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Preface

Welcome to GenAIK 2025 – The Generative AI and Knowledge Graph Workshop, held in Abu Dhabi,
UAE on January 19, 2025.

Generative Artificial Intelligence (GenAI) is a branch of artificial intelligence capable of creating
seemingly new, meaningful content, including text, images, and audio. It utilizes deep learning models,
such as Large Language Models (LLMs), to recognize and replicate data patterns, enabling the generation
of human-like content. Notable families of LLMs include GPT (GPT-3.5, GPT-3.5 Turbo, and GPT-4),
LLaMA (LLaMA and LLaMA-2), and Mistral (Mistral and Mixtral). GPT, which stands for Generative
Pretrained Transformer, is especially popular for text generation and is widely used in applications
like ChatGPT. GenAI has taken the world by storm and revolutionized various industries, including
healthcare, finance, and entertainment. However, GenAI models have several limitations, including
biases from training data, generating factually incorrect information, and difficulty in understanding
complex content. Additionally, their performance can vary based on domain specificity.

In recent times, Knowledge Graphs (KGs) have attracted considerable attention for their ability to
represent structured and interconnected information, and have been adopted by many companies in
various domains. KGs represent knowledge by depicting relationships between entities, known as
facts, usually based on formal ontological models. Consequently, they enable accuracy, decisiveness,
interpretability, domain-specific knowledge, and evolving knowledge in various AI applications.
The intersection between GenAI and KG has ignited significant interest and innovation in Natural
Language Processing (NLP). For instance, by integrating LLMs with KGs during pre-training and
inference, external knowledge can be incorporated to enhance the model’s capabilities and improve
interpretability. When integrated, they offer a robust approach to problem-solving in diverse areas
such as information enrichment, representation learning, conversational AI, cross-domain AI transfer,
bias, content generation, and semantic understanding. This workshop aims to reinforce the relationships
between Deep Learning, Knowledge Graphs, and NLP communities and foster interdisciplinary research
in GenAI.

We invited three types of papers: full research papers, short research papers, and position papers. Overall,
we received 31 abstract submissions, which were reviewed by 31 members of the Programme Committee.
The review process was double-blind. Each paper received three reviews. In total, 15 papers were
accepted for publication in this volume, including 12 research papers, 2 short research papers, and 1
position paper.

We would like to express our gratitude to the Organizing Committee and the Program Committee. We
would also like to thank our keynote speakers (Kang Liu and Wenya Wang) for accepting our invitations
without hesitation and bringing their insights into the importance of knowledge graphs in the age of
GenAI. Finally, our gratitude goes also to the sponsor of the conference, NFDI4DataScience, and to the
COLING organization team for making the event successful.

January 2025 Genet Asefa Gesese
Harald Sack

Heiko Paulheim
Albert Meroño-Peñuela

Lihu Chen
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Effective Modeling of Generative Framework for
Document-level Relational Triple Extraction

Pratik Saini and Tapas Nayak
TCS Research, India

{pratik.saini, nayak.tapas}@tcs.com

Abstract

Document-level relational triple extraction
(DocRTE) is a complex task that involves three
key sub-tasks: entity mention extraction, en-
tity clustering, and relational triple extraction.
Past work has applied discriminative models to
address these three sub-tasks, either by train-
ing them sequentially in a pipeline fashion or
jointly training them. However, while end-to-
end discriminative or generative models have
proven effective for sentence-level relational
triple extraction, they cannot be trivially ex-
tended to the document level, as they only han-
dle relation extraction without addressing the
remaining two sub-tasks, entity mention extrac-
tion or clustering. In this paper, we propose a
three-stage generative framework leveraging a
pre-trained BART model to address all three
tasks required for document-level relational
triple extraction. Tested on the widely used Do-
cRED dataset, our approach outperforms previ-
ous generative methods and achieves compet-
itive performance against discriminative mod-
els.

1 Introduction

Extracting relational triples—composed of a sub-
ject entity, an object entity, and the relation between
them—from documents is a vital yet challenging
task in natural language processing (NLP). Un-
like sentence-level relation extraction tasks (Zheng
et al., 2017; Zeng et al., 2018; Nayak and Ng,
2020), the challenges in document-level extraction
increase significantly. The first major challenge is
the extended context of documents, which requires
capturing long-distance dependencies between en-
tities across larger spans of text. Another chal-
lenge is that an entity may appear multiple times in
a document with different surface forms, making
entity resolution crucial. This complexity is less
pronounced in sentence-level tasks, where entities
are generally mentioned only once within a shorter
context. An example of document-level relational

triple extraction (DocRTE) is shown in Table 1 to
demonstrate the complexity of this task.

Generative models (Zeng et al., 2018; Nayak
and Ng, 2020) have shown strong performance in
sentence-level relational triple extraction. Building
on this, Cabot and Navigli (2021) proposed REBEL
for document-level relational triple extraction us-
ing the DocRED dataset (Yao et al., 2019). REBEL
introduced a linearization scheme that encodes all
triples in a document as a sequence of tokens, us-
ing BART-large as the base model. The model’s
decoder then generates a token sequence, from
which triples are extracted through straightforward
post-processing. However, REBEL’s linearization
scheme does not fully address the entity mention
extraction and entity clustering sub-tasks within
DocRTE. It only captures the initial mentions of
entities involved in relations and does not handle
the extraction of mentions with different surface
forms. In contrast, Giorgi et al. (2022) proposed
an alternative linearization scheme for DocRTE,
including all mentions of subject and object enti-
ties in the output sequence for each relational triple.
This approach partially addresses some challenges
of mention extraction and entity clustering. How-
ever, it redundantly extracts entity clusters multiple
times if they are involved in multiple relational
triples, which increases sequence length without
added value. It also overlooks clusters that do not
appear in any relation.

In contrast, JEREX (Eberts and Ulges, 2021) pro-
posed a three-stage approach to address the tasks
of entity mention extraction, entity clustering, and
relational triple extraction, which can be trained
either in a pipeline or jointly. The first stage em-
ploys a span-based classifier to identify entity men-
tions within the document. The second stage uses
pairwise classification between entity mentions for
clustering, and the third stage applies a relation
classifier to determine relationships, or ’no rela-
tion,’ between pairs of entity clusters. TAG (Zhang
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Document: Washington Place ( William Washington House ) is one of the first homes built by freed slaves after the
Emancipation Proclamation of 1863 in Hampshire County , West Virginia , United States . Washington Place was built by
William and Annie Washington in north Romney between 1863 and 1874 on land given to Annie by her former owner , Susan
Blue Parsons of Wappocomo plantation . William Washington later acquired other properties on the hills north of Romney
along West Virginia Route 28 and became the first African - American land developer in the state of West Virginia . One of
his subdivisions is the " Blacks Hill " neighborhood of Romney , adjacent to the Washington Place homestead . Washington
Place was bought and restored by Ralph W. Haines , a local attorney and historic preservationist .
Entity Clusters: C1: ([’Washington Place’, ’William Washington House’,’Washington Place’, ’Washington Place’,
’Washington Place’], ’LOC’), C2: ([’Emancipation Proclamation’], ’MISC’), C4: ([’Hampshire County’], ’LOC’), C5:
([’West Virginia’, ’West Virginia’], ’LOC’), C6: ([’United States’], ’LOC’), C7: ([’William’, ’William Washington’],
’PER’),C8: ([’Annie Washington’, ’Annie’], ’PER’), C9: ([’Romney’, ’Romney’, ’Romney’], ’LOC’), C12: ([’Susan Blue
Parsons’], ’PER’), C13: ([’Wappocomo plantation’], ’LOC’), C15: ([’West Virginia Route 28’], ’LOC’), C18: ([’Blacks
Hill’], ’MISC’), C19: ([’Ralph W. Haines’], ’PER’)
Relational Triples: [’C2’, ’C6’, ’country’], [’C4’, ’C5’, ’located in the administrative territorial entity’],[’C4’, ’C6’,
’country’], [’C5’, ’C4’, ’contains administrative territorial entity’], [’C5’, ’C6’, ’located in the administrative territorial
entity’], [’C5’, ’C6’, ’country’], [’C6’, ’C5’, ’contains administrative territorial entity’], [’C7’, ’C6’, ’country of citizenship’],
[’C8’, ’C6’, ’country of citizenship’], [’C14’, ’C6’, ’country of citizenship’], [’C15’, ’C5’, ’located in the administrative
territorial entity’], [’C15’, ’C6’, ’country’], [’C19’, ’C6’, ’country of citizenship’], [’C1’, ’C6’, ’country’], [’C12’, ’C6’,
’country of citizenship’], [’C13’, ’C6’, ’country’], [’C9’, ’C6’, ’country’]

Table 1: Example of the DocRTE Task. Entity mentions of the same entity cluster are marked using same colors.

et al., 2023) adopted a span-based mention extrac-
tor and a table-filling approach for the entity cluster-
ing and relation classification sub-tasks. However,
these classification and table-filling methods face
issues with an excess of negative samples; for n
identified entity mentions, there are O(n2) mention
pairs to classify for clustering, most of which do
not belong to the same cluster. A similar problem
exists for relation classification, where relations are
first identified at the entity mention pair level and
then aggregated to the entity cluster pair level. This
class imbalance issue is common in discriminative
approaches for this task. In contrast, generative
frameworks avoid this imbalance by design, as they
inherently focus on extracting only positive sam-
ples—pairs that belong to the same cluster or share
a relation — while ignoring negative samples.

As discussed, the single-stage generative ap-
proach does not address two key sub-tasks of
DocRTE — mention extraction and entity cluster-
ing — while discriminative approaches face class
imbalance issues due to their structural design. To
overcome these challenges, we propose a novel
three-stage generative framework, 3G-DocRTE, for
DocRTE that effectively integrates both paradigms.
In the first stage, we use a generative model to ex-
tract all entity mentions by linearizing mentions
from the documents. In the second stage, we mark
the identified mentions within the input documents
and use a generative approach to normalize varying
surface forms of the same entity into a unified en-
tity cluster representation, with the first mention’s
surface form serving as the cluster representative.
In the third stage, we employ the REBEL lineariza-

tion scheme (Cabot and Navigli, 2021) to extract
relational triples within the document. Our exper-
iments on the DocRED dataset show that our ap-
proach outperforms previous generative models on
all three sub-tasks of DocRTE and achieves com-
petitive performance compared to SOTA discrimi-
native models.

2 Task Formulation

Given a document D composed of L tokens, rep-
resented as D = {t1, t2, . . . , tL}, our objective
is to perform document-level relation extraction.
This task encompasses following three structured
sub-tasks:

Entity Mention Extraction (EME): This task
extracts all possible mention spans M = {mi}|M |

i=1

from the document, where each mention mi is de-
fined as a continuous sequence of tokens. Mathe-
matically, a mention mi is represented as mi =
(ts, ts+1, . . . , te), where 1 ≤ s ≤ e ≤ L and
ts, . . . , te ∈ D.

Entity Clustering and Typing (ECT): This
task groups the extracted mentions into en-
tity clusters and assigns an entity type, E =

{(ej , τj)}|E|
j=1. Mathematically, each cluster ej is

a set of mentions that are assumed to refer to
the same real-world entity, i.e., ej = {mi|mi ∈
M and mi refers to entity j}, and the type of each
cluster is defined as τj ∈ T , where T is the set of
all possible entity types.

Relational Triple Extraction (RTE): This
task generates a set of relational triples T =
{(ej , rjk, ek) | ej , ek ∈ E, rjk ∈ R ∪ {⊥}},
where ej and ek are entity clusters, rjk is selected
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from a predefined set R ∪ {⊥}, with ⊥ denoting
the absence of any relation. The goal is to identify
and specify the relations rjk between each pair of
entity clusters (ej , ek).

3 Proposed Framework: 3G-DocRTE

We introduce a three-step, multi-level generative
framework, 3G-DocRTE, for Document-level rela-
tional triple Extraction (DocRTE), comprising (i)
Entity Mention Extraction, (ii) Entity Clustering,
and (iii) Relational Triple Extraction. First, we
process documents containing multiple sentences
to extract entity mentions. Next, we cluster these
mentions to form entities along with their respec-
tive types. Finally, in the third stage, we generate
relational triples present within the input document
at the entity level.

A generative sequence-to-sequence model, such
as BART (Lewis et al., 2019) models the probabil-
ity of each output token oi in the output sequence
o based on the input sequence x and the previ-
ously generated output tokens o<i:

∏n
i=i P (oi |

o<i, x). The model is trained by maximizing the
log-likelihood of the output tokens in the training
data. We model this input and output sequence in
an effective way for the three stages in our frame-
work.

3.1 Entity Mention Extraction (EME)

Entity mentions can be extracted in a text either by
using their specific tokens or by using their token
index within the text. The same surface forms of
an entity may appear multiple times throughout a
document, making it difficult to ascertain precisely
which unique instance is being referred to in token-
based representation. Index-based representation
of mentions can uniquely identify each occurrence.
Given this advantage, we opt for an index-based
approach to mention extraction in our framework.

We illustrate our index-based mention extraction
strategy in Table 2 with an example. Each mention
is identified by its start and end index position in
the text. We append the start and end token index
positions of all the mentions in a sequence sep-
arated by space. To maintain a consistent order
during decoding, mentions are sorted according
to their appearance in the input document. This
enhances decoding efficiency by minimizing the
token count. During decoding, we retain pairs of
index positions, discarding single indexes if present
at the end. Using these extracted start and end po-

Washington 0 Place 1 ( 2 William 3 Washington 4 House
5 ) 6 is 7 one 8 of 9 the 10 first 11 homes 12 built 13 by
14 freed 15 slaves 1 6 after 17 the 18 Emancipation 19
Proclamation 20 of 21 1863 22 in 23 Hampshire 24 County
25 , 26 West 27 Virginia 28 , 29 United 30 States 31 . 32
Washington 33 Place 34 was 35 built 36 by 37 William 38
and 39 Annie 40 Washington 41 in 42 north 43 Romney
44 between 45 1863 46 and 47 1874 48 on 49 land 50
given 51 to 52 Annie 53 by 54 her 55 former 56 owner 57
, 58 Susan 59 Blue 60 Parsons 61 of 62 Wappocomo 63
plantation 64 ...

0 1 3 5 19 20 22 22 24 25 27 28 30 31 33 34 38 38 40 41
44 44 46 46 48 48 53 53 59 61 63 64

Table 2: Example of input text and linearized output for
mention extraction framework.

sitions, we reconstruct the original surface form
of each mention. To make index extraction easier
for the pre-trained model, we follow Mallick et al.
(2023) and insert the index of each token in the
input document as well. Although, this increases
the effective length of the document, but it helps
the model during the mention generation.

