et al. (2023)
evaluated sentence-level transliteration across 13
languages, including 12 from the Dakshina dataset
and Ambharic, using transfer learning models like
mT5-Base, ByT5-Base, and FlanPal.M-62B.

Transliteration for informal and social media
text has also been addressed in shared tasks or-
ganized by the Forum for Information Retrieval
(FIRE). For instance, FIRE 2013 and FIRE 2014
(Roy et al., 2013; Choudhury et al., 2014) focused
on transliterating Hindi song lyrics written in Ro-
man script, shedding light on the challenges of
informal text processing. Transliteration of Ro-
manized Assamese text on social media environ-
ment is explored in the study (Baruah et al., 2024b)
and recently back transliteration of Romanized As-
samese social media text is explored by Baruah
et al. (2024a) using BiLSTM, Neural Transformer
Model, mT5, and ByT5.

Despite these advancements, existing research
does not specifically address the transliteration
challenges posed by Romanized social media
datasets, characterized by inconsistencies, non-

Split Script #Data #Word #Char
Train Roman 10041 17.50 102.08
Native 10041 17.50  92.42

Roman 9998 1530  89.09

TestSetl \ive 9998 1530  80.63
Roman 4998 1529  80.11

TestSet2  \iive 4998 1528  80.46

Table 1: Statistics of the Training and Testing Dataset.
Here #Data represents the number of text samples,
#Word denotes the average number of words per text
sample, and #Char indicates the average number of
characters per text sample.

standard typing patterns, and ad-hoc translitera-
tions. This highlights the need for further research
tailored to the complexities of social media com-
munication.

3 Approach

In this experiment, we focus on training a back-
transliteration model to convert Romanized Hindi
text into Devanagari script using a sentence-level
model. The architecture used is the LLaMa 3.1
model, which is fine-tuned using a pre-defined set
of instructions and inputs. The model training pro-
cess includes both zero-shot and fine-tuning tech-
niques to enhance the model’s transliteration capa-
bilities. The code for training is available at this
GitHub repo’.

3.1 Dataset

For training our model, we use the Dakshina
dataset(Roark et al., 2020a), which provides a
transliteration parallel corpus of 12 Indian lan-
guages, including Hindi. All the samples whose
lengths are greater than 100 words are manually
broken into smaller sentences. For the testing, we
have used the two sets of the dataset provided in
the shared task”. The statistics of the Hindi dataset
used for our training are tabulated in Table 1. The
romanized text in Test Set 2 has most of the sam-
ple with the vowel omission. The same is reflected
in Table 1 as well. The average character count for
romanized text in Test Set 2 is less than that of
Test Set 1. The word distribution of each dataset
is shown in Fig. 1. It is observed that most of

"https://github.com/saurabhdbz/L1aMa_Translit
“IndoNLP  Workshop ~ 2025: https://indonlp-
workshop.github.io/IndoNLP-Workshop/
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Figure 1: Word distribution of the Training and the Testing dataset

the samples in training data fall under the sample
length of 50 words, and for the testing data, the
sample length is limited to 30 words.

The dataset is formatted to fit the Alpaca prompt
structure, where the instruction is to transliter-
ate the Romanized Hindi input back into Devana-
gari script. The dataset is processed by creating
training examples that combine instructions, in-
puts, and outputs, with the end-of-sequence token
(EOS) added to each instance to guide the model in
generating complete sequences. The fixed instruc-
tion, “Transliterate the given Romanized Hindi
text back to Devanagari script.” is consistently
used across both the training and testing phases.

3.2 Model Architecture

The foundation of our system is the LLaMA 3.1
8B model (Dubey et al., 2024), a large-scale
transformer-based architecture with 8 billion pa-
rameters. This model is multilingual and supports
a significantly extended context length of 128K,
making it suitable for advanced use cases such as
long-form text summarization, multilingual con-
versational agents, and coding assistants. The fine-
tuned variant of LLaMA employed in this work
is optimized for causal language modeling and en-
hanced with Low-Rank Adaptation (LoRA) and
4-bit quantization. LoRA is applied with a rank
of 16, enabling efficient adaptation by training
lightweight low-rank matrices while freezing the
original model weights, significantly reducing the
number of trainable parameters. The model con-
sists of 32 decoder layers, each comprising self-
attention and feedforward modules. All projec-
tions (query, key, value, and output) within the
self-attention mechanism leverage low-rank ma-
trices, with rotary embeddings incorporated for

positional encoding. The use of 4-bit quanti-
zation further minimizes memory and computa-
tional overhead, making the model highly effi-
cient for resource-constrained environments while
maintaining its performance quality.

3.3 Training Method

The training process utilizes the SFTTrainer class
from the trl library, designed explicitly for su-
pervised fine-tuning of language models. To im-
prove memory efficiency, we integrated the Un-
sloth® framework, which supports 4-bit quantiza-
tion by loading the pre-trained model in a com-
pressed format. This approach accelerates train-
ing and inference while significantly reducing the
memory footprint.

The model is fine-tuned for one epoch with a
batch size of 2, using gradient accumulation steps
set to 4 to manage the training of the large model
size. The learning rate was configured to 2 x 1074,
and the AdamW optimizer was employed with
8-bit precision to further reduce memory usage.
Additionally, the training process incorporated a
warm-up phase followed by linear learning rate de-
cay to ensure stable convergence.

3.4 Back-transliteration

We employ both the pre-trained LLaMa model
and the fine-tuned model to perform back-
transliteration of Romanized Hindi text. In both
cases, the same prompt, i.e. “Transliterate the
given Romanized Hindi text back to Devanagari
script.” is used. During text generation in both
cases, the default temperature value of 1.0 is used,
which strikes a balance between randomness and

3Unsloth: https://github.com/unslothai/unsloth
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Test Set 1 Test Set 2
Model
WER CER BLUE: BLUEy WER CER BLUE: BLUEy
IndicXIit 0.4552 0.1785 0.7319 0.2505 0.5320 0.2313 0.6567 0.1689
LLaMa3.1 02154 0.0881 0.8675 0.5996 0.2851 0.1339 0.8029 0.4879
Proposed 0.1892 0.0684 (.8866 0.6288 0.2640 0.1183 0.8176 0.5105

Table 2: Model performance on both test sets, evaluated using Word Error Rate (WER), Character Error Rate
(CER), BLEU score for character overlap (BLEU(), and BLEU score for word overlap (BLEUy ). The proposed

model is the fine-tuned version of LLaMa 3.1.
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Figure 2: Average BLEU score and the variance of the BLUE score across different text lengths of the sample from

both Test Set 1 and Test Set 2.

determinism, ensuring natural and coherent out-
put.

4 Results and Discussion

We evaluate the model’s performance in two sce-
narios: a zero-shot setting, where responses are
generated directly from the pre-trained model us-
ing prompts, and after the model fine-tuning, by
analyzing its responses on two test datasets: Test
Set 1 and Test Set 2. The performance metrics
include Word Error Rate (WER), Character Error
Rate (CER), and BLEU score.

For the BLEU score, we compute two distinct
types of overlap: Character-Level Overlap and
Word-Level (or Token-Level) Overlap. The BLEU
score for Character-Level Overlap evaluates the
precision of individual characters in the gener-
ated output compared to the reference, making it
particularly useful for fine-grained tasks such as
transliteration. On the other hand, the BLEU score
for Word-Level Overlap measures the precision of
word-level tokens in the generated output, which

is more suited for tasks emphasizing semantic ac-
curacy and fluency. The BLEU score is calculated
by assigning equal weight to unigrams, bigrams,
trigrams, and fourgrams to ensure a balanced eval-
uation across different n-gram levels.

We compare our model against IndicXlit (Mad-
hani et al., 2023), considering it as baseline. It
is a transformer-based state-of-the-art multilin-
gual transliteration model with 11 million param-
eters, supporting 21 Indian languages for Roman-
to-native and native-to-Roman script conversions.
Using IndicXlit, the Romanized Hindi text was
converted into Devanagari and compared with the
outputs of our trained models.

Table 2 summarizes the performance of the
models on Test Set 1 and Test Set 2. The pre-
trained LLaMa model outperforms the baseline In-
dicXlit model on both test sets, achieving signifi-
cant reductions in WER and CER. On Test Set 1,
the WER and CER are reduced by 24% and 9%,
respectively, while on Test Set 2, the reductions
are 25% and 10%, respectively. Additionally, the
Character-Level BLEU score shows a gain of 13%,
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and the Word-Level BLEU score improves by 34%
on Test Set 1, with similar improvements observed
on Test Set 2.

The fine-tuned model demonstrates the best per-
formance overall. On Test Set 1, it achieves a
WER of 18.92% and a CER of 6.84%. For BLEU
scores, the fine-tuned model achieves 88.66% for
Character-Level Overlap and 62.88% for Word-
Level Overlap, representing gains of 15.47% and
37.83%, respectively. Similarly, on Test Set 2, the
model significantly reduces the WER and CER
by 41.37% and 11.3%, respectively, compared to
the IndicXlit baseline. Furthermore, it achieves a
BLEU score of 81.76% on Character-Level Over-
lap for Test Set 2, underscoring its effectiveness in
transliteration tasks.

Additionally, we analyze the relationship be-
tween text length and model performance by plot-
ting line graphs of the average BLEU score and its
variance against text length for both Test Set 1 and
Test Set 2, as shown in Fig. 2. From the graphs,
we observe that the model’s performance remains
relatively consistent for texts longer than 8 words
across both test sets. However, a slightly higher
variance in BLEU scores for smaller text indicates
that the model’s performance is less stable on text
of smaller length.

5 Conclusion and Future Work

This paper addresses the challenges of back-
transliteration of Romanized Hindi text, which of-
ten suffers from inconsistencies in spelling, pho-
netic representation, and the omission of vowels.
We explore the use of the LLaMa 3.1 (8B) model
for back-transliteration, employing both prompt-
ing and fine-tuning methods. For fine-tuning, the
Dakshina dataset was utilized. Our results demon-
strate significant improvements in transliteration
accuracy, as measured by Word Error Rate (WER),
Character Error Rate (CER), and BLEU score, pro-
viding an effective solution for handling the vari-
ability in Romanized text and enhancing the per-
formance of NLP applications such as machine
translation and text mining.

In future work, we plan to extend our ap-
proach to other Indo-Aryan languages, incorpo-
rating larger and more diverse datasets. We also
aim to refine the model to handle even greater text
variability and improve transliteration accuracy
further. Additionally, exploring domain-specific
adaptations and integrating the model into real-

time applications will be key directions for advanc-
ing back-transliteration systems in the future.

Limitations

This work is primarily limited to the Hindi lan-
guage and focuses on more structured text. The
training data used for model development lacks
the nuances of social media text, such as abbrevi-
ations, short forms, and vowel omissions. As a re-
sult, the model’s performance declines for shorter
sentences and on datasets like Test Set 2, which
include texts with vowel omissions.

Additionally, the study is restricted to
transformer-based models, specifically the
encoder-decoder architecture and the LLaMa
model. While large language models (LLMs)
like LLaMa demonstrate superior performance,
their significant size makes them less suitable for
deployment on resource-constrained devices, such
as mobile phones, for real-time transliteration. To
address this, future work should explore model
compression techniques to reduce the computa-
tional footprint and enhance applicability in such
environments.
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Abstract

The Romanized text has become popular with
the growth of digital communication platforms,
largely due to the familiarity with English
keyboards. In Sri Lanka, Romanized Sin-
hala, commonly referred to as “Singlish” is
widely used in digital communications. This
paper introduces a novel context-aware back-
transliteration system designed to address the
ad-hoc typing patterns and lexical ambiguity
inherent in Singlish. The proposed system com-
bines dictionary-based mapping for Singlish
words, a rule-based transliteration for out-of-
vocabulary words and a BERT-based language
model for addressing lexical ambiguities. Eval-
uation results demonstrate the robustness of
the proposed approach, achieving high BLEU
scores along with low Word Error Rate (WER)
and Character Error Rate (CER) across test
datasets. This study provides an effective solu-
tion for Romanized Sinhala back-transliteration
and establishes the foundation for improving
NLP tools for similar low-resourced languages.

1 Introduction

The rapid growth of digital communication plat-
forms such as social media and messaging plat-
forms has revolutionized communication with the
use of informal, Romanized representations of na-
tive scripts. Sinhala is a morphologically rich lan-
guage where approximately 17 million Sri Lankans
(around 87% of the total population) use it as their
main language for communication(De Silva, 2019).
Many Sinhala speakers use Romanized Sinhala, of-
ten referred to as “Singlish”, instead of the native
script on digital communication platforms due to
the convenience of using English keyboards. How-
ever, Singlish is non-standardized, leading to vari-
ations in spelling and structure, which pose chal-
lenges for back-transliteration. The process of back-
transliteration into native script has become crucial
for NLP applications such as machine translation,

information retrieval and sentiment analysis. How-
ever, the following challenges make this task com-
plex:

* Ad-hoc Nature: Singlish text often follows
informal typing patterns such as vowel
omissions, further complicating back-
transliteration. For an instance the word
“ENBBN” can be represented as “Thaaththaa,
Thaththa, Thattha, Thatta, Tatta”.

Lexical Ambiguity: A single Romanized form
may correspond to multiple words in the native
Sinhala script, depending on the context. The
word “Adaraya” can be back transliterated to

“@ESe, NS

A system capable of handling the typing varia-
tions, ambiguity, and contextual dependencies in-
herent in Singlish is required to address these chal-
lenges. Back-transliteration is a greater challenge
than forward-transliteration because it requires
context awareness (Nanayakkara et al., 2022).
This paper introduces a novel context-aware back-
transliteration system for Romanized Sinhala lever-
aging a hybrid approach that combines:

1. Dictionary-Based Mapping: To handle com-
mon and ambiguous words using an ad-hoc
transliteration dictionary.

2. Rule-Based Techniques: For out-of-
vocabulary words based on Sinhala phonetic
patterns.

3. Contextual Disambiguation: Using a BERT
model to resolve ambiguities by analyzing
sentence-level context.

The proposed approach enables the system to
handle various typing patterns in Romanized Sin-
hala. Experimental results demonstrate the sys-
tem’s effectiveness in achieving high BLEU scores,
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low Word Error Rates (WER) and low Character Er-
ror Rates (WER) on benchmark datasets. This work
significantly contributes to the field of backward
transliteration in NLP by addressing the existing
challenges in back transliteration.

The following sections provide a comprehen-
sive overview of the related works and the sys-
tem’s methodology, evaluate its performance on
real-world datasets, and discuss its limitations.

2 Related Works

Back-transliteration of Romanized Sinhala has been
the focus of several studies exploring various ap-
proaches including rule-based, statistical, and neu-
ral approaches. Below are some recent studies
on Singlish backward transliteration. In 2018,
the Sinhala Language Decoder by Vidanaralage
et al. (2018) introduced a rule-based translitera-
tion method as part of their work where Roman-
ized input text is processed using transliteration and
phoneme rule bases. However, the system struggles
with handling lexical ambiguity and some English
proper nouns because of the static nature of its rule
base. These limitations have restricted its ability
to handle the informal typing patterns of Roman-
ized Sinhala. In 2019, Priyadarshani et al. (2019)
proposed a statistical machine translation (SMT)
approach to transliterate personal names across Sin-
hala, Tamil, and English. Since the personal name
transliteration depends on the ethnicity of the name,
they employed ethnicity-specific models, achieving
BLEU scores of more than 89% for all language
pairs. This was implemented with a classification
followed by the Naive Bayes algorithm. The reason
for selecting the SMT approach instead of a neural
approach is that NMT lacks robustness in translat-
ing rare words, and it requires a large amount of
parallel data to train the model to achieve better
results than SMT.

In 2020, a combination of Trigram and Rule-
based Models was proposed by Liwera and
Ranathunga (2020). This hybrid approach inte-
grated trigram models with rule-based methods
to transliterate Romanized Sinhala. The trigram
model was trained on Singlish YouTube comments
and their corresponding Sinhala transliteration. A
rule-based approach was used to handle situations
where the tri-gram model could not predict the Sin-
hala transliteration of Singlish words. However,
the system occasionally fails to deliver the cor-
rect transliteration of a word due to ambiguities.

Silva and Ahangama (2021) proposed another rule-
based approach for Romanized Sinhala backward
transliteration in 2021. The accuracy of the rule-
based approach was further improved by using an
error correction module which compares a news
corpus from popular news sites. In 2022, a context-
aware back-transliteration for Romanized Sinhala
presented a neural machine translation approach
(an encoder-decoder model) based on Bidirectional
LSTM and LSTM architectures (Nanayakkara et al.,
2022). The study presented a transliteration unit
approach considering the context of characters in a
word. This system also failed to handle sentence-
level word disambiguation as it focuses on the con-
text of the characters present in a word.

A back transliteration system which can handle
informal shorthand Romanized Sinhala was pro-
posed by Sumanathilaka et al. (2023). A statisti-
cal trigram model combined with a rule-based ap-
proach for back transliteration and a knowledge
base with Trie data structure for word sugges-
tions was used in the work. The proposed system
achieved 0.84 word-level accuracy. This proposed
architecture has been further extended for Tamil by
(Mudiyanselage and Sumanathilaka, 2024), show-
ing the generalizability of the proposed model.
However, lexical ambiguity correction (word sense
disambiguation) and code-mixed Romanized Sin-
hala remain a persistent issue in these approaches.
Athukorala and Sumanathilaka (2024) proposed a
novel approach which combines rule-based meth-
ods and fuzzy logic to transliterate Romanized Sin-
hala to native script even when vowels are omitted.
It introduced a new numeric coding system to use
with the Singlish letters by matching the identi-
fied typing patterns. For the mapping process, they
have developed a fuzzy logic-based implementa-
tion. However, the system performs at the word
level and does not handle lexical ambiguities. In
2024, Dharmasiri and Sumanathilaka (2024) pro-
posed a GRU-based NMT model for Singlish back-
ward transliteration. This system combined rule-
based techniques with neural machine translation
to address the complexities of Romanized Sinhala.
A suggestion algorithm has eliminated word selec-
tion ambiguity by choosing word suggestions from
a pool of predicted words. BLEU scores reach-
ing 0.8 indicate the high word-level transliteration
accuracy of the proposed model. Though many
Romonized Sinhala to Sinhala transliterators have
been introduced, there still exists a gap in the avail-
ability of an effective reverse transliterator, which
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Figure 1: Transliteration Flow

needs context awareness to handle ambiguity.

