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Abstract

In this work, we present the development
of a reverse transliteration model to convert
romanized Malayalam to native script us-
ing an encoder-decoder framework built with
attention-based bidirectional Long Short Term
Memory (Bi-LSTM) architecture. To train the
model, we have used curated and combined
collection of 4.3 million transliteration pairs
derived from publicly available Indic language
translitertion datasets, Dakshina and Aksharan-
tar. We evaluated the model on two differ-
ent test dataset provided by IndoNLP-2025-
Shared-Task that contain, (1) General typing
patterns and (2) Adhoc typing patterns, respec-
tively. On the Test Set-1, we obtained a char-
acter error rate (CER) of 7.4%. However upon
Test Set-2, with adhoc typing patterns, where
most vowel indicators are missing, our model
gave a CER of 22.7%.

1 Introduction

Typing in native script has always remained a chal-
lenge for speakers of many Indian languages includ-
ing Malayalam, across diverse digital platforms. In
the pre-smartphone era, where native language typ-
ing was virtually non-existent due to the unavail-
ability of accessible and user-friendly keyboards,
typing Malayalam in the Roman script was the
norm. Even with advancements in technology, typ-
ing in the Roman script has become the natural
and preferred mode of input across devices for an
average user (Madhani et al., 2023). While roman-
ized communication seems convenient, it is not
preferred in formal contexts.

Transliteration from romanized input to native
scripts is inherently complex due to variations in
typing styles, the absence of standardized roman-
ization schemes, and the context-dependent nature
of character mappings. Hence there is a need for
real-time transliteration tools that can seamlessly
convert romanized Malayalam into its native script.

In this work, we address this need by developing
a robust reverse transliteration model for Malay-
alam, where romanised Malayalam is automatically
converted into native script.

The proposed model leverages an attention-
based bidirectional Long Short Term Memory (Bi-
LSTM) encoder-decoder framework, trained on
large-scale transliteration datasets, namely Dak-
shina (Roark et al., 2020) and Aksharantar (Mad-
hani et al., 2023). The code for training the model
is published under MIT License '. This paper out-
lines the related works, datasets, model architecture
and results, highlighting the model’s performance
on datasets that reflect both general and adhoc typ-
ing patterns.

2 Related Works

Rule-based and data-driven approaches are the
two main strategies for transliteration (Manohar
et al., 2022). Prior to the advent of deep learn-
ing approaches of learning from huge data, rule
based approaches were the norm. In the context of
well defined romanization standards (Translitera-
tion, 2001), rule based approaches are the best in
terms of speed and accuracy. However there are
non-standard romanised Malayalam used in infor-
mal communication contexts, that calls for deep
learning solutions.

A rule based system available for translitera-
tion among Indian languages based on soundex
algorithms is introduced in Libindic (Thottingal,
2018). Aksharamukha script converter is is an-
other rule-based systems that transliterates among
121 scripts and 21 standard romanization methods
(Rajan, 2018). The Brahmi-Net tool covers 306
language pairs across 13 Indo-Aryan, 4 Dravidian
languages, and English, utilizing an unsupervised
method to mine parallel transliteration corpora for

Yhttps://github.com/VRCLC-DUK/
ml-en-transliteration
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statistical training. This hybrid system leverages
Unicode ranges and an extended ITRANS encod-
ing to enable script conversions between Brahmi-
derived scripts (Kunchukuttan et al., 2015).

Deep learning approaches rely on carefully
crafted transliteration corpora for training the mod-
els. Dakshina is an open licensed and curated
transliteration corpora (Roark et al., 2020) consist-
ing of native script text, a romanization lexicon and
some romanized full sentences in 12 south Asian
languages. Aksharantar is the largest publicly
available transliteration dataset with 26 million
transliteration pairs for Indian languages created
by mining from monolingual and parallel corpora,
as well as collecting data from human annotators
(Kunchukuttan et al., 2021; Madhani et al., 2023).
It has also been reported that mined name pair
datasets (Thottingal, 2023) could be used for train-
ing general purpose transliteration models (Baiju
et al., 2024).