3.2 Entity Clustering & Typing (ECT)

To facilitate entity-level relational triple extraction,
it is crucial to group local mentions of the same en-
tity into document-level entity clusters, especially
considering entities may have multiple mentions
scattered throughout the input document and may
exhibit various surface forms. Similar to our ap-
proach for mention extraction, we have introduced
a linearization scheme tailored to enable entity clus-
tering, also outputting cluster type information.

On the input side, we specify all mentions us-
ing start and end marker tags, denoted as <m> and
</m>, respectively. For the output sequence of en-
tity clustering framework, we use a linearization
scheme where we replace each mention with the
cluster-label/cluster-center. Additionally, we in-
sert the entity type specific tags before and after
each mention of that entity, as illustrated in Table
3. To simplify the decoding process and enhance
efficiency, we opt to utilize the cluster center or
cluster label rather than the entire cluster, thereby
minimizing the number of tokens required. We
decide to use the entity mention that appears first
in the document for an entity cluster as the cluster-
label/cluster-center.

For instance, In the example shown in Table
3, "<m> William Washington House </m>" is re-
placed by "<loc> Washington Place </loc>", where
"Washington Place" serves as the first occurring

3



<m>Washington Place </m>( <m>William Washington
House </m>) is one of the first homes built by freed
slaves after the <m>Emancipation Proclamation </m>of
<m>1863 </m>in <m>Hampshire County </m>, <m>West
Virginia </m>, <m>United States </m>. <m>Washington
Place </m>was built by <m>William </m>and <m>Annie
Washington </m>in north <m>Romney </m>between
<m>1863 </m>and <m>1874 </m>on land given to
<m>Annie</m>by her former owner , <m>Susan Blue
Parsons </m>of <m>Wappocomo plantation </m>...

<loc>Washington Place </loc>( <loc>Washington Place
</loc>) is one of the first homes built by freed slaves
after the <misc>Emancipation Proclamation </misc>of
<time>1863 </time>in <loc>Hampshire County </loc>,
<loc>West Virginia </loc>, <loc>United States </loc>.
<loc>Washington Place </loc>was built by <per>William
</per>and <per>Annie Washington </per>in north
<loc>Romney </loc>between <time>1863 </time>and
<time>1874 </time>on land given to <per>Annie </per>by
her former owner , <per>Susan Blue Parsons </per>of
<loc>Wappocomo plantation </loc>...

Table 3: Example of input and out representation for
entity clustering stage.

mention for the cluster, with the entity type de-
noted as "<loc>".

During the decoding phase, each mention in the
input document has a corresponding cluster label
and a cluster type. We utilise these cluster labels to
assign mentions to their respective clusters. Men-
tions sharing the same cluster label are grouped to
form a cluster.

After this stage, the documents are normalized
with respect to entity mentions as we replace the
mentions with the corresponding cluster labels, and
these are then enclosed within entity type marker
tags. This normalization of the documents serves
a dual purpose. Firstly, it simplifies the task of the
subsequent entity triple extraction step. Secondly,
it eliminates the need to output entire entity clusters
with all their mentions, thereby effectively reducing
the number of tokens required to be processed. This
streamlined approach enhances both the efficiency
and accuracy of the subsequent relational triple
extraction stage.

3.3 Relational Triple Extraction (RTE)

In the final stage of our approach, namely relational
triple Extraction, we focus on generating entity-
level relational triples present within the documents.
A relational triple comprises head and tail entities
along with a relation from a predefined relation
set. It’s worth noting that a single document may
express multiple relations between the same head
and tail entities.

<loc>Washington Place </loc>( <loc>Washington Place
</loc>) is one of the first homes built by freed slaves
after the <misc>Emancipation Proclamation </misc>of
<time>1863 </time>in <loc>Hampshire County </loc>,
<loc>West Virginia </loc>, <loc>United States </loc>.
<loc>Washington Place </loc>was built by <per>William
</per>and <per>Annie Washington </per>in north
<loc>Romney </loc>between <time>1863 </time>and
<time>1874 </time>on land given to <per>Annie </per>by
her former owner , <per>Susan Blue Parsons </per>of
<loc>Wappocomo plantation </loc>...
<triple>Washington Place <subj>United States
<obj>country <triple>Emancipation Proclamation
<subj>United States <obj>country <triple>Hampshire
County <subj>West Virginia <obj>located in the
administrative territorial entity <subj>United States
<obj>country <triple>West Virginia <subj>Hampshire
County <obj>contains administrative territorial entity
<subj>United States <obj>located in the administrative
territorial entity <subj>United States <obj>country
<triple>United States <subj>West Virginia <obj>contains
administrative territorial entity ...

Table 4: Example of input and output representation
for RTE. Note that the blue-colored triple actually com-
prises two nested triples sharing the same subject/head
entity.

This stage builds upon the output of the previ-
ous entity clustering stage. To achieve effective
linearization and denote all relational triples con-
cisely, we adopt the linearization scheme proposed
in the REBEL (Cabot and Navigli, 2021) paper
as shown in Table 4. REBEL introduces a set of
marker tokens for this purpose. Triples are grouped
by the head entity, with the <triple> tag indicating
the beginning of a new triple for a specific head
entity, succeeded by the head entity itself. The
<subj> tag marks the conclusion of the head entity,
followed by the object entity. Subsequently, the
<obj> tag signifies the conclusion of the tail entity
and the initiation of the relation between the head
and tail entities. In cases where there are multiple
objects or relations of the same head entity, the
<subj> tag marks the termination of the preceding
relation, followed by the subsequent object entity.
This process is repeated as needed for additional
objects and relations. Once all relations involving a
particular head entity have been processed, a fresh
set of relations begins with the subsequent appear-
ing head entity in the text. This iterative process
continues until all triples have been linearized.

However, their proposed linearization scheme
only utilizes the first occurring mention and disre-
gards any remaining mentions of that entity. They
extract mentions solely if they participate in one
of the relational triples. Consequently, they do not
comprehensively address the entity mention extrac-
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tion and entity clustering sub-tasks.
To overcome this limitation, we opt to utilize

the cluster label of the entities instead of solely
relying on the first occurring mention of an entity.
It’s noteworthy that we have already extracted en-
tity clusters along with entity types in the previous
stage, and we can retrieve the entity cluster using
the cluster label.

Each stage of our framework builds upon the
results of the previous stage. By the conclusion
of the third stage in our proposed framework, we
can deduce all the relational triples present in the
input document using the output of all three stages
along with all entity mentions and entity clusters
in the documents. In this way our proposed three-
stage generative framework 3G-DocRTE solves all
three sub-tasks of document-level relational triple
extraction.

4 Experiments

4.1 Dataset & Evaluation Metric
We conduct our experiments using the manually an-
notated part of DocRED dataset (Yao et al., 2019)
and use the splits provided by JEREX (Eberts and
Ulges, 2021). JEREX removed 45 erroneous docu-
ment from training set, used 3,008 documents for
the training. They randomly split the 1,000 docu-
ments in the original dev set into two parts: 300
documents as validation set, and 700 documents for
the test set. The specific statistics for these JEREX
splits are detailed in Table 5.

Split #Doc #Men #Ent #Rel
Train 3,008 78,677 58,708 37,486
Dev 300 7,702 5,805 3,678
Test 700 17,988 13,594 8,787

Table 5: DocRED dataset split used for DocRTE.

As the dataset split, we use the evaluation
methodology of Eberts and Ulges (2021) for this
task. We adopt a strict evaluation criteria for all
three sub-tasks of DocRTE. An entity mention
is considered correct if its surface form is an ex-
act match with a ground truth mention’s surface
form. An entity cluster is considered correct only
if it exactly matches a ground truth entity cluster.
This includes — all mentions within the generated
cluster matching exactly with those in a ground
truth cluster — and the cluster type also matching
with the ground truth type. We generate relational
triples at entity-cluster-level. A relational triple is
considered as correct if the head and tail entities, as

well as the relation itself, are correct and matches
with the ground truth relational triple. For each of
these sub-tasks, we report precision, recall, and F1
scores.

4.2 Baselines
For baselines, we use two generative approaches:
REBEL (Cabot and Navigli, 2021) and Seq2Rel
(Giorgi et al., 2022), two discriminative approaches:
JEREX (Eberts and Ulges, 2021) and TAG (Zhang
et al., 2023) for comparison.

REBEL (Cabot and Navigli, 2021): REBEL
uses a BART (Lewis et al., 2019) model to gener-
ate the relational triples in a sequence-to-sequence
fashion. They use a linearization scheme where
entities and relations are represented as tokens sep-
arated by special tags. However, this approach
cannot solve the mention extraction and entity clus-
tering sub-tasks for the DocRTE.

Seq2Rel (Giorgi et al., 2022): This is another
Seq2Seq approach where they use BERT encoder
and LSTM decoder to generate the relational triples
using a pre-defined linearization scheme. They
designed the linearization scheme in such a way
that it can extract the entity clusters along with the
triples. But this approach only includes those entity
mentions and entity clusters that participate in some
relational triples. Entity mentions and clusters that
are not part of any relational triples are ignored in
their linearization scheme. Also, they extract an
entity cluster as many times as they participate in
as many triples. Additionally, there is a significant
amount of redundant entity cluster generation in
this approach.

JEREX (Eberts and Ulges, 2021): This is a 3-
step discriminative approach for the DocRTE task.
First, they extract the entity mentioned using a span-
based classifier. Next, they classify each pair of
extracted mentions if they belong to the same entity
cluster or not. In the third step, they classify the
relations or no relation among all possible pairs of
entity clusters. They can train these three stages
either in a pipeline fashion or in a joint fashion.

TAG (Zhang et al., 2023): This model proposed
a table-filling approach for DocRTE. First, it iden-
tifies the entity mention spans and creates a table
where rows and columns of the table represent each
mention. Each cell of this table is then filled with
values that represent if they belong to the same clus-
ter or not and the relations between the mentions.
Some aggregation mechanism is used to obtain the
entity cluster pair-level relations from the mention
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pair level relations.

4.3 Parameter Settings

For training, we mostly follow the REBEL paper
(Cabot and Navigli, 2021). We use BART-large
(Lewis et al., 2019) as our base model and fine-
tune it separately on the DocRED human annotated
dataset for each sub-task of DocRTE with sub-task
specific linearization schemes. We used batch size
of 4 and AdamW (Loshchilov and Hutter, 2019)
optimizer with learning rate at 1e-05, the weight
decay at 1e-03. Additionally, The REBEL paper
(Cabot and Navigli, 2021) released a pre-trained
version of BART-large, which was fine-tuned on
a relational triple dataset derived from Wikipedia
hyperlinks. We also utilize this pre-trained BART-
large model for our experiments, referring to it with
the ’-pt’ suffix.

5 Experimental Results

The performance comparison of generative models
and discriminative models are summarized in Table
6.

Entity Mention Extraction: In the entity men-
tion extraction sub-task, both the 3G-DocRTE and
3G-DocRTE-pt models demonstrate competitive
performance, each achieving an F1-score of 0.930,
closely matching other baseline models. This per-
formance indicates that our 3G-DocRTE frame-
work effectively identifies correct mention spans
across various document contexts.

Entity Clustering & Typing: In entity cluster-
ing & typing, the 3G-DocRTE framework shows
strong performance with an F1-score of more than
80%. This represents an almost 30% higher F1
score than that achieved by the REBEL frame-
work for this task. When type information is not
considered in evaluation like TAG does, our ap-
proach achieves competitive performance. These
results highlight the robustness of our framework
in effectively grouping mentions into accurate clus-
ters. However, our performance is slightly lag-
ging—about 5% in F1 score—behind the best re-
sult in EC.

Relational Triple Extraction: In relational
triple extraction, generative models generally ex-
hibit lower F1-scores compared to discriminative
models as evident from Table 6. 3G-DocRTE-
pt records the highest F1-score among generative
models at 0.405 under the strict evaluation criterion.
Under the relaxed criterion, TAG model achieves

the highest F1 score of 43.2%, whereas our ap-
proach achieves around 41.2% F1 score. The gen-
eral performance gap between the discriminative
and generative models underscores the challenges
and potential trade-offs inherent in generative ap-
proaches, highlighting a critical area for further im-
provement. Particularly, our generative approach
achieves significantly lower performance in the en-
tity clustering task which needs more attention in
future.

Overall, while discriminative models tend to
show slight advantages in specific sub-tasks, partic-
ularly in Entity Clustering, our 3G-DocRTE frame-
work, particularly in its pre-trained variant, con-
sistently delivers competitive and balanced perfor-
mance across all sub-tasks. The consistent perfor-
mance of our framework underscores its potential
to advance the state-of-the-art in document-level
relation extraction, highlighting its capability to
handle complex relational data effectively.

6 Analysis & Discussion

6.1 Discriminative vs Generative Performance

From Table 6, it is evident that discriminative mod-
els generally outperform generative models. This
discrepancy can likely be attributed to the inherent
design choices between these paradigms, which af-
fect the volume of effective training samples. Dis-
criminative models train on all possible pairs of
entity clusters to identify relations, using a larger
number of training samples per document. During
inference, they identify relations from these pairs
and aggregate these into document-level triples.
In contrast, generative models are trained directly
on documents; a single document outputs a set of
triples. Considering the DocRED training data,
which comprises approximately 3,000 documents
with about 58,000 entity clusters, the effective train-
ing sample size for discriminative models signif-
icantly exceeds that of generative models. This
considerable difference may be a reason for the bet-
ter performance observed in discriminative models.

6.2 Copy vs Reasoning in 3G-DocRTE

We analyze how generative frameworks perform
in tasks that involve only copying versus those re-
quiring some reasoning. In the case of the Marker-
Inserted linearization scheme (see Table 7) for en-
tity mention extraction, our model simply needs to
copy the input tokens and insert <m> tags where
entity mentions occur. Identifying a mention is
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EME ECT RTE
Model P R F1 P R F1 P R F1
REBEL 0.844 0.444 0.582 0.727 0.367 0.488 0.237 0.223 0.230
REBEL-pt 0.837 0.449 0.584 0.720 0.362 0.482 0.251 0.249 0.250
Seq2Rel - - - - - - 0.440 0.338 0.382
JEREX 0.933 0.927 0.930 0.798 0.804 0.801 0.428 0.383 0.404
TAG 0.929 0.928 0.929 0.811 0.798 0.804 0.428 0.395 0.411
3G-DocRTE 0.933 0.926 0.930 0.810 0.807 0.808 0.385 0.376 0.381
3G-DocRTE-pt 0.930 0.930 0.930 0.802 0.805 0.804 0.413 0.397 0.405

Table 6: Performance comparison of generative/discriminative models against 3G-DocRTE framework on JEREX
split of DocRED. Models marked with ‘-pt’ denote a BART-large model variant that is post-trained using the REBEL
dataset.

a localized task that does not require reasoning
across documents. Hence, in this task, our frame-
work achieves a very high F1 score of around 93%.
Contrarily, for the entity clustering task, the lin-
earization scheme used in Table 3, our generative
framework must not only copy most tokens from
the input text but also resolve co-references among
different mentions. This co-reference resolution
involves long-term reasoning across the entire doc-
ument. As shown in Table 6, our model achieves
an F1 score of approximately 80% in the entity
clustering task, which is 10% lower in terms of ab-
solute F1 score compared to the mention extraction
task. This performance difference between the two
tasks indicates that auto-regressive generative mod-
els struggle with reasoning tasks while decoding
the output sequence.