3 Methodology

The proposed context-aware transliteration system
is developed through a series of systematic steps
to transliterate Romanized Sinhala text into native
Sinhala script, ensuring accurate and contextually
appropriate output even while dealing with lexical
ambiguity and ad hoc typing patterns. The method-
ology consists of five key steps, as described below.

3.1 Word Separation

The first step involves breaking down the input
Singlish sentence into individual words, enabling
a word-level transliteration. This step facilitates
word-level mapping and processing in subsequent
steps.

3.2 Word-Level Mapping with Ad-hoc
Transliteration Dictionary

After the input text is broken down into words,
each Singlish word is mapped to its correspond-
ing Sinhala words using an ad-hoc translitera-
tion dictionary'. This dictionary includes ad-hoc
Singlish words along with their corresponding Sin-
hala words. Because of the informal nature of Ro-
manized Sinhala, a single Singlish word can often
represent multiple Sinhala words (Sumanathilaka
et al., 2024). Therefore, the dictionary provides
multiple mappings for ambiguous words, retaining
all possibilities to handle lexical ambiguity in the

"https://www.kaggle.com/datasets/tgdeshank/
wsd-romanized-sinhala-dataset?select=WSD+
Romanized-Sinhala+-+Sinhala+.txt

next step. If a Singlish word is not found in the
transliteration dictionary, the system uses a rule-
based approach to convert it into Sinhala script.
This rule-based transliteration leverages predefined
mappings between Romanized inputs and corre-
sponding Sinhala characters, considering Sinhala
phonetic patterns, consonant-vowel combinations,
and special cases for modifiers.

3.3 [Initial Sentence Assembly with Masked
Tokens

After the word level translation using the dictionary
and rule-based approach, the corresponding Sinhala
sentence is formed by combining those transliter-
ated Sinhala words. If any Singlish word is ambigu-
ous (meaning it maps to multiple Sinhala words),
it is replaced by a “[MASK]” token in the sentence.
“[MASK]” token denotes that the correct Sinhala
word is yet to be selected based on context. For
each masked position, a list of candidate Sinhala
words is stored, maintaining all possible interpre-
tations of the ambiguous Romanized word. This
intermediate step allows for context-aware word
selection in the next step.

3.4 Context-Aware Lexical Disambiguation
Using BERT

This step resolves lexical ambiguity by replacing
the “[MASK]” tokens from the previous step with
the most contextually appropriate words. This
process involves two main sub-steps: candidate
sentence generation and sentence scoring using
BERT.In the first phase of this step, all possible sen-
tences are generated by filling each “[MASK]” with
different combinations of candidate words stored
from the previous step. Then ,each generated sen-
tence is scored using a BERT model configured for
Masked Language Modeling (MLM). The goal of
this scoring is to determine the most contextually
appropriate sentence. Given the context, the score
is calculated based on the probability of each can-
didate word appearing in the masked positions. To
illustrate this process, let’s walk through the score
calculation for an example sentence in Figure 1.

sentence: “Q@C &S eISE BB Dedy
NCS”

Score(sentence) = P(“&&”| context) x P (“GcS”|
context) X P (“032556)”| context)

Each probability P (w | context) represents the
likelihood of a candidate word appearing in its re-
spective masked position, given the context pro-
vided by the rest of the sentence. The example of
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calculation for P (“@¢” | context) is done as below:

* Mask the Target Word: Replace “@¢” in the
sentence with a [MASK] token to create a
partially masked sentence: “[MASK] &5
ENEE 3BV Doy BDIS”

* Pass the Sentence to BERT: Feed the masked
sentence into the BERT model and get the
generated logits for mask position. These log-
its represent the model’s unnormalized confi-
dence levels for each vocabulary word in the
masked slot based on the sentence context.

* Apply Softmax Activation: Convert the log-
its into probabilities by applying the softmax
activation function. Softmax normalizes the
logits to create a probability distribution over
all possible words for the [MASK] position.

* Retrieve the Probability for “@¢&”: From the
probability distribution, get the probability as-
signed to the word “&¢” in the context of the
sentence.

* Repeat for Remaining Masked Words: follow
a similar process for “&¢c3” and “383%” by
masking each respective word in the sentence
and calculating its probability in context.

3.5 Output Generation

Finally, the sentence representing the highest score
from step 4 is returned as the transliterated Sinhala
text. Following the example discussed above for
the romanized Sinhala sentence “ad aya pasal ynna
baha kiwaya is transliterated to “G¢ &zcS €53€5E
35D Qe BDIDIcS” as the output following the
above approach.

4 Challenges and Solutions

The primary challenge of the proposed transliter-
ation approach was the time consumption for pro-
cessing long sentences containing highly ambigu-
ous words. In the proposed transliteration approach,
the major factor contributing to time consumption
is the number of model inferences required for dis-
ambiguation. Two key aspects that influence the
number of model inferences:

* High ambiguity words: Singlish words with
high lexical ambiguity may represent multiple
Sinhala words. This increases the number of
candidate words for each ambiguous Singlish

word. Consequently, the number of possible
sentences generated in step 4 also increases,
leading to an increase in the required model
inferences.

* Number of ambiguous words: An increase in
the number of ambiguous words in the input
text also influences the number of model in-
ferences as it directly increases the number of
possible sentences generated in Step 4.

Two strategies were developed to reduce the pro-
cessing time while maintaining accuracy, as de-
scribed in section 4.1 and 4.2.

4.1 Reducing the Number of Candidate
Words for Ambiguous Words Using a
Filtering Mechanism

As the initial step of the reverse transliteration pro-
cess, the candidate word generation occurs as il-
lustrated in step 2 of Figure 1. This step used the
Swa-bhasha dictionary, which contains the possi-
ble interpretation of the Sinhala word in Ad hoc
Romanized Sinhala format. For highly ambiguous
Singlish words, the dictionary often provides many
Sinhala candidates. To reduce the candidate list
size, the vocabulary associated with the model to-
kenizer is considered so that any candidate words
extracted from the dictionary that are not present
in the tokenizer’s vocabulary are removed from the
candidate list.

4.2 Chunking Sentences Based on the Number
of BERT Calls

A chunking mechanism is applied to sentences
which contain at least three ambiguous words
(masks) to reduce the number of model inferences
(BERT calls). Chunking is performed while ensur-
ing that each chunk contains at least three mask
tokens. The process involves the following steps:

« Starting from the beginning of the sentence, it
calculates the required number of model infer-
ences for the first three ambiguous words (or
“masks”).

* Ifthe BERT call count for the first three masks
is under 20 (as our analysis showed that 20
BERT calls take approximately 1 second), the
next ambiguous word is added to the chunk
(adding a fourth mask) and recalculate the
BERT call count for the first four masks.
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Figure 2: Transliteration Flow

* This process continues, adding one mask at
a time and recalculating until the BERT call
count exceeds 20.

¢ When the number of BERT calls exceeds 20,
the words processed so far and the words up
to the next mask are taken as a chunk.

* The next chunk starts with a two-mask over-
lap, including the last two ambiguous words
(masks) from the previous chunk, and also in-
cludes the words after the third mask from the
end of the previous chunk. This ensures the
retention of unambiguous words in the new
chunk to maintain the context.

Figure 2 illustrates the chunking process with
an example: Assume the number of BERT calls
required for processing the first three ambiguous
words (MASK1, MASK2 and MASK3) is 15,
which is below 20 (as 20 BERT calls take approxi-
mately 1 second). Therefore, the system includes
the next ambiguous word, “MASK4”, and recalcu-
lates the number of BERT calls for the first four
masks (MASK1, MASK2, MASK3 and MASK4).
Suppose the number of BERT calls for the first
four masks is 30, which is higher than 20. As a
result, the system creates the first chunk, which
includes all words up to “MASKS5” but excludes
“MASKS” itself. The second chunk begins from
the word “6®ES” which follows the third mask
(“MASK2”) from the end of the previous chunk.
Then, the number of BERT calls for the first three
masks (MASK3, MASK4, MASKS5) of this new
chunk is calculated. Assume the number of BERT
calls for the first three masks of this chunk is 25,
which is higher than 20. As a result, this second
chunk spans from “G6®ES” to “e583e5”. Then, the
third chunk starts from the word “@ze9z” which
follows the third mask (“MASK3”) from the end
of the second chunk.

5 Result Evaluation and Discussion

For the baseline evaluation, a BERT model trained
on Sinhala data sources for mask language mod-

elling from Hugging Face (model 17) was used to
develop the proposed back transliteration system.
Then, it was further fine-tuned using native Sinhala
script data in the Dakshina dataset (Roark et al.,
2020). The training hyperparameters were used
during fine tuning (model 23): learning-rate: Se-
05, train-batch-size: 64, eval-batch-size=16, num-
epochs: 12.

Metric  Test Set1 Test Set 2
Model 1: Sinhala BERT
WER 0.0886 0.0914
CER 0.0200 0.0212
BLEU-1 0.9115 0.9088
BLEU-2 0.8718 0.8686
BLEU-3 0.8488 0.8452
BLEU-4 0.7963 0.7917
Model 2: Fine-tuned BERT
WER 0.0850 0.0895
CER 0.0194 0.0210
BLEU-1 0.9151 0.9107
BLEU-2 0.8760 0.8699
BLEU-3 0.8526 0.8459
BLEU-4 0.8001 0.7916

Table 1: Evaluation Results

The evaluation was based on the validation test
sets* provided by the INDONLP 2025 shared task
organizers °. The test sets 1 and 2 contained 10000
and 5000 data records, respectively. Test set 2
mainly consists of Romanized Sinhala samples in
ad hoc format where vowels were omitted in its Ro-
manized presentation. The proposed system was
evaluated using Word Error Rate (WER), Char-
acter Error Rate (CER) and BLEU scores. WER
and CER measure the percentage of word-level er-
rors and character-level errors, respectively. BLEU
scores assess the similarity between the output
of the system and the reference text, considering
both precision and fluency across n-grams. Higher
BLEU scores and Lower WER and CER values indi-
cate better performance. The obtained results were
compared between the two BERT models (Model
1 and Model 2) as shown in Table 1. According

to the results, the fine-tuned model showed bet-

Zhttps://huggingface.co/Ransaka,/
sinhala-bert-medium-v2
*https://huggingface.co/Sameera827/
Sinhala-BERT-MLM
*https://github.com/IndoNLP-Workshop/
IndoNLP-2025-Shared-Task
>https://indonlp-workshop.github.io/
IndoNLP-Workshop/shared Task/
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ter results overall, but Model 1 was only 0.0001
higher in the BLEU-4 score. Overall, the results
demonstrate that the model performs well in han-
dling both ad-hoc transliteration scenarios (without
vowels) and normal scenarios (with vowels) for the
back-transliteration of Romanized Sinhala.

6 Conclusion

The proposed context-aware back-transliteration ap-
proach effectively converts Romanized Sinhala text
into native Sinhala script, addressing the challenges
of ad-hoc typing patterns and lexical ambiguity in-
herent in Romanized Sinhala back-transliteration.
Evaluation results demonstrate the robustness of the
proposed approach, achieving high BLEU scores
along with low Word Error Rate (WER) and Char-
acter Error Rate (CER) across test datasets. The
codebase can be accessed through the link be-
low for further research in this area. GitHub
link: https://github.com/Sameera2001Perera/
Singlish-Transliterator

Limitations

While the proposed back-transliteration approach
demonstrates significant accuracy, it has several
limitations. As described earlier, the system can
take time to transliterate long sentences containing
highly ambiguous words. Although candidate word
reduction and chunking mechanisms somewhat mit-
igate this issue, real-time applications may still face
challenges in maintaining efficiency. The word-
level transliteration relies on an ad-hoc Romanized
Sinhala—Sinhala dictionary. If a Singlish word is
not found in the transliteration dictionary, those
words are handled using a rule-based approach.
However, this rule-based method is not designed
to handle ad-hoc typing patterns.
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Abstract

This study evaluates the question-answering
capabilities of Large Language Models
(LLMs) in Urdu, addressing a critical gap
in low-resource language processing. Four
models GPT-4, mBERT, XLM-R, and mT5
are assessed across monolingual, cross-
lingual, and mixed-language settings using
the UQuADI1.0 and SQuAD2.0 datasets.
Results reveal significant performance gaps
between English and Urdu processing, with
GPT-4 achieving the highest F; scores (89.1%
in English, 76.4% in Urdu) while demon-
strating relative robustness in cross-lingual
scenarios. Boundary detection and translation
mismatches emerge as primary challenges,
particularly in cross-lingual settings. The
study further demonstrates that question
complexity and length significantly impact
performance, with factoid questions yielding
14.2% higher F; scores compared to complex
questions. These findings establish important
benchmarks for enhancing LLM performance
in low-resource languages and identify
key areas for improvement in multilingual
question-answering systems.

1 Introduction

The rapid advancement of LLMs has revolution-
ized natural language processing, demonstrating
remarkable capabilities in various tasks, particu-
larly in English and other high-resource languages.
However, their effectiveness in low-resource lan-
guages, such as Urdu, remains a critical area requir-
ing systematic evaluation. As Lewis et al. (2020)
demonstrated that Question Answering (QA), as
a fundamental test of language understanding,
serves as an excellent probe for assessing these
models’ cross-lingual and multilingual capabili-
ties.

Wu and Dredze (2022) highlighted significant
disparities in the performance of large language

models (LLMs) between high-resource and low-
resource languages. Similarly, Arif et al. (2024b)
showed that while models like GPT-4 and mT5
achieve impressive results in English, their per-
formance often degrades substantially when han-
dling languages with limited training data or com-
plex morphological structures. Furthermore, Daud
et al. (2017), Rahim and Khoja (2024), and Kazi
et al. (2023) emphasized that Urdu, spoken by ap-
proximately 170 million people worldwide, serves
as a particularly intriguing case study due to its
rich morphological structure, distinct script, and
limited computational resources.

The challenge of cross-lingual question answer-
ing has gained increasing attention in recent years.
Clark et al. (2020) focused primarily on transfer
learning and fine-tuning approaches. However,
the emergence of large-scale multilingual mod-
els has opened new possibilities for zero-shot and
cross-lingual applications. Conneau et al. (2020)
demonstrated the potential of cross-lingual repre-
sentation learning, while Pfeiffer et al. (2020) ex-
plored adapter-based approaches for cross-lingual
transfer.

The development of Urdu-specific resources has
also seen notable progress. Kazi and Khoja (2021)
created UQuADI1.0, providing crucial benchmarks
for evaluating model performance. These re-
sources, combined with advances in multilingual
model architectures, create an opportunity to sys-
tematically assess how well current LLMs han-
dle cross-lingual and multilingual QA tasks involv-
ing Urdu. Kazi and Khoja (2024) proposed a
context-aware QA framework tailored to Urdu, uti-
lizing sliding window score specifically designed
for comprehension of long-context dependencies.
Their methodology sets a benchmark that aligns
with this study’s focus on evaluating cross-lingual
model performance for low-resource languages.

Arif et al. (2024a) have shown that models
with fewer parameters but more language-specific
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training often outperform larger, general-purpose
models in Urdu NLP tasks. This finding raises
important questions about the trade-offs between
model size and language-specific optimization,
as discussed by Chen et al. (2023). Further-
more, Wang et al. (2024) suggest that carefully de-
signed prompting strategies can significantly im-
pact cross-lingual performance.

The relationship between script systems and
model performance presents another crucial con-
sideration. Unlike languages that use Latin script,
Rahman et al. (2023) note that Urdu’s Nastaliq
script introduces additional complexity in text pro-
cessing and token alignment. Wang et al. (2019)
demonstrated that script differences can signifi-
cantly impact model performance in cross-lingual
tasks, making this an important factor in our eval-
uation.

Our work makes several key contributions to
this developing field:

* We present the first comprehensive evalua-
tion of LLMs’ question answering capabil-
ities across monolingual, cross-lingual, and
mixed-language settings involving Urdu.

* We analyze performance patterns across dif-
ferent question types and lengths, providing
insights into the models’ handling of varying
complexity levels.

» We identify and quantify specific challenges
in cross-script processing and boundary de-
tection, offering valuable insights for future
model development.

* We establish benchmark results for four major
LLMs (GPT-4, mBERT, XLM-R, and mT5)
in Urdu QA tasks, providing a foundation for
future research.

Our evaluation framework includes five experi-
mental settings: (E1) full Urdu prompts, (E2) Urdu
questions with English context, (E3) English ques-
tions with Urdu context, (E4) full English prompts,
and (E5) mixed-language prompts. This setup al-
lows us to examine various cross-lingual compre-
hension and generation challenges.

The findings reveal significant performance
gaps, with models experiencing noticeable degra-
dation in Urdu and cross-lingual settings. GPT-4,
for instance, achieves an F; score of 89.1% in En-
glish but drops to 76.4% in Urdu, with further de-
clines in cross-lingual tasks. These results under-

score the complexities of multilingual model devel-
opment and the need for progress in low-resource
languages like Urdu.

