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Abstract

The Romanized text has become popular with

the growth of digital communication platforms,

largely due to the familiarity with English

keyboards. In Sri Lanka, Romanized Sin-

hala, commonly referred to as “Singlish” is

widely used in digital communications. This

paper introduces a novel context-aware back-

transliteration system designed to address the

ad-hoc typing patterns and lexical ambiguity

inherent in Singlish. The proposed system com-

bines dictionary-based mapping for Singlish

words, a rule-based transliteration for out-of-

vocabulary words and a BERT-based language

model for addressing lexical ambiguities. Eval-

uation results demonstrate the robustness of

the proposed approach, achieving high BLEU

scores along with low Word Error Rate (WER)

and Character Error Rate (CER) across test

datasets. This study provides an effective solu-

tion for Romanized Sinhala back-transliteration

and establishes the foundation for improving

NLP tools for similar low-resourced languages.

1 Introduction

The rapid growth of digital communication plat-

forms such as social media and messaging plat-

forms has revolutionized communication with the

use of informal, Romanized representations of na-

tive scripts. Sinhala is a morphologically rich lan-

guage where approximately 17 million Sri Lankans

(around 87% of the total population) use it as their

main language for communication(De Silva, 2019).

Many Sinhala speakers use Romanized Sinhala, of-

ten referred to as “Singlish”, instead of the native

script on digital communication platforms due to

the convenience of using English keyboards. How-

ever, Singlish is non-standardized, leading to vari-

ations in spelling and structure, which pose chal-

lenges for back-transliteration. The process of back-

transliteration into native script has become crucial

for NLP applications such as machine translation,

information retrieval and sentiment analysis. How-

ever, the following challenges make this task com-

plex:

• Ad-hoc Nature: Singlish text often follows

informal typing patterns such as vowel

omissions, further complicating back-

transliteration. For an instance the word

“තාත්තා” can be represented as “Thaaththaa,

Thaththa, Thattha, Thatta, Tatta”.

• Lexical Ambiguity: A single Romanized form

may correspond tomultiple words in the native

Sinhala script, depending on the context. The

word “Adaraya” can be back transliterated to

“ආදරය, ආධාරය”.

A system capable of handling the typing varia-

tions, ambiguity, and contextual dependencies in-

herent in Singlish is required to address these chal-

lenges. Back-transliteration is a greater challenge

than forward-transliteration because it requires

context awareness (Nanayakkara et al., 2022).

This paper introduces a novel context-aware back-

transliteration system for Romanized Sinhala lever-

aging a hybrid approach that combines:

1. Dictionary-Based Mapping: To handle com-

mon and ambiguous words using an ad-hoc

transliteration dictionary.

2. Rule-Based Techniques: For out-of-

vocabulary words based on Sinhala phonetic

patterns.

3. Contextual Disambiguation: Using a BERT

model to resolve ambiguities by analyzing

sentence-level context.

The proposed approach enables the system to

handle various typing patterns in Romanized Sin-

hala. Experimental results demonstrate the sys-

tem’s effectiveness in achieving high BLEU scores,

mailto:sameeraperera827@gmail.com


136

lowWord Error Rates (WER) and lowCharacter Er-

ror Rates (WER) on benchmark datasets. This work

significantly contributes to the field of backward

transliteration in NLP by addressing the existing

challenges in back transliteration.

The following sections provide a comprehen-

sive overview of the related works and the sys-

tem’s methodology, evaluate its performance on

real-world datasets, and discuss its limitations.

2 Related Works

Back-transliteration of Romanized Sinhala has been

the focus of several studies exploring various ap-

proaches including rule-based, statistical, and neu-

ral approaches. Below are some recent studies

on Singlish backward transliteration. In 2018,

the Sinhala Language Decoder by Vidanaralage

et al. (2018) introduced a rule-based translitera-

tion method as part of their work where Roman-

ized input text is processed using transliteration and

phoneme rule bases. However, the system struggles

with handling lexical ambiguity and some English

proper nouns because of the static nature of its rule

base. These limitations have restricted its ability

to handle the informal typing patterns of Roman-

ized Sinhala. In 2019, Priyadarshani et al. (2019)

proposed a statistical machine translation (SMT)

approach to transliterate personal names across Sin-

hala, Tamil, and English. Since the personal name

transliteration depends on the ethnicity of the name,

they employed ethnicity-specific models, achieving

BLEU scores of more than 89% for all language

pairs. This was implemented with a classification

followed by the Naive Bayes algorithm. The reason

for selecting the SMT approach instead of a neural

approach is that NMT lacks robustness in translat-

ing rare words, and it requires a large amount of

parallel data to train the model to achieve better

results than SMT.