6.3 Ablation for Entity Mention Extraction
To optimize mention extraction strategies within
the 3G-DocRTE model, we conducted ablation
studies focusing on different linearization schemes.
Apart from the index-based scheme discussed in
Section 4.1, we explored both the marker-inserted
and marker-separated schemes. In the marker-
inserted scheme, the start and end of all the entity
mentions in the document are marked by <m> and
</m> tags. An example of this approach can be
seen in row 2 of Table 7. The marker-separated
scheme includes only the entity mention tokens
in the output sequence, marking the start of each
mention with a <m> tag. An example of this can
be found in row 3 of Table 7. The performances
of these schemes are reported in Table 8, showing
comparable results. Additionally, we evaluated an
adaptation of the index-based scheme that omits
the token index in the input document. This ap-
proach (see Table 12 in Appendix) resulted in a

significant drop in the F1 score for the mention ex-
traction task, as shown in row 4 of Table 8). We use
the Index Based linearization for the final model as
it achieves high F1 score with fewer output tokens.

Washington Place ( William Washington House ) is one of
the first homes built by freed slaves after the Emancipation
Proclamation of 1863 in Hampshire County , West Virginia
, United States ...
Marker-Inserted: <m>Washington Place </m>(
<m>William Washington House </m>) is one of the first
homes built by freed slaves after the <m>Emancipation
Proclamation </m>of <m>1863 </m>in ...
Marker-Separated: <m>Washington Place <m>William
Washington House <m>Emancipation Proclamation
<m>1863 ...

Table 7: Example of token-based linearization strat-
egy for Mention Extraction using start (<m>) and end
(</m>) marker tags.

EME
Linearization Scheme P R F1
Marker-Inserted 0.939 0.929 0.934
Marker-Separated 0.925 0.924 0.925
Index Based 0.930 0.930 0.930

- w/o index in document 0.532 0.527 0.529

Table 8: Performance comparison of two linearization
scheme for entity mention extraction.

6.4 Ablation for Entity Clustering & Typing
In addition to the entity clustering linearization
scheme described in Section 4.2 (referred to
as Type-Marker-Inserted), we experiment with
another scheme, referred to as Type-Marker-
Separated, similar to the previous scheme. For
every tagged mention in input text, we extract an
entity type marker tag followed by the cluster label
for that mention. We choose the first appearing
mention of a cluster as a cluster label. The per-
formance comparison of these two linearization
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schemes is reported in Table 10. Results indicate
that the Type-Marker-Inserted scheme slightly out-
performs the Type-Marker-Separated scheme. The
results of our evaluation indicate that the Type-
Marker-Inserted scheme slightly outperforms the
Type-Marker-Separated scheme. This performance
difference suggests that the Type-Marker-Inserted
approach forms a coherent and meaningful text
compared to the disconnected and divided format
of the Type-Marker-Separated scheme which may
facilitate better understanding by the model and
enables effective grouping of the mentions.

Type-Marker-Separated: <loc>Washington Place
<loc>Washington Place <misc>Emancipation Proclama-
tion <time>1863 <loc>Hampshire County <loc>West
Virginia <loc>United States <loc>Washington Place
<per>William <per>Annie Washington <loc>Romney
<time>1863 <time>1874 <per>Annie <per>Susan Blue
Parsons <loc>Wappocomo plantation ...

Table 9: Type-Marker-Separated scheme for ECT using
the same input format as described in Table 3.

ECT
Linearization Scheme P R F1
Type-Marker-Separated 0.792 0.796 0.794
Type-Marker-Inserted 0.802 0.805 0.804

Table 10: Performance comparison of two different
linearization schemes for ECT task.

6.5 Ablation for Relational Triple Extraction
Before REBEL Cabot and Navigli (2021), Nayak
and Ng (2020) proposed another linearization
scheme with their Word Decoder model where each
triple is separated by a special tag and the compo-
nents of a triples (head entity, tail entity, and a rela-
tion) are separated by another special tag (see Table
13 in Appendix for more details). We experimented
with such representation for the relational triple
extraction stage of 3G-DocRTE and include the
results in Table 11. The evaluation shows that the
REBEL representation yields better performance
compared to the Word Decoder representation. It
is compact and requires significantly fewer tokens
to represent all the relational triples in a document.

RTE
Linearization Scheme P R F1
Word Decoder 0.363 0.395 0.378
REBEL 0.413 0.397 0.405

Table 11: Performance comparison of RTE task with
two different output representations.

6.6 Unified EME and ECT Approach

As document-level tasks involve a large num-
ber of tokens, maximum token length often be-
comes a performance bottleneck for any pre-trained
model such as BART. Implementing all three
steps—mention extraction, entity clustering, and
relation extraction—within a single linearization
process can increase token length and lead to un-
necessary repetition of clusters. So we propose
three stages for three sub-tasks of DocRTE.

But Is it possible to reduce the number of steps
in the pipeline? Of the three stages in our pro-
posed 3G-DocRTE framework, it appears feasible
to combine the first two stages—mention extraction
and entity clustering—into a single step and use
a single generative model which takes plain text
as input and generates output similar to the output
of the second stage of 3G-DocRTE. Our goal is
to replace each mention of an entity in the docu-
ments with corresponding cluster labels enclosed
by entity-type markers. Although the generative
approach can perform this combined task, but a sig-
nificant challenge was to map these cluster labels
back to the original mentions in documents as clus-
ter labels and their mentions are not always of the
same token length. The BART tokenizer alters the
text by removing what it perceives as extra spaces,
and it can split tokens into sub-tokens or merge
them, complicating the recovery of the original to-
kens. So we believe that it is more effective and
intuitive to use two different stages of the genera-
tive approach for these two sub-tasks of mention
extraction and entity clustering in DocRTE.

7 Related Work

Relational Triple extraction (RTE) is a crucial task
for extracting knowledge from text, where this
knowledge is represented in triple form, consisting
of two entities (subject and object) and a directed
relation from the subject to the object. These triples
can be added to knowledge bases (KBs) to enrich
them. There are two distinct approaches to ad-
dressing this task: (i) Relation Classification (RC)
and (ii) Relational Triple Extraction (RTE). In the
relation classification approach, entities are pre-
identified, and models are required to identify the
relations, or ’no relation’, between pairs of entities.
In the relational triple Extraction approach, models
simultaneously extract corresponding entity pairs
and their relations. Recently, RTE approaches have
gained popularity as they provide an end-to-end
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solution for this task.
Mintz et al. (2009) introduced the distant super-

vision method to generate large-scale datasets for
relation Classification task without the need for hu-
man annotations. It has significantly fostered the
research in this area. Following the introduction
of word embeddings in NLP (Mikolov et al., 2013;
Pennington et al., 2014), numerous neural mod-
els were proposed to address this task. Zeng et al.
(2014, 2015) introduced CNN-based models for
classifying relations or ’no relation’ between two
entities within a short sentence-level context. Ad-
ditionally, Jat et al. (2018); Nayak and Ng (2019)
proposed attention models for the same task.

Relational triple extraction is relatively new task
and Zheng et al. (2017) was very first to intro-
duce a tagging-based approach for this task, while
Zeng et al. (2018); Nayak and Ng (2020) explored
sequence-to-sequence learning for the same task.
Eberts and Ulges (2021) used a pre-trained BART
based model that represents relational triples using
a linearization mechanism. The BART decoder of
their model can generate this representation in an
auto-regressive manner. Recent models have lever-
aged pre-trained transformers like BERT (Devlin
et al., 2019) to encode the sentences to get a better
representation. Models such as TPLinker (Wang
et al., 2020b), CasRel (Wei et al., 2020), TDEER
(Li et al., 2021), PRGC (Zheng et al., 2021), PFN
(Yan et al., 2021), GRTE (Ren et al., 2021), OneRel
(Shang et al., 2022), and BiRTE (Ren et al., 2022)
have proposed various neural architectures based
on BERT to address RTE at the sentence level.

Recently, with the introduction of the DocRED
dataset (Yao et al., 2019), document-level relation
extraction has gained significant traction in the re-
search community. Initially, in this field, most
research work focused on relation classification
at the entity levels within documents. Nan et al.
(2020); Wang et al. (2020a); Zeng et al. (2020,
2021); Xu et al. (2021b,a) introduced various at-
tention models and graph convolution models for
this task. More recently, researchers have explored
the document-level relational triple extraction task
on the DocRED dataset. This task is notably more
challenging than its sentence-level counterpart, as
it involves longer context lengths, requires coref-
erence resolution across the longer text, and the
models need to perform multi-hop reasoning to ex-
tract triples. REBEL (Cabot and Navigli, 2021)
and Seq2Rel (Giorgi et al., 2022) have proposed
sequence-to-sequence models for document-level

relational triple extraction using a linearized triple
representation. Alternatively, JEREX (Eberts and
Ulges, 2021), Joint-M (Xu and Choi, 2022), and
TAG (Zhang et al., 2023) have proposed multi-
stage discriminative approaches for the same task.

8 Conclusion

In this work, we propose an effective way of us-
ing generative frameworks for the document-level
relational triple extraction task (DocRTE). Our ap-
proach completely addresses all three sub-tasks of
DocRTE: entity mention extraction, entity clus-
tering, and relational triple extraction, whereas,
the previous generative approaches exhibit signifi-
cant deficiencies in managing these sub-tasks. On
the DocRED dataset, our proposed framework sur-
passes earlier generative models. Additionally,
when compared with multi-stage discriminative ap-
proaches on the same dataset, our method achieves
competitive performance across the three sub-tasks
of DocRTE.

9 Ethics Statement

There is no ethical issues concerning this research
work.

10 Limitations

Due to limited GPU availability, we can only fine-
tune the BART model at this time. To achieve
broader applicability, fine-tuning other encoder-
decoder models like T5 would be advantageous.

Another potential limitation of our approach is
the significant increase in document length when
additional tokens are inserted. While this does not
pose an issue for the DocRED dataset, it could
become problematic for longer documents. Specif-
ically, the additional tokens may exceed the maxi-
mum token limit allowed in the encoder.
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A Appendix

A.1 Examples of Linearization
We include some examples of linearization
schemes used in our ablation studies here. Details
are included in the respective caption.

Washington Place ( William Washington House ) is one of
the first homes built by freed slaves after the Emancipation
Proclamation of 1863 in Hampshire County , West Virginia
, United States . Washington Place was built by William
and Annie Washington in north Romney between 1863
and 1874 on land given to Annie by her former owner ,
Susan Blue Parsons of Wappocomo plantation ...

0 1 3 5 19 20 22 22 24 25 27 28 30 31 33 34 38 38 40 41
44 44 46 46 48 48 53 53 59 61 63 64

Table 12: Example of input text and linearized output for
mention extraction framework where we do not insert
the token index in the input documents.
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<loc>Washington Place </loc>( <loc>Washington Place </loc>) is one of the first homes built by freed slaves after
the <misc>Emancipation Proclamation </misc>of <time>1863 </time>in <loc>Hampshire County </loc>, <loc>West
Virginia </loc>, <loc>United States </loc>. <loc>Washington Place </loc>was built by <per>William </per>and
<per>Annie Washington </per>in north <loc>Romney </loc>between <time>1863 </time>and <time>1874 </time>on
land given to <per>Annie </per>by her former owner , <per>Susan Blue Parsons </per>of <loc>Wappocomo plantation
</loc>...
<triple>Washington Place <subj>United States <obj>country <triple>Emancipation Proclamation <subj>United States
<obj>country <triple>Hampshire County <subj>West Virginia <obj>located in the administrative territorial entity
<subj>United States <obj>country <triple>West Virginia <subj>Hampshire County <obj>contains administrative territo-
rial entity <subj>United States <obj>located in the administrative territorial entity <subj>United States <obj>country
<triple>United States <subj>West Virginia <obj>contains administrative territorial entity ...
<triple>Washington Place <subj>United States <obj:>country <triple>... <triple>Hampshire County <subj:>West Vir-
ginia <obj:>located in the administrative territorial entity <triple>Hampshire County <subj:>United States <obj:>country
<triple>...

Table 13: Example of input and output representation for RTE for REBEL and Word Decoder models. First row
represents the input document format used for both of these two models. Row 2 represents the REBEL (Cabot
and Navigli, 2021) representation for output triples. Row 3 shows the Word Decoder (Nayak and Ng, 2020)
representation for triples. In REBEL representation if you look at the blue-colored triple, you see that two triples
are nested which share the same subject/head entity. But the same two triples in Word Decoder representation are
flattened for simpler representation.
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Abstract

Recent studies have shown that a knowl-
edge graph (KG) can enhance text data
by providing structured background knowl-
edge, which can significantly improve the
language understanding skills of the LLM.
Besides, finetuning of such models shows
solid results on commonsense reasoning bench-
marks. In this work, we introduce expandable
Joint Multitask Finetuning of Pretrained KG-
enchanced LLM approach for Question An-
swering (QA), Machine Reading Comprehen-
sion (MRC) and Knowledge Graph Question
Answering (KGQA) tasks. Extensive experi-
ments show competitive performance of joint
finetuning QA+MRC+KGQA over single task
approach with a maximum gain of 30% accu-
racy.

1 Introduction

Large language models (LLMs), pretrained on ex-
tensive text corpus, have demonstrated high per-
formance across a wide range of natural language
processing (NLP) tasks. However, despite their
success in various applications, these models have
notable shortcomings. Studies show that LLMs fre-
quently fail to accurately recall factual information
and tend to generate hallucinations - statements that
are false or misleading. Furthermore, LLMs pre-
trained on general text data may not effectively ap-
ply domain-specific knowledge without additional
training on relevant datasets.

To improve the efficiency of large language mod-
els (LLMs) and address the aforementioned chal-
lenges, a promising solution is to integrate LLMs
with knowledge graphs (KGs). Knowledge graphs
represent factual information in a structured format,
using triples composed of a head entity, a relation,
and a tail entity. KGs are widely applied across
various domains due to their structured, intercon-
nected representation of data, offering a more com-
prehensive and interpretable view of information

and facilitating easier interaction with it.
There are several strategies to integrate LLMs

with KGs (Pan et al., 2024). The first approach
involves enhancing large language models using
knowledge graphs. In this approach, KGs can
be incorporated during the pretraining and in-
ference stages of the LLM to enrich its linguis-
tic representations with external knowledge and
provide insights into its reasoning process. For
example, the ERNIE (Zhang et al., 2019) and
KALM (Corby Rosset, 2021) architectures lever-
age this method by feeding pairs of sentences and
corresponding entities from the knowledge graph
into the LLM, subsequently training the model to
predict relationships between these entities.