This study contributes valuable insights into
LLMSs’ cross-lingual limitations, emphasizing the
ongoing need for robust multilingual modeling, es-
pecially for morphologically complex languages.

The remainder of this paper is organized as fol-
lows: Section 2 provides a review of related work,
highlighting key advancements and challenges in
multilingual NLP and cross-lingual question an-
swering. Section 3 gives details of the method-
ology, including models selected and prompting
techniques. Section 4 describes the datasets used
and experiments done. Section 5 presents the
results and discussion, focusing on performance
gaps, question type analysis, and error patterns.
Section 5 outlines the limitations of the current
study.

2 Related Work

The exploration of large language models (LLMs)
in multilingual contexts, particularly for low-
resource languages like Urdu, has garnered sig-
nificant attention in recent years. This litera-
ture review examines key studies that have con-
tributed to understanding and advancing LLMs’
capabilities in cross-lingual question answering
(QA) and related tasks.Cross-lingual QA involves
answering questions in one language based on
context provided in another, posing unique chal-
lenges for LLMs. Zhou et al. (2021) investi-
gated zero-shot cross-lingual transfer for multilin-
gual QA over knowledge graphs, highlighting the
difficulties LLMs face when transferring knowl-
edge across languages without fine-tuning . Sim-
ilarly, Riabi et al. (2020) proposed synthetic data
augmentation to enhance zero-shot cross-lingual
QA performance, demonstrating that generating
synthetic data in target languages can improve
model accuracy without additional annotated data

The scarcity of high-quality datasets in Urdu
has been a significant barrier to developing ef-
fective NLP models. To address this, Arif et al.
(2024a) introduced UQA, a corpus for Urdu QA
generated by translating the Stanford Question
Answering Dataset (SQuAD2.0) using the EATS
technique, which preserves answer spans in trans-
lated contexts . Additionally, Kazi and Khoja
(2021) developed UQuAD1.0, an Urdu QA dataset
combining machine-translated SQuUAD data with
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human-generated samples, providing a substantial
resource for training Urdu QA models . Evaluating
LLM:s on low-resource languages like Urdu has re-
vealed performance disparities compared to high-
resource languages. A study by Arif et al. (2024b)
assessed general-purpose models such as GPT-4-
Turbo and Llama-3-8b against specialized models
fine-tuned on specific tasks, focusing on classifi-
cation and generation tasks in Urdu. The findings
indicated that models with fewer parameters but
more language-specific data performed better than
larger models with less language-specific data,
underscoring the importance of tailored training
for low-resource languages Prompting techniques
play a crucial role in zero-shot learning scenarios,
where models are expected to perform tasks with-
out task-specific training. Agarwal et al. (2022)
explored zero-shot cross-lingual open-domain QA,
emphasizing the impact of prompt design on model
performance across languages. Their work sug-
gests that carefully crafted prompts can enhance
LLMSs’ ability to generalize across languages, even
in the absence of fine-tuning. Despite advance-
ments, challenges persist in developing LLMs for
low-resource languages. The limited availability
of high-quality training data, coupled with inher-
ent linguistic complexities, hampers model perfor-
mance. Future research should focus on creat-
ing comprehensive multilingual datasets, develop-
ing effective cross-lingual transfer learning tech-
niques, and designing models that can adapt to
the nuances of low-resource languages like Urdu.
In summary, while significant progress has been
made in cross-lingual QA and the development of
resources for low-resource languages, ongoing ef-
forts are essential to bridge the performance gap be-
tween high-resource and low-resource languages
in NLP applications.

3 Methodology

This study investigates the performance of large
language models (LLMs) on Urdu Question An-
swering (QA) using zero-shot and cross-lingual
prompts. We evaluate multiple models, explore
various prompt settings, and assess model re-
sponses to identify the strengths and limitations of
LLMs in a low-resource language context.

3.1 Models Selected

We selected the following LLMs for evaluation,
focusing on their capacity for multilingual under-

standing:

* GPT-4: Known for its strong multilingual ca-
pabilities, particularly with zero-shot and few-
shot prompts (OpenAl, 2023).

* mBERT: Multilingual BERT, pre-trained on
104 languages, commonly used for low-
resource languages (Devlin et al., 2019).

* XLM-R: Cross-lingual XLM-RoBERTa,
trained on 100 languages with enhanced
performance in cross-lingual tasks (Conneau
et al., 2020).

* mT5: A multilingual version of T5, which
has demonstrated effectiveness in question-
answering tasks across languages (Xue et al.,
2020).

These models were selected based on their es-
tablished performance in multilingual NLP tasks
and availability for zero-shot or cross-lingual QA
tasks.

3.2 Prompting Techniques

We employed a zero-shot prompting approach
where models are given questions in Urdu with-
out prior fine-tuning. The models are tested on
their ability to understand and respond accurately
in Urdu. Different prompt formats are tested to un-
derstand how prompt structure influences model
performance:

* Original Urdu Prompts: Both the context
and question are presented in Urdu, allowing
us to evaluate the models’ zero-shot capabili-
ties in handling native Urdu input.

* Translated Prompts: Questions and context
are translated between Urdu and English to
create various cross-lingual scenarios, includ-
ing:

— Urdu Question, English Context:
Tests comprehension when the question
is in Urdu but context is in English.

— English Question, Urdu Context:
Tests understanding when the question
is in English and context in Urdu.

* Full Urdu Prompt: Both the question and
context are in Urdu.

* Full English Prompt: For comparison, we
also provide English questions and contexts.
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* Mixed-Language Prompts: Combining lan-
guages within the prompt to evaluate models’
ability to bridge language gaps in real-time.

3.3 Evaluation Metrics

To assess model performance, we utilized the fol-
lowing evaluation metrics, which are standard in
question-answering tasks:

* Exact Match (EM): Measures the percentage
of responses that exactly match the ground-
truth answers, ensuring a strict assessment of
accuracy.

* F; Score: Calculated based on the overlap of
predicted answers with ground-truth answers,
accounting for partial matches to capture nu-
anced correctness.

* ROUGE-L: Measures the longest common
subsequence between the predicted and actual
answer, providing insights into answer rele-
vance.

4 Experimental Details

4.1 Data

In this study, we utilize the UQuAD1.0 (Kazi and
Khoja, 2021) and SQuAD 2.0 (Rajpurkar et al.,
2018) datasets to evaluate question-answering
performance in Urdu and English, respectively.
UQuADI1.0, specifically tailored for the Urdu lan-
guage, comprises approximately 49,000 question-
answer pairs, including 45,000 machine-translated
pairs derived from SQuAD and 4,000 manually cu-
rated pairs to ensure linguistic and cultural rele-
vance to Urdu. The manually curated QA pairs
consists of diverse array of question types, cate-
gorized by cognitive difficulty as shown in Table
1. Since UQuAD1.0 is an extractive machine read-
ing comprehension dataset, it exclusively includes
questions with answers directly found as spans of
text in the context, thereby excluding yes/no ques-
tions.

For English, we use SQuAD 2.0, an exten-
sive dataset with over 130,000 question-answer
pairs, including over 50,000 unanswerable ques-
tions crafted to challenge model comprehension.

Since UQuAD is a direct translation of SQuAD,
it allows controlled cross-lingual experiments with
consistent question-answer pairs in Urdu and En-
glish. This dual data set approach allows us to mea-
sure the zero-shot capabilities of the models in both

Statistic Value

QA Pairs 4,000

Data Sources Urdu Wikipedia,
O-level content

Unique Paragraphs 1,972

Average Sentences per | 6.33

Paragraph

168.11 tokens
582.45 characters

Average Paragraph Length

12.92 tokens or
43.70 characters

Average Question Length

3.48 tokens
14.27 characters

Average Answer Length

What
When, Where,
Who

Question Types

Topics Covered Politics, Religion,
Education

Miscellaneous

Table 1: Statistics of the Crowdsourced UQuADI1.0
Dataset

low-resource (Urdu) and high-resource (English)
contexts, providing a broad assessment of linguis-
tic adaptability and cross-lingual understanding.
Both datasets consists of:

* Context: A passage of text.
* Question: Question based on the passage.
* Answer: A text span from the passage.

4.2 Experiments

In this study, we used LLM to assess their per-
formance in QA tasks, specifically focusing on
their capabilities in a zero-shot cross-lingual en-
vironment for Urdu. Due to the limited avail-
ability of cross-lingual datasets tailored for QA in
low-resource languages, our approach provides in-
sights into the effectiveness of LLMs in handling
QA tasks without extensive fine-tuning. For our
experiments, temperature settings were not appli-
cable since our task focused on answer span extrac-
tion rather than text generation. Span extraction
relies on direct probability distributions over pos-
sible token positions, making temperature parame-
ters unnecessary for this specific application. Each
experimental configuration is assigned a unique
identifier (E1, E2, etc.) to facilitate reference
throughout the study, as shown in Table 8. The
prompt settings are named as follows:
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* E1 - Full Urdu prompt: In this setting, both
the context and the question are provided in
Urdu, using UQuADI1.0 exclusively. This
prompt tests the model’s ability to interpret
and respond in Urdu, providing insights into
its performance in low-resource language set-
tings.

* E2 - Urdu Question, English Context:
Here, the question is given in Urdu from
UQuAD1.0, while the context is provided
in English from SQuAD 2.0. This cross-
lingual prompt evaluates the model’s capac-
ity to bridge language gaps, understanding a
question in Urdu and finding answers in En-
glish.

* E3 - English Question, Urdu Context: For
this setting, the question comes from SQuAD
2.0 in English, while the context is provided
in Urdu from UQuAD1.0. This approach
tests the model’s ability to interpret context
in Urdu while understanding and responding
to an English question, further assessing its
cross-lingual adaptability.

* E4 - Full English Prompt: Both the context
and question are in English, sourced entirely
from SQuAD 2.0. This monolingual English
prompt acts as a baseline for evaluating model
performance in a high-resource language en-
vironment.

* E5 - Mixed Language Prompt: In this
prompt setting, context and question data are
mixed between Urdu and English, combining
inputs from both UQuAD1.0 and SQuAD 2.0.
This configuration tests the model’s adaptabil-
ity to handle code-switching, evaluating its
ability to seamlessly interpret and respond
within a mixed linguistic framework.

Table 2 presents the performance compari-
son across different models and prompt settings,
demonstrating each model’s capacity to handle
both monolingual and mixed-language inputs. No-
tably, GPT-4 consistently outperformed other mod-
els across all settings, showing robust exact match
(EM), F1, and ROUGE-L scores. The model per-
formed particularly well in fully English settings
(E4), achieving the highest overall scores. How-
ever, performance decreased for the same models
when the prompts were fully in Urdu (E1) or in
a mixed-language setting (ES). This underscores

the challenges models face when processing low-
resource languages directly without fine-tuning.

Table 3 provides a closer examination of cross-
lingual scenarios, where the question and context
are presented in different languages. Here, GPT-4
again leads in terms of F; and ROUGE-L scores,
but its performance drops significantly in cross-
lingual settings compared to fully monolingual En-
glish prompts. For example, when tested with
Urdu questions and English contexts (E2), as well
as English questions and Urdu contexts (E3), we
observed a reduction in F; scores by 3.8% and
4.7%, respectively. This indicates that even sophis-
ticated models face difficulties bridging language
gaps without fine-tuning, likely due to limited ex-
posure to certain linguistic nuances during pretrain-
ing. Through this setup, we aim to provide a com-
prehensive evaluation of each model’s strengths
and limitations in handling both monolingual and
cross-lingual prompts in Urdu. These prompt set-
tings and naming conventions will be used consis-
tently throughout the discussion sections, offering
a structured view of model performance across var-
ied linguistic scenarios.

5 Discussion

This section discusses the findings from results, fo-
cusing on performance gaps, question type anal-
ysis, error patterns, prompt setting impacts, and
model-specific observations.

Language Performance Gap: An analysis of
the language performance gap shows a marked
decrease in model accuracy when transitioning
from English to Urdu prompts. On average, EM
scores dropped by 18.5%, F; scores by 12.7%,
and ROUGE-L scores by 13.3% when shifting
from English to Urdu. This significant drop high-
lights the models’ limitations in handling low-
resource languages, as well as the need for more
language-specific training data to mitigate these
gaps. The language performance gap is most ap-
parent in mBERT and XLM-R, which are pre-
trained on a wide variety of languages but still
struggle with Urdu-specific constructs and contex-
tual understanding.

Question Type Analysis: UQuADI1.0, being an
extractive machine reading comprehension dataset,
exclusively contains questions with answers that
are direct spans from the context. However, the
models displayed varying levels of effectiveness
across different question types. Factoid questions
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Model | Prompt Setting Exact Match | F; Score | ROUGE-L
GPT-4 | Full Urdu (E1) 65.8% 76.4% 74.2%
Full English (E4) 84.3% 89.1% 87.5%
Mixed Lang. (ES) 71.2% 81.5% 79.8%
mBERT | Full Urdu (E1) 48.5% 61.2% 59.7%
Full English (E4) 65.7% 75.3% 73.8%
Mixed Lang. (ES) 52.3% 64.8% 62.9%
XLM-R | Full Urdu (E1) 53.2% 65.7% 63.9%
Full English (E4) 69.1% 78.4% 76.5%
Mixed Lang. (ES) 57.8% 68.9% 66.7%
mT5 Full Urdu (E1) 58.4% 67.9% 66.2%
Full English (E4) 73.8% 80.2% 78.6%
Mixed Lang. (ES) 61.4% 72.1% 70.3%

Table 2: Overall performance of models across different prompt settings.

Model | Question-Context Lang | Exact Match | F; Score | ROUGE-L
GPT-4 | Urdu-English (E2) 64.5% 75.2% 73.1%
English-Urdu (E3) 62.8% 73.9% 71.8%
mBERT | Urdu-English (E2) 45.2% 57.8% 55.9%
English-Urdu (E3) 43.7% 56.3% 54.2%
XLM-R | Urdu-English (E2) 49.8% 62.4% 60.5%
English-Urdu (E3) 48.1% 60.9% 58.7%
mT5 Urdu-English (E2) 54.6% 66.1% 64.3%
English-Urdu (E3) 53.2% 65.5% 63.8%

Table 3: Cross-lingual performance for different models with varying language settings.

(e.g., Who, What, When, Where) showed a 14.2%
higher F; score on average compared to com-
plex questions (e.g., Why, How). This difference
suggests that factoid questions are less context-
dependent and simpler for models to answer ac-
curately, whereas complex questions introduce
greater ambiguity and require deeper comprehen-
sion of the context. Furthermore, response times
were 42% longer on average for complex ques-
tions, indicating the additional processing needed
to handle these more demanding queries. This vari-
ance in question type performance underlines the
importance of training models specifically on com-
plex question structures. Additionally, the exclu-
sive focus on extractive questions in UQuADI1.0
suggests the need for expanded datasets that cap-
ture a broader range of question-answering scenar-
ios in Urdu.

Error Analysis: Error analysis in monolin-
gual and cross-lingual settings, as shown in Ta-
bles 4 and 5, reveals common error types that im-
pacted model performance. In monolingual set-
tings, boundary detection was a prevalent issue,

particularly in mBERT and XLM-R, with error
rates of 35% and 32%, respectively. Even GPT-
4, the most robust model, exhibited a 28% error
rate in this category. Context understanding errors
were also frequent, particularly in mBERT (31%)
and XLM-R (28%), while GPT-4 and mT5 showed
relatively better performance in this area.

In cross-lingual settings, translation mismatches
and script issues were prominent error types, with
mBERT showing the highest error rate in trans-
lation mismatch at 42%. Script issues, particu-
larly the handling of Urdu script alongside English,
posed challenges across all models, with GPT-4
handling it slightly better at 25% error rate, com-
pared to mBERT’s 33%. mT5, which is known
for its multilingual training, exhibited improved
handling of diverse scripts with a 29% error rate
in script issues, suggesting its training benefits in
multilingual environments. These findings indi-
cate that model robustness in mixed-language en-
vironments still has room for improvement, espe-
cially in overcoming script and translation chal-
lenges.
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Impact of Question Length: Table 6 exam-
ines the impact of question length on model per-
formance, showing that all models experience a
decline in accuracy as question length increases.
For short questions (<10 words), the Exact Match
and F scores are notably high across models, with
GPT-4 achieving an F; score of 81.5% and mT5
performing reasonably well at 78.2%. As ques-
tion length increases to the medium range (11-20
words) and beyond, the Exact Match and F; scores
drop noticeably across all models. This pattern in-
dicates that longer questions introduce more com-
plexity, potentially leading to greater context am-
biguity or more challenging boundary detection
for answer spans. The results highlight the need
for models with enhanced capacity for processing
and accurately interpreting extended contextual in-
formation, particularly when dealing with longer
questions.

Invalid Output Analysis: Table 7 analyzes the
incidence of invalid outputs, including answers
that are out of context, incorrectly formatted, or
missing altogether. GPT-4 exhibits a lower num-
ber of invalid outputs (43 instances), indicating its
advantage in generating contextually relevant and
correctly formatted answers. In contrast, mBERT
and XLM-R display a significantly higher num-
ber of invalid outputs, with mBERT producing
the highest number of “Wrong Format” errors (67)
and “Out of Context” responses (46). mT5, while
better than mBERT in maintaining context, still
faces challenges in answer format consistency. Al-
though mT5 outperforms some baseline models,
it has room for improvement in reliably maintain-
ing answer relevance and structure. These findings
emphasize that even with recent advancements in
LLMs, generating contextually grounded and syn-
tactically accurate outputs remains an area for po-
tential refinement, particularly in cross-lingual and
format-sensitive applications.