In 2020, a combination of Trigram and Rule-

based Models was proposed by Liwera and

Ranathunga (2020). This hybrid approach inte-

grated trigram models with rule-based methods

to transliterate Romanized Sinhala. The trigram

model was trained on Singlish YouTube comments

and their corresponding Sinhala transliteration. A

rule-based approach was used to handle situations

where the tri-gram model could not predict the Sin-

hala transliteration of Singlish words. However,

the system occasionally fails to deliver the cor-

rect transliteration of a word due to ambiguities.

Silva and Ahangama (2021) proposed another rule-

based approach for Romanized Sinhala backward

transliteration in 2021. The accuracy of the rule-

based approach was further improved by using an

error correction module which compares a news

corpus from popular news sites. In 2022, a context-

aware back-transliteration for Romanized Sinhala

presented a neural machine translation approach

(an encoder-decoder model) based on Bidirectional

LSTM and LSTM architectures (Nanayakkara et al.,

2022). The study presented a transliteration unit

approach considering the context of characters in a

word. This system also failed to handle sentence-

level word disambiguation as it focuses on the con-

text of the characters present in a word.

A back transliteration system which can handle

informal shorthand Romanized Sinhala was pro-

posed by Sumanathilaka et al. (2023). A statisti-

cal trigram model combined with a rule-based ap-

proach for back transliteration and a knowledge

base with Trie data structure for word sugges-

tions was used in the work. The proposed system

achieved 0.84 word-level accuracy. This proposed

architecture has been further extended for Tamil by

(Mudiyanselage and Sumanathilaka, 2024), show-

ing the generalizability of the proposed model.

However, lexical ambiguity correction (word sense

disambiguation) and code-mixed Romanized Sin-

hala remain a persistent issue in these approaches.

Athukorala and Sumanathilaka (2024) proposed a

novel approach which combines rule-based meth-

ods and fuzzy logic to transliterate Romanized Sin-

hala to native script even when vowels are omitted.

It introduced a new numeric coding system to use

with the Singlish letters by matching the identi-

fied typing patterns. For the mapping process, they

have developed a fuzzy logic-based implementa-

tion. However, the system performs at the word

level and does not handle lexical ambiguities. In

2024, Dharmasiri and Sumanathilaka (2024) pro-

posed a GRU-based NMT model for Singlish back-

ward transliteration. This system combined rule-

based techniques with neural machine translation

to address the complexities of Romanized Sinhala.

A suggestion algorithm has eliminated word selec-

tion ambiguity by choosing word suggestions from

a pool of predicted words. BLEU scores reach-

ing 0.8 indicate the high word-level transliteration

accuracy of the proposed model. Though many

Romonized Sinhala to Sinhala transliterators have

been introduced, there still exists a gap in the avail-

ability of an effective reverse transliterator, which
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Figure 1: Transliteration Flow

needs context awareness to handle ambiguity.

3 Methodology

The proposed context-aware transliteration system

is developed through a series of systematic steps

to transliterate Romanized Sinhala text into native

Sinhala script, ensuring accurate and contextually

appropriate output even while dealing with lexical

ambiguity and ad hoc typing patterns. The method-

ology consists of five key steps, as described below.

3.1 Word Separation

The first step involves breaking down the input

Singlish sentence into individual words, enabling

a word-level transliteration. This step facilitates

word-level mapping and processing in subsequent

steps.

