
Proceedings of the First Workshop on Natural Language Processing for Indo-Aryan and Dravidian Languages (IndoNLP2025), pages 166–173
January 20, 2025. ©2025 Association for Computational Linguistics

166

Sinhala Transliteration: A Comparative Analysis Between Rule-based and
Seq2Seq Approaches

Yomal De Mel*, Kasun Wickramasinghe*, Nisansa de Silva
Department of Computer Science & Engineering

University of Moratuwa, Katubedda 10400, Sri Lanka
{mario.23,kasunw.22,NisansaDdS}@cse.mrt.ac.lk

Surangika Ranathunga
School of Mathematical and Computational Sciences,

Massey University, Auckland, New Zealand
s.ranathunga@massey.ac.nz

Abstract

Due to reasons of convenience and lack of tech
literacy, transliteration (i.e., Romanizing native
scripts instead of using localization tools) is em-
inently prevalent in the context of low-resource
languages such as Sinhala, which have their
own writing script. In this study, our focus
is on Romanized Sinhala transliteration. We
propose two methods to address this problem:
Our baseline is a rule-based method, which
is then compared against our second method
where we approach the transliteration problem
as a sequence-to-sequence task akin to the es-
tablished Neural Machine Translation (NMT)
task. For the latter, we propose a Transformer-
based Encode-Decoder solution. We witnessed
that the Transformer-based method could grab
many ad-hoc patterns within the Romanized
scripts compared to the rule-based method.
The code base associated with this paper is
available on GitHub - https://github.com/
kasunw22/Sinhala-Transliterator/

1 Introduction

Sinhala Language, spoken by over 16 million peo-
ple in Sri Lanka, presents unique challenges for
computational processing due to its distinct script
and structure (De Silva, 2019). In modern-day dig-
ital communication, it is common to use Singlish1,
where Sinhala (Sinhalese) words are written with
Latin (English) script (Liwera and Ranathunga,
2020). While the widespread use of Singlish in
informal communication calls for efficient translit-
eration systems capable of accurately converting it
into the Sinhala script, this task is made difficult by
code-mixed and code-switched usage of Singlish
scripts (Rathnayake et al., 2022; Udawatta et al.,
2024). Further, ad-hoc approximations are used by
users when they approximate the Abugida Sinhala

*Equal contribution.
1Not to be confused with English-based creole used in

Singapore with the same name.

script (Liyanage et al., 2012) using the Latin script
which is an Alphabet (Pulgram, 1951). Yet, we do
not find sufficient transliteration research done for
Singlish.

As for many NLP tasks, the early solutions for
transliteration were based on rule-based techniques
that relied on predefined character mappings (San-
taholma, 2007). However, they often struggled
when confronted with the variability in the format
in which Sinhala words were written using English
script (Liwera and Ranathunga, 2020). In con-
trast, deep learning models, especially Transformer-
based architectures (Vaswani, 2017), have proved
to perform well for the transliteration task (Moran
and Lignos, 2020). However, such deep learning
methods have not been used to implement Translit-
eration systems related to Sinhala.

This paper introduces two distinct methods, a
rule-based approach and a deep learning-based ap-
proach to solve the Singlish to Sinhala translit-
eration problem. The deep learning based
transliteration system is implemented on a pre-
trained sequence-to-sequence multilingual lan-
guage model, akin to a Machine Translation task.
Subsequently, we evaluate their effectiveness and
limitations. According to our results, we observed
that the deep learning approach is more robust to
language variability compared to the rule-based ap-
proach. The rest of the sections will discuss the
related work, our methodology, the results we ob-
tained, and the Conclusions.