Impact of Prompt Settings: The impact of
different prompt settings on model performance
is also evident in these results. Mixed-language
prompts (ES5) consistently performed worse than
monolingual settings, with an average F; score
reduction of 5.2%. This decline is most notable
in mBERT, which struggled to adapt to mixed-
language prompts, underscoring the model’s lim-
itations in fluidly transitioning between languages.
Cross-lingual setups, such as Urdu questions with
English context (E2) and English questions with
Urdu context (E3), resulted in F; score reductions

of 3.8% and 4.7%, respectively. These declines
indicate that cross-lingual comprehension remains
challenging for all models, even those like GPT-4
that are reputed for cross-lingual capabilities.

Model-Specific Observations: GPT-4 demon-
strated superior overall performance, with the
smallest language gap in F; score drop (15.2%) for
Urdu and the most consistent cross-lingual perfor-
mance. Its strong showing in complex question
answering indicates an advanced capacity for nu-
anced comprehension, setting it apart as the most
effective model in this study. mBERT, on the
other hand, displayed moderate performance with
a significant language gap, particularly struggling
in mixed-language settings. This model excelled
in answering factoid questions but faced higher
variance in answer boundaries, making it less suit-
able for tasks requiring precise boundary detection.
XLM-R maintained a good balance between lan-
guages, showing robustness in cross-lingual set-
tings compared to mBERT, and demonstrated con-
sistent performance across question types, though
it still trailed behind GPT-4 and mT5. mTS5 exhib-
ited competitive performance, particularly in han-
dling multilingual prompts. Its cross-lingual ca-
pabilities, though not on par with GPT-4, were
stronger than mBERT, particularly in handling
script diversity and translation mismatches. The
model’s lower variance in handling Urdu and En-
glish contexts highlights its potential as a viable
option for multilingual applications, especially in
low-resource settings.

Summary of Findings: Overall, the results
highlight GPT-4’s superior performance across
various prompt configurations and error categories,
establishing it as the most robust model for both
monolingual and cross-lingual QA tasks. While
mT5 shows promise, particularly for multilingual
contexts, it falls short of GPT-4 in certain nuanced
aspects. The limitations of XLM-R and mBERT,
particularly in handling cross-lingual prompts and
complex questions, point to potential areas for
model refinement. Future research could focus on
developing pretraining and fine-tuning strategies
specifically tailored to improve LLM performance
in low-resource, cross-lingual QA tasks, address-
ing issues such as translation alignment, script
handling, and complex question comprehension.
Future work could explore additional prompting
strategies such as Few-Shot learning and Chain of
Thought (CoT) reasoning, which could potentially
enhance model performance, particularly for com-
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plex questions and cross-lingual scenarios. These
approaches might help bridge the performance gap
observed between factoid and complex questions.

Limitations

This study faced several limitations in eval-
uating zero-shot question answering in Urdu.
The UQuADI1.0 dataset, being partially machine-
translated, fell short in fully capturing native Urdu
linguistic patterns. The analysis framework did not
fully address Urdu’s morphological complexities
and code-switching tendencies. While zero-shot
methods met our experimental needs, they limited
the exploration of models’ potential achievable
with fine-tuning. Additionally, the prompt tem-
plates and error analysis framework showed limita-
tions in handling certain question types and Urdu-
specific model errors. Our current approach could
be enhanced through several methodological ex-
tensions. The exploration of advanced prompting
strategies, such as Few-Shot learning and Chain
of Thought (CoT) reasoning, could potentially im-
prove model performance for complex questions
and cross-lingual scenarios.
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Appendix

Error Type GPT-4 | mBERT | XLM-R | mT5
Boundary Detection 28% 35% 32% 30%
Context Understanding | 22% 31% 28% 27%
Answer Format 18% 24% 21% 19%
No Answer 32% 10% 19% 15%

Table 4: Error analysis in monolingual settings for each model.

Error Type GPT-4 | mBERT | XLM-R | mT5
Translation Mismatch | 35% 42% 38% 33%
Script Issues 25% 33% 30% 29%
Context Loss 22% 15% 18% 20%
Other 18% 10% 14% 12%

Table 5: Error analysis in cross-lingual settings for each model.

Question Length | Exact Match | F; Score | ROUGE-L
Short (<10 words) 72.3% 81.5% 79.8%
Medium (11-20) 65.8% 76.4% 74.2%
Long (>20) 58.9% 70.5% 68.7%

Table 6: Impact of question length on model performance.

Model | Total Invalid | No Answer | Wrong Format | Out of Context
GPT-4 43 12 18 13
mBERT 158 45 67 46
XLM-R 127 36 54 37
mT5 102 27 44 31

Table 7: Analysis of invalid outputs for each model.
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Setting & Prompt Template with Example

E1 - Full Urdu Prompt
{ { ’role”: "user”,

”Prompt”: el Vs 27 s £ Gs O s 26 i 1"

Context: -u:/y:d‘/,dupuld/y:l,g:u.fu’Lg:u;ﬁu-uju%lu!/gb{j/@/ug‘ng)gu{/lug/b/{-u)jdzcj.zf
Question: ?éggju{‘d:&»‘k/ulf(f/Liz}

Answer:

}, { ’role”: “system”,

”Prompt”: ’You are a proficient language model trained to understand Urdu.

Provide concise answers based on the given context.”

} )

E2 - Urdu Question, English Context

{ { ’role”: "user”,

”Prompt”: ”Answer the following question based on the English context provided.
Provide only the answer in Urdu.

Context: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter,
record producer and actress. Born and raised in Houston,

Texas, she rose to fame in the late 1990s.

Question: ?Jggf/;4uﬁug//;lff'¢&f

Answer:

}, { 7role”: "system”,

”Prompt”: “Ensure the answer is in Urdu, derived from the English context provided.”

} )

E3 - English Question, Urdu Context

{ { “role”: "user”,

”Prompt”: ”Answer the following question based on the Urdu context provided.
Provide only the answer in English.

Context: -u:/y:d‘/,duk:;:lu:lnl,g:u:‘jL«gJ’ﬁa!-gjju/%l/)!f{h(j/@/u@jru{}g&/lug;/{-uj)ugd.z}
Question: In what city and state did Beyoncé grow up?
Answer:

}, { ’role”: “system”,
”Prompt”: ”Answer the question in English using information from the Urdu context.”

} )

S

E4 - Full English Prompt

{ { “role”: "user”,

”Prompt”: ”Answer the question based on the provided context. Only answer in English.

Context: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer,
songwriter, record producer and actress. Born and raised in Houston,

Texas, she rose to fame in the late 1990s.

Question: In what city and state did Beyoncé grow up?

Answer:

}, { ’role”: “system”,

”Prompt”: “Ensure the answer is concise and derived directly from the English context.”

} )

ES - Mixed Language Prompt
{ { ’role”: "user”,
”Prompt”: ”Answer the following question based on the mixed language context provided.

Context: Beyoncé Giselle Knowles-Carter u-mm)u,uuﬁ,?mﬁ{ 1L Houston, Texas IS SIS s
Question: In what city and state did Beyoncé grow up?

Answer:

}, { “role”: ’system”,

”Prompt”: "Interpret the mixed language prompt and provide a relevant answer.”

i}

Table 8: Prompt Templates Examples
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Abstract

Neural machine translation (NMT) is becom-
ing increasingly popular as an effective method
of automated language translation. However,
due to a scarcity of training datasets, its ef-
fectiveness is limited when used with low-
resource languages, such as Indian Languages
(ILs). The lack of parallel datasets in Natural
Language Processing (NLP) makes it difficult
to investigate many ILs for Machine Transla-
tion (MT). A data augmentation approach such
as Backtranslation (BT) can be used to enhance
the size of the training dataset. This paper
presents the development of a NMT model for
ILs within the context of a MT system. To
address the issue of data scarcity, the paper
examines the effectiveness of a BT approach
for ILs that uses both monolingual and paral-
lel datasets. Experimental results reveal that
while the BT has improved the model’s perfor-
mance, however, it is not as significant as ex-
pected. It has also been observed that, even
though the English-ILs and ILs-English mod-
els are trained on the same dataset, the ILs-
English models perform better in all evaluation
metrics. The reason for this is that ILs fre-
quently differ in sentence structure, word or-
der, and morphological richness from English.
The paper also includes error analysis for trans-
lations between languages that were utilized
in experiments utilizing the Multidimensional
Quality Metrics (MQM) framework.

1 Introduction

An automated system that converts a source lan-
guage into a target language is known as machine
translation (Liu and Zhang, 2023; Liu Ming and
Haffari, 2018). It has made significant strides
recently in translating high-resource languages
like Spanish, French, and English (Shaham et al.,
2022). But as ILs present a unique combination of
challenges and opportunities, it is still difficult to
get a good translator.

This linguistic diversity, a testament to India’s
cultural heritage, poses distinct translation chal-
lenges when translating from English to ILs and
vice versa. Despite their tremendous linguistic
richness, ILs are characterized as low-resource due
to a lack of training data available for language
models [Das et al., 2024].

Compared to widely spoken languages such as
English, ‘low-resource languages’ like ILs pos-
sess a restricted range of linguistic resources such
as parallel corpora, dictionaries, grammar, and
trained models (Das et al., 2022). In order to ad-
dress the scarcity of resources, translation faces
unique challenges, necessitating the utilization of
efficient MT as a valuable tool (Cheragui, 2012).
In fact, developing reliable and accurate MT sys-
tems for ILs is very challenging. In this re-
gard, Backtranslation (BT) comes as an effective
method for dealing with limited data and syntheti-
cally increasing the amount of data used for train-
ing for MT models (Behr, 2017). In different sce-
narios, NMT systems have shown to benefit from
using BT, especially in most low-resource envi-
ronments where it can be challenging to acquire
high-quality corpora (Bala Das et al., 2023). Its po-
tential to improve translation model performance
in this linguistic domain is the driving force be-
hind the investigation of its efficacy in the con-
text of ILs. This motivates us to investigate back-
translation methods for ILs. In this paper, first,
a baseline NMT model for English-ILs and ILs-
English using Vaswani et al. [2017] transformer
architecture is developed. Baseline models (NMT
models which are generated) are trained using the
Samanatar dataset [Ramesh et al., 2022] for experi-
ments. The impact of the back translation for NMT
models on ILs is examined. All the generated trans-
lation outputs are examined using evaluation met-
rics, and the generated model output’s error analy-
sis is also done.

The rest of this work is structured as follows:

152

Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 152-165
January 20, 2025. ©2025 Association for Computational Linguistics



Section 2 contains a thorough overview of litera-
ture of NMT. In Section 3, a short description of
the languages utilized is described. Section 4 dis-
cusses the model utilized for our experiment. Sec-
tion 5 contains all results obtained after our exper-
iments. In Section 6, we summaries our study and
suggest some future research directives.

2 Literature Review

Sennrich et al. [2015] have introduced backtransla-
tion, which is a process of creating synthetic paral-
lel data by repeatedly converting monolingual data
among source and target languages. This approach
augments training data and improves the durability
of NMT models. Building on the basic principles
of backtranslation, a few researchers (eg. Marzich
and Monz, 2018; Edunov et al., 2018) have in-
vestigated various techniques and approaches for
integrating it into NMT training pipelines. This
method has demonstrated great promise in enhanc-
ing translation quality for few high resource lan-
guages. Numerous studies attest to the advantages
of backtranslation.

Fadaee et al. [2017] and Xinlei et al. [2020]
have delved into adapted methods incorporating
backtranslation alongside NMT for European lan-
guages, offering helpful insights into tackling lin-
guistic nuances unique to this region. Similarly,
the effects of backtranslation on machine transla-
tion between Vietnamese and Chinese—two Asian
languages with little linguistic affinity—are exam-
ined. Their study clarifies its efficacy in both SMT
and NMT models by assessing various backtrans-
lated corpus sizes. The results advance knowledge
of how backtranslation improves translation qual-
ity for low-resource, less-related language pairs
(Lietal., 2020). According to Currey et al. [2017],
low-resource languages can also benefit from syn-
thetic data if the source is only a duplicate of
the target data, which is monolingual. Few re-
searchers (eg. Cotterell and Kreutzer, 2018) frame
backtranslation as a variational process with the
latent space as the original sentences. According
to them, there should be a match between the dis-
tribution of the artificial data generator and the
actual translation probability. For this reason, it
is crucial to understand and look into the sam-
ple distributions used by the most advanced data
generation approaches which are available today.
Ahmed et al. [2023] conducted a thorough inves-
tigation into iterative backtranslation for English-

Assamese language pair and presented a simplified
version of iterative backtranslation. Their find-
ings demonstrated considerable improvements in
BLEU scores: +6.38 for English-Assamese and
+4.38 for Assamese-English.

3 Experimental Setup

This section describes the dataset, preprocessing
method, steps before training, and evaluation met-
rics.

3.1 Dataset

The training dataset is taken from the Samanantar
[Ramesh et al., 2022] and Flores200 dataset [ Costa-
jussaetal., 2022] is used for testing purposes to de-
velop the NMT and the BT baseline models. The
languages used for our experiments and their statis-
tics are shown in Table 1. The dataset statistics
show that Hindi has the highest parallel and mono-
lingual dataset, while Assamese has the lowest (out
of 11 languages).

Table 1: Dataset Statistics

English to Indic | Parallel Dataset | Monolingual Dataset
Tamil (TA) 5.16 M 31.54M
Assamese (AS) 0.14M 1.38M
Marathi (MR) 3.32M 33.9™™
Malayalam (ML) 5.85M 56.06 M
Telugu (TE) 4.82M 47.8™™
Bengali (BN) 8.52M 39.8™M
Gujarati (GU) 3.06M 41.12M
Hindi (HI) 8.56M 63.05M
Kannada (KN) 4.07TM 53.26 M
Odia (OR) 1.00M 6.94M
Punjabi (PA) 2.42M 29.19M

3.2 Preprocessing

Several preprocessing techniques are used before
translating from the source to the target languages.

1. Initially, from the dataset, several punctuation
in the extended Unicode are converted to their
standard counterparts.

2. Numbers in the ILs dataset are converted
from the Latin script to the Devanagari script.

3. Characters outside the standard alphabets of
the language pair are removed.

4. Unprintable characters are removed from the
dataset, and the dataset is trimmed of extra
white space.

5. Redundant quotation marks are removed
from the dataset.
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6. Sentences that are empty on any side of lan-
guages are eliminated.

7. To detect and eliminate repeated words from
a dataset. For example, in the English dataset
“Police has also started an investigation into
the matter.” translation in Hindi is 9T & g-
o (Police) “= ag ot garar fop Amaat &t 5w
¥ X & 7S 8.” where the word police are
written in Hindi and English. So, the word
police in English is removed from the Hindi
dataset.

3.3 Tokenization and Lowercasing

The dataset is then tokenized for further pre-
processing. This creates tokens in the dataset sep-
arated by a single white space. The ILs and EN
datasets are tokenized using a modified Moses tok-
enizer [Koehn, 2007]. Moses tokenizers are one of
the most commonly used tokenizers in the English
language. Hence, the modified Moses tokenizer
is tailored for ILs. It effectively handles diacrit-
ics, including halants and nuktas. For example, in
Bengali " 2b I23 IT1 fomiet 0 I3 WItst <ifS-
T QI I ;. G oI SR 17 s
changed into "2t I2J ITAT fSMIT © I2T TICS
IS (VT I QSN SR 17,

3.4 Byte Pair Encoding (BPE)

Byte pair encoding is a form of tokenization in
which the most common pair of consecutive bytes
are combined with a byte not present in the data.
The train and dev data are byte pair encoded us-
ing the trained byte pair encoder (BPE) [Sennrich
et al.,, 2015]. BPE splits up the created tokens
and subjects them to sub-word-based tokenization.
This boosts the performance of the model and com-
presses the dataset, decreasing the training time for
the model. BPE is carried out using subword-nmt.
Subword-nmt is the decomposing of words into
smaller, subword units, which is used to success-
fully tackle the problems created by rarely seen
or out-of-vocabulary words in machine translation
systems. Then, the next step is to create a dictio-

nary.
3.5 Building dictionary and Binarization

A dictionary is built using the full dataset, which
maps tokens to numbers that the computer can
comprehend. The dictionary stores all mappings
of words from the source and target language into
numbers (indexes) that can be referenced by the

model. The processed dataset is then binarized us-
ing fairseq before training. Binarization helps to
load data and models faster by converting numbers
to the sequence of binary numerals.

3.6 Training

The experiment uses the Vaswani Transformer
model [Vaswani et al., 2017], which is imple-
mented in the Fairseq library [Ott et al., 2019],
an open-source sequence modeling toolkit that al-
lows training models for machine translation tasks.
The model comprises six encoder-decoder layers,
each with 512 hidden units and multi-head atten-
tion, which are optimized using the Adam opti-
mizer. Prior to being added to and normalized
with the sub-layer input, each sub-layer output is
subjected to a dropout value. All models utilized
for our experiments use Flores200 test sets [Costa-
jussa et al., 2022]. Our model is run on a high-
performance workstation equipped with an Intel
Xeon W-1290 CPU, with 10 physical cores and
20 threads (3.20 GHz base frequency, up to 5.20
GHz boost), providing robust multi-threading and
caching with 20 MiB of L3 cache. The system in-
cludes 62 GB of RAM and an NVIDIA Quadro
RTX 5000 GPU with 16 GB of VRAM, supported
by driver version 535.154.05. The system uses
CUDA 11.5 for compilation and is compatible with
CUDA 12.2 for runtime operations, optimizing
model training performance. The time to run each
model is roughly half to two days, according to
its dataset size. Fairseq library with Adam opti-
mizer with betas of (0.9,0.98) for training is used.
The initial learning rate reads 0.0005, and the in-
verse square root learning rate scheduler with 4000
warm-up updates has been used. The dropout prob-
ability has been set to 0.1, and the criterion is label-
smoothed cross-entropy with a smoothing factor of
0.1. The model is trained up to 300,000 updates. A
deliberate selection of 300000 updates is used in
the experiment in light of the variety of languages
in the dataset and the differing availability of data.
This choice ensures that the model goes through
more iterations during training, which improves its
ability to adapt to the dataset’s diverse linguistic
traits. The goal is to improve the model’s overall
performance so that it can effectively handle the
nuances of both low- and high-resource languages
during the training process.