A multitask learning based training for multilin-
gual neural transliteration leveraging orthographic
similarity between languages was described in
(Kunchukuttan et al., 2018). Non-neural method
like pair n-gram and nueral methods like sequence-
sequence LSTM and transformer architectures
were compared in Roark et al. for single words
transliteration task. Transliteration implemented
using neural machine translation system (NMT)
was proposed by Kunchukuttan et al., where Mar-
ian (Junczys-Dowmunt et al., 2018) was used
for training the model. IndicXlit is a multilin-
gual neural transliteration model trained on the
Aksharantar (Madhani et al., 2023) dataset us-
ing an encoder-decoder transformer architecture.
Grapheme to Phoneme Conversion systems for
mapping of Malayalam script to precise romani-
sation schemes have been explored in rule based
(Baby et al., 2016; Parlikar et al., 2016; Manghat
et al., 2020) and data driven (Priyamvada et al.,
2022) fashions.

Transliterating sentences are considered as a
different task than transliterating single words in
(Roark et al., 2020). Identifying word contexts can
improve sentence level transliteration. Kirov et al.
describes methods to incorporate language mod-
els to improve transliteration of full sentences as
opposed to single words.

3 Methodology

The methodology involved in this study encom-
passes the curation and preprocessing of training
datasets, design of the model architecture, training,
and evaluation on the test data set.

In the current work, we train word-level translit-
eration model. During testing, we preprocess sen-
tences by extracting individual words, performing
word-level transliteration, and then reconstructing
the full sentence in the post-processing stage. Non-
alphabetic characters like punctuation and numbers
are excluded from model input, preserved in their
original positions, and reinserted after generating
the transliterated token sequence.

3.1 Datsets

The reverse transliteration model for romanized
Malayalam is trained on two publicly available
curated collection of Indic language transliteration
datasets: Dakshina® and the Aksharantar®. The
Dakshina dataset comprises of 244 thousand single
word transliteration pairs, while the Aksharantar
dataset adds a significantly larger volume of 4.100
million pairs. Together, these datasets comprise
a total of 4.344 million word-level transliteration
pairs. The combined dataset ensures a rich and
diverse training set that includes both common and
rare transliteration patterns, capturing variations in
typing styles and phonetic representations.

Each entry in the dataset is structured as a pair
of columns: ‘ml’ and ‘en’. The ‘ml’ column rep-
resents the native Malayalam script, while the ‘en’
column contains the corresponding romanized rep-
resentation. This consistent and simple structure
facilitates efficient preprocessing and model train-
ing, enabling the encoder-decoder framework to
learn the mapping between the romanized input
and the native script output effectively.

3.2 Model Architecture and Training

The proposed reverse transliteration model for con-
verting romanized Malayalam to native script is
based on an attention-enabled encoder-decoder
framework utilizing Bi-LSTM layers. We define
separate source and target tokenizers. The source
tokens are lower case Latin characters and the tar-
get tokens are Malayalam characters comprising

2https://github.com/google—research—datasets/
dakshina

3https://huggingface.co/datasets/ai4bharat/
Aksharantar
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Table 1: An illustration of 3 character errors distributed across 3 words severly deteriorating WER and BLEU scores.

The errors in transliteration are indicated in red color.

Ground Truth Predictions

CER(%) WER(%) BLEU(%)
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of vowels, vowel signs, consonants and the spe-
cial characters anuswaram, visargam, virama and
chillu (Manohar et al., 2022).

The architecture begins with the encoder input
layer, which accepts input sequences of up to 57
characters, which is identified as a maximum in-
put sequence length from the training data. These
sequences are integer-encoded representations of
characters, serving as the foundation for subse-
quent layers. The next step involves the embedding
layer, which transforms each character in the se-
quence into a 64-dimensional dense vector which
allows the model to capture semantic relationships
among characters in a continuous space.

Following this, a bidirectional LSTM layer pro-
cesses the embedded input sequences to capture
information from both past and future characters in
the sequence. The bidirectional output, consisting
of hidden states from both directions, is concate-
nated to form a 256-dimensional representation
for each timestep. To reduce dimensionality and
adjust the feature representation, a dense layer is
applied, resulting in a 128-dimensional vector for
each timestep. The context vector extracts from
this processed sequence, and it serves as the initial
input to the decoder.

The decoder begins with the repeat vector
layer, which duplicates the context vector for each
timestep of the target sequence. This ensures that
all decoder timesteps have access to the same initial
context. The repeated context vector is processed
by an LSTM layer in the decoder, which generates
a sequence of hidden states by modeling temporal
dependencies in the target sequence. These states
form the basis for the generation of the transliter-
ated output. The model incorporates an attention
mechanism (attention layer) to enhance its ability
to focus on relevant parts of the input sequence
during decoding.