3.2 Word-Level Mapping with Ad-hoc

Transliteration Dictionary

After the input text is broken down into words,

each Singlish word is mapped to its correspond-

ing Sinhala words using an ad-hoc translitera-

tion dictionary1. This dictionary includes ad-hoc

Singlish words along with their corresponding Sin-

hala words. Because of the informal nature of Ro-

manized Sinhala, a single Singlish word can often

represent multiple Sinhala words (Sumanathilaka

et al., 2024). Therefore, the dictionary provides

multiple mappings for ambiguous words, retaining

all possibilities to handle lexical ambiguity in the

1https://www.kaggle.com/datasets/tgdeshank/
wsd-romanized-sinhala-dataset?select=WSD+
Romanized-Sinhala+-+Sinhala+.txt

next step. If a Singlish word is not found in the

transliteration dictionary, the system uses a rule-

based approach to convert it into Sinhala script.

This rule-based transliteration leverages predefined

mappings between Romanized inputs and corre-

sponding Sinhala characters, considering Sinhala

phonetic patterns, consonant-vowel combinations,

and special cases for modifiers.

3.3 Initial Sentence Assembly with Masked

Tokens

After the word level translation using the dictionary

and rule-based approach, the corresponding Sinhala

sentence is formed by combining those transliter-

ated Sinhala words. If any Singlish word is ambigu-

ous (meaning it maps to multiple Sinhala words),

it is replaced by a “[MASK]” token in the sentence.

“[MASK]” token denotes that the correct Sinhala

word is yet to be selected based on context. For

each masked position, a list of candidate Sinhala

words is stored, maintaining all possible interpre-

tations of the ambiguous Romanized word. This

intermediate step allows for context-aware word

selection in the next step.

3.4 Context-Aware Lexical Disambiguation

Using BERT

This step resolves lexical ambiguity by replacing

the “[MASK]” tokens from the previous step with

the most contextually appropriate words. This

process involves two main sub-steps: candidate

sentence generation and sentence scoring using

BERT.In the first phase of this step, all possible sen-

tences are generated by filling each “[MASK]” with

different combinations of candidate words stored

from the previous step. Then ,each generated sen-

tence is scored using a BERT model configured for

Masked Language Modeling (MLM). The goal of

this scoring is to determine the most contextually

appropriate sentence. Given the context, the score

is calculated based on the probability of each can-

didate word appearing in the masked positions. To

illustrate this process, let’s walk through the score

calculation for an example sentence in Figure 1.

sentence: “අද ඇය පාසල් යන්න බැහැ

කීවාය”

Score(sentence) = P(“අද”| context) × P (“ඇය”|

context) × P (“යන්න”| context)

Each probability P (w | context) represents the

likelihood of a candidate word appearing in its re-

spective masked position, given the context pro-

vided by the rest of the sentence. The example of

https://www.kaggle.com/datasets/tgdeshank/wsd-romanized-sinhala-dataset?select=WSD+Romanized-Sinhala+-+Sinhala+.txt
https://www.kaggle.com/datasets/tgdeshank/wsd-romanized-sinhala-dataset?select=WSD+Romanized-Sinhala+-+Sinhala+.txt
https://www.kaggle.com/datasets/tgdeshank/wsd-romanized-sinhala-dataset?select=WSD+Romanized-Sinhala+-+Sinhala+.txt
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calculation for P (“අද” | context) is done as below:

• Mask the Target Word: Replace “අද” in the

sentence with a [MASK] token to create a

partially masked sentence: “[MASK] ඇය

පාසල් යන්න බැහැ කීවාය”

• Pass the Sentence to BERT: Feed the masked

sentence into the BERT model and get the

generated logits for mask position. These log-

its represent the model’s unnormalized confi-

dence levels for each vocabulary word in the

masked slot based on the sentence context.

• Apply Softmax Activation: Convert the log-

its into probabilities by applying the softmax

activation function. Softmax normalizes the

logits to create a probability distribution over

all possible words for the [MASK] position.

• Retrieve the Probability for “අද”: From the

probability distribution, get the probability as-

signed to the word “අද” in the context of the

sentence.

• Repeat for Remaining Masked Words: follow

a similar process for “ඇය” and “යන්න” by

masking each respective word in the sentence

and calculating its probability in context.

3.5 Output Generation

Finally, the sentence representing the highest score

from step 4 is returned as the transliterated Sinhala

text. Following the example discussed above for

the romanized Sinhala sentence ”ad aya pasal ynna

baha kiwaya” is transliterated to “අද ඇය පාසල්

යන්න බැහැ කීවාය” as the output following the

above approach.