2 Related work

Machine transliteration focuses on converting text
from one script to another using phonetic or
spelling equivalents, ideally mapping words or let-
ters systematically between writing systems (Kaur
and Singh, 2014).

https://github.com/kasunw22/Sinhala-Transliterator/
https://github.com/kasunw22/Sinhala-Transliterator/


167

2.1 Rule-based Transliteration

Rule-based machine transliteration relies on pre-
defined grammar rules, a lexicon, and processing
software. It uses morphological, syntactic, and
semantic information from source and target lan-
guages, with human experts designing rules to
guide transliteration. These rules ensure the in-
put structure and meaning are accurately mapped
to the target language, preserving integrity and con-
text in the transliterated output (Kaur and Singh,
2014; Athukorala and Sumanathilaka, 2024). It
includes methods such as Direct Machine Trans-
lations (MT), Transfer-based MT, and Interlingual
MT (Sumanathilaka, 2023). Although effective,
rule-based machine transliteration is known for be-
ing time-consuming and complex because it re-
quires creating detailed linguistic rules to transliter-
ate sentences from the source language to the target
language (Sumanathilaka, 2023).

Tennage et al. (2018) introduced the first translit-
eration system for Sinhala to English. This translit-
eration tool utilized character mapping tables to
convert words from the native scripts of both lan-
guages into a common phonetic representation in
English. The authors report that the transliteration
approach allows for better preservation of word or-
dering and more accurate transliteration of phrases.
Their system shows a good accuracy for handling
of loanwords—where both languages share similar
transliterated forms—and also enhances the overall
translation quality by allowing for better mapping
of linguistic structures, thus addressing the chal-
lenges posed by the morphological richness of both
languages.

Hybrid transliteration systems that combine rule-
based methods with a trigram model have shown
to improve the accuracy of converting Singlish to
Sinhala (Liwera and Ranathunga, 2020). The rule-
based component applies predefined rules for vow-
els and consonants, while the trigram model uses
statistical patterns from social media comments to
address the variability and ambiguity of Singlish
input.

2.2 Transformers for multilingual
Sequence-to-Sequence Generation Tasks

For sequence-to-sequence (Seq2Seq) generation
tasks such as Machine Translation (MT), the
proven architecture is the Encoder-Decoder ar-
chitecture. When it comes to multilingual
Transformer-based pre-trained Encoder-Decoder

architectures, mT5 (Xue et al., 2021) which is
based on T5 (Raffel et al., 2020), mBART (Liu,
2020) which is based on BART (Lewis, 2019),
M2M100 (Fan et al., 2020), MarianNMT (Tam-
bouratzis, 2021) have been popular choices. The
advantage of the Transformer-based Encoder-
Decoder architecture is that due to its self-attention
and cross-attention mechanisms, the relationships
with and among the source and the target sequence
are properly captured (Vaswani, 2017). Seq2Seq,
has since been utilized in domains other than
MT (de Almeida et al., 2020).

2.3 Translation Models with Sinhala
Language Support

There are several free and open-source multilingual
translation models that include Sinhala. Among
them mT5, mBART, M2M100, MarianNMT, and
NLLB2(Costa-jussà et al., 2022) are prominent.
Both M2M100 and NLLB use the same model
architecture but two different training datasets.
M2M100 uses CCMatrix (Schwenk et al., 2021)
and CCAlighned (El-Kishky et al., 2019) datasets
while NLLB uses the NLLB (Costa-jussà et al.,
2022) dataset. On the other hand, MarianNMT
model uses a different encoder-decoder architec-
ture, and the dataset they use is OPUS-100 (Zhang
et al., 2020). Both mBART and mT5 have been
used for various Sinhala text generation tasks, in-
cluding Machine Translation (Niyarepola et al.,
2022; Ranathunga et al., 2024b; Thillainathan et al.,
2021; Lee et al., 2022). However, according to a re-
cent study by Ranathunga et al. (2024a), NLLB has
proven to be the best among them for translation
tasks that involve Sinhala.