Once training is completed, the best checkpoint
is loaded and used to generate a translation of
the test dataset using the fairseq model. Lastly,
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the transition quality is examined using evaluation
metrics.

4 Methods used

4.1 Models with Original Data

The initial step is to develop a baseline model us-
ing the Neural Machine Translation (NMT) model
with the Samanantar dataset for the English-11 ILs
and vice versa.

4.1.1 Neural Machine Translation(NMT)
System

Using NMT, in addition to adopting the probabilis-
tic framework, it takes a data-driven approach to
MT. It transforms the translation task into a proba-
bility distribution Wu et al. [2016]. With a parallel
dataset, the NMT decreases the translation task to
the probability distribution p of the target language
b given the source language a, as shown in Equa-
tion 1.

m

plirg | sre;a) = [ p (trg | trggn,..1), s7¢; )

k=1

(1)
Here, src = srcy . .. srcy, is an input source lan-
guage of n words, while trg = trg; ...trg,, rep-
resents the translated sentence of m words. Here
n,m # 0. « is the parameter to be learned, trg is
the current word, and ¢rg(,_,. 1) represents the

previously created word.

4.2 Models with Backtranslated Data

An abundance of high-quality, diverse training
data is a prerequisite for training machine trans-
lation models effectively. Unfortunately, many
times it is difficult to obtain large parallel datasets
that contain paired sentences in both the source and
target languages. This limitation presents a signif-
icant challenge to achieving effective translation
quality. However, monolingual corpora, made up
of sentences only in the source language without
translations, provide a readily available resource
for exploring a variety of language styles and nu-
ances. To tackle this issue, combining parallel and
monolingual datasets is essential. To overcome
data scarcity constraints, backtranslation emerges
as a strategic augmentation method. It is a tech-
nique used to train NMT models.

The basic idea of backtranslation is to generate
additional training data by alternately converting

monolingual data through the source and target lan-
guages.

source target

Model Training

source | target

source model source -target ) target N
monolingual ) language generated

v

language

source | target

model target-source

monolingual| generated

Figure 1: Process of Backtranslation

The process starts with training a model from
source to target language using parallel data which
generates synthetic target language data (from
source monolingual data). The synthetic parallel
data, which includes a combination of original and
newly generated sentences(from source monolin-
gual data), is utilized for training the NMT model
from the target to the source language, as shown
in Figure 1. This iterative approach improves the
model’s adaptability and efficiency of the NMT
models by using the monolingual dataset, which
leads to better translation quality. Our method us-
ing backtranslation is explained in Algorithm 1.

To examine the effect of pseudo data size (Here,
pseudo data means the quantity or size of synthetic
data produced during the backtranslation method)
in an instance with limited resources, experiments
are conducted with three datasets i.e. AS, ML, and
HI. These languages are chosen according to their
variation in the size of data, low resource, medium,
and high resources concerning the dataset utilized.
The varying proportion of the parallel corpus to
pseudo data enabled the study of the impact of vari-
ous pseudo corpus scales on model performance. It
is observed while including more pseudo data, the
positive impact on performance diminishes. The
cause of this phenomenon is caused by the qual-
ity of pseudo data generated by the parallel corpus-
trained translation model. Hence, after doing ex-
periments with different data sizes, it is decided
to add 2% of the pseudo dataset with the parallel
dataset for Backtranslation purposes.

5 Results and Discussion

Table 2 displays the outcomes of our experiments
using NMT and backtranslation by utilizing eval-
uation metrics such as BLEU [Papineni et al.,
2002], TER [Wang et al., 2016], RIBES [Tan et al.,
2015], METEOR [Banerjee and Lavie, 2005], chrF

155



Table 2: Evaluation Metrics for NMT and Backtranslation(where x indicate NMT and y indicate back-

translation)
Lang Language BLEU TER RIBES METEOR chrF COMET
Pairs
x y x y x y x y x y x y
Odia EN-OR  5.09 5.10 99.13 9570 0.58 0.61 0.24 0.25 36.58 36.75 0.73 0.74
OR-EN  10.92 11.75 84.95 87.28 0.59 0.61 0.38 0.41 39.27 42.07 0.75 0.76
Assamese EN-AS 0.26 0.01 135.15 110.75 0.14 0.13 0.07 0.05 9.55 4.96 0.50 0.44
AS-EN 0.77 0.67 178.79 123.65 0.18 0.13 0.17 0.17 20.50 16.29 0.54 0.50
Punjabi EN-PA  19.16 20.09 73.58 71.48 0.74 0.75 0.48 0.49 48.53 49.40 0.81 0.82
PA-EN  27.39 27.35 61.92 61.70 0.77 0.78 0.59 0.60 56.31 56.65 0.84 0.85
Gujarati EN-GU  16.29 17.14 81.43 7853 0.67 0.69 0.42 0.43 49.41 49.90 0.85 0.84
GU-EN  23.75 23.82 70.05 6858 0.72 0.73 0.57 0.56 55.30 54.37 0.84 0.85
Marathi EN-MR  9.51 899 97.43 98.56 0.60 0.57 0.34 0.32 44.71 42.72 0.68 0.67
MR-EN  19.37 19.38 73.42 75.13 0.70 0.69 0.51 0.52 50.21 50.56 0.81 0.82
Kannada EN-KN  11.86 12.04 89.79 90.82 0.58 0.59 0.34 0.35 52.15 52.78 0.82 0.83
KN-EN  21.31 20.84 74.33 73.29 0.71 0.72 0.53 0.54 52.92 52.52 0.82 0.83
Tamil EN-TA 7.03 7.93 107.84 108.05 0.31 0.32 0.24 0.25 52.64 52.75 0.83 0.82
TA-EN  20.99 22.38 74.36 70.97 0.71 0.72 0.53 0.55 52.32 52.50 0.81 0.83
Telgu EN-TE  13.73 14.10 91.80 92.85 0.61 0.62 0.39 0.40 54.41 54.97 0.81 0.82
TE-EN 2452 25.06 6895 70.78 0.73 0.74 0.56 0.59 55.36 57.09 0.82 0.83
Malayalam  EN-ML 8.12 814 106.52 103.27 0.44 0.45 0.29 0.28 52.90 52.91 0.82 0.83
ML-EN  22.13 2222 71.31 7292 0.71 0.72 0.54 0.55 53.61 53.93 0.82 0.83
Bengali EN-BN  16.02 16.99 74.90 72.04 0.71 0.72 0.41 0.43 52.15 53.50 0.84 0.85
BN-EN 2822 29.15 62.60 62.01 0.76 0.77 0.61 0.62 58.03 58.93 0.86 0.87
Hindi EN-HI  31.41 29.77 57.82 60.38 0.78 0.77 0.56 0.54 56.60 55.32 0.79 0.78
HI-EN  32.59 31.89 57.66 57.47 0.78 0.79 0.65 0.65 61.89 61.96 0.86 0.87

Algorithm 1 Pseudocode : Backtranslation

Require: languagel-language2 parallel data,
language2 monolingual data

Ensure: Trained model combining original and
synthetically generated data

Data Collection:
1. languagel-language2 parallel data, lan-
guage2 monolingual data.

Training language2 -> languagel Model:
2. Train a model to translate from language2
to languagel with parallel data.

Backtranslation:

3. Use the trained language2 -> languagel
model to translate monolingual language2
dataset to languagel dataset.

4. Combine the synthetic parallel cor-
pus(translated languagel data with the orig-
inal language2 monolingual data) with the
original parallel corpus.

Model Training:

5. Train a new model for languagel to lan-
guage2 using the newly combined data (gen-
erated data from step 4).

[Popovi¢, 2015], and COMET [Rei et al., 2020]
scores.

The performance metrics generated from NMT
model, denoted by “X”, and Backtranslation, de-
noted by “Y” are shown in Table 2. Using NMT,
the BLEU score ranges between 0.26 to 32.59.
RIBES and METEOR scores lie between 0.14 to
0.78 and 0.07 to 0.65. TER score varies between
57.66 to 178.79, whereas the chrF score ranges
from 9.55 to 61.89, and the COMET score ranges
from 0.50 to 0.86. In general, using NMT, it
is noticed that the model performs better for ILs-
English (in terms of evaluation metrics). This is
likely due to the fact that English has relatively
poor morphology in comparison with numerous
ILs. It is also observed that the model-generating
output for Hindi (HI), Punjabi (PN), and Bengali
(BN) is good compared to other languages. The
datasets of BN and HI languages are qualitative
and less noisy; hence, they perform better than
other languages. Similarly, due to its smaller
dataset size, the model generating translation out-
put for the Assamese(AS) language consistently
performs poorly in various evaluation metrics. Af-
ter analysis of the dataset, cases of inaccurate trans-
lations are found in the AS dataset, which adds to
the lower evaluation scores. For example, in the
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AS dataset, fFgE 3HEE @@ 4399 TG7I-
T9)f T fo1d WIfRF? It is translated as “when
it comes to speaking gods word, we will not dis-
obey our god, even in lands where modern - day
amaziahs are fomenting cruel persecution . ” How-
ever, its translation using Google translator is “
What kind of unjust things did some Israelites
do?”. Even the model-generated output for the
Odia (OR) language performed poorly due to its
smaller dataset size, which followed a pattern seen
with the Assamese language. It also performed
poorly due to its smaller dataset size, following
a pattern seen with the Assamese language. As
shown in Tables 2, a small improvement (in terms
of evaluation metrics) is noticed across all the lan-
guage pairs after backtranslation (with some excep-
tions such as AS, KN-EN, HI, EN-ML, KN-EN,
and EN-MR). After the backtranslation method,
the BLEU score ranges from 7.87 to 34.74 whereas
RIBES and METEOR range from 0.19 to 0.42 and
0.58 to 0.76 respectively. TER scores vary be-
tween 61.7 to 123.65 and chrF scores lie between
4.93 to 61.89. COMET which offers a compre-
hensive evaluation toolkit, assigns scores using BT
ranging from 0.50 to 0.85. The results demonstrate
that the use of backtranslation has less impact and
has not improved models with high BLEU score
NMT baselines, for instance, the HI model has no
improvement and it decreases the evaluation met-
rics. Backtranslation has shown a significant effect
in languages such as Tamil where the EN-TE in-
creases by 1.39 BLEU score. Indic languages are
subject-object-verb (SOV) languages, whereas En-
glish is subject-verb-object (SVO), which means
that word order frequently changes significantly.
In backtranslation, synthetic Indic sentences de-
rived from English may have an SVO structure that
differs from natural Hindi constructions providing
more “translationese”. Dravidian languages such
as Tamil, Telugu, Kannada, and Malayalam have
rich agglutinative morphology, where word stems
combine with extensive inflections and deriva-
tions. This is difficult for models with limited
data to generalize, leading to issues in tense, as-
pect, modality, gender, and case generation when
translating back and forth. The discrepancies be-
tween RIBES, METEOR, chrF, TER, METEOR,
COMET, and BLEU are due to their focus on dif-
ferent aspects of language quality. An interest-
ing finding from our backtranslation investigations
is that Assamese, which performed poorly with
NMT, performed even worse with backtranslation.

Similarly, Hindi despite having a better result with
NMT, failed to produce substantial improvements
through backtranslation. TA, KN, TE, and ML are
agglutinative, which means that words are often
created through the combination of smaller units
(morphemes) having particular meanings. Hence,
these languages benefit from word formation while
using BT because their learned patterns can be uti-
lized continuously during backtranslation. How-
ever, in EN-ML, KN-EN a small decrease in eval-
uation metrics is noticed. The findings show a
slight decrease in evaluations in some ILs when
BT is used. Particularly, variations to this decre-
ment exist, especially in translations from English
to ILS. The limited effect may be caused by a num-
ber of factors, including the inherent characteris-
tics of the language pair being translated, potential
domain inconsistencies, and the quality and diver-
sity of the language.

6 Conclusion

In this paper, a baseline NMT model on the
Samanantar dataset utilizing transformer architec-
ture is developed. In terms of BLEU, RIBES,
METEOR, chrF, and COMET, Hindi excels when
compared to other languages using NMT. From the
result, it has been observed that the ILs-English
NMT model outperforms and achieves higher
BLEU scores than the English-ILs NMT model.
For EN-IL translation using the NMT model, PA,
GU, BN, and HI perform better than other lan-
guages while for IL-EN translation PA, TE, BN,
and HI perform better than other languages. The
paper also discusses and investigates the effective-
ness of backtranslation (BT) for ILs and checks its
performance in MT model. The results show that
although BT enhanced the model’s performance,
however, this improvement was not as large as an-
ticipated, and the model did not significantly out-
perform the baseline NMT models. One reason for
the lack of noticeable improvements could be that
the baseline NMT models’ performance is subpar.
An analysis of the experiment shows that while
NMT models perform substantially better in some
cases, they generally produce disappointing results
over a wide range of languages. Even in these
circumstances, their performance is below expec-
tations. Since BT uses NMT models to produce
data, its shortcomings affect its capacity to produce
high-quality data. Another factor could be BT per-
forms best when for experiments high-quality data
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in both languages are available. However, even af-
ter filtration, the data obtained from experiments
with ILs is not particularly clean or reliable. This
means that the models that are used to create BT
data aren’t very good. Hence, there is not much ef-
fect of BT being noticed using ILs. In future work,
our findings can be expanded by examining mono-
lingual datasets of varying sizes and domains to
precisely determine the different levels of satura-
tion for backtranslation.

Limitation

The limitation of this work originates mainly from
the scope and methodology of the back translation
studies for 11 ILs. While this work gives helpful
insights into enhancing translation quality, it does
not cover all ILs, which limits the findings’ gen-
eralizability. It is also observed that the size and
quality of the original dataset were a problem, par-
ticularly for these ILs, since the results might have
been impacted by noisy or inadequate data. Fur-
thermore, computing constraints prevented the ex-
ploration of more advanced strategies, such as fine-
tuning large-scale models for each language. Fur-
thermore, these works only used backtranslation as
a data augmentation strategy, leaving the potential
for future research into complementing techniques
such as multilingual pretraining or synthetic data
production. These limitations identify potential ar-
eas for future research that could improve the tech-
nique and widen the scope of our work.
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A Appendix

The following section contains translation in-
stances using both NMT and NMT with backtrans-
lation models.

1. English to Odia

English: He built a WiFi door bell, he
said.

Reference: 69 SIQTIR @Qle' Qg Fils
@ReQl 69 @PRE

Reference Transliteration: Se WiFi kabaata
ghanti nirmana karithiba se kahichhanti.
Reference Word-wise English: He WiFi
door bell built has he said.

Generated using NMT model:: 64 SIQ
PR 6QIQ 60R A6 aReRl @R
Transliteration: Se WiFi door bell nirmana
karithiba kahichhanti.

Word-wise English: He WiFi door bell built
has said.

Generated using Backtranslation model:
69 @228 64, 69 666\ GIRFIR KIS
QEPRAE |

Transliteration: Se kahichhanti je, se gotie
WiFi kabaata bareichhanti.

Word-wise English: He said that he a WiFi
door has built.

QOdia to English

Odia: 64 SRR 6Ll 6Qm acllsl
@RYYQ RLR3

Transliteration: Se wifi door bel nirmana
karithiba kahichhanti.

Word-wise English: He said that he has

made a WiFi door bell.
Reference: He built a WiFi door bell, he
said.

Generated using NMT model: he said he
has constructed wifi.
Generated using Backtranslation model:
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he said that he had constructed the wifi.

. English to Assamese
English: During his trip, Iwasaki ran
into trouble on many occasions.

Reference: Q3 Irare [(fSy swmoe 3=0-
=i [Rormo Af3fee |

Transliteration: Ei jatraat bibhinna somoyot
Iwasaki bipadat porisil.

Word-wise English: This journey in various
times Iwasaki trouble in faced.

Generated uisng NMT model: a3 k3w
FIIO (TLS WG IR T |
Generated uisng Backtranslation model:
a3 Frars [{(ifey swwe 3aefs [emo
*ff3fea |

Transliteration: Ei bishoye poroborti lekhat
alochona kora habo.

Word-wise English: This topic on next
writing discuss done will be.

Assamese to English

Assamese: 93 Tare R[(feg swwo
eIl Rere siffe

Transliteration: eai jatraat eebivii somoyot
iwasaik eebopodot pirisol

Word-wise English: This journey was in
various times Iwasaki trouble in faced.
Reference: During his trip, Iwasaki ran into
trouble on many occasions.
Generated using NMT model:
followed by a few days ago.
Generated using Backtranslation model:he
said that he had a fine example for his wife
and his wife.

this was

. English to Punjabi

English: He built a WiFi door bell, he
said.

Reference: €76 foar, €ns ffq edt-at
39 9% geret 31

Transliteration: Usne keha, usne ik WiFi
door bell banayi hai.

Word-wise English: He said, he a WiFi door
bell has made.

Generated using NMT model: @@ faa fa
8a' & eret-aret ot uidt emrel |
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Transliteration: Unha keha ki unha ne WiFi
di ghanti vajaayi.