4 Challenges and Solutions

The primary challenge of the proposed transliter-

ation approach was the time consumption for pro-

cessing long sentences containing highly ambigu-

ous words. In the proposed transliteration approach,

the major factor contributing to time consumption

is the number of model inferences required for dis-

ambiguation. Two key aspects that influence the

number of model inferences:

• High ambiguity words: Singlish words with

high lexical ambiguity may represent multiple

Sinhala words. This increases the number of

candidate words for each ambiguous Singlish

word. Consequently, the number of possible

sentences generated in step 4 also increases,

leading to an increase in the required model

inferences.

• Number of ambiguous words: An increase in

the number of ambiguous words in the input

text also influences the number of model in-

ferences as it directly increases the number of

possible sentences generated in Step 4.

Two strategies were developed to reduce the pro-

cessing time while maintaining accuracy, as de-

scribed in section 4.1 and 4.2.

4.1 Reducing the Number of Candidate

Words for Ambiguous Words Using a

Filtering Mechanism

As the initial step of the reverse transliteration pro-

cess, the candidate word generation occurs as il-

lustrated in step 2 of Figure 1. This step used the

Swa-bhasha dictionary, which contains the possi-

ble interpretation of the Sinhala word in Ad hoc

Romanized Sinhala format. For highly ambiguous

Singlish words, the dictionary often provides many

Sinhala candidates. To reduce the candidate list

size, the vocabulary associated with the model to-

kenizer is considered so that any candidate words

extracted from the dictionary that are not present

in the tokenizer’s vocabulary are removed from the

candidate list.

4.2 Chunking Sentences Based on the Number

of BERT Calls

A chunking mechanism is applied to sentences

which contain at least three ambiguous words

(masks) to reduce the number of model inferences

(BERT calls). Chunking is performed while ensur-

ing that each chunk contains at least three mask

tokens. The process involves the following steps:

• Starting from the beginning of the sentence, it

calculates the required number of model infer-

ences for the first three ambiguous words (or

“masks”).

• If the BERT call count for the first three masks

is under 20 (as our analysis showed that 20

BERT calls take approximately 1 second), the

next ambiguous word is added to the chunk

(adding a fourth mask) and recalculate the

BERT call count for the first four masks.
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Figure 2: Transliteration Flow

• This process continues, adding one mask at

a time and recalculating until the BERT call

count exceeds 20.

• When the number of BERT calls exceeds 20,

the words processed so far and the words up

to the next mask are taken as a chunk.

• The next chunk starts with a two-mask over-

lap, including the last two ambiguous words

(masks) from the previous chunk, and also in-

cludes the words after the third mask from the

end of the previous chunk. This ensures the

retention of unambiguous words in the new

chunk to maintain the context.

Figure 2 illustrates the chunking process with

an example: Assume the number of BERT calls

required for processing the first three ambiguous

words (MASK1, MASK2 and MASK3) is 15,

which is below 20 (as 20 BERT calls take approxi-

mately 1 second). Therefore, the system includes

the next ambiguous word, “MASK4”, and recalcu-

lates the number of BERT calls for the first four

masks (MASK1, MASK2, MASK3 and MASK4).

Suppose the number of BERT calls for the first

four masks is 30, which is higher than 20. As a

result, the system creates the first chunk, which

includes all words up to “MASK5” but excludes

“MASK5” itself. The second chunk begins from

the word “ෙගදර” which follows the third mask

(“MASK2”) from the end of the previous chunk.

Then, the number of BERT calls for the first three

masks (MASK3, MASK4, MASK5) of this new

chunk is calculated. Assume the number of BERT

calls for the first three masks of this chunk is 25,

which is higher than 20. As a result, this second

chunk spans from “ෙගදර” to “සනීප”. Then, the

third chunk starts from the word “බැහැ” which

follows the third mask (“MASK3”) from the end

of the second chunk.

5 Result Evaluation and Discussion

For the baseline evaluation, a BERT model trained

on Sinhala data sources for mask language mod-

elling from Hugging Face (model 12) was used to

develop the proposed back transliteration system.