The second approach takes the opposite di-
rection—strengthening knowledge graphs using
LLMs. This technique aims to enhance the pro-
ductivity of KGs and improve their performance in
KG-related tasks. For example, the authors of the
QA-GNN (Yasunaga et al., 2021) architecture em-
ploy a graph neural network (GNN)-based model
to jointly analyze the input context and KG infor-
mation through message passing. The input text
information is transformed into a special node via a
pooling operation and then connected with other en-
tities in the KG. Another model, GreaseLM (Zhang
et al., 2021), facilitates deeper interaction between
text tokens and KG entities. Information from both
modalities propagates to each other, allowing rep-
resentations of linguistic context to be grounded in
structured world knowledge and enabling linguis-
tic nuances in context to inform graph knowledge
representations.

Another increasingly popular way to leverage
the benefits of LLMs and KGs simultaneously is
to integrate these models into a single framework
where they can mutually reinforce each other. In
this framework, LLMs are used to understand nat-
ural language, while KGs serve as a knowledge
base providing factual information. The DRAGON
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(Deep Bidirectional Language-Knowledge Graph
Pretraining) architecture (Yasunaga et al., 2022) ex-
emplifies this approach by pretraining a deeply in-
tegrated language-knowledge foundation model us-
ing both text and KGs at scale. This self-supervised
model processes text segments and their corre-
sponding KG subgraphs, integrating information
from both modalities bidirectionally.

Since DRAGON demonstrated superior perfor-
mance in commonsense reasoning and tasks in-
volving complex reasoning compared to the QA-
GNN and GreaseLM baselines, we decided to in-
vestigate the effectiveness of this model within
the frameworks of the Machine Reading Com-
prehension (MRC) task, the Knowledge Graph
Question Answering (KGQA) task, and the com-
bined MRC+QA+KGQA task. This study tests
the hypothesis that training on the combined
MRC+QA+KGQA task will yield better perfor-
mance, as the model learns to solve tasks of differ-
ent types, which in turn aids in solving each task
individually. By leveraging the complementary
strengths of both textual and structured knowledge
understanding, the integrated approach is expected
to enhance the model’s reasoning capabilities.

2 Related Work

In this work, we consider tasks from the field of
natural language processing, such as MRC, QA
and KGQA. These tasks are crucial as they rep-
resent key challenges in language understanding,
demanding models to comprehend, interpret, and
interact with text in a meaningful way. Addressing
these tasks advances neural networks’ capabilities
in processing human language.

The Machine Reading Comprehension (MRC)
task involves developing systems capable of au-
tomatically understanding and processing textual
passages to accurately answer questions about the
content. This necessitates advanced natural lan-
guage processing techniques to capture the seman-
tics, context, and nuances of the text, facilitating
effective question answering. Prominent large lan-
guage models, including GPT-4 (Achiam et al.,
2023), PaLM 2 (Anil et al., 2023), and Claude 2
from Anthropic, have demonstrated consistently
high performance in this domain.

Question answering (QA) is the process of pro-
viding answers to asked questions, while refraining
from attempting to answer questions outside the
context provided. In addition to large language

models trained using few-shot learning (similar to
the MRC task), architectures with fewer parameters
can also handle the QA task effectively.

For example, GrapeQA (Taunk et al., 2023) en-
hances commonsense question-answering by com-
bining pretrained Language Models with Knowl-
edge Graphs reasoning. It addresses two key
challenges faced by typical approaches: difficulty
in capturing all QA information in the Working
Graph (WG) and inclusion of irrelevant KG nodes.
GrapeQA introduces two improvements to the WG:
prominent entities for graph augmentation identi-
fies relevant text chunks from QA pairs and aug-
ments the WG with corresponding LM latent rep-
resentations, and context-aware node pruning re-
moves less relevant nodes. These enhancements
allow GrapeQA to consistently outperform its pre-
decessor QA-GNN (Yasunaga et al., 2021), demon-
strating notable improvements on datasets such as
OpenBookQA (Mihaylov et al., 2018) and Com-
monsenseQA (Talmor et al., 2019).

Another model, KEAR (Xu et al., 2022), extends
the transformer architecture with an external atten-
tion mechanism, integrating external knowledge
from sources like knowledge graphs, dictionaries,
and training data. This additional knowledge is
retrieved using the input as the key and then inte-
grated with the input. KEAR achieves this without
altering the model architecture, opting for text-level
concatenation for external attention.

Knowledge Graph Question Answering
(KGQA (Yang et al., 2014)) involves the task
of responding to natural language queries by
utilizing the structured information stored within
a knowledge graph. The goal is to provide
accurate and contextually appropriate answers
to a wide range of natural language questions by
effectively navigating the interconnected nodes
and relationships within the knowledge graph.

Methods for solving KGQA problems can be
broadly categorized into two types: Information
Retrieval-based (IR-based) and Semantic Parsing-
based (SP-based). SP-based methods adopt a parse-
then-execute approach, starting with semantic anal-
ysis to parse the relations and entities in complex
questions. Next, they construct logical formulas
by translating the subgraph into an executable for-
mat, such as SPARQL. Finally, these methods use
the query language to interact with the Knowledge
Graph, retrieving and presenting the results. While
SP-based methods are often praised for their inter-
pretability due to the intermediate step of generat-
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ing detailed logic forms, they face computational
challenges, especially with complex questions that
involve multiple relations. This results in a larger
search space and increased computational cost.

IR-based approaches to Knowledge Graph Ques-
tion Answering (KGQA) typically involve several
steps. First, they extract a question-specific sub-
graph from the knowledge graph, including all rel-
evant entity nodes and relation edges without gen-
erating an executable logic formula. Next, they
use a question representation module to encode
user-question tokens into low-dimensional vectors.
Following this, an extracted-graph-based reasoning
module applies a semantic matching algorithm to
aggregate information from the subgraph, concen-
trating on the neighborhood of the central entity.
Finally, an answer-ranking module ranks the entity
scores within the subgraph to predict the top-ranked
entities as the final answers.

In developing our own approach for multitask
finetuning, which integrates a language model with
a knowledge graph, several foundational IR-based
methods for the KGQA task were considered. For
instance, Rce-KGQA (Jin et al., 2022) focuses on
enhancing reasoning by leveraging both explicit
and implicit relational chains within the knowl-
edge graph. EmbedKGQA (Saxena et al., 2020)
addresses knowledge graph sparsity by integrat-
ing external knowledge and utilizing KG embed-
ding techniques, which improves performance in
multi-hop KGQA tasks. SRN (Qiu et al., 2020) ap-
proaches KGQA as a sequential decision problem
and employs reinforcement learning to effectively
search for paths within knowledge graphs. Addi-
tionally, KVMemNN (Eric et al., 2017) introduces
a key-value retrieval mechanism that enables neural
dialogue agents to interact seamlessly with knowl-
edge bases across various domains. These methods
were considered for their valuable concepts to form
a strategy for finetuning the model on the KGQA
and joint task. Our study is not intended to be a
direct comparison with all the models listed in this
section.

3 Methodology

3.1 Encoders

DRAGON, as previously described, is the basis for
all experiments conducted in this study. At the first
stage of the study, we tested the lightweight T5-
base (Raffel et al., 2020) encoder but we received
insufficient results. We used RoBERTa-large (Liu

et al., 2019) encoder for input text data and text
data from the knowledge graph.

3.2 Datasets & Metrics

Variations of the basic DRAGON method with dif-
ferent encoders are pretrained on a dataset con-
sisting of pairs of “text data + knowledge graph
data.” The pretraining dataset was derived from the
large text corpus BookCorpus and the ConceptNet
knowledge graph. BookCorpus is a comprehensive
English-language dataset containing 11,038 unpub-
lished books (approximately 74 million sentences)
across 16 different subgenres, including romance,
history, adventure, and others. ConceptNet is one
of the most widely used general knowledge graphs,
comprising about 300,000 nodes. Preprocessing
involved extracting a subgraph from ConceptNet,
containing all concepts mentioned in each line of
text from BookCorpus. This process took approxi-
mately two weeks and was executed on a CPU.

After that we finetune and evaluate the pretrained
DRAGON general domain model1 on three down-
stream tasks: Question Answering, Machine Read-
ing Comprehension and Knowledge Graph Ques-
tion Answering as single tasks and also make joint
finetuning. Finetuning was carried out on monolin-
gual (English) datasets. We followed the common-
sense reasoning benchmark setup with accuracy
metric (Talmor et al., 2019).

The following datasets were used for finetuning
on the QA task:

1. CommonsenseQA (Talmor et al., 2019) is a
dataset for multiple-choice question answer-
ing, designed to assess various facets of com-
monsense knowledge necessary for predicting
correct answers. It contains 12,102 questions
with four distractor answers and one correct
answer.

2. OpenBookQA (Mihaylov et al., 2018), in-
spired by open book exams, assesses human
understanding in specific subjects. It con-
tains 5,957 elementary-level science ques-
tions, probing comprehension of 1,326 core
science facts and their applications. The
dataset maps each question to a core fact for
targeted training.

To finetune on the MRC task, the subsequent
dataset was utilized:

1https://github.com/michiyasunaga/dragon
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1. DREAM (Sun et al., 2019) is a multiple-
choice Dialogue-based REAding comprehen-
sion exaMination dataset, distinct from ex-
isting reading comprehension datasets by its
focus on comprehensive multi-turn multi-
party dialogue comprehension. It comprises
10,197 multiple-choice questions extracted
from 6,444 dialogues, sourced from English-
as-a-foreign-language exams curated by hu-
man experts.

Finally, for KGQA task finetuning we used the
following dataset:

1. KQA Pro (Cao et al., 2022) is a large-scale
dataset designed for intricate question answer-
ing over knowledge base. Its questions are
remarkably diverse and demanding, calling
for various reasoning abilities, such as compo-
sitional reasoning, multi-hop reasoning, quan-
titative comparison and set operations. The
target knowledge base of KQA Pro comprises
a dense subset of Wikidata. The dataset is
divided into training, validation, and test sets,
with 94376, 11797, and 11797 questions re-
spectively.

RoBERTa

(BookCorpus)

KGQA QA MRC Joint QA + MRC Joint QA + MRC + KGQA

KQA Pro DREAMCommonSenseQA



OpenBookQA

CSQA + DREAM



OBQA + DREAM

CSQA + DREAM + KQA Pro



OBQA + DREAM + KQA Pro

Figure 1: Scheme for finetuning the basic approach with
variations of encoders on datasets for QA, MRC, KGQA
tasks and their combinations.

3.3 Data Preprocessing
Note that all of the listed datasets for the QA and
MRC tasks were also preprocessed with the Con-
ceptNet graph. Specifically, for each question and
answer choices, concepts from the original knowl-
edge graph were searched and a subgraph was com-
piled. KG node embeddings in the case of finetun-
ing on the QA and MRC datasets were initialized
with pre-computed ConceptNet entity embeddings
as proposed in the MHGRN (Feng et al., 2020)
method. This scheme involves converting triplets
from KG into sentences. The resulting sentences
are then passed to BERT-Large (Devlin et al., 2019)

to calculate the embeddings for each sentence. Fi-
nally, for each entity, all sentences containing that
entity are collected, all token representations of
the entity’s mention spans in those sentences are
retrieved, and the average pooling of these repre-
sentations is returned.

In the case where the dataset contained only the
correct answer, 4 incorrect answer choices for each
question were generated using the Meta-Llama-3-
8B-Instruct model in order to follow the pattern of
questions and answers used in other datasets.

To train model on KGQA task, a subset contain-
ing 12,102 questions was extracted from the KQA
Pro dataset, since the original KQA Pro is too large.
This approach resolved the issue of dataset size dis-
crepancies across tasks and simplified the selection
of learning rate and batch size for training. Pre-
processing for the KQA Pro subset was performed
using a subgraph from the Wikidata knowledge
graph that was provided by the authors of KQA
Pro which we matched by entities and links to Con-
ceptNet to make a proper grounding.

3.4 Joint MRC & QA finetuning

Data Prep.
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Figure 2: Multitask finetuning scheme for joint
MRC+QA+KGQA task. The framework provides train-
ing the main KG-enchanced LLM.

Figure 2 depicts our approach to finetuning
DRAGON pretrained model on QA, MRC and
KGQA tasks, except for the grounding step where
we put together text tokens and KG nodes. After
that, we fed these pairs to the fusion layer, which
is a cross-modal encoder that bidirectionally ex-
changes information between text and node repre-
sentations. We used a linear combination of Cross
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Entropy loss (Good, 1952) for each task in the fol-
lowing way:

L = LQA + LMRC + LKGQA (1)

3.5 Experiments & Results

Dataset Combination Dev Acc. Test Acc.

CSQA 0.755 0.689
CSQA + DREAM 0.783 0.73
CSQA + DREAM + KQA Pro 0.7707 0.6954

Table 1: Comparison of accuracy metrics resulting from
finetuning on only one QA task (on the CSQA dataset)
and metrics resulting from finetuning on a combination
of tasks (DREAM, ARC - MRC task, KQA Pro - KGQA
task). Validation and testing was performed on the QA
task.

Dataset Combination Dev Acc. Test Acc.

OBQA 0.62 0.632
OBQA + DREAM 0.744 0.720
OBQA + DREAM + KQA Pro 0.67 0.678

Table 2: Comparison of accuracy metrics resulting from
finetuning on only one QA task (on the OBQA dataset)
and metrics resulting from finetuning on a combination
of tasks (DREAM, ARC - MRC task). Validation and
testing was performed on the QA task.

Dataset Combination Dev Acc. Test Acc.

DREAM 0.4098 0.419
DREAM + CSQA 0.704 0.722
DREAM + OBQA 0.702 0.696
DREAM + CSQA + KQA Pro 0.7225 0.7227

Table 3: Comparison of accuracy metrics resulting from
finetuning on only one MRC task (on the DREAM
dataset) and metrics resulting from finetuning on a com-
bination of tasks (CSQA, OBQA - MRC task, KQA Pro
- KGQA task). Validation and testing was performed on
the MRC task.

Based on the results, DRAGON with a
RoBERTa-large encoder was chosen as the most ef-
ficient architecture with which further experiments
were carried out.

Tables 1-4 show overview of performance
DRAGON with the RoBERTa-large encoder on
QA, MRC, KGQA, QA+MRC and QA + MRC +
KGQA tasks.

With finetuning on the CSQA (QA task),
DREAM (MRC task) and KQA Pro (KGQA task)

Dataset Combination Dev Acc. Test Acc.