2.4 Deep Learning based Transliteration

Deselaers et al. (2009) proposed a deep belief
system-based transliteration solution using Deep
Belief Networks (DBN). DBN architecture is al-
most similar to the encoder-decoder architecture.
Deselaers et al. (2009) mentioned that translitera-
tion can be considered a translation task at the char-
acter level. Subsequent neural network-based (NN)
solutions for the transliteration task mainly relied
on recurrent models such as simple RNN, LSTM,
and GRU (Shao and Nivre, 2016; Mahdi Mahsuli
and Safabakhsh, 2017; Rosca and Breuel, 2016;
Kundu et al., 2018). Zohrabi et al. (2023) have

2https://github.com/facebookresearch/fairseq/
tree/nllb?tab=readme-ov-file

https://github.com/facebookresearch/fairseq/tree/nllb?tab=readme-ov-file
https://github.com/facebookresearch/fairseq/tree/nllb?tab=readme-ov-file
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used a Transformer-based approach for the translit-
eration of Azerbaijani. A comparative evaluation
of LSTM, biLSTM, GRU, and Transformer archi-
tectures for named entity transliteration has been
carried out by Moran and Lignos (2020). Accord-
ing to their evaluation, Transformer-based encoder-
decoder architectures outperform other architec-
tures.

3 Methodology

3.1 Rule-Based Transliteration System

Our rule-based approach uses predefined linguistic
rules to map Latin script (Singlish) to Sinhala script.
These rules cover vowels, consonants, diacritics,
and special characters. It extends the rule-based
transliteration system of Tennage et al. (2018) with
a few additions to the mapping rules when consid-
ering two and three-character mapping. Some of
the rules defined are shown in Table 1, where newly
added rules are highlighted. The process involves
two primary stages: rule definition and application.

Algorithm 1 Transliteration Algorithm

Require: Latin script word word
Ensure: Sinhala script word

1: result← “” ▷ Initialize an empty string
2: i← 0 ▷ Initialize index
3: while i < length(word) do
4: matched← False
5: for length in {3, 2, 1} do ▷ Check

substrings of decreasing length
6: substring← word[i:i + length]
7: if substring in

transliteration_table then
8: result ← result +

transliteration_table[substring]
9: i← i + length

10: matched← True
11: break
12: end if
13: end for
14: if not matched then
15: result← result + word[i]
16: i← i + 1
17: end if
18: end while
19: return result

The transliteration function processes each input
word and converts it to Sinhala using a character-
by-character matching strategy, as detailed below.

Latin
Sequence

Sinhala
Character

Latin
Sequence

Sinhala
Character

a අ aa ආ
A ඇ Aa ඈ
i ඉ ie ඊ
u උ uu ඌ
e එ ea ඒ
I ඓ o ඔ

ka ක ga ග
ma ම ya ය
ra ර ba බ
ca ච ja ජ
ta ට la ල
Da ඩ wa ව
tha ත sa ස
da ද ha හ
na න pa ප
Na ණ La ළ
mi මි thi ති
Ka ඛ Ga ඝ
cha ඡ Tha ඨ
Dha ඪ dha ධ
Pa ඵ bha භ
fa ෆ Ba ඹ

GNa ඥ KNa ඤ
jha ඣ Lu ළු
Luu ළූ Sa ශ
sha ෂ GNa ඥ
ki කි ku කු
ke ෙක ko ෙකා

kaa කා kAa කෑ
kie කී kei ෙක්
gi ගි gu ගු
ge ෙග go ෙගා
gaa ගා gAa ගෑ
gie ගී gei ෙග්
goe ෙගා් guu ගූ
gau ෙගෟ \n ◌ං

Table 1: Transliteration rules. The highlighted rules
were added by us.

The pseudocode is shown in Algorithm 1.

• Input Processing: The system reads the input
word in Latin script and ensures it contains
only Latin characters.

• Longest Match Strategy: For each character
sequence, the system matches the longest pos-
sible substring (up to three characters). This
ensures that multi-character sequences such
as “th” or “aa” are mapped correctly before
shorter, single-character matches.

• Rule Application: If a match is found in the
transliteration table, the corresponding Sin-
hala character is appended to the result. If no
match is found, the character is added as is.
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• Output Generation: The transliterated word
is returned and added to the output dataset.

3.2 Deep Learning-Based Transliteration
System

In this approach, we model transliteration as a trans-
lation task, as suggested by Deselaers et al. (2009).
Even though decoder-only Large Language Mod-
els (LLMs) are the state-of-the-art choice for most
of the NLP tasks including Machine Translation
nowadays, for many low-resource language trans-
lation tasks, still sequence-to-sequence modes are
commonly used (Ranathunga et al., 2023). Consid-
ering these factors, a Transformer-based encoder-
decoder model is our second approach to solving
the reverse transliteration problem.