Word-wise English: They said that they
WiFi’s bell rang.

Generated using Backtranslation model:
I

Transliteration: Usne ek WiFi door ghanti
banayi, “usne keha.”

Word-wise English: He a WiFi door bell
made, “he said.”

Punjabi to English

Punjabi: QFI?S faar, @Fl?i ffa edl-ard
39 98 gt 31

Transliteration: Usne keha, usne ik WiFi
door bell banayi hai.

Word-wise English: He said, he a WiFi door
bell has made.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model:he said, he
has built a wi-fi door bell.

Generated using Backtranslation model:
he has created a wi-fi door bell.

. English to Gujarati

English: He built a WiFi door bell, he
said.

Reference: dHQl ASSIOSR dd il sd,
M dHQL 56 ©g.

Transliteration: Temne WiFi door bell
banavyo hato, em temne kahyu hato. Word-
wise English: He WiFi door bell built was,
he said was.

Generated using NMT model: c\lHQ\l qlgs-
$18 Rl oAl sdl. |

Transliteration: Temne WiFi bari banavi
hati.

Word-wise Translation:
made had.

Generated using Backtranslation model:
AHBL AlEslE GlRE) ted (Mgl s «d.
Transliteration: Temne WiFi baranu ghant
nu nirmaan karyu hato.

Word-wise English: He WiFi door bell’s
construction did was.

He WiFi window



Gujarati to English

Gujarati: dq8l AlFsOsR dd ol
Sdll, 2H dHSl 58] .

Transliteration: Temne vaiphai dor bel

banavyo hato, em temne kahyu hutu.
Word-wise English: He built a Wi-Fi
doorbell, he said.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model:he had built
the wimbledon bell, he said.

Generated using Backtranslation model:he
built a wi-fi bell,” "’he said.”.

. English to Marathi

English: He built a WiFi door bell, he
said.

Reference: d UM i, AT WiFi SISR s
CECCIRCIES

Transliteration: Te mhanale ki, tyanni WiFi
door bell banvali aahe.

Word-wise Translation: He said that he

WiFi door bell made has.

Generated using NMT model: it ama-
I ERT sel TaR chedl.

Transliteration: Tyanni WiFi darachi bell
tayar keli.

Word-wise Translation: He WiFi door’s
bell prepared did.

Generated using Backtranslation model:

Transliteration: Tyanni WiFi daravarachi
bell banavali.

Word-wise Translation: He WiFi door-on
bell made.

Marathi to English

Marathi: d ®Umel &I, & WiFi SI8R
S SIaet! 3TTe.

Transliteration: tem hanale ka, ta yanni
WiFi doar bel banavali ahe

Word-wise Translation: They said that they
have made a WiFi doorbell.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model: they have
created wifi dover bell,” ”he said.”
Generated using Backtranslation model:
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9999 G’he has made Wiﬁ pie bell,’, ’7he Said.”

. English to Kannada

English: He built a WiFi door bell, he
said.

Reference: €9z30) fgjﬁd t3e0s 23e>¢ 30339
BRTT8 0 €930 BePTD.
Transliteration:  Avaru WiFi
ghante nirmisidare endu heLidaru.
Word-wise Translation: He WiFi door bell
built has, he said.

Generated using NMT model: €9z33) 333

dvaarada

Beedreressdy AeERTIT.
Transliteration: Avaru  WiFi kada
tayarisidaru.

Word-wise Translation: He WiFi door
prepared.

nn

Generated using Backtranslation model:
"e93D ﬁdﬁé} 239ReD AERTD” "ot
e[ BeDTA.”
Transliteration:  Avaru WiFi
ghante kattidaru endu heLidaru.
Word-wise English: He WiFi door’s bell
built has, he said.

dvaarada

Kannada to English

Kannada :e9530) 233, tdeeo® 23e® 303
BRTTB 0o €9z33d BePTD.
Transliteration: Avaru vaiphai dor bel
tayarisiddare endu avaru helidaru.
Word-wise English: They have made a
Wi-Fi doorbell, they said.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model:
have made a wi-fi door bell.”
Generated using Backtranslation model:
he said that they have made wi-fi dorm.

999999

they

. English to Tamil

English: He built a WiFi door bell, he
said.

Reference:3{6U[J, SHT60T  6D6Uco6HILI
&5H6 SIMIeNLIL essflemw 2 (Heums
SHWHTHS Fan)6oTiT.

Transliteration: Avar WiFi kadhavu mani
amaithadhaga avar sonnaar.



Word-wise English: He WiFi door bell
made as he said.

Generated using NMT model: Sj6Uly
() 6M6UcoedILI &HHe Loessilemi
&L 1geoTmry.”
Transliteration:
amaithaar.
Word-wise English: He WiFi door made.
Generated using Backtranslation model:
SI6UTEM6UcoEDILI H&6M6U &L Ig6BTITI.
Transliteration: Avar WiFi kadhavu
maniyai amaithadhaga sonnaar.

Word-wise English: He WiFi door bell built
said.

mmon

Avar WiFi kadhavai

Tamil to English

Tamil: 6], HTEIT EM6ULEDLI &H&6)]
SiMIefliy wessflenw 2 (HeuTsEIw
HT&HS FaM)6sTTI.

Transliteration: Avar, tan vai-fai kathavu
arivippu maniyi uruvakkiyadag kuriJar.
Word-wise translation: He, he WiFi door
bell built said.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model: he said he
created the wifi door bell.

Generated using Backtranslation model:he
said he created the wi-fi doors.

. English to Telugu

English: He built a WiFi door bell, he

said.

Reference: e9es5 WiFi &5 3¢5 QBoeesd.
Q) BaINCH.

Transliteration: Athanu WiFi door bell

nirminchadu. Ani cheppadu.
Word-wise translation: He WiFi door bell
built. That said.

Generated using NMT model: Wi-Fi
E3yS 5 DBPRBHE) BOF..
Transliteration: Wi-Fi  doorbell nu

nirminchinatlu teliparu.

Word-wise translation: Wi-Fi doorbell that
built informed.

Generated using Backtranslation model:
3% E°3)9) 1BoES BOJIEd.

Telugu to English
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Telugu : ¢S5 WiFi &6 86 dBoecd.
Q) WD,

Transliteration: Atanu WiFi dor bel nir-
maimcadu ani ceppadu.

Word-wise translation: He WiFi door bell
built said.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model: “he built the
wifi door bell.” ””

Generated using Backtranslation model:
he said he built the wifi door bell.

. English to Malayalam

English: He built a WiFi door bell, he said.
Reference: ®@0GGa0o 63@3 WiFi GWID
OMIDD DENILHIOWMT @RAIM  alD
61010},

Transliteration: Ayaal WiFi kavaadamani
nirmichu, ennu paranju.

Word-wise English: He WiFi door bell built,
said.

Generated using NMT model: @0GGaNo
60} O6NINNN IR SENITD MIdaR]
203
Transliteration:
panithu.
Word-wise English: He WiFi door built.
Generated using Backtranslation model:
@PG3aNo  63@©@) 6)6U66)N BOID
&6nU@d MR 5)3, " @RGGEaN0 IO},
Transliteration: Ayaal WiFi kavaadamani
nirmichu ennu paranju.

Word-wise English: He WiFi door bell built,
said.

Ayaal WiFi kavaadam

Malayalam to English
Malayalam:@083a0o0 @) WiFi Gawod
OMIMD DENILHOWMT @RAIM  lD
61010},

Transliteration: Addeham oru WiFi dor bel
untakkiyennu avan palafifiu.

Word-wise translation: He a WiFi door bell
made said.

Reference: He built a WiFi door bell, he
said.

Generated using NMT model:He built a
WiF1i door bell, he said.

Generated using Backtranslation model:he
said he made a wifi door.



10. English to Bengali
English: He built a WiFi door bell, he said.
Reference: fofd T @ fofy o
SI3-FI3 (TIF @ (o IR
Transliteration: Tini bolechilen je tini ekti
WiFi dorjar ghonta toiri korechilen.
Word-wise Translation: He said that he a
WiFi door’s bell created had.
Generated using NMT model: fSfq Ice19,
" G313 TASIN 0T IS |
Transliteration: Tini bolechen tini ekti WiFi
dorja toiri korechen.
Word-wise Translation: He said he a WiFi
door created has.
Generated using Backtranslation model:

fofd = suRwR wwen @& ok
IAREET |

Transliteration: Tini bolechilen je tini ekti
WiFi ghontar bebostha korechilen.
Word-wise Translation: He said that he a
WiFi bell’s arrangement had done.

Bengali to English

Bengali: fSfF Tae @ fofF asfe ws-
T3 (GIF [@F CofF FERMBET
Transliteration: Tini janan je tini €kati wai-
phai dor bel tairt karechélen.

Word-wise translation: He informs that he a
WiFi door bell made has.

Reference:He built a WiFi door bell, he said.
Generated using NMT model: He built a
WiFi door bell, he said.

Generated using Backtranslation model:he
said he had created a wi-fi door bell.

11. English to Hindi

English: He built a WiFi door bell, he

said.
Reference: 3Igi4 (S fAfA=Tw) e, fh

Transliteration: Unhone (Jamie Siminoff)
kaha, ki unhone ek WiFi door bell banai hai.
Word-wise translation: He (Jamie Simi-
noff) said, that he a WiFi door bell made is.
Generated using NMT model: 3814 el
foh I Ueh ATSHIS SR &t 518 &
Transliteration: Unhone kaha ki unhone ek
WiFi door bell banai hai.

Word-wise translation: He said that he a
WiFi door bell made is.

Generated using Backtranslation model:

31 gl feh Ueh aTSthIS SR ol SIS 8 |
Transliteration: Unhone kaha ki ek WiFi
door bell banai hai.

Word-wise translation: He said that a WiFi
door bell made is.

Hindi to English

Hindi: G@ﬁ (@ﬂ:ﬁ @rﬁ'—ﬁm) <hal, o G%ﬁfr
Ueh GISthIE SR &l TS 2.

Reference:He built a WiFi door bell, he said.
Transliteration: Unhone (Jamie SiminofY)
kaha, ki unhone ek WiFi1 dor bel banai hai.
Word-wise translation: They (Jamie Simi-
noff) said, that they a WiFi door bell made
have.

Generated using NMT model: he (jamie
siminouf) said he has made a wifi door bell.
Generated using Backtranslation model:
he (jamie siminouf) said he made a wifi door
bell.

B Error Analysis

All the generated translations are categorized and
analyzed into Multidimensional Quality Metrics
(MQM)' based error analysis categories. Differ-
ent categories of error are analyzed based on their
accuracy, fluency, and mistranslations that impact
the translation quality. For example, while trans-
lating of English to Odia language, it has been
observed that the NMT model generated transla-
tion for “He built a WiFi door bell, he said” has
a minor error. It translates as “he built a WiFi
doorbell, he said,” but uses "6@m" (bel) (translit-
eration for bell) rather than the native Odia "Q&}"
(“bell”). The translation generated by NMT result
is more consistent than the backtranslation model,
though both exhibit jarring translations. While the
translation of the NMT model is simpler, errors
still remain due to inaccurate word choices. Sim-
ilarly, the term “doorbell” is missing from both
translations when analyzing the error for the Odia
to English translation generated using the nmt and
backtranslation models. This results in a signifi-
cant meaning error as the intended object is inac-
curately converted to “WiFi,” distorting the trans-
lation. This type of error falls under the category of
‘Omission’ under the MQM framework. Despite

'MQM, Error types: Typology, n.d., accessed: 2024-
10-31.  [Online].  Available: https://themgm.org/
error-types-2/typology/
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the fact that both outputs are acceptable in English,
the omission error hinders readability and clarity
of meaning. By leaving out the word “door bell”,
the translations lose important context, changing
how the subject’s action is interpreted and introduc-
ing incomplete understanding. Similarly, while an-
alyzing the English to Assamese translation utiliz-
ing NMT models, the statement in English, “Dur-
ing his trip, Iwasaki ran into trouble on many occa-
sions,” is incorrectly translated into Assamese as,
“This will be discussed in the next article,” which
is unrelated. This is a serious accuracy error un-
der the MQM framework that totally obscures the
meaning. However, while using the back trans-
lation model, it is able to translate the sentence,
probably because of its closer grammatical struc-
ture as well as vocabulary compatibility. In this
case, NMT’s fluency is low since it produces a sen-
tence that is wholly unrelated to the input, while
the backtranslation is fluent and accurately reflects
the reference text. For Assamese to English trans-
lation, the NMT model erroneously generates a
timeline-based sentence, “this was followed by a
few days ago,” which does not accurately portray
the intended narrative of difficulties. The transla-
tion generated using backtranslation model is en-
tirely incomprehensible, implying unrelated parts
such as “fine example for his wife,” which have no
resemblance to the original. This type of error falls
under the category of mistranslation, accuracy, and
incoherence. This translation generated from the
models contains serious mistranslation errors that
completely change the meaning of the text, ren-
dering both outputs unintelligible to the intended
reader.

For the case of English to Punjabi language
translation, NMT model renders “He built a WiFi
doorbell, he said” as “he said he played a Wi-Fi
bell,” which is inaccurate since “built” is mistaken
for “played.” Nevertheless, the backtranslation
model, which yields “he built a WiFi doorbell, he
said,” is more accurate, despite a few small gram-
matical errors. Both translations lacked natural
flow. In Punjabi, precise terminology would bet-
ter indicate construction (“g&TeM™) (“Bana‘i’a”)
rather than (“@AT€1”) (Vaja’i). Translation gener-
ated from backtranslation model is easier to read.
Both translations lacked natural flow. In Pun-
jabi, precise terminology would better indicate
construction (“&&Tfem™) (Bana‘i’a) rather than
(“gAmEt”) (“Vaja’i”). A backtranslated statement
is easier to read. Meanwhile, for Punjabi to En-

glish language translation, both translations effec-
tively convey the majority of the original content.
However, since the backtranslation omits the orig-
inal speaker tag, there is a small amount of ambi-
guity, and the structure lacks consistency. The ab-
sence of “he said” makes the sentence appear in-
complete in terms of dialogue or quote structure.
This type of error falls under the category of ‘Omis-
sion’ and ‘Fluency’ under the MQM framework.
Minor challenges hinder the overall effectiveness
of backtranslation, although the meaning is primar-
ily maintained in both models.

From English to Gujarati translation, the NMT
model interprets “doorbell” as “Wimbledon bell,”
which is a severe accuracy issue. This issue
could be due to an uncertain vocabulary corpus in
English-Gujarati translations. However, the trans-
lation generated by the back translation produces
output closer to the desired meaning, but it con-
tains redundancy, such as “constructed,” which re-
duces the clarity. Similarly, for the translation of
Gujarati to English using the NMT model, “Wim-
bledon bell” is an incorrect translation for “WiFi
door bell,” most likely owing to phonetic or contex-
tual confusion, resulting in a significant terminol-
ogy issue. While the backtranslation model almost
catches the original meaning, there is a punctua-
tion issue with the quotation marks, causing some
uncertainty. The NMT model’s translation signifi-
cantly misrepresents the crucial term, resulting in
confusion. The backtranslation output is more ac-
curate, with minimal punctuation and fluency mis-
takes. This type of error falls under the ‘mistrans-
lation” and ‘Fluency’ categories under the MQM
framework.

Similarly, for translating English to Marathi
language, the NMT translation, “they have in-
vented wifi Dover bell, he remarked,” transforms
the “WiFi doorbell” to “Dover bell,” resulting in an
accuracy issue. Backtranslation, on the other hand,
retains the term “doorbell,” despite slight difficul-
ties with clarity and contextual accuracy. It has
been noticed that NMT has reduced fluency due
to the arbitrary addition of “Dover,” whereas back-
translation gives somewhat enhanced fluency. The
fundamental vocabulary problems cause misinter-
pretation, and punctuation further complicates in-
telligibility. Similarly, for translation of Marathi
to English, both models misinterpret “door bell”
as “dover bell” or “pie bell,” representing signifi-
cant terminology errors. Additionally, both trans-
lations exhibit punctuation issues with quotation
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marks, creating readability issues. This type of er-
ror falls under the ‘mistranslation’ and ‘Terminol-
ogy’ categories under the MQM framework. The
major vocabulary problems cause misinterpreta-
tion, and punctuation further reduces clarity.

In the case of translation from English to Kan-
nada translation, the NMT model’s translation
“they have made Wi-Fi bell, he said” comprises an
accuracy concern, since it fails to indicate that the
bell is built and functional. The backtranslation is
also imprecise. Both outputs contain awkward lan-
guage, which reduces overall fluency. The use of
the appropriate Kannada phrase for “WiFi” would
improve readability. When translating from Kan-
nada to English sentence using the Backtransla-
tion methodology, the word “dorm” is misused,
changing its meaning to imply something quite
unrelated. While the translation generated from
NMT model is more precise, the absence of ini-
tial topic background diminishes precision. The
translation output generated from the backtransla-
tion model deviates from the meaning of the source
language, whereas the NMT model is more accu-
rate but might benefit from improved consistency.
This type of error falls under the ‘fluency’ and ‘ter-
minology’ category under the MQM framework.

However, in the case of English to Telugu trans-
lation, NMT and backtranslation both handle the
word “doorbell” inconsistently. While the back-
translation slightly improves the clarity, NMT cre-
ates errors, such as interpreting it as “doarbell.”
However, the translation generated from NMT
models is slightly awkward but understandable,
while the back translation is marginally better in
readability. Similarly, while translating from Tel-
ugu to English language translation, the NMT
model accurately translates "WiFi door bell” and
provides the entire concept with clarity and struc-
ture. The translation generated from the backtrans-
lation model, such as others, omits the “door,”
which slightly alters the object’s specificity. This
type of error falls under the ‘Omission ’ and ‘Ac-
curacy’ category under the MQM framework. The
backtranslation model loses some specificity by
omitting off “door,” whereas the NMT approach
produces a clear and precise translation.