KQA Pro 0.5512 0.5728
KQA Pro + CSQA 0.5611 0.6
KQA Pro + DREAM 0.5610 0.5702
KQA Pro + CSQA + DREAM 0.6085 0.6211

Table 4: Comparison of accuracy metrics resulting from
finetuning on only one KGQA task (on the KQA Pro
dataset) and metrics resulting from finetuning on a com-
bination of tasks (DREAM - MRC task, CSQA - QA
task). Validation and testing was performed on the
KGQA task.

datasets, a significant increase in the metric was
shown when testing the model for the MRC task.
Finetuning only for the MRC task on the DREAM
dataset allows us to achieve an accuracy metric of
41.9%. With finetuning for QA and KGQA tasks,
the metric becomes equal to 72.27%. Training
on the CSQA+DREAM+KQA Pro datasets also
gave an increase for the KGQA task. The metric
increased from 57.28% to 62.11%.

Significant gains were demonstrated on the
CSQA+DREAM dataset for the QA task. Accu-
racy with multi-task finetuning increased by 4.1%
compared to finetuning only for the QA task on the
CSQA dataset (from 68.9% to 73%).

Detailed analysis revealed that KG-pretrained
model finetuned on QA task improved the gener-
alization of MRC in our experiments. Unlike QA
datasets MRC task assumes to proceed with rather
large text passages which is challenging for LLM
even with KG-pretraining. Our experiments re-
ported that using long enough texts from the MRC
dataset improves the ability of the model to answer
more complicated questions. Our code is available
at github repository2

4 Discussion & Limitations

All finetuning experiments were performed on
English-language datasets. This is due to the fact
that searching for datasets with overlapping lan-
guages for all three tasks (QA, MRC and KGQA) is
difficult. Thus, there are a large number of multilin-
gual datasets for QA and MRC tasks, and a limited
number of such datasets for the KGQA task, which
is associated with the difficulty of translating the
entire knowledge graph into another language. At
the moment, we were only able to use the QALD-
9-Plus (Perevalov et al., 2022) dataset, which con-

2Github repository
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tains questions in 10 languages, but has a small
size (about 1.5 thousand questions), as well as the
MLPQ (Tan et al., 2023) dataset, which covers only
Chinese, English and French, but contains about
300 thousand questions.

Moreover, we made a test to check if the ex-
pand of data for the same task can make the same
improvement as the adding other nlp-task. We
trained our backbone on two QA datasets - CSQA
and OBQA but the performance become 6 to 10%
worse than both of them in pair with MRC dataset
DREAM.

5 Conclusion & Future work

The paper presented expandable Joint Multitask
Finetuning on Pretrained KG-enhanced LLM ap-
proach which aims to improve the performance of
language models in a variety of language under-
standing tasks. We proposed a new multitask learn-
ing framework which jointly finetunes a language
model with a knowledge graph enhanced objective
on a few tasks and easily expanded to new nlp-tasks.
The paper provides a detailed description of the pro-
posed approach and presents experimental results
demonstrating its effectiveness. Our results show
strong improvements of synergized QA, MRC and
KGQA tasks on each other with a maximun gain of
30% accuracy. We plan to extend our experimental
setup by pretrained LLaMa v2 encoder. We also
plan to conduct finetuning experiments on multilin-
gual datasets containing English, Chinese, French,
and other languages.
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Abstract

Multi-hop question generation is a challenging
task in natural language processing (NLP) that
requires synthesizing information from multi-
ple sources. We propose GNET-QG, a novel
approach that integrates Graph Attention Net-
works (GAT) with sequence-to-sequence mod-
els, enabling structured reasoning over multi-
ple information sources to generate complex
questions. Our experiments demonstrate that
GNET-QG outperforms previous state-of-the-
art models across several evaluation metrics,
particularly excelling in METEOR, showing its
effectiveness in enhancing machine reasoning
capabilities.

1 Introduction

Question generation (QG) is the task of producing
a natural language question given an input context
and an answer. While recent neural models have
achieved considerable success in QG, they often
fail to generate complex, multi-hop questions that
require reasoning across multiple contexts. Unlike
simple questions that rely on a single fact, multi-
hop questions demand the integration of knowledge
from multiple pieces of information to formulate a
coherent query.

Multi-hop question generation is not only a chal-
lenging task but also a critical one, with applica-
tions ranging from improving query suggestions
for search engines to enhancing educational tools
for reading comprehension (Zamani et al., 2020;
Heilman and Smith, 2010) . Despite advancements
in models like MulQG (Su et al., 2020) and CQG
(Fei et al., 2022), existing methods still struggle to
consistently generate high-quality multi-hop ques-
tions across diverse contexts.

To address this gap, we introduce GNET-QG,
a model that incorporates Graph Attention Net-
works (GAT) to identify and focus on relevant enti-
ties within a context. By enriching the input con-
text using GAT and combining it with a powerful

sequence-to-sequence model, GNET-QG is able to
generate more complex, coherent, and answerable
questions. Our method shows significant improve-
ments over existing techniques, especially in the
METEOR metric, indicating better semantic align-
ment in generated questions.

Context1:
The Oberoi family is an Indian family that is
famous for its involvement in hotels, namely
through The Oberoi Group .

Context2:
The Oberoi Group is a hotel company with its

head office in Delhi .

Answer: Delhi

Simple Question: Where is the head office of
The Oberoi Group ?

Complex Question: Oberoi family is part of
a hotel company that has a head office in what
city?

Figure 1: Example of multi-hop question generation.
Context 1 introduces the Oberoi family and their con-
nection to The Oberoi Group, while Context 2 provides
information about the group’s head office location. A
simple question asks for the head office location directly,
while a multi-hop question integrates information from
both contexts to identify the head office city. In this
context, ’complexity’ refers to the need for synthesizing
information from multiple contexts. This example is
adapted from the HotpotQA dataset (Yang et al., 2018).

2 Related Work

Early research in question generation focused on
rule-based methods for single-hop QG, transform-
ing declarative sentences into questions via hand-
crafted rules (Heilman and Smith, 2010). Neu-
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ral methods soon emerged, leveraging sequence-
to-sequence models to improve reading compre-
hension QG, but struggled with multi-hop reason-
ing due to their reliance on local context (Du and
Cardie, 2017).

Recent approaches, such as MulQG (Su et al.,
2020) and CQG (Fei et al., 2022), have incorpo-
rated graph-based models to address multi-hop
QG. MulQG used Graph Convolutional Networks
(GCNs) to represent context and perform multi-hop
encoding fusion, while CQG utilized a controlled
framework to focus on key entities during ques-
tion generation. Building upon these methods, Lin
et al. (2024) introduced a type-aware semantics
extraction-based chain-of-thought (TASE-CoT) ap-
proach for few-shot multi-hop QG. This approach
begins by identifying question types and key se-
mantic phrases from the provided documents and
answer, then utilizes a three-step chain-of-thought
template to generate multi-hop questions based on
the extracted information. Despite these advance-
ments, there remains a need for models that con-
sistently perform well across different datasets and
contexts.

GNET-QG builds on this body of work by in-
tegrating Graph Attention Networks (GAT) into
the question generation process. GAT enables
our model to focus attention on important entities
within the input context, providing better entity
representation for complex reasoning tasks.

3 Research Methodology

3.1 Motivation and Overview

Multi-hop question generation (QG) requires rea-
soning across multiple interconnected information
pieces in a document. Traditional transformer mod-
els perform well in single-hop QG but struggle
with multi-hop tasks due to limitations in capturing
long-range dependencies and complex entity rela-
tionships. Existing methods often overlook explicit
modeling of these relationships, leading to less co-
herent questions that lack true multi-hop reasoning.

Moreover, many current approaches are tightly
coupled with specific models, lacking the flexibil-
ity to adapt to newer or different large language
models (LLMs). This rigidity hinders leveraging
advancements in the field and limits applicability
across diverse architectures.

To address these limitations, we propose GNET-
QG, a model integrating a graph entity network
with a transformer-based architecture. Our ap-

proach enhances the quality and complexity of
generated questions by explicitly modeling seman-
tic relationships between entities through an entity
graph and enriching the input context for the ques-
tion generation model. Crucially, the architecture is
designed to be compatible with various transformer-
based models due to its text-based enriched input
context, allowing greater flexibility and adaptabil-
ity.

In our experiments, GNET-QG demonstrates sig-
nificant improvements over baseline models in gen-
erating coherent and complex multi-hop questions.
We successfully integrate both BART and T5 mod-
els within our architecture, evidencing its compati-
bility and effectiveness with different LLMs.

3.2 Constructing the Entity Graph

To capture the relationships essential for multi-
hop reasoning, we construct an entity graph where
nodes represent entities extracted from the docu-
ment, and edges represent relationships between
these entities. Entities are identified using a BERT-
based Named Entity Recognition (NER) model,
resulting in a set E = {e0, e1, . . . , en}, Entities
and relationships are derived from the preprocessed
data provided by MULQG (Su et al., 2020).

Edges between nodes are defined as follows:

• Same Sentence Co-occurrence: Nodes are
connected if they appear within the same sen-
tence, capturing immediate contextual rela-
tionships.

• Paragraph Title Relations: Nodes are con-
nected if a paragraph’s title contains an entity
that also appears within the paragraph, high-
lighting hierarchical and topical associations.

• Cross-Paragraph Entity Consistency: En-
tities appearing in different paragraphs but
referring to the same concept are linked, en-
suring consistency across the document.

3.3 Enriching the Input Context

To effectively leverage the constructed entity graph,
we use a Graph Attention Network (GAT) to en-
hance node representations. The GAT computes
attention scores and updates node features as fol-
lows:
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αij =
exp(LeakyReLU(aT

i [Whi ∥ Whj ]))∑
k∈N (i) exp(LeakyReLU(aT

i [Whi ∥ Whk]))

(1)

h′
i = σ


 ∑

j∈N (i)

αijWhj


 (2)

In these equations, hi and hj represent the fea-
ture vectors of nodes i and j, respectively. N (i)
denotes the set of neighbors of entity i, while W
is a weight matrix that transforms input features
into a new space. The updated representation h′i
for node i is computed by aggregating information
from its neighbors. The attention coefficient αij

represents the importance of node j’s features in
updating node i. The learnable vector ai projects
the concatenated feature vector [Whi ∥Whj ] into
a scalar score, allowing the model to compute the
relevance of neighboring nodes.

To further enhance the contextual information,
we apply multi-head attention at each step. This
mechanism allows the model to capture different
aspects of the neighbors’ features across multiple
attention "heads." Multi-head attention is defined
as follows:

MultiHead(hi) = Concat(head1, . . . , headh),
(3)

where each head is computed as:

headk = σ


 ∑

j∈N (i)

α
(k)
ij W (k)hj


 . (4)

Here, h denotes the number of attention heads,
and W (k) is the weight matrix for the k-th head,
and α

(k)
ij is the attention coefficient for the k-th

head. This multi-head setup allows the GAT to cap-
ture a richer representation by focusing on different
aspects of the input.

After applying the multi-head GAT, we flat-
ten the updated node features H ′ and pass them
through a linear transformation followed by a sig-
moid activation function:

Hflat = Flatten(H ′) (5)

Hlinear = WlHflat + bl (6)

P = σ(Hlinear) (7)

In these equations, Wl and bl are learnable pa-
rameters of the linear layer, and σ represents the

sigmoid activation function, which outputs proba-
bility scores for each node. Nodes with probability
scores greater than 0.5 are selected:

Esub = {h′i ∈ H ′ | Pi > 0.5} (8)

Here, the selected nodes Esub are the textual
representations of entities. These textual represen-
tations of entities are concatenated with the original
context C and the answer A to form the "enriched
input context":

Cenriched = [C;A;Esub] (9)

The enriched input context, now in textual form,
is subsequently fed into the transformer encoder for
question generation, enhancing the model’s ability
to integrate multi-hop reasoning with focused entity
relationships.

3.4 Encoder-Decoder Framework
The enriched input context is fed into the encoder
of a pre-trained transformer model, such as BART
or T5. The encoder generates contextualized em-
beddings that provide a compact representation of
the input. Incorporating the enriched context en-
hances the encoder’s ability to process long-range
dependencies and relationships.

The decoder generates the output question au-
toregressively, utilizing the encoder’s embeddings.
It applies masked self-attention to ensure each to-
ken prediction considers only previously generated
tokens, producing coherent and contextually appro-
priate multi-hop questions.

Figure 2 illustrates the encoder component of
GNET-QG with a BART backbone. Initially, en-
tities (nodes) from the contexts (C) are identified
and labeled as E0. A graph is created using these
entities, capturing their relationships based on co-
occurrence and paragraph structure. The entity
graph is then passed to the Graph Attention Net-
work (GAT), which processes the entity features.
After applying flattening, a linear transformation,
and a sigmoid activation, the resulting entity rep-
resentations are concatenated with the contexts to
form the enriched input context. This enriched
input is subsequently fed into the BART encoder.

4 Implementation Details

In the task of multi-hop question generation, we im-
plemented GNET-QG by integrating the GAT from
this GitHub repository1 with an encoder-decoder

1https://github.com/HLTCHKUST/MulQG
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Figure 2: Full architecture of GNET-QG with BART backbone. C represents the original context extracted from the
input, A denotes the answer provided as input to the model, and Esub consists of the selected textual entities derived
from the input context using the Graph Attention Network (GAT). These components are concatenated to form the
enriched input context fed into the BART encoder.

model as the main backbone. We connected the un-
trained GAT architecture with pre-trained versions
of both BART and T5 models to generate the multi-
hop questions, leveraging the filtered HotpotQA
dataset, following the preprocessing approach out-
lined in the MULQG (Su et al., 2020).

The GAT and the transformer models (BART
and T5) were trained end-to-end. During training,
gradients were backpropagated through both the
GAT and the transformer model, allowing the entire
network to learn jointly. This approach enables
the model to effectively incorporate the structural
information captured by the GAT into the question
generation process.

Our candidate pre-trained models for the pro-
posed architecture were the bart-squad-qg-hl2

version of the BART model and the
t5-base-finetuned-question-generation-ap3

version of the T5 model. These models were
selected due to their proven efficacy in ques-
tion generation tasks and their availability for
fine-tuning on domain-specific datasets.

4.1 Automatic Evaluation
To evaluate GNET-QG’s effectiveness, we em-
ployed automated evaluation metrics to assess its
predictions on samples from the test dataset, com-
paring the generated questions from the model with
the reference questions from the dataset. The met-
rics used include BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), and METEOR (Lavie and

2https://github.com/p208p2002/
Transformer-QG-on-SQuAD

3https://github.com/patil-suraj/question_
generation

Agarwal, 2007), chosen for their extensive adoption
in the question-generation research field. This eval-
uation allows us to directly compare GNET-QG’s
performance with previous studies on multi-hop
question generation.

In Table 1, we present comparative results of
GNET-QG with BART backbones against other
models, including BART by Lewis et al. (2019),
MulQG by Su et al. (2020), CQG by Fei et al.
(2022), and TASE-CoT by Lin et al. (2024).