Apart from the context-based generation, an-
other advantage of this approach is that unlike in
rule-based approaches, we do not need to manually
define the rules and we only need to find or cre-
ate a rich dataset that covers the possible scenarios
that could occur during the inference time. More-
over, the code-mixed and code-switched cases can
also be easily addressed in this approach simply by
extending the training dataset accordingly.

To have better accuracy, rather than training the
model from scratch, we used an existing multilin-
gual pre-trained sequence-to-sequence model that
is trained for the translation task, which has cov-
erage for Sinhala as well. To be specific, we have
selected the 418M version of the M2M100 model3

(Fan et al., 2020) as our base model and fine-tuned
it for Romanized-Sinhala and Sinhala as a transla-
tion pair. We used the existing English language
code (i.e. en) for Romanized Sinhala and the Sin-
hala language code (i.e. si) for Sinhala. The rea-
son for selecting M2M100 is that the MarianMT
translation quality for the Sinhala-English pair is
a bit worse than M2M100 and NLLB models (see
Table 2). Both NLLB and M2M100 use the same
model architectures and the translation qualities are
almost similar (Table 2). We choose M2M100 over
NLLB since NLLB model weights are bound with
some additional restricted terms and conditions4

while M2M100 weights are not5.
We fine-tuned M2M100 model in a way that

the Romanized script is considered as the English
translation of the corresponding Sinhala script. We

3https://huggingface.co/facebook/m2m100_418M
4https://github.com/facebookresearch/fairseq/

blob/nllb/LICENSE.model.md
5https://choosealicense.com/licenses/mit/

used the M2M100 model’s tokenizer3 for the tok-
enization process. Since the model already knows
the basic linguistics from the translation task, it
only needs to learn the relationship between the
two new language pairs. Also in Romanized typ-
ing, it is more common to use code-mixed usage
within the content. Furthermore, since we are us-
ing a Transformer-based model, the context is also
taken into account when the transliteration is done.

4 Implementation

4.1 Dataset Preparation

The task is a sequence-to-sequence text generation
task, specifically developing a reverse transliterator
that converts Romanized Indo-Aryan languages to
their native scripts. Therefore what we need is a
parallel dataset that contains Romanized text and
the corresponding native script.

In order to create the training dataset, we
used the Dakshina (Roark et al., 2020) and Swa-
Bhasha (Sumanathilaka et al., 2023, 2024) datasets.
We further augmented the datasets by adding some
ad-hoc nature to the Romanized scripts by remov-
ing vowels and applying different common typing
patterns. See Table 3 for examples. We created a
dataset consisting of 10k parallel data points using
these data sources. We split that into a training set
of 9k data points and a validation set of 1k data
points for the model training and validation.

We have evaluated our two approaches on the
test sets6 provided by the shared task on "Re-
verse Transliteration on Romanized Indo-Aryan
languages using ad-hoc transliterals", organized by
the IndoNLP workshop with COLING 2025. Test
set 1 consists of 10,000 parallel entries contain-
ing general Romanized typing patterns and, test
set 2 consists of 5000 parallel entries with ad-hoc
Romanized typing patterns that come across in
practical scenarios making it very challenging to
solve the reverse transliteration task. The original
datasets were not well structured. Therefore we
converted these datasets into CSV format, contain-
ing Romanized Sinhala script (Singlish) sentences
in one column and the corresponding expected Sin-
hala script in another.