The output of the LSTM decoder and the atten-
tion layer is concatenated to form a unified repre-
sentation, combining temporal dependencies with
context-aware features. This enriched represen-
tation is passed through a time-distributed dense

layer, which applies a dense transformation to each
timestep. The result is a sequence of probability
distributions over the 76 output characters, from
which the final transliterated word is constructed. A
single Nvidia DGX A100 GPU with 80 GB RAM
was used for training the model.

4 Results

Table 2: Evaluation metrics averaged over respective
test datsets

Dataset CER WER BLEU
(%) (%) (%)

TestSet-1 74 345 327

TestSet-2 227 669 1.5

We evaluate our model’s performance using the
IndoNLP Shared Task dataset* for Malayalam. The
test set is divided into two categories: Test Set-
1, which includes general transliteration patterns,
and Test Set-2, which features adhoc transliteration
patterns where the romanized text omits several
vowels. These datasets consist of sentence-level
samples. Samples of ground truth and predicted
samples in test sets are linked in the repository” and
an example is given in Table 1. As recommended
by the task organizers, we report CER, WER, and
BLEU scores separately for each test set (Table 2).
The distribution of these evaluation metrics over
the entire test set is illustrated in Figure. 1 and
Figure. 2.

5 Discussion

In Test Set-1 with standard typing patterns, the
model achieved a 7.4% CER, demonstrating strong
performance aligned with the model’s training data.
For Test Set-2 involving adhoc typing patterns with
frequent vowel omissions, the model’s performance
significantly declined as indicated by the perfor-
mance metrics.
*https://github.com/IndoNLP-Workshop/

IndoNLP-2025-Shared-Task

Shttps://github.com/VRCLC-DUK/
ml-en-transliteration
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Figure 1: The distribution of WER, CER and BLEU over the Test Set-1.
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Figure 2: The distribution of WER, CER and BLEU over the Test Set-2.

While most test sentences exhibited low
character-level error rates, the accompanying WER
and BLEU scores appear comparatively poor. This
does not indicate model inadequacy, but rather re-
flect the inherent limitations of WER and BLEU
scores in evaluating sentence transliterations. As
they penalize even minor character variations as
complete word errors misrepresenting the translit-
eration quality (James et al., 2024) (Table 1). An
error analysis exposed the model’s difficulty in dis-
tinguishing phonetically similar Malayalam char-
acters represented using same romanised form.

6 Conclusion

Our reverse transliteration model for Malayalam
demonstrates promising capabilities in converting
romanized text to native script, particularly for stan-
dard typing patterns. However, the research reveals
significant challenges in handling adhoc typing
styles, especially those with frequent vowel omis-
sions. Future efforts should focus on fine-tuning
the model using a diverse dataset that includes a
significant proportion of adhoc typing patterns to
enhance its robustness and adaptability.

Limitations

The training data primarily covers standard typing
patterns and missing the nuanced variations found
in irregular typing scenarios. This restricted train-
ing set significantly constrains the model’s ability
to generalize and accurately handle diverse input
styles and patterns. Additionally, the model’s de-
sign lacks a language model that could capture
word dependencies and improve overall sentence-
level transliteration.

References

Arun Baby, Anju Leela Thomas, NL Nishanthi, TTS
Consortium, et al. 2016. Resources for Indian lan-
guages. In Proceedings of Text, Speech and Dialogue.
CBBLR Workshop.

Bajiyo Baiju, Kavya Manohar, Leena G Pillai, and Eliz-
abeth Sherly. 2024. Malayalam to English Named
Entity Transliteration using Attention based BiLSTM.
In 2024 IEEE Recent Advances in Intelligent Compu-
tational Systems (RAICS), pages 1-6.

Jesin James, Deepa P Gopinath, et al. 2024. Advocating
character error rate for multilingual asr evaluation.
arXiv preprint arXiv:2410.07400.

177


https://doi.org/10.1109/RAICS61201.2024.10690040
https://doi.org/10.1109/RAICS61201.2024.10690040

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116—121,
Melbourne, Australia. Association for Computational
Linguistics.

Christo Kirov, Cibu Johny, Anna Katanova, Alexan-
der Gutkin, and Brian Roark. 2024. Context-
aware Transliteration of Romanized South Asian Lan-
guages. Computational Linguistics, pages 1-60.