Our model demonstrates superior performance,
particularly in the METEOR metric. This improve-
ment can be attributed to GNET-QG’s ability to
generate questions that are semantically richer and
more closely aligned with the reference questions.
METEOR places greater emphasis on semantic
similarity, synonymy, and recall, rewarding models
that capture the meaning of the reference even if the
exact wording differs. By explicitly modeling se-
mantic relationships between entities and enriching
the input context through the graph entity network,
GNET-QG generates questions that include rele-
vant synonyms, paraphrases, and morphological
variants, all of which METEOR recognizes and
rewards. This focus on semantic richness and rel-
evance allows our model to outperform others in
METEOR, highlighting its effectiveness in produc-
ing high-quality, semantically accurate multi-hop
questions.

Furthermore, the enriched input context enables
our model to capture more of the necessary in-
formation required to formulate comprehensive
questions, increasing recall, a component heavily
weighted in METEOR. In contrast, other models
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
MulQG 40.15 26.71 19.73 15.20 35.30 20.51
CQG 49.71 37.04 29.93 25.09 41.83 27.45
BART 41.41 30.90 24.39 19.75 36.13 25.20
TASE-CoT 45.89 34.06 27.11 22.37 39.68 23.39
GNET-QG (BART backbone) 49.72 38.95 32.88 27.93 40.25 49.87

Table 1: Automatic evaluation results on HotpotQA. The table compares the performance of various models across
multiple metrics, including BLEU, ROUGE-L, and METEOR.

may excel in n-gram precision metrics like BLEU
but may not capture the deeper semantic nuances
that METEOR evaluates. Therefore, GNET-QG’s
superior performance in METEOR underscores its
capability to generate questions that are not only
grammatically correct but also semantically mean-
ingful and contextually appropriate.

4.2 Human Evaluation
To comprehensively assess the performance of our
model, we performed a human evaluation compar-
ing the questions generated from three sources: the
baseline BART model, our proposed GNET-QG
model and human-generated questions. We evalu-
ated the questions based on four metrics:

• Fluency: Grammatical correctness and read-
ability.

• Completeness: Whether the questions are
fully formed and coherent.

• Answerability: If the questions are answer-
able based on the given context.

• Multi-hop Relevance: Whether the questions
require synthesizing information from multi-
ple contexts (binary classification).

Each metric, except for Multi-hop Relevance,
was rated on a scale from 1 to 5, with higher scores
indicating better performance. Five annotators eval-
uated 50 randomly sampled test cases from the test
set.

The results are summarized in Tables 2 and 3.
GNET-QG achieved a 76% rate of generating multi-
hop questions, significantly higher than BART’s
54%. In terms of question quality, GNET-QG
scored higher in Completeness (4.14) and An-
swerability (4.18) compared to BART’s scores of
3.96 and 3.97, respectively. Although GNET-QG
showed improvements in fluency over BART, it
still fell slightly short of human-generated ques-
tions, suggesting room for further refinement.

Models Yes No Percentage (% Yes)
BART 27 23 54.0
GNET-QG 38 12 76.0
Human 40 10 80.0

Table 2: Counts and percentages of multi-hop questions
generated by each model.

Models Completeness Answerability Fluency
BART 3.96 3.97 3.86
GNET-QG 4.14 4.18 3.94
Human 4.28 4.42 4.30

Table 3: Mean ratings for Completeness, Answerability,
and Fluency.

4.3 Model Compatibility and Experimental
Evidence

A key advantage of our GNET-QG architecture
is its compatibility with various large language
models (LLMs). Since the enriched input con-
text is text-based, it integrates seamlessly with any
transformer-based model capable of processing text
input. To demonstrate this flexibility, we imple-
mented GNET-QG using both BART and T5 back-
bones and compared the results against standard
fine-tuned versions of BART and T5.

For the baseline models, we utilized
BART as proposed by Lewis et al. (2019)
and the fine-tuned version of T5, specifically
t5-base-finetuned-question-generation-ap4.
We evaluated the models on the HotpotQA dataset
to ensure a fair comparison. The results are
presented in Table 4, which shows the superior
performance of GNET-QG, especially in terms
of METEOR scores, in both the BART and T5
backbones.

These results highlight the architecture’s abil-
ity to enhance performance across different trans-
former models, validating its effectiveness and flex-

4https://github.com/patil-suraj/question_
generation
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
BART Baseline 41.41 30.90 24.39 19.75 36.13 25.20
GNET-QG (BART backbone) 49.72 38.95 32.88 27.93 40.25 49.87
T5 Baseline 32.08 22.04 17.26 13.68 30.78 27.72
GNET-QG (T5 backbone) 42.10 31.92 26.42 22.05 34.38 42.51

Table 4: Comparison of performance metrics (BLEU-1 to BLEU-4, ROUGE-L, and METEOR) for question
generation on HotpotQA dataset. GNET-QG shows significant improvements with both BART and T5 backbones.

ibility.

5 Conclusion

In this work, we introduced GNET-QG, a graph-
based approach to multi-hop question generation
that effectively reduces model complexity without
sacrificing performance. By explicitly modeling
semantic relationships between entities and enrich-
ing the input context for transformer-based models,
GNET-QG addresses the limitations of existing
methods. A key contribution of GNET-QG is its
ability to reduce the model size by approximately
7.5 million parameters compared to CQG, a highly
competitive model in this space. This substantial
reduction leads to improvements in computational
efficiency, lower memory usage, and faster infer-
ence speeds, making GNET-QG a more practical
and scalable solution for real-world applications.
Despite the smaller parameter size, our experimen-
tal results demonstrate that GNET-QG outperforms
CQG in terms of the quality of generated questions,
highlighting its effectiveness and efficiency.

Furthermore, we validated the versatility of our
architecture by integrating well-known sequence-
to-sequence frameworks such as BART and T5.
The consistent performance improvements across
these models underscore GNET-QG’s compatibil-
ity with different large language models and its
ability to generate high-quality, complex multi-hop
questions requiring sophisticated reasoning over
multiple interconnected pieces of information.

Future research could focus on enhancing the
model’s reasoning capabilities to better address
abstract or causal questions and extending its ap-
plication to other NLP tasks like summarization
or machine translation. Additionally, exploring
GNET-QG’s performance on non-English datasets
could unlock its potential for multilingual question
generation, further broadening its impact.
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Abstract

Retrieval-Augmented Generation (RAG)
systems have become pivotal in leveraging
vast corpora to generate informed and contex-
tually relevant responses, notably reducing
hallucinations in Large Language Models.
Despite significant advancements, these
systems struggle to efficiently process and
retrieve information from large datasets while
maintaining a comprehensive understanding of
the context. This paper introduces SKETCH,
a novel methodology that enhances the RAG
retrieval process by integrating semantic text
retrieval with knowledge graphs, thereby
merging structured and unstructured data for
a more holistic comprehension. SKETCH,
demonstrates substantial improvements in
retrieval performance and maintains superior
context integrity compared to traditional meth-
ods. Evaluated across four diverse datasets:
QuALITY, QASPER, NarrativeQA, and Italian
Cuisine—SKETCH consistently outperforms
baseline approaches on key RAGAS metrics
such as answer_relevancy, faithfulness, con-
text_precision and context_recall. Notably, on
the Italian Cuisine dataset, SKETCH achieved
an answer relevancy of 0.94 and a context
precision of 0.99, representing the highest
performance across all evaluated metrics.
These results highlight SKETCH’s capability
in delivering more accurate and contextually
relevant responses, setting new benchmarks for
future retrieval systems.

Keywords: RAG, Semantic Chunking,
Knowledge Graph, RAGAS

1 Introduction

Large Language Models (LLMs), despite their
growing size and capabilities, often lack sufficient
domain-specific knowledge for certain tasks
[27], and their encoded facts can quickly become

†This work does not relate to the position at Amazon AI.
‡This work does not relate to the position at Meta.

outdated due to the dynamic nature of information.
Updating the knowledge within LLMs through
fine-tuning or editing is a complex and resource-
intensive process, especially when dealing with
extensive text corpora [32]. An alternative ap-
proach is Retrieval Augmented Generation (RAG)
[45], which involves indexing large volumes of
text, divided into smaller segments, in a separate
information retrieval system [12]. Retrieved infor-
mation is then provided to the LLM along with the
query as context, enabling more factually updated
answers [6]. This method offers benefits such
as access to current, domain-specific knowledge,
improved interpretability, and provenance tracking,
which are often lacking in the opaque parametric
knowledge of LLMs [47].

However, existing RAG methods have no-
table limitations [17]. They typically retrieve only
a few short, contiguous text segments, limiting
their ability to represent and leverage large-scale
discourse structures. This limitation is particularly
problematic for complex queries that require
integrating knowledge from multiple parts of a text,
such as synthesizing information across chapters
or drawing conclusions from dispersed data in
scientific literature. Moreover, these methods often
struggle with multi-hop reasoning, where answer-
ing a query necessitates combining information
from multiple, non-adjacent text segments, leading
to incomplete or inaccurate answers and reducing
their usefulness in applications that demand
comprehensive understanding and synthesis.

To address these challenges, we introduce
SKETCH, a novel methodology that enhances the
retrieval process in RAG systems by integrating
semantic text retrieval with knowledge graphs
[16; 30]. This integration merges structured data
(knowledge graphs) and unstructured data (text
embeddings), enabling a holistic comprehension
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of the dataset and facilitating the retrieval of
relevant information across multiple contexts.
By combining these approaches, SKETCH can
perform multi-hop reasoning and retrieve contex-
tually relevant information even if it is dispersed
throughout the corpus. We evaluate SKETCH
on diverse datasets, including QuALITY [3; 34],
QAER [2; 8], NarrativeQA [1; 24], and an Italian
Cuisine corpus, covering a range of domains
and presenting various challenges. Our results
demonstrate significant improvements in answer
relevancy and context precision metrics compared
to baseline methods. SKETCH outperforms tra-
ditional RAG approaches by maintaining context
integrity and delivering more precise, contextually
enriched responses, setting new benchmarks for
RAG systems in handling large-scale discourse
structures and complex queries across various
domains.

2 Related Work

2.1 Retrieval Augmented Generation

RAG is a technique that enhances the capabilities
of large language models (LLMs) by integrating
external knowledge sources into the generation pro-
cess [9; 25]. This approach addresses several limi-
tations inherent in LLMs, such as their reliance on
static training data and the potential for generating
outdated or inaccurate information. By incorpo-
rating real-time, domain-specific knowledge, RAG
systems can provide more accurate, relevant, and
contextually enriched responses. This method not
only improves the factual accuracy of the gener-
ated content but also enhances interpretability and
provenance tracking, which are often lacking in
traditional LLMs [13].

2.2 Retrieval Strategies

Retrieval methods have evolved from traditional
term-based techniques like TF-IDF [21] to ad-
vanced strategies utilizing large language models as
retrievers [10; 23; 26; 31; 41]. Innovations such as
Fusion-in-Decoder (FiD) [20], combining DPR and
BM25, and RETRO [5], employing cross-chunked
attention and chunkwise retrieval, represent sig-
nificant advancements. However, many models
still rely on conventional techniques like chunk-
ing text corpora and using BERT-based retrievers,
which have limitations in capturing the semantic
depth of text [28], often leading to context loss
in technical or scientific documents [7; 29; 46].

RAPTOR (Recursive Abstractive Processing for
Tree-Organized Retrieval) [36] addresses these lim-
itations by constructing a hierarchical tree structure
that recursively embeds, clusters, and summarizes
text chunks using SBERT [35] and Gaussian Mix-
ture Models (GMMs) [11; 14; 40].

2.2.1 Semantic Chunking
Semantic chunking is a relatively new technique
used to divide text into semantically meaningful
units, significantly improving the efficiency and
accuracy of information retrieval in RAG systems
[22]. Unlike traditional chunking methods based on
simple rules or statistical models, semantic chunk-
ing leverages the inherent meaning of the text. The
process begins by splitting the text into individual
sentences, which are then grouped with neighbor-
ing sentences based on a window size k, repre-
senting the number of sentences before and after
the current sentence to form a window. Vector
embeddings are calculated for each window, and
the cosine distance between sequential windows
is evaluated. Window-merging strategies, such as
calculating the 95th percentile of distance differ-
ences to set a threshold T as mentioned in [22], are
employed. When the cosine distance difference be-
tween sequential windows is within this threshold
T, the windows are merged into one chunk, and
this process repeats until the threshold is breached,
resulting in reformed documents within the corpus.

2.3 Knowledge Graphs

Knowledge graphs are powerful tools for represent-
ing and reasoning over structured knowledge by
modeling entities and their relationships in a graph
structure, enabling integration of information
from diverse sources and facilitating knowledge
discovery [15]. They provide rich context for
understanding and retrieving information [4],
with roots in semantic networks and conceptual
graphs. Developments in the Semantic Web and
standards like RDF and OWL have enhanced their
utility [19; 33], leading to prominent examples like
DBpedia, Wikidata, and the Google Knowledge
Graph. Knowledge graphs have applications in
domains such as question answering, recommender
systems [38], and natural language processing
tasks [18]. Research has focused on knowledge
graph construction [39], embedding [37], comple-
tion [43], and reasoning [44], as well as integrating
them with deep learning models for enhanced
performance and explainable AI.
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An approach of adding a semantic theme to
chunking and creating hybrid retrievers with
combination of structured data through knowledge
graphs and unstructured data through semantic
chunks are new and introduced through SKETCH.

3 SKETCH

3.1 Overview

3.1.1 Semantic Chunking
In SKETCH, Semantic Chunking is crucial for
enhancing the retrieval process by ensuring that
text is segmented into semantically coherent
units. Unlike traditional chunking methods that
may disrupt the flow of ideas by splitting text
arbitrarily, our Semantic Chunking approach
preserves the thematic integrity of the content.
This means each chunk represents a complete
and meaningful segment of information, which
is essential for accurate semantic embedding and
retrieval. By maintaining the semantic continuity
within chunks, SKETCH ensures that important
contextual cues are not lost, which often happens
with naive splitting techniques. This is particularly
important when dealing with complex queries
that require a deep understanding of the content.
Semantic Chunking lays a strong foundation for
the unstructured retrieval component of SKETCH,
enabling more precise matching between queries
and relevant text segments.

Moreover, this approach complements the
structured retrieval provided by Knowledge
Graphs. While Knowledge Graphs capture the
relationships between entities, Semantic Chunking
ensures that the unstructured text associated with
these entities remains contextually rich and seman-
tically intact. Together, they enable SKETCH to
perform more accurate and contextually relevant
retrievals, effectively handling complex queries
that span multiple contexts within the corpus. By
integrating Semantic Chunking into the SKETCH
framework, we enhance the system’s ability to
understand and process large volumes of text,
leading to significant improvements in retrieval
accuracy and overall system performance.