While analysis of English to Malayalam trans-
lation, NMT clearly translates the statement with
small variations, such as changing “doorbell” to
“door ring.” Backtranslation creates ambiguity by
misinterpreting “WiFi door.” The translation gen-
erated from NMT models accurately translates

the statement with slight modifications, such as
changing “doorbell” to ”door ring.” Backtransla-
tion causes uncertainty by misinterpreting “WiFi
door.” The NMT methodology generates more flu-
ent text, whereas backtranslation introduces some
ambiguity by misinterpreting “WiFi door.”. For
Malayalam to English translation, The translation
generated from the NMT model captures the entire
translation accurately, maintaining the terminol-
ogy “WiFi door bell” correctly. However, a com-
mon problem seen in translation generated from
the backtranslation model leaves out “door” from
“WiFi door bell,” which somewhat reduces speci-
ficity. The backtranslation’s omission of “door”
reduces the clarity. With the NMT model, correct
translation is provided. Hence, this type of error
falls under the ‘Omission * and ‘Accuracy’ cate-
gory under the MQM framework.

Similarly, while translating from English to
Bengali sentence, the translation generated from
the NMT and back translation model provides cor-
rect words; however, the NMT model incorrectly
translates “doorbell” as “door knocker.” The NMT
translation is more consistent in fluency than the
backtranslation, which has minor grammatical is-
sues. Likewise, for Bengali to English translation,
the NMT model accurately captures the meaning
of “WiFi door bell” while still keeping the quote’s
context. Similarly, backtranslation , the word
“door” is omitted, resulting in a slight loss of clar-
ity and object specificity. Hence, this type of er-
ror falls under the ‘Omission’ and ‘Accuracy’ cat-
egory under the MQM framework. The backtrans-
lation model includes a slight omission, whereas
the NMT model accurately represents the source
text.

For translation of English to Hindi language,
the NMT and backtranslation methods produce
similar sentences that accurately preserve the
meaning, using the Hindi term “&15 8”. Both the
translations generated express the speaker’s intent.
Fluency is strong in both models, with NMT hav-
ing a minor advantage due to its consistent phras-
ing. However, while translating Hindi to English
sentence, the NMT model correctly captures the
message and uses the crucial terminology “WiFi
doorbell” while keeping the main context. The
backtranslation model omits the word “door” in
“WiFi door bell,” resulting in a modest omission
and loss of detail. Both translations are mostly cor-
rect, but the backtranslation model’s omission of
the word “door” diminishes specificity.
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Abstract

Due to reasons of convenience and lack of tech
literacy, transliteration (i.e., Romanizing native
scripts instead of using localization tools) is em-
inently prevalent in the context of low-resource
languages such as Sinhala, which have their
own writing script. In this study, our focus
is on Romanized Sinhala transliteration. We
propose two methods to address this problem:
Our baseline is a rule-based method, which
is then compared against our second method
where we approach the transliteration problem
as a sequence-to-sequence task akin to the es-
tablished Neural Machine Translation (NMT)
task. For the latter, we propose a Transformer-
based Encode-Decoder solution. We witnessed
that the Transformer-based method could grab
many ad-hoc patterns within the Romanized
scripts compared to the rule-based method.
The code base associated with this paper is
available on GitHub - https://github.com/
kasunw22/Sinhala-Transliterator/

1 Introduction

Sinhala Language, spoken by over 16 million peo-
ple in Sri Lanka, presents unique challenges for
computational processing due to its distinct script
and structure (De Silva, 2019). In modern-day dig-
ital communication, it is common to use Singlishl,
where Sinhala (Sinhalese) words are written with
Latin (English) script (Liwera and Ranathunga,
2020). While the widespread use of Singlish in
informal communication calls for efficient translit-
eration systems capable of accurately converting it
into the Sinhala script, this task is made difficult by
code-mixed and code-switched usage of Singlish
scripts (Rathnayake et al., 2022; Udawatta et al.,
2024). Further, ad-hoc approximations are used by
users when they approximate the Abugida Sinhala

“Equal contribution.
'Not to be confused with English-based creole used in
Singapore with the same name.

script (Liyanage et al., 2012) using the Latin script
which is an Alphabet (Pulgram, 1951). Yet, we do
not find sufficient transliteration research done for
Singlish.

As for many NLP tasks, the early solutions for
transliteration were based on rule-based techniques
that relied on predefined character mappings (San-
taholma, 2007). However, they often struggled
when confronted with the variability in the format
in which Sinhala words were written using English
script (Liwera and Ranathunga, 2020). In con-
trast, deep learning models, especially Transformer-
based architectures (Vaswani, 2017), have proved
to perform well for the transliteration task (Moran
and Lignos, 2020). However, such deep learning
methods have not been used to implement Translit-
eration systems related to Sinhala.

This paper introduces two distinct methods, a
rule-based approach and a deep learning-based ap-
proach to solve the Singlish to Sinhala translit-
eration problem. The deep learning based
transliteration system is implemented on a pre-
trained sequence-to-sequence multilingual lan-
guage model, akin to a Machine Translation task.
Subsequently, we evaluate their effectiveness and
limitations. According to our results, we observed
that the deep learning approach is more robust to
language variability compared to the rule-based ap-
proach. The rest of the sections will discuss the
related work, our methodology, the results we ob-
tained, and the Conclusions.

2 Related work

Machine transliteration focuses on converting text
from one script to another using phonetic or
spelling equivalents, ideally mapping words or let-
ters systematically between writing systems (Kaur
and Singh, 2014).
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2.1 Rule-based Transliteration

Rule-based machine transliteration relies on pre-
defined grammar rules, a lexicon, and processing
software. It uses morphological, syntactic, and
semantic information from source and target lan-
guages, with human experts designing rules to
guide transliteration. These rules ensure the in-
put structure and meaning are accurately mapped
to the target language, preserving integrity and con-
text in the transliterated output (Kaur and Singh,
2014; Athukorala and Sumanathilaka, 2024). It
includes methods such as Direct Machine Trans-
lations (MT), Transfer-based MT, and Interlingual
MT (Sumanathilaka, 2023). Although effective,
rule-based machine transliteration is known for be-
ing time-consuming and complex because it re-
quires creating detailed linguistic rules to transliter-
ate sentences from the source language to the target
language (Sumanathilaka, 2023).

Tennage et al. (2018) introduced the first translit-
eration system for Sinhala to English. This translit-
eration tool utilized character mapping tables to
convert words from the native scripts of both lan-
guages into a common phonetic representation in
English. The authors report that the transliteration
approach allows for better preservation of word or-
dering and more accurate transliteration of phrases.
Their system shows a good accuracy for handling
of loanwords—where both languages share similar
transliterated forms—and also enhances the overall
translation quality by allowing for better mapping
of linguistic structures, thus addressing the chal-
lenges posed by the morphological richness of both
languages.

Hybrid transliteration systems that combine rule-
based methods with a trigram model have shown
to improve the accuracy of converting Singlish to
Sinhala (Liwera and Ranathunga, 2020). The rule-
based component applies predefined rules for vow-
els and consonants, while the trigram model uses
statistical patterns from social media comments to
address the variability and ambiguity of Singlish
input.

2.2 Transformers for multilingual
Sequence-to-Sequence Generation Tasks

For sequence-to-sequence (Seq2Seq) generation
tasks such as Machine Translation (MT), the
proven architecture is the Encoder-Decoder ar-
chitecture. =~ When it comes to multilingual
Transformer-based pre-trained Encoder-Decoder

architectures, mT5 (Xue et al., 2021) which is
based on T5 (Raffel et al., 2020), mBART (Liu,
2020) which is based on BART (Lewis, 2019),
M2M100 (Fan et al., 2020), MarianNMT (Tam-
bouratzis, 2021) have been popular choices. The
advantage of the Transformer-based Encoder-
Decoder architecture is that due to its self-attention
and cross-attention mechanisms, the relationships
with and among the source and the target sequence
are properly captured (Vaswani, 2017). Seq2Seq,
has since been utilized in domains other than
MT (de Almeida et al., 2020).

2.3 Translation Models with Sinhala
Language Support

There are several free and open-source multilingual
translation models that include Sinhala. Among
them mT5, mBART, M2M 100, MarianNMT, and
NLLBZ(Costa-jussé et al., 2022) are prominent.
Both M2M100 and NLLB use the same model
architecture but two different training datasets.
M2M100 uses CCMatrix (Schwenk et al., 2021)
and CCAlighned (EI-Kishky et al., 2019) datasets
while NLLB uses the NLLB (Costa-jussa et al.,
2022) dataset. On the other hand, MarianNMT
model uses a different encoder-decoder architec-
ture, and the dataset they use is OPUS-100 (Zhang
et al., 2020). Both mBART and mT5 have been
used for various Sinhala text generation tasks, in-
cluding Machine Translation (Niyarepola et al.,
2022; Ranathunga et al., 2024b; Thillainathan et al.,
2021; Lee et al., 2022). However, according to a re-
cent study by Ranathunga et al. (2024a), NLLB has
proven to be the best among them for translation
tasks that involve Sinhala.

2.4 Deep Learning based Transliteration

Deselaers et al. (2009) proposed a deep belief
system-based transliteration solution using Deep
Belief Networks (DBN). DBN architecture is al-
most similar to the encoder-decoder architecture.
Deselaers et al. (2009) mentioned that translitera-
tion can be considered a translation task at the char-
acter level. Subsequent neural network-based (NN)
solutions for the transliteration task mainly relied
on recurrent models such as simple RNN, LSTM,
and GRU (Shao and Nivre, 2016; Mahdi Mahsuli
and Safabakhsh, 2017; Rosca and Breuel, 2016;
Kundu et al., 2018). Zohrabi et al. (2023) have

2https: //github.com/facebookresearch/fairseq/
tree/nllb?tab=readme-ov-file
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used a Transformer-based approach for the translit-
eration of Azerbaijani. A comparative evaluation
of LSTM, biLSTM, GRU, and Transformer archi-
tectures for named entity transliteration has been
carried out by Moran and Lignos (2020). Accord-
ing to their evaluation, Transformer-based encoder-
decoder architectures outperform other architec-
tures.

3 Methodology

3.1 Rule-Based Transliteration System

Our rule-based approach uses predefined linguistic
rules to map Latin script (Singlish) to Sinhala script.
These rules cover vowels, consonants, diacritics,
and special characters. It extends the rule-based
transliteration system of Tennage et al. (2018) with
a few additions to the mapping rules when consid-
ering two and three-character mapping. Some of
the rules defined are shown in Table 1, where newly
added rules are highlighted. The process involves
two primary stages: rule definition and application.

Algorithm 1 Transliteration Algorithm

Require: Latin script word word
Ensure: Sinhala script word
1: result < «” > Initialize an empty string
2: 140 > Initialize index
3: while i < length(word) do
4: matched <— False
5 for lengthin {3,2, 1} do
substrings of decreasing length

> Check

6: substring <—word[i:i + length]

7 if substring in
transliteration_table then

8: result — result +
transliteration_table[substring]

9: i< 1 + length

10: matched < True

11: break

12: end if

13: end for

14: if not matched then

15: result < result + word[i]

16: i1+ 1

17: end if

18: end while
19: return result

The transliteration function processes each input
word and converts it to Sinhala using a character-
by-character matching strategy, as detailed below.

Latin Sinhala Latin Sinhala
Sequence | Character | Sequence | Character
a @ aa &
A & Aa [e23
i ® ie o}
u IS uu o
e ® ea &
I ©d o) ®
ka » ga ®
ma ® ya @
ra o} ba D)
ca o ja &5
ta ) la c
Da ) wa )
tha ) sa e
da ¢ ha )
na 2 pa ]
Na < La IS
mi ® thi B
Ka B Ga )
cha & Tha )
Dha ) dha @
Pa 5] bha ®
fa ) Ba ®
GNa = KNa =3
jha 72 Lu [S)
Luu & Sa @
sha ® GNa ®
ki ) ku )
ke om ko @20
kaa 2% kAa =
kie B kei ons
gi 8 gu @
ge Yo} go @m
gaa [o%) gAa fors
gie (6] gei clof
goe ool guu Q
gau ©®9 \n o

Table 1: Transliteration rules. The highlighted rules
were added by us.

The pseudocode is shown in Algorithm 1.
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* Input Processing: The system reads the input
word in Latin script and ensures it contains

only Latin characters.

* Longest Match Strategy: For each character
sequence, the system matches the longest pos-
sible substring (up to three characters). This
ensures that multi-character sequences such
as “th” or “aa” are mapped correctly before

shorter, single-character matches.

* Rule Application: If a match is found in the
transliteration table, the corresponding Sin-
hala character is appended to the result. If no
match is found, the character is added as is.




¢ Output Generation: The transliterated word
is returned and added to the output dataset.

3.2 Deep Learning-Based Transliteration
System

In this approach, we model transliteration as a trans-
lation task, as suggested by Deselaers et al. (2009).
Even though decoder-only Large Language Mod-
els (LLMs) are the state-of-the-art choice for most
of the NLP tasks including Machine Translation
nowadays, for many low-resource language trans-
lation tasks, still sequence-to-sequence modes are
commonly used (Ranathunga et al., 2023). Consid-
ering these factors, a Transformer-based encoder-
decoder model is our second approach to solving
the reverse transliteration problem.

Apart from the context-based generation, an-
other advantage of this approach is that unlike in
rule-based approaches, we do not need to manually
define the rules and we only need to find or cre-
ate a rich dataset that covers the possible scenarios
that could occur during the inference time. More-
over, the code-mixed and code-switched cases can
also be easily addressed in this approach simply by
extending the training dataset accordingly.

To have better accuracy, rather than training the
model from scratch, we used an existing multilin-
gual pre-trained sequence-to-sequence model that
is trained for the translation task, which has cov-
erage for Sinhala as well. To be specific, we have
selected the 418M version of the M2M 100 model?
(Fan et al., 2020) as our base model and fine-tuned
it for Romanized-Sinhala and Sinhala as a transla-
tion pair. We used the existing English language
code (i.e. en) for Romanized Sinhala and the Sin-
hala language code (i.e. s¢) for Sinhala. The rea-
son for selecting M2M100 is that the MarianMT
translation quality for the Sinhala-English pair is
a bit worse than M2M 100 and NLLB models (see
Table 2). Both NLLB and M2M100 use the same
model architectures and the translation qualities are
almost similar (Table 2). We choose M2M100 over
NLLB since NLLB model weights are bound with
some additional restricted terms and conditions*
while M2M100 weights are not>.

We fine-tuned M2M100 model in a way that
the Romanized script is considered as the English
translation of the corresponding Sinhala script. We

Shttps://huggingface.co/facebook/m2m100_418M

*https://github.com/facebookresearch/fairseq/
blob/nl11b/LICENSE.model.md
Shttps://choosealicense.com/licenses/mit/

used the M2M 100 model’s tokenizer® for the tok-
enization process. Since the model already knows
the basic linguistics from the translation task, it
only needs to learn the relationship between the
two new language pairs. Also in Romanized typ-
ing, it is more common to use code-mixed usage
within the content. Furthermore, since we are us-
ing a Transformer-based model, the context is also
taken into account when the transliteration is done.

4 Implementation

4.1 Dataset Preparation

The task is a sequence-to-sequence text generation
task, specifically developing a reverse transliterator
that converts Romanized Indo-Aryan languages to
their native scripts. Therefore what we need is a
parallel dataset that contains Romanized text and
the corresponding native script.

In order to create the training dataset, we
used the Dakshina (Roark et al., 2020) and Swa-
Bhasha (Sumanathilaka et al., 2023, 2024) datasets.
We further augmented the datasets by adding some
ad-hoc nature to the Romanized scripts by remov-
ing vowels and applying different common typing
patterns. See Table 3 for examples. We created a
dataset consisting of 10k parallel data points using
these data sources. We split that into a training set
of 9k data points and a validation set of 1k data
points for the model training and validation.

We have evaluated our two approaches on the
test sets® provided by the shared task on "Re-
verse Transliteration on Romanized Indo-Aryan
languages using ad-hoc transliterals", organized by
the IndoNLP workshop with COLING 2025. Test
set 1 consists of 10,000 parallel entries contain-
ing general Romanized typing patterns and, test
set 2 consists of 5000 parallel entries with ad-hoc
Romanized typing patterns that come across in
practical scenarios making it very challenging to
solve the reverse transliteration task. The original
datasets were not well structured. Therefore we
converted these datasets into CSV format, contain-
ing Romanized Sinhala script (Singlish) sentences
in one column and the corresponding expected Sin-
hala script in another.

4.2 Computational Resources

We used an NVIDIA Tesla T4 16GB GPU for the
training process. The important training hyper-

6https://github.com/IndoNLP—Workshop/
IndoNLP-2025-Shared-Task
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English Input Marian-MT Translation

M2M100 Translation

NLLB Translation

How do you know that this is correct?
It is the way he played that matters
not the amount of time he spent.

Qw0 eed; ¢sen 0@m ©3 Bwce?

Y ICH OB DOE PICSH FOAB BB

00 od B DD BD emew®; ¢siesy?
@y b OB GozEde By OB WOBY DICED
000 D150 0ZVed.

Qw30 00e®¢ (Yo 00m ©8 BwEd?

2y esEC® ®mOn 8w BB DO OB esT.
@1 OBBDOY BCSE EHHEDE.