Anoop Kunchukuttan, Siddharth Jain, and Rahul Ke-
jriwal. 2021. A large-scale evaluation of neural ma-
chine transliteration for Indic languages. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3469-3475, Online. Association
for Computational Linguistics.

Anoop Kunchukuttan, Mitesh Khapra, Gurneet Singh,
and Pushpak Bhattacharyya. 2018. Leveraging ortho-
graphic similarity for multilingual neural translitera-
tion. Transactions of the Association for Computa-
tional Linguistics, 6:303-316.

Anoop Kunchukuttan, Ratish Puduppully, and Pushpak
Bhattacharyya. 2015. Brahmi-net: A transliteration
and script conversion system for languages of the
Indian subcontinent. In Proceedings of the 2015
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Demonstra-
tions, pages 81-85, Denver, Colorado. Association
for Computational Linguistics.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha-
rantar: Open Indic-language transliteration datasets
and models for the next billion users. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 40-57, Singapore. Association
for Computational Linguistics.

Sreeja  Manghat, Sreeram Manghat, and Tanja
Schultz. 2020. Malayalam-English Code-Switched:
Grapheme to Phoneme System. In Proc. Interspeech
2020, pages 4133-4137.

Kavya Manohar, A. R. Jayan, and Rajeev Rajan. 2022.
Mlphon: A multifunctional grapheme-phoneme con-

version tool using finite state transducers. IEEE Ac-
cess, 10:97555-97575.

Alok Parlikar, Sunayana Sitaram, Andrew Wilkinson,
and Alan W Black. 2016. The Festvox Indic frontend
for grapheme to phoneme conversion. In WILDRE:
Workshop on Indian Language Data-Resources and
Evaluation.

R. Priyamvada, D. Govind, Vijay Krishna Menon,
B. Premjith, and K. P. Soman. 2022. Grapheme

178

to phoneme conversion for malayalam speech us-
ing encoder-decoder architecture. In Intelligent Data
Engineering and Analytics, pages 41-49, Singapore.
Springer Nature Singapore.

Vinodh Rajan. 2018. Aksharamukha script converter
web application.

Brian Roark, Lawrence Wolf-Sonkin, Christo Kirov,
Sabrina J. Mielke, Cibu Johny, Isin Demirsahin, and
Keith Hall. 2020. Processing South Asian languages
written in the Latin script: the Dakshina dataset. In
Proceedings of The 12th Language Resources and
Evaluation Conference (LREC), pages 2413-2423.

Santhosh Thottingal. 2018.
transliteration module.

Libindic soundex and

Santhosh Thottingal. 2023. Malayalam-English Name
Pair Dataset.

ISO 15919:2001 Transliteration. 2001. Transliteration
of Devanagari and related Indic scripts into Latin
characters.


https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.1162/coli_a_00510
https://doi.org/10.1162/coli_a_00510
https://doi.org/10.1162/coli_a_00510
https://doi.org/10.18653/v1/2021.eacl-main.303
https://doi.org/10.18653/v1/2021.eacl-main.303
https://doi.org/10.1162/tacl_a_00022
https://doi.org/10.1162/tacl_a_00022
https://doi.org/10.1162/tacl_a_00022
https://doi.org/10.3115/v1/N15-3017
https://doi.org/10.3115/v1/N15-3017
https://doi.org/10.3115/v1/N15-3017
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.21437/Interspeech.2020-1936
https://doi.org/10.21437/Interspeech.2020-1936
https://doi.org/10.1109/ACCESS.2022.3204403
https://doi.org/10.1109/ACCESS.2022.3204403
https://www.aksharamukha.com
https://www.aksharamukha.com
https://www.aclweb.org/anthology/2020.lrec-1.294
https://www.aclweb.org/anthology/2020.lrec-1.294
https://libindic.org/Transliteration
https://libindic.org/Transliteration
https://huggingface.co/datasets/santhosh/english-malayalam-names
https://huggingface.co/datasets/santhosh/english-malayalam-names
https://www.iso.org/standard/28333.html
https://www.iso.org/standard/28333.html
https://www.iso.org/standard/28333.html

	Introduction
	Related Works
	Methodology
	Datsets
	Model Architecture and Training

	Results
	Discussion
	Conclusion