3.1.2 Knowledge Graphs
In SKETCH, Knowledge Graphs (KGs) are
integral to enhancing the retrieval process by
providing a structured representation of entities

and their interrelationships within the corpus. We
use LLM to derive the main subject or entities
from a text snippet and then KGs to represent
entities as nodes and their relationships as edges.
In SKETCH, entity refers to the main subject that
is under discussion in a sentence whereas the edges
are the relationship that they have to other subjects
in that sentence.

By encoding relationships between entities,
KGs provide additional context that is not easily
captured by text embeddings alone. This enriched
context helps in understanding complex queries
and retrieving more accurate information. When
a user submits a query, SKETCH employs the
KG for structured retrieval. We perform Named
Entity Recognition (NER) [42] on the query using
GPT-4 to extract relevant entities. These entities
correspond to nodes in the KG. We then construct
cypher queries to traverse the KG and retrieve
pertinent nodes and their relationships based on
the extracted entities. More specifically, KGs
enable multi-hop reasoning, allowing the system
to traverse multiple relationships to infer new
information. When it comes to multi-context ques-
tions, the multi-hop feature of KG’s fits perfectly
in helping retrieve the required information that
is potentially missed out during naive or even
semantic chunking due to the distance between the
texts in the corpus. This capability is particularly
useful for answering complex, multi-faceted
queries that require synthesizing information from
various sources.

3.1.3 Rationale for Combining Semantic
Chunking and Knowledge Graphs

The innovative fusion of Semantic Chunking
and Knowledge Graphs in SKETCH marks a
significant leap forward in the field of Retrieval-
Augmented Generation (RAG) systems. This
strategic integration addresses core challenges in
information retrieval, enabling SKETCH to deliver
unprecedented accuracy and depth in handling
complex queries across large corpora.

Semantic chunking ensures that text chunks
are semantically coherent for a specific entity,
while Knowledge Graphs (KGs) provide structured
context about the relationships between entities.
KGs enable multi-hop reasoning, which helps
address complex queries that require integrating
information from multiple distant sources. Addi-
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tionally, Knowledge Graphs offer clear traceability
of information, making it easier to understand the
flow of retrieval. The combination of Semantic
Chunking and Knowledge Graphs creates a
synergistic effect that amplifies the strengths of
each approach while mitigating their individual
limitations. This integration allows SKETCH to:

• Maintain Semantic Integrity: Ensuring that
each chunk represents a semantically coherent
unit reduces the risk of misinterpretation and
enhances the quality of embeddings used for
retrieval.

• Enable Complex Reasoning: Knowledge
Graphs empower SKETCH to navigate the
intricate web of relationships between enti-
ties, facilitating the retrieval of information
that requires understanding multiple layers of
context.

• Enhance Retrieval Accuracy: The dual ap-
proach ensures that both the depth (through
semantic coherence) and breadth (through re-
lational mapping) of information are captured,
leading to more accurate and relevant retrieval
results.

When merging results, SKETCH prioritizes se-
mantic alignment: tokens that appear in both
structured and unstructured contexts are treated
as confirmation signals, reinforcing their relevance
and importance. Therefore, integrating Semantic
Chunking and Knowledge Graphs offers a more
holistic context for each entity, enhancing the over-
all comprehension of the complete dataset.

3.2 Approach and Reproducibility

Refer Figure 2 to understand the architecture of
SKETCH and how documents are pre-processed
and embeddings are created and finally how user
queries are processed through hybrid retrievers.

3.2.1 Indexing

3.2.1.1 Document Loading and Initialization:
We load the dataset which serves as the initial cor-
pus for indexing and retrieval. Additionally, two
separate text splitters are initialized: a semantic
text splitter and a recursive character text splitter.
These splitters are responsible for dividing the text
into meaningful chunks for further processing.

3.2.1.2 Semantic Text Splitting: The loaded
documents are processed through a semantic text
splitter. This segments the text based on semantic
content rather than arbitrary lengths like paragraphs
or sentences, ensuring each segment maintains the-
matic consistency. A new set of documents are
created, where each document chunk represents a
coherent semantic unit. This step is crucial for pre-
serving the context and meaning within each chunk,
enhancing the quality of information retrieval.

3.2.1.3 Recursive Text Splitting: The semanti-
cally segmented documents are further processed
using a recursive character text splitter. This split-
ter divides the text into chunks of 100 tokens with
a overlapping window of 16 tokens, ensuring that
even large documents are broken down into smaller,
more manageable pieces. By maintaining a chunk
size of 100 tokens, the recursive text splitter en-
sures that the chunks remain contextually coherent,
preventing the loss of important information that
might occur if sentences were instead arbitrarily
cut off.

3.2.1.4 Embedding and Vector Store: The
embeddings generated after the recursive text split-
ting process are stored in a vector database, FAISS.
These embeddings represent the semantic mean-
ing of the text chunks and are used for effi-
cient similarity-based retrieval during the querying
phase.

3.2.1.5 Knowledge Graph: The initial set of
documents is converted into graph documents. This
involves parsing the text and identifying entities,
attributes, and relationships, which are then struc-
tured into a graph format. Using the graph docu-
ments, a comprehensive Knowledge Graph (KG)
is constructed. The KG captures the intricate rela-
tionships and connections between various entities,
providing a structured representation of the infor-
mation contained within the documents. Refer Fig-
ure 3 to understand the KG representation for the
Italian Cuisine dataset. Each node here represents
the entities that are retrieved from the Italian Cui-
sine corpus and their relationships are represented
here as edges. Each node stores the smaller context
of the corpus.

3.2.2 Querying
3.2.2.1 Structured Retriever: The first step in
the structured retriever is Named Entity Recogni-
tion (NER). We identify all the plausibe entities
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present in the user query and create a cypher query
based out of it, treating each entity as a node. We
perform NER by passing the user query through
GPT-4 and extracting a list of all entities in the sen-
tence. The cypher query is designed to access and
retrieve the relevant nodes and their relationships
from the KG based on the extracted entities and
relationships from the user’s query.

3.2.2.2 Unstructured Retriever: This compo-
nent queries the vector embeddings of the text
chunks created during the recursive text splitting
phase. By leveraging similarity-based retrieval
technique, cosine similarity, the unstructured re-
triever can identify and retrieve the most relevant
text chunks based on their semantic similarity to
the user’s query.

3.2.2.3 Hybrid Retrieval: The system com-
bines the results from both the structured and un-
structured retrievers to create a comprehensive and
contextually rich retrieval mechanism. The re-
trieved results from these two components are then
combined, forming a unified context that is subse-
quently fed to the Large Language Model (LLM)
for generating answers to the user’s queries. By
leveraging the contextual coherence of semanti-
cally meaningful text chunks and the structured
relationships captured in the Knowledge Graph,
the system can provide more accurate and relevant
information to the LLM, ultimately improving the
quality of the generated responses.

3.3 Datasets
We evaluate the performance of SKETCH using
four diverse datasets that present various chal-
lenges: a small "Italian Cuisine and Heritage"
dataset and three large-scale datasets—QuALITY,
QASPER, and NarrativeQA. These datasets test
SKETCH’s ability to handle long documents,
multi-context questions, domain-specific knowl-
edge, and multi-hop reasoning.

The Italian Cuisine dataset, consisting of
6,000 tokens across three text files, serves as
an initial testbed for our methodology. We
generated multi-context questions and ground
truth data using the RAGAS framework and
evaluated the approaches using RAGAS metrics:
answer_relevancy, faithfulness, context_precision,
and context_recall.

QuALITY [3; 34] is a multiple-choice ques-

tion answering dataset designed for long document
comprehension, with passages averaging 5,000
tokens. It tests the system’s ability to process
lengthy texts and answer deep comprehension
questions that require understanding the entire
passage. We used the training set, containing
approximately 2,090 entries, for our experiments.

QASPER [2; 8] focuses on question answer-
ing over scientific papers, comprising 5,049
questions on 1,585 NLP papers. The questions
cover methodology, results, and conclusions,
requiring navigation through complex scientific
texts and multi-hop reasoning to arrive at correct
answers. We evaluated our approaches on the
validation set, which contains 281 entries with
questions, answers, and ground truths.

NarrativeQA [1; 24] involves question an-
swering on long-form narrative texts, including
1,567 stories (books and movie scripts) and 46,765
question-answer pairs. The dataset challenges
systems to understand and reason about complex
narratives involving character relationships, plot
developments, and thematic elements. Answers
are free-form, allowing for nuanced and detailed
responses. We used the validation set, containing
approximately 3,460 entries, for our comparisons.

Table 1: Performance Comparison of Different Ap-
proaches against Italian Cuisine Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
Score

Naive RAG 0.61 1.00 0.81 0.88 0.84

Semantic 0.84 0.86 0.92 0.83 0.87

KG 0.94 0.21 0.77 0.33 0.46

RAPTOR 0.75 0.73 0.38 0.71 0.50

SKETCH 0.94 0.87 0.99 0.72 0.83

4 Results and Discussion

We evaluated the performance of SKETCH across
four diverse datasets: the "Italian Cuisine" dataset,
QuALITY, QASPER, and NarrativeQA. Our
analysis focused on comparing the effectiveness
of SKETCH in enhancing retrieval accuracy and
contextual relevance against existing approaches,
including Naive RAG, RAPTOR, Semantic-only,
and KG-only methods. To ensure a comprehensive
evaluation, we assessed four key RAGAS metrics:
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answer_relevancy, faithfulness, context_precision,
and context_recall. GPT-3.5-turbo-16k served
as the evaluation judge for all datasets, ensuring
consistency in assessing the quality of responses
generated by each method.

The results, visualized in Figure 2, clearly
demonstrate SKETCH’s significant advantage over
other models in retrieval performance. SKETCH
consistently performed better across multiple
datasets, showing particular strength in answer
relevancy, context precision metrics, making it a
superior choice for accurate and contextually rich
retrieval. Each plot in Figure 2 contrasts SKETCH
with baseline models, providing a detailed visual
representation of how SKETCH excels in various
metrics, further emphasizing its robustness and
balanced capability compared to the other tested
approaches.

4.1 Italian Cuisine Dataset
The "Italian Cuisine" dataset, consisting of 6,000
tokens distributed across three text files, served as
an ideal testbed to assess the core capabilities of
SKETCH in a controlled environment. This dataset
enabled us to evaluate SKETCH’s performance in
retrieving accurate and contextually relevant infor-
mation. We generated a set of 9 multi-context ques-
tions that have answers spanning across different
parargraphs in three files using the RAGAS frame-
work to facilitate a comprehensive performance
comparison.

• Controlled Complexity for Initial Testing:
The dataset encompasses a variety of topics
within the domain of Italian cuisine, such as
regional dishes, traditional ingredients, culi-
nary techniques, and cultural heritage. This
diversity within a confined scope allows us to
test SKETCH’s ability to handle multi-faceted
queries that require integrating information
from different parts of the text.

• Multi-Context Retrieval Challenges: By
generating a set of 9 multi-context questions
using the RAGAS framework, we designed
queries whose answers span across different
paragraphs and even across multiple files.

• Domain Diversity: Including a dataset from
a different domain ensures that our evalu-
ation of SKETCH covers a broader spec-

trum of content types. While the other
datasets—QuALITY, QASPER, and Narra-
tiveQA—are centered around long-form nar-
ratives and scientific papers, the Italian Cui-
sine dataset represents a domain with unique
characteristics.

• Complexity Without Overhead: The dataset
strikes a balance between complexity and
computational efficiency. It is rich enough
to present significant retrieval challenges but
small enough to allow for rapid iteration and
testing. This is particularly beneficial during
the development phase, where quick feedback
loops are essential.

Table 1 presents the comparative metrics for the
Italian Cuisine dataset across all five retrieval
approaches: Naive RAG, RAPTOR, SKETCH,
Semantic-only, and KG-only. SKETCH demon-
strated clear superiority, achieving the highest
Answer Relevancy score of 0.94, comparable only
to the KG-only approach. However, SKETCH
outperformed KG in Faithfulness (0.87 vs. 0.21)
and Context Recall (0.72 vs. 0.33), highlighting
SKETCH’s ability to maintain context consistency
more effectively. Compared to Naive RAG,
SKETCH delivered a 54.1% improvement in
Answer Relevancy, and it also exceeded RAPTOR
by 26%. On the Context Precision metric,
SKETCH outperformed RAPTOR by 160% and
achieved an 22% higher score than Naive RAG.
Although SKETCH’s context-F1 score (0.83) was
competitive, the Semantic-only approach slightly
outperformed it in this metric (0.87), suggesting
that while SKETCH excels in most areas, there
may be room for further optimization in balancing
precision and recall.

Figures 4, 5, 6, 7 and 8 illustrate the perfor-
mance heatmaps for Naive RAG, RAPTOR,
Semantic-only, and KG-only and SKETCH
approaches, respectively. These heatmaps provide
a deeper understanding of how each approach
handled the 9 questions in the test set. SKETCH
consistently demonstrated a higher level of answer
relevancy and contextual accuracy compared to
the other methods, emphasizing its capability to
deliver precise and contextually rich responses.
The additional heatmaps for Semantic-only
and KG-only approaches further illustrate that
SKETCH excels in providing well-rounded
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Figure 1: RAGAS metrics against all datasets and approaches

retrieval results, surpassing the limitations seen in
isolated semantic or structured retrieval methods.

4.2 QuALITY Dataset

The QuALITY validation dataset, designed for
long-form document comprehension, provided
a challenging evaluation ground for retrieval-
augmented systems. Despite the complexity of
extended passages, SKETCH outperformed all
baseline methods, demonstrating its capability to
retrieve and integrate context effectively. Table 2
compares SKETCH and other approaches across
key performance metrics.

For Answer Relevancy, SKETCH achieved

a score of 0.73, representing a 49% improvement
over Naive RAG (0.49) and a 15.87% improve-
ment over RAPTOR (0.63). The Semantic-only
and KG-only approaches scored significantly
lower at 0.07 and 0.27, respectively. In terms
of Faithfulness, SKETCH recorded 0.69, while
Naive RAG performed better with 0.83. Although
Naive RAG had higher faithfulness, SKETCH’s
strong performance across other metrics gave it
an overall edge. The Semantic-only and KG-only
approaches scored 0.80 and 0.43, respectively.
This demonstrates SKETCH’s effectiveness in
synthesizing relevant information from different
parts of long passages.
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Regarding Context Precision, SKETCH achieved
0.31, a 675% improvement over Naive RAG’s 0.04
and a 19.23% improvement over RAPTOR’s 0.26.
SKETCH also surpassed the KG-only approach,
which scored 0.23. For Context Recall, SKETCH
recorded 0.23, comparable to Naive RAG’s 0.22.
RAPTOR, Semantic-only, and KG-only scored
0.14, 0.07, and 0.17, respectively. Compared to
other approaches, SKETCH’s superior context
based F1 score underscores its ability to provide
both accurate and contextually consistent retrieval,
even in the face of complex, long-form content.
These results illustrate SKETCH’s superior
performance across key metrics, reinforcing its
effectiveness as an integrated retrieval mechanism
for comprehending long and complex documents
over other baseline approaches and showcasing
SKETCH’s advantage in accurately pinpointing
relevant context.