4.2 Computational Resources

We used an NVIDIA Tesla T4 16GB GPU for the
training process. The important training hyper-

6https://github.com/IndoNLP-Workshop/
IndoNLP-2025-Shared-Task

https://huggingface.co/facebook/m2m100_418M
https://github.com/facebookresearch/fairseq/blob/nllb/LICENSE.model.md
https://github.com/facebookresearch/fairseq/blob/nllb/LICENSE.model.md
https://choosealicense.com/licenses/mit/
https://github.com/IndoNLP-Workshop/IndoNLP-2025-Shared-Task
https://github.com/IndoNLP-Workshop/IndoNLP-2025-Shared-Task
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English Input Marian-MT Translation M2M100 Translation NLLB Translation
How do you know that this is correct? ඔයා ෙකාෙහාමද දන්ෙන ෙම්ක හරි කියලා? ෙම් ෙද් නිවැරදි බව ඔබ ෙකාෙහාමද දන්ෙන්? ඔයා ෙකාෙහාමද දන්ෙන් ෙම්ක හරි කියලා?
It is the way he played that matters
not the amount of time he spent. ඔහු කාලය ගත කෙළ් කාලය අවශ්‍ය නැහැ.

ඔහු āඩා කරන ආකාරය ඔහු ගත කරන කාලය
ෙකාතරම් වැදගත් ෙනාෙව්.

ඔහු ෙසල්ලම් කරන විදිහ තමයි වැදගත් ෙවන්ෙන්.
ඔහු ගතකරපු කාලය ෙනෙවයි.

It’s a great pleasure to meet you ඔයාව හම්බ ෙවන්න පුළුවන් ෙවලා තිෙයන්ෙන් ඔබව හමුවීම සතුටක් ඔයාව මුණගැෙහන්න ලැබීම සතුටක්

Nothing is impossible until you give up it ඔයා ඒක අතහරින්න මුකුත් බැරි ෙවලාවක් නෑ
ඔබ එය අතහැරීමට ෙපර කිසිවක් අසාථර්ක
ෙනාෙව්

ඔයා ඒක අතහරිනකම් කරන්න බැරි ෙදයක් නෑ.

It is neither beautiful nor strong ඒක ලස්සනයි නමුත් ශක්තිමත් ෙනෙමයි එය ලස්සන ෙහා් ශක්තිමත් ෙනාෙව්. ඒක ලස්සනවත් ශක්තිමත්වත් නෑ.

Table 2: Qualitative evaluation of translation models. Records shaded in light gray indicate the translations
are slightly incorrect and the dark gray shaded ones are really bad translations. Non-shaded ones are correct
translations.

Sinhala Script Original Romanized
Script

Augmented Alternative
Romanized Scripts

ඔයා රෑට කැවද ? Oya rata kawada ?

Oya reta kewada ?
Oya rata kawd ?
Oya reta kewd ?
Oy rat kawd ?
Oy ret kewd ?

Table 3: Data augmentation example

parameters have been listed in Table 4.

Hyperparameter Value
learning rate 2e-5
epochs 3
train batch size 8
gradient accumulation steps 1
effective training batch size 8
training precision fp16
weight decay 0.01
optimizer Adam
learning rate scheduler linear
training dataset 9000
evaluation dataset 1000

Table 4: Training hyper-parameters of the deep learning
model

4.3 Evaluation Metrics

To assess the accuracy of the transliteration, we use
three key metrics:

• Word Error Rate (WER): Measures the dif-
ference between the predicted and reference
sentences at the word level. The lower the
WER the better.

• Character Error Rate (CER): Evaluates
character-level accuracy by calculating the
number of edits needed to convert the pre-
dicted output to the reference. The lower the
CER the better.

• BLEU Score: Assesses the overlap between
predicted and reference outputs. The higher
the BLEU score the better.

We used the metric implementations of Python
evaluate7 library for our evaluation.

5 Results and Discussion

Approach
Evaluation

Matrix
Average Result
for Test Set 01

Average Result
for Test Set 02

Rule-based
WER 0.6689 0.6809
CER 0.2119 0.2202
BLEU 0.0177 0.0163

DL-based
WER 0.1983 0.2413
CER 0.0579 0.0789
BLEU 0.5268 0.4384

Table 5: Results for rule-based and deep learning based
techniques

Table 5 shows the evaluation metrics for rule-
based and deep learning-based approaches evalu-
ated on the provided two test sets. As can be seen
in Table 6, the deep learning approach is more ro-
bust to the ad-hoc variations of Romanized typing
compared to the rule-based approach.