Then, it was further fine-tuned using native Sinhala

script data in the Dakshina dataset (Roark et al.,

2020). The training hyperparameters were used

during fine tuning (model 23): learning-rate: 5e-

05, train-batch-size: 64, eval-batch-size=16, num-

epochs: 12.

Metric Test Set 1 Test Set 2

Model 1: Sinhala BERT

WER 0.0886 0.0914

CER 0.0200 0.0212

BLEU-1 0.9115 0.9088

BLEU-2 0.8718 0.8686

BLEU-3 0.8488 0.8452

BLEU-4 0.7963 0.7917

Model 2: Fine-tuned BERT

WER 0.0850 0.0895

CER 0.0194 0.0210

BLEU-1 0.9151 0.9107

BLEU-2 0.8760 0.8699

BLEU-3 0.8526 0.8459

BLEU-4 0.8001 0.7916

Table 1: Evaluation Results

The evaluation was based on the validation test

sets4 provided by the INDONLP 2025 shared task

organizers 5. The test sets 1 and 2 contained 10000

and 5000 data records, respectively. Test set 2

mainly consists of Romanized Sinhala samples in

ad hoc format where vowels were omitted in its Ro-

manized presentation. The proposed system was

evaluated using Word Error Rate (WER), Char-

acter Error Rate (CER) and BLEU scores. WER

and CER measure the percentage of word-level er-

rors and character-level errors, respectively. BLEU

scores assess the similarity between the output

of the system and the reference text, considering

both precision and fluency across n-grams. Higher

BLEU scores and LowerWER andCER values indi-

cate better performance. The obtained results were

compared between the two BERT models (Model

1 and Model 2) as shown in Table 1. According

to the results, the fine-tuned model showed bet-

2https://huggingface.co/Ransaka/
sinhala-bert-medium-v2

3https://huggingface.co/Sameera827/
Sinhala-BERT-MLM

4https://github.com/IndoNLP-Workshop/
IndoNLP-2025-Shared-Task

5https://indonlp-workshop.github.io/
IndoNLP-Workshop/sharedTask/

https://huggingface.co/Ransaka/sinhala-bert-medium-v2
https://huggingface.co/Ransaka/sinhala-bert-medium-v2
https://huggingface.co/Sameera827/Sinhala-BERT-MLM
https://huggingface.co/Sameera827/Sinhala-BERT-MLM
https://github.com/IndoNLP-Workshop/IndoNLP-2025-Shared-Task
https://github.com/IndoNLP-Workshop/IndoNLP-2025-Shared-Task
https://indonlp-workshop.github.io/IndoNLP-Workshop/sharedTask/
https://indonlp-workshop.github.io/IndoNLP-Workshop/sharedTask/
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ter results overall, but Model 1 was only 0.0001

higher in the BLEU-4 score. Overall, the results

demonstrate that the model performs well in han-

dling both ad-hoc transliteration scenarios (without

vowels) and normal scenarios (with vowels) for the

back-transliteration of Romanized Sinhala.

6 Conclusion

The proposed context-aware back-transliteration ap-

proach effectively converts Romanized Sinhala text

into native Sinhala script, addressing the challenges

of ad-hoc typing patterns and lexical ambiguity in-

herent in Romanized Sinhala back-transliteration.

Evaluation results demonstrate the robustness of the

proposed approach, achieving high BLEU scores

along with low Word Error Rate (WER) and Char-

acter Error Rate (CER) across test datasets. The

codebase can be accessed through the link be-

low for further research in this area. GitHub

link: https://github.com/Sameera2001Perera/
Singlish-Transliterator

Limitations

While the proposed back-transliteration approach

demonstrates significant accuracy, it has several

limitations. As described earlier, the system can

take time to transliterate long sentences containing

highly ambiguous words. Although candidate word

reduction and chunking mechanisms somewhat mit-

igate this issue, real-time applications may still face

challenges in maintaining efficiency. The word-

level transliteration relies on an ad-hoc Romanized

Sinhala–Sinhala dictionary. If a Singlish word is

not found in the transliteration dictionary, those

words are handled using a rule-based approach.

However, this rule-based method is not designed

to handle ad-hoc typing patterns.
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