Table 2: Performance Comparison of Different Ap-
proaches against QuALITY Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.49 0.83 0.04 0.22 0.07

RAPTOR 0.63 0.48 0.26 0.14 0.18

Semantic 0.07 0.80 0.003 0.07 0.01

KG 0.27 0.43 0.23 0.17 0.20

SKETCH 0.73 0.69 0.31 0.23 0.26

4.3 QASPER

The QASPER dataset, consisting of scientific
papers, presented a challenging environment due
to its complexity and technical nature. Despite
these challenges, SKETCH demonstrated strong
capabilities, outperforming all baseline meth-
ods across several key metrics, as shown in Table 3.

For Answer Relevancy, SKETCH achieved
a score of 0.56, significantly surpassing Naive
RAG’s 0.28 a 100% improvement and outper-
forming RAPTOR’s 0.27 by 107.41%. The
Semantic-only and KG-only approaches scored
0.27 and 0.49, respectively. On the Faithfulness
metric, SKETCH scored an impressive 0.93,
exceeding Naive RAG (0.61) by approximately
52.46% and RAPTOR (0.62) by 50%. Regarding
Context Precision, SKETCH achieved 0.67,
outperforming Naive RAG’s 0.28 by 139.29% and

RAPTOR’s 0.27 by 148.15%. While the KG-only
approach achieved a slightly higher precision at
0.71, SKETCH’s performance was more balanced
across all metrics.

For Context Recall, SKETCH recorded a
score of 0.49, improving over Naive RAG’s 0.43
by 13.95%. Although the KG-only approach
scored higher at 0.60, SKETCH demonstrated su-
perior balance, excelling in relevancy, faithfulness,
and precision. Although KG-only achieves the
highest F1 score (0.65), SKETCH still maintains
a strong F1 performance at 0.57, reflecting its
balanced effectiveness. These results indicate
that SKETCH consistently outperforms other
approaches in the QASPER dataset, emphasizing
its strength in providing accurate, faithful, and
contextually precise retrieval, particularly in
challenging scientific content.

Table 3: Performance Comparison of Different Ap-
proaches against QASPER Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.28 0.61 0.28 0.43 0.34

RAPTOR 0.27 0.62 0.27 0.44 0.33

Semantic 0.27 0.62 0.29 0.43 0.35

KG 0.49 0.61 0.71 0.60 0.65

SKETCH 0.56 0.93 0.67 0.49 0.57

4.4 NarrativeQA

The NarrativeQA dataset posed unique challenges
requiring deep narrative understanding, including
handling plot development and character interac-
tions across extended text passages. SKETCH
demonstrated a notable advantage in addressing
these complexities compared to baseline methods,
as detailed in Table 4.

For Answer Relevancy, SKETCH achieved
a score of 0.50, significantly surpassing Naive
RAG’s 0.08 (a 525% improvement) and slightly
outperforming RAPTOR and KG-only, both at
0.47. The Semantic-only approach scored 0.10. In
Faithfulness, SKETCH recorded 0.87, outshining
Naive RAG (0.09) by 866.67% and improving over
RAPTOR and KG-only, both at 0.72, by 20.83%.
Regarding Context Precision, SKETCH achieved
0.51, better than Naive RAG’s 0.10 and RAPTOR’s
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0.30. Although KG-only slightly outperformed
SKETCH with 0.58, SKETCH’s overall balanced
performance ensured its superiority. For Context
Recall, SKETCH scored 0.46, significantly higher
than Naive RAG’s 0.05 (an 800% improvement)
and surpassing RAPTOR (0.16) and Semantic-only
(0.14), with KG-only slightly ahead at 0.47.

These results indicate that SKETCH consis-
tently outperformed baseline methods in answer
relevancy and faithfulness. While KG-only showed
slightly better scores in context precision and
recall, SKETCH’s balanced excellence across
all metrics made it the most effective approach
for retrieving and synthesizing narrative content.
This demonstrates SKETCH’s ability to provide
contextually rich and accurate retrieval in the
NarrativeQA dataset, confirming its superiority
in comprehending and generating answers from
complex narrative passages.

Table 4: Performance Comparison of Different Ap-
proaches against NarrativeQA Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.08 0.09 0.10 0.05 0.07

RAPTOR 0.10 0.46 0.30 0.16 0.21

Semantic 0.10 0.51 0.004 0.14 0.01

KG 0.47 0.72 0.58 0.47 0.52

SKETCH 0.50 0.87 0.51 0.46 0.48

5 Conclusion and Limitations

This research introduced SKETCH, an innovative
methodology that enhances Retrieval-Augmented
Generation (RAG) systems by combining semantic
chunking with knowledge graphs. By integrating
structured and unstructured data, SKETCH
addresses the limitations of traditional retrieval
methods, such as context loss in large datasets
and limited comprehension of complex queries.
Our experiments on diverse datasets—including
Italian Cuisine, QuALITY, QASPER, and Narra-
tiveQA—demonstrate SKETCH’s superior ability
to maintain context integrity and generate highly
relevant responses, consistently outperforming
baseline methods like Naive RAG, RAPTOR,
Semantic-only, and KG-only approaches.

SKETCH achieved remarkable improvements

across key metrics, showcasing its adaptability to
both short and long documents and its effectiveness
in navigating complex texts. For instance, on
the Italian Cuisine dataset, it achieved an answer
relevancy score of 0.94 and context precision
of 0.99, improving over Naive RAG by 54.1%
and 22.2%, respectively. On the QuALITY
dataset, SKETCH improved answer relevancy
by 49%, and on the QASPER dataset, it doubled
the answer relevancy score over Naive RAG
while increasing context precision by 139.29%.
Even on the challenging NarrativeQA dataset,
SKETCH delivered balanced performance with
a 525% improvement in answer relevancy and
an 866.67% increase in faithfulness over Naive
RAG. While KG achieved the highest F1 score
(0.52), SKETCH closely followed with 0.48,
demonstrating its balanced effectiveness despite
the complexity of narrative content. These findings
confirm that SKETCH’s combined approach offers
a robust framework for advancing RAG systems,
setting new benchmarks in accuracy, context
comprehension, and cross-domain xapplicability,
and paving the way for future advancements in
natural language processing.

Limitations While SKETCH significantly im-
proved Answer Relevancy and Context Precision,
certain limitations remain. Faithfulness, though
better than most baselines, still lags behind Naive
RAG on QuALITY (0.69 vs. 0.83, a 16.9% short-
fall). Scalability and cost are also concerns, as
constructing large-scale knowledge graphs is labor-
intensive, and relying on paid LLMs like GPT-4
for semantic evaluation increases expenses. Fur-
thermore, SKETCH’s dependence on GPT models
for query parsing and RAGAS evaluation can in-
troduce errors and variance due to sampling ran-
domness, prompt sensitivity, and occasional hallu-
cinations, potentially affecting reproducibility. Em-
ploying sampling strategies (e.g., multiple runs)
and aggregating judgments could help mitigate
these issues. Future work should focus on reduc-
ing computational costs, refining knowledge graph
construction, and improving metrics like Context
Recall and Faithfulness to achieve more consistent,
high-quality, and stable retrieval results.
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Figure 2: Architecture of SKETCH with a Hybrid Retriever combining structured and unstructured retrievers

38



Figure 3: Italian Cuisine KG Representation
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Figure 4: Naive RAG Italian Cuisine Performance Heatmap

Figure 5: Semantic only Italian Cuisine Performance Heatmap
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Figure 6: KG only Italian Cuisine Performance Heatmap

Figure 7: RAPTOR Italian Cuisine Performance Heatmap
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Figure 8: SKETCH Italian Cuisine Performance Heatmap
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Abstract

Recent work in Graph-to-Text generation has
achieved impressive results, but it still suffers
from hallucinations in some cases, despite ex-
tensive pretraining stages and various methods
for working with graph data. While the com-
monly used metrics for evaluating the quality
of Graph-to-Text models show almost perfect
results, it makes it challenging to compare dif-
ferent approaches. This paper demonstrates the
challenges of recent Graph-to-Text systems in
terms of hallucinations and proposes a simple
yet effective approach to using a general LLM,
which has shown state-of-the-art results and
reduced the number of factual hallucinations.
We provide step-by-step instructions on how
to develop prompts for language models and a
detailed analysis of potential factual errors in
the generated text.

1 Introduction

Knowledge Graphs KG have become a powerful
tool for organizing and representing complex data
due to their ability to easily manage trusted in-
formation and are used in various industries such
as education, healthcare, and social media (Peng
et al., 2023). They can be used in conjunction with
modern Large Language Models (LLMs) to cre-
ate Retrieval-Augmented Generation (RAG) sys-
tems or to validate the information generated or
retrieved. Due to the better validation and under-
standing of data, it is important to properly translate
them into text. This process, known as Graph-to-
Text generation, has recently seen success in cre-
ating knowledge-grounded chatbots (Zhou et al.,
2018; Peng et al., 2024) and Question Answer-
ing systems (Razzhigaev et al., 2023; Agarwal
et al., 2021; Salnikov et al., 2023). Belikova et al.
(2024) demonstrated that integrating various ex-
ternal resources, particularly linearized subgraphs,
and employing a marginal probability-based selec-
tion method significantly enhanced the effective-

Nurhan 
Atasoy

1934-01-01

Istanbul

Turkey

birthDate

residence

residence

citizenship

birthPlace

Nurhan Atasoy was born in Turkey on January 1st, 1934. He is a Turkish 
citizen and resides in Istanbul, Turkey.

Figure 1: An example of a knowledge graph and its
corresponding Graph-to-Text generation that describes
the entities and their relationships in the provided graph.

ness of the RAG setup.
Graph-to-Text involves the processing of Knowl-

edge Graph triplets (subject, property, object) data,
into a natural textual representation that should in-
clude all the factual information from these triplets
and nothing else, as shown in the Figure 1.

In this work, we focus on evaluating the abili-
ties of modern Large Language Models, such as
ChatGPT1, LLaMA-3 (Dubey et al., 2024) and
Gemma 2 (Rivière et al., 2024), to solve the Graph-
to-Text problem, and specifically on the potential
hallucinations that are totally unacceptable for such
problems.

Recent studies have produced state-of-the-art re-
sults in the Graph-to-Text generation task. They
used complex pipelines to organize graphs in a
specific order to generate correct text (Guo et al.,
2020), or used graph aware approaches (Colas et al.,
2022). All of these methods required complex train-
ing stages, but they provided the best results accord-
ing to the leaderboards2.

Despite the impressive results, these Graph-to-
Text methods can still experience hallucinations
and may omit certain elements of the graph in the

1https://openai.com/chatgpt/overview/
2https://synalp.gitlabpages.inria.fr/

webnlg-challenge/challenge_2020

43



resulting text which are difficult to detect with the
common metrics used on popular leaderboards. In
this paper, we focus on this issue and provide a
detailed analysis of state-of-the-art methods, com-
paring them with general Language Models.

Our contribution are two-fold:

• We provide a detailed guide to our prompt
engineering strategy for LLMs in the Graph-
to-Text domain, which allows users to achieve
state-of-the-art results using a general LLM
without the need for complex setup stages,
fine-tuning, etc.

• We evaluate state-of-the-art methods and mod-
ern large language models (LLMs) on the pop-
ular Graph-to-Text dataset, WebNLG (Gar-
dent et al., 2017b), and provide a new and de-
tailed analysis to estimate the hallucinations
of these methods which showed limitations of
various Natural Language Generation (NLG)
metrics.

We make our code publically available to pro-
vide reproducible results and motivate future re-
searchers.3

2 Related work

In this section, we will provide a brief overview
of Knowledge Graphs, their representation and lin-
earization, as well as existing Graph-to-Text algo-
rithms and the potential use of Large Language
Models for this task.

2.1 Knowledge Graphs

Knowledge Graphs, such as Wikidata (Vrandečić
and Krötzsch, 2014) or DBPedia (Lehmann et al.,
2015), represent knowledge about their entities
in a structured format. Connection between en-
tities are labelled with properties and together they
form triples (subject, property, object). Each triple
describes a single fact about its entities without any
unnecessary information. This type of knowledge
organization helps to provide a brief description
of each KG node by summarizing its neighbours.
Additionally, Knowledge Graphs are easy to edit in
order to keep the data in them up-to-date. There are
two main ways to use Knowledge Graphs in con-
junction with Language Models. The first one is
to feed the graph directly into specially pretrained
Graph Convolution Network and then use graph

3https://github.com/s-nlp/llm-g2t

encoded version as input for language model de-
coder (Zhao et al., 2020). This approach save all
the information about the graph structure but re-
quires training a custom model. Other way is to
linearize the graph in the special order: it can be
connected with graph traversal (Ribeiro et al., 2020;
Li et al., 2021) or selected by custom neural net-
work (Guo et al., 2020). Such approach can lose
information about two or more steps connections
because of unstructured information representation
in the Large Language Models context, but can be
used with general purpose Large Language Model.

2.2 Graph-to-Text

Problem of Graph-to-Text generation started from
lexicalisation task — converting individual Knowl-
edge Graph triples into verb phrase templates. In
the first presented solution text was generated based
on the predefined templates (Goldberg et al., 1994).
This algorithm is simple but requires custom hu-
man created templates for each task and can be
applied only in a few specific areas. Future devel-
opment in this area led to creation of algorithms
for autonomous extraction of such templates from
training data source (Duma and Klein, 2013; Perera
and Nand, 2015). While such algorithms provide
first fully autonomous generation pipeline, quality
was still not enough to compare it with human-
written results. Next step in this topic was done
by WEBNLG dataset (Gardent et al., 2017a) for
Graph-to-Text and vice versa generation. This
dataset was based on DBpedia (Lehmann et al.,
2015) and provides enough training data for ability
to apply fine-tuned pretrained data-driven ML mod-
els for Graph-to-Text task. One of the first solutions
based on this data was an LSTM transformer based
model for sequence to sequence translation (Gar-
dent et al., 2017b). Other approach used graph
convolution network (GCN) as encoder which can
process graph without linearization to save it struc-
ture (Marcheggiani and Perez-Beltrachini, 2018).
Further develop of this solution led to the usage
of graph attention networks as an encoder to pro-
vide more modelling power and improved perfor-
mance (Koncel-Kedziorski et al., 2019). Another
close solution (Beck et al., 2018) where graph-
based encoder is also used, replaces GCN with
Gated Graph Neural Network (Li et al., 2015).
With active development of pretrained language
models (PLMs) it was shown that is