It’s a great pleasure to meet you Qw00 »OD eOBIH YOOsY 00 BowsTesy

Nothing is impossible until you give up it | ®ws &m enwdsIm §R 3B OO 5%

DO »HB® WO

R0 Yemaensin 180 wnda

20 Ow g9 800 eud BBOA gedsm
©5%eD

w0 Im gnodnrmO BOTD A8 ewd .

It is neither beautiful nor strong I cdend 59 edBes 05008

S e ovl B emned.

I e BT oy

Table 2: Qualitative evaluation of translation models. Records shaded in light gray indicate the translations
are slightly incorrect and the dark gray shaded ones are really bad translations. Non-shaded ones are correct

translations.

Original Romanized
Script

Augmented Alternative

Sinhala Seript Romanized Scripts

Oya reta kewada ?
Oya rata kawd ?
Oya reta kewd ?
Oy rat kawd ?

Oy ret kewd ?

R0 A ¢ ? Oya rata kawada ?

Table 3: Data augmentation example

parameters have been listed in Table 4.

Hyperparameter Value
learning rate 2e-5
epochs 3
train batch size 8
gradient accumulation steps 1
effective training batch size 8
training precision fpl6
weight decay 0.01
optimizer Adam
learning rate scheduler linear
training dataset 9000
evaluation dataset 1000

Table 4: Training hyper-parameters of the deep learning
model

4.3 Evaluation Metrics

To assess the accuracy of the transliteration, we use
three key metrics:

¢ Word Error Rate (WER): Measures the dif-
ference between the predicted and reference
sentences at the word level. The lower the
WER the better.

¢ Character Error Rate (CER): Evaluates
character-level accuracy by calculating the
number of edits needed to convert the pre-
dicted output to the reference. The lower the
CER the better.

* BLEU Score: Assesses the overlap between
predicted and reference outputs. The higher
the BLEU score the better.

We used the metric implementations of Python
evaluate’ library for our evaluation.

5 Results and Discussion

Evaluation Average Result Average Result

Approach Matrix for Test Set 01  for Test Set 02

WER 0.6689 0.6809
Rule-based CER 0.2119 0.2202

BLEU 0.0177 0.0163

WER 0.1983 0.2413
DL-based CER 0.0579 0.0789

BLEU 0.5268 0.4384

Table 5: Results for rule-based and deep learning based
techniques

Table 5 shows the evaluation metrics for rule-
based and deep learning-based approaches evalu-
ated on the provided two test sets. As can be seen
in Table 6, the deep learning approach is more ro-
bust to the ad-hoc variations of Romanized typing
compared to the rule-based approach.

Romanized Script

Rule-based Result

| DL-based Result

kmk nehe modyi wge

PO evrew 0@18 De®

20 i eDINE Ded

mta ehema denila ne eth
eya uda thttuwe innkota
klin ehema denila ne

OO Bewd etBc o OB
0w &8 ©O0Yed euisiemd
BE dond 0cBc o

00 Yol gBcs oy &
O ¢B ©OYed eImIemO
DE dend B v

eka nrkyi oya dnnwa
mma adahas krna de

Om 53088 Ve ¢5IBIO
98 g Wom o

dm 50m8 Rwo ¢B5ImD
99 g DO od

Table 6: Robustness comparison of two approaches

Nevertheless, the efficiency concerned, the rule-
based approach is much faster than the deep learn-
ing approach. In the CPU, the deep learning ap-
proach becomes extremely slow making it hard
to use for real-time applications. In contrast on a
GPU, we can achieve real-time performance for
the deep learning approach as well. Check Table 7
for the results related to computing efficiency. We
used output tokens per second (TPS) as the per-
formance measure. According to Table 7, we can
expect better performance values for the deep learn-
ing approach with lower precision setups (i.e. fp16,

7https://huggingface.co/docs/evaluate/v0.4.®/
en/index
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INTS, INT4, etc.) possibly with a slight accuracy
compromisation.

deep learning
GPU (fp32)
~35

Rule-based

CPU (fp32)
~3

GPU (fp16)
~65

>200,000

Table 7: Speed (in TPS) comparison of the two ap-
proaches.

6 Conclusion

We have experimented with two approaches for
the transliteration task for Romanized Sinhala and
English. The first approach is a rule-based statis-
tical approach. The second approach addresses
the transliteration task as a translation task using a
pre-trained multilingual encoder-decoder language
model. Both approaches have their own pros and
cons. When it comes to accuracy, the deep learn-
ing approach outperformed the rule-based method
while in terms of efficiency, it is the other way
around.

Limitations

The deep learning-based approach does come with
a compromise of efficiency to the accuracy. The
quality of the output of the deep learning approach
heavily depends on the quality of the training data.

The rule-based transliteration system for con-
verting Latin script to Sinhala faces several key
challenges. A primary limitation is ambiguity han-
dling: certain Latin character sequences can map
to multiple Sinhala characters depending on con-
text. Without contextual awareness, the system
processes each character sequence independently,
leading to inaccuracies, especially with complex or
compound words where pronunciation depends on
neighbouring syllables.

Additionally, users often spell the same word
differently based on their typing preferences or
ease. For instance, the Romanized term “mama”
could correspond to different Sinhala words such as
®® \mo'm3\ (Nominative /), ®® \ma:'ms\ (Ac-
cusative specifically me), or &> \ma:'ma:\ (Nom-
inative uncle).

This inconsistency introduces ambiguity, mak-
ing it difficult to define rigid transliteration rules.
In contrast, deep learning models can better handle
such variations by learning context and patterns
from large datasets, offering more flexibility and
accuracy.
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Additionally, the predefined rules may not cover
all linguistic nuances, resulting in errors when en-
countering words that deviate from standard struc-
tures. Morphological complexities, such as inflec-
tions or compound words, further challenge the
system, as it does not account for grammatical con-
text.

We have used a training set of 9k parallel entries
for the deep-learning model fine-tuning. Having an
extended training set covering more practical cases
could lead to better results.

As future work, we plan to address these lim-
itations and also experiment with LLMs for the
transliteration task.
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Abstract

In this work, we present the development
of a reverse transliteration model to convert
romanized Malayalam to native script us-
ing an encoder-decoder framework built with
attention-based bidirectional Long Short Term
Memory (Bi-LSTM) architecture. To train the
model, we have used curated and combined
collection of 4.3 million transliteration pairs
derived from publicly available Indic language
translitertion datasets, Dakshina and Aksharan-
tar. We evaluated the model on two differ-
ent test dataset provided by IndoNLP-2025-
Shared-Task that contain, (1) General typing
patterns and (2) Adhoc typing patterns, respec-
tively. On the Test Set-1, we obtained a char-
acter error rate (CER) of 7.4%. However upon
Test Set-2, with adhoc typing patterns, where
most vowel indicators are missing, our model
gave a CER of 22.7%.

1 Introduction

Typing in native script has always remained a chal-
lenge for speakers of many Indian languages includ-
ing Malayalam, across diverse digital platforms. In
the pre-smartphone era, where native language typ-
ing was virtually non-existent due to the unavail-
ability of accessible and user-friendly keyboards,
typing Malayalam in the Roman script was the
norm. Even with advancements in technology, typ-
ing in the Roman script has become the natural
and preferred mode of input across devices for an
average user (Madhani et al., 2023). While roman-
ized communication seems convenient, it iS not
preferred in formal contexts.

Transliteration from romanized input to native
scripts is inherently complex due to variations in
typing styles, the absence of standardized roman-
ization schemes, and the context-dependent nature
of character mappings. Hence there is a need for
real-time transliteration tools that can seamlessly
convert romanized Malayalam into its native script.

In this work, we address this need by developing
a robust reverse transliteration model for Malay-
alam, where romanised Malayalam is automatically
converted into native script.

The proposed model leverages an attention-
based bidirectional Long Short Term Memory (Bi-
LSTM) encoder-decoder framework, trained on
large-scale transliteration datasets, namely Dak-
shina (Roark et al., 2020) and Aksharantar (Mad-
hani et al., 2023). The code for training the model
is published under MIT License '. This paper out-
lines the related works, datasets, model architecture
and results, highlighting the model’s performance
on datasets that reflect both general and adhoc typ-
ing patterns.

2 Related Works

Rule-based and data-driven approaches are the
two main strategies for transliteration (Manohar
et al., 2022). Prior to the advent of deep learn-
ing approaches of learning from huge data, rule
based approaches were the norm. In the context of
well defined romanization standards (Translitera-
tion, 2001), rule based approaches are the best in
terms of speed and accuracy. However there are
non-standard romanised Malayalam used in infor-
mal communication contexts, that calls for deep
learning solutions.

A rule based system available for translitera-
tion among Indian languages based on soundex
algorithms is introduced in Libindic (Thottingal,
2018). Aksharamukha script converter is is an-
other rule-based systems that transliterates among
121 scripts and 21 standard romanization methods
(Rajan, 2018). The Brahmi-Net tool covers 306
language pairs across 13 Indo-Aryan, 4 Dravidian
languages, and English, utilizing an unsupervised
method to mine parallel transliteration corpora for

Yhttps://github.com/VRCLC-DUK/
ml-en-transliteration
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statistical training. This hybrid system leverages
Unicode ranges and an extended ITRANS encod-
ing to enable script conversions between Brahmi-
derived scripts (Kunchukuttan et al., 2015).

Deep learning approaches rely on carefully
crafted transliteration corpora for training the mod-
els. Dakshina is an open licensed and curated
transliteration corpora (Roark et al., 2020) consist-
ing of native script text, a romanization lexicon and
some romanized full sentences in 12 south Asian
languages. Aksharantar is the largest publicly
available transliteration dataset with 26 million
transliteration pairs for Indian languages created
by mining from monolingual and parallel corpora,
as well as collecting data from human annotators
(Kunchukuttan et al., 2021; Madhani et al., 2023).
It has also been reported that mined name pair
datasets (Thottingal, 2023) could be used for train-
ing general purpose transliteration models (Baiju
et al., 2024).

A multitask learning based training for multilin-
gual neural transliteration leveraging orthographic
similarity between languages was described in
(Kunchukuttan et al., 2018). Non-neural method
like pair n-gram and nueral methods like sequence-
sequence LSTM and transformer architectures
were compared in Roark et al. for single words
transliteration task. Transliteration implemented
using neural machine translation system (NMT)
was proposed by Kunchukuttan et al., where Mar-
ian (Junczys-Dowmunt et al., 2018) was used
for training the model. IndicXlit is a multilin-
gual neural transliteration model trained on the
Aksharantar (Madhani et al., 2023) dataset us-
ing an encoder-decoder transformer architecture.
Grapheme to Phoneme Conversion systems for
mapping of Malayalam script to precise romani-
sation schemes have been explored in rule based
(Baby et al., 2016; Parlikar et al., 2016; Manghat
et al., 2020) and data driven (Priyamvada et al.,
2022) fashions.

Transliterating sentences are considered as a
different task than transliterating single words in
(Roark et al., 2020). Identifying word contexts can
improve sentence level transliteration. Kirov et al.
describes methods to incorporate language mod-
els to improve transliteration of full sentences as
opposed to single words.

3 Methodology

The methodology involved in this study encom-
passes the curation and preprocessing of training
datasets, design of the model architecture, training,
and evaluation on the test data set.

In the current work, we train word-level translit-
eration model. During testing, we preprocess sen-
tences by extracting individual words, performing
word-level transliteration, and then reconstructing
the full sentence in the post-processing stage. Non-
alphabetic characters like punctuation and numbers
are excluded from model input, preserved in their
original positions, and reinserted after generating
the transliterated token sequence.

3.1 Datsets

The reverse transliteration model for romanized
Malayalam is trained on two publicly available
curated collection of Indic language transliteration
datasets: Dakshina® and the Aksharantar®. The
Dakshina dataset comprises of 244 thousand single
word transliteration pairs, while the Aksharantar
dataset adds a significantly larger volume of 4.100
million pairs. Together, these datasets comprise
a total of 4.344 million word-level transliteration
pairs. The combined dataset ensures a rich and
diverse training set that includes both common and
rare transliteration patterns, capturing variations in
typing styles and phonetic representations.

Each entry in the dataset is structured as a pair
of columns: ‘ml’ and ‘en’. The ‘ml’ column rep-
resents the native Malayalam script, while the ‘en’
column contains the corresponding romanized rep-
resentation. This consistent and simple structure
facilitates efficient preprocessing and model train-
ing, enabling the encoder-decoder framework to
learn the mapping between the romanized input
and the native script output effectively.

3.2 Model Architecture and Training

The proposed reverse transliteration model for con-
verting romanized Malayalam to native script is
based on an attention-enabled encoder-decoder
framework utilizing Bi-LSTM layers. We define
separate source and target tokenizers. The source
tokens are lower case Latin characters and the tar-
get tokens are Malayalam characters comprising

2https://github.com/google—research—datasets/
dakshina

3https://huggingface.co/datasets/ai4bharat/
Aksharantar
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Table 1: An illustration of 3 character errors distributed across 3 words severly deteriorating WER and BLEU scores.

The errors in transliteration are indicated in red color.

Ground Truth Predictions

CER(%) WER(%) BLEU(%)

AN LD TYe ailsemwos] SMESOUTs

udloudanglamgs alanalmoioi

ailoemas]

6.8 75.0 8.03

Bl dnglage: s Qilapaolmaamil

of vowels, vowel signs, consonants and the spe-
cial characters anuswaram, visargam, virama and
chillu (Manohar et al., 2022).

The architecture begins with the encoder input
layer, which accepts input sequences of up to 57
characters, which is identified as a maximum in-
put sequence length from the training data. These
sequences are integer-encoded representations of
characters, serving as the foundation for subse-
quent layers. The next step involves the embedding
layer, which transforms each character in the se-
quence into a 64-dimensional dense vector which
allows the model to capture semantic relationships
among characters in a continuous space.

Following this, a bidirectional LSTM layer pro-
cesses the embedded input sequences to capture
information from both past and future characters in
the sequence. The bidirectional output, consisting
of hidden states from both directions, is concate-
nated to form a 256-dimensional representation
for each timestep. To reduce dimensionality and
adjust the feature representation, a dense layer is
applied, resulting in a 128-dimensional vector for
each timestep. The context vector extracts from
this processed sequence, and it serves as the initial
input to the decoder.

The decoder begins with the repeat vector
layer, which duplicates the context vector for each
timestep of the target sequence. This ensures that
all decoder timesteps have access to the same initial
context. The repeated context vector is processed
by an LSTM layer in the decoder, which generates
a sequence of hidden states by modeling temporal
dependencies in the target sequence. These states
form the basis for the generation of the transliter-
ated output. The model incorporates an attention
mechanism (attention layer) to enhance its ability
to focus on relevant parts of the input sequence
during decoding.

The output of the LSTM decoder and the atten-
tion layer is concatenated to form a unified repre-
sentation, combining temporal dependencies with
context-aware features. This enriched represen-
tation is passed through a time-distributed dense

layer, which applies a dense transformation to each
timestep. The result is a sequence of probability
distributions over the 76 output characters, from
which the final transliterated word is constructed. A
single Nvidia DGX A100 GPU with 80 GB RAM
was used for training the model.

4 Results

Table 2: Evaluation metrics averaged over respective
test datsets

Dataset CER WER BLEU
(%) (%) (%)

TestSet-1 74 345 327

TestSet-2 227 669 1.5

We evaluate our model’s performance using the
IndoNLP Shared Task dataset* for Malayalam. The
test set is divided into two categories: Test Set-
1, which includes general transliteration patterns,
and Test Set-2, which features adhoc transliteration
patterns where the romanized text omits several
vowels. These datasets consist of sentence-level
samples. Samples of ground truth and predicted
samples in test sets are linked in the repository” and
an example is given in Table 1. As recommended
by the task organizers, we report CER, WER, and
BLEU scores separately for each test set (Table 2).
The distribution of these evaluation metrics over
the entire test set is illustrated in Figure. 1 and
Figure. 2.

5 Discussion

In Test Set-1 with standard typing patterns, the
model achieved a 7.4% CER, demonstrating strong
performance aligned with the model’s training data.
For Test Set-2 involving adhoc typing patterns with
frequent vowel omissions, the model’s performance
significantly declined as indicated by the perfor-
mance metrics.
*https://github.com/IndoNLP-Workshop/

IndoNLP-2025-Shared-Task

Shttps://github.com/VRCLC-DUK/
ml-en-transliteration
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Figure 1: The distribution of WER, CER and BLEU over the Test Set-1.
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Figure 2: The distribution of WER, CER and BLEU over the Test Set-2.

While most test sentences exhibited low
character-level error rates, the accompanying WER
and BLEU scores appear comparatively poor. This
does not indicate model inadequacy, but rather re-
flect the inherent limitations of WER and BLEU
scores in evaluating sentence transliterations. As
they penalize even minor character variations as
complete word errors misrepresenting the translit-
eration quality (James et al., 2024) (Table 1). An
error analysis exposed the model’s difficulty in dis-
tinguishing phonetically similar Malayalam char-
acters represented using same romanised form.

6 Conclusion

Our reverse transliteration model for Malayalam
demonstrates promising capabilities in converting
romanized text to native script, particularly for stan-
dard typing patterns. However, the research reveals
significant challenges in handling adhoc typing
styles, especially those with frequent vowel omis-
sions. Future efforts should focus on fine-tuning
the model using a diverse dataset that includes a
significant proportion of adhoc typing patterns to
enhance its robustness and adaptability.

Limitations

The training data primarily covers standard typing
patterns and missing the nuanced variations found
in irregular typing scenarios. This restricted train-
ing set significantly constrains the model’s ability
to generalize and accurately handle diverse input
styles and patterns. Additionally, the model’s de-
sign lacks a language model that could capture
word dependencies and improve overall sentence-
level transliteration.
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