Romanized Script Rule-based Result DL-based Result
kmk nehe modyi wge ක්මක් ෙනෙහ ෙමාදයි වෙග කමක් නැහැ ෙමා්ඩයි වෙග්
mta ehema denila ne eth
eya uda thttuwe innkota
klin ehema denila ne

මට එෙහම ෙදනිල ෙන එත
එය උඩ තටටුෙව් ඉන්න්ෙකාට
ක්ලින් එෙහම ෙදනිල ෙන

මට එෙහම දැනිලා නෑ ඒත්
එයා උඩ තට්ටුෙව් ඉන්නෙකාට
කලින් එෙහම දැනිලා නෑ

eka nrkyi oya dnnwa
mma adahas krna de

එක න්රක්යි ඔය දන්න්ව
මම අඩහස ක්රන ෙද

ඒක නරකයි ඔයා දන්නවා
මම අදහස් කරන ෙද්

Table 6: Robustness comparison of two approaches

Nevertheless, the efficiency concerned, the rule-
based approach is much faster than the deep learn-
ing approach. In the CPU, the deep learning ap-
proach becomes extremely slow making it hard
to use for real-time applications. In contrast on a
GPU, we can achieve real-time performance for
the deep learning approach as well. Check Table 7
for the results related to computing efficiency. We
used output tokens per second (TPS) as the per-
formance measure. According to Table 7, we can
expect better performance values for the deep learn-
ing approach with lower precision setups (i.e. fp16,

7https://huggingface.co/docs/evaluate/v0.4.0/
en/index

https://huggingface.co/docs/evaluate/v0.4.0/en/index
https://huggingface.co/docs/evaluate/v0.4.0/en/index
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INT8, INT4, etc.) possibly with a slight accuracy
compromisation.

Rule-based
deep learning

CPU (fp32) GPU (fp32) GPU (fp16)
>200,000 ∼3 ∼35 ∼65

Table 7: Speed (in TPS) comparison of the two ap-
proaches.

6 Conclusion

We have experimented with two approaches for
the transliteration task for Romanized Sinhala and
English. The first approach is a rule-based statis-
tical approach. The second approach addresses
the transliteration task as a translation task using a
pre-trained multilingual encoder-decoder language
model. Both approaches have their own pros and
cons. When it comes to accuracy, the deep learn-
ing approach outperformed the rule-based method
while in terms of efficiency, it is the other way
around.

Limitations

The deep learning-based approach does come with
a compromise of efficiency to the accuracy. The
quality of the output of the deep learning approach
heavily depends on the quality of the training data.

The rule-based transliteration system for con-
verting Latin script to Sinhala faces several key
challenges. A primary limitation is ambiguity han-
dling: certain Latin character sequences can map
to multiple Sinhala characters depending on con-
text. Without contextual awareness, the system
processes each character sequence independently,
leading to inaccuracies, especially with complex or
compound words where pronunciation depends on
neighbouring syllables.

Additionally, users often spell the same word
differently based on their typing preferences or
ease. For instance, the Romanized term “mama”
could correspond to different Sinhala words such as
මම \məˈmɜ\ (Nominative I), මාම \mɑːˈmɜ\ (Ac-
cusative specifically me), or මාමා \mɑːˈmɑː\ (Nom-
inative uncle).

This inconsistency introduces ambiguity, mak-
ing it difficult to define rigid transliteration rules.
In contrast, deep learning models can better handle
such variations by learning context and patterns
from large datasets, offering more flexibility and
accuracy.

Additionally, the predefined rules may not cover
all linguistic nuances, resulting in errors when en-
countering words that deviate from standard struc-
tures. Morphological complexities, such as inflec-
tions or compound words, further challenge the
system, as it does not account for grammatical con-
text.

We have used a training set of 9k parallel entries
for the deep-learning model fine-tuning. Having an
extended training set covering more practical cases
could lead to better results.

As future work, we plan to address these lim-
itations and also experiment with LLMs for the
transliteration task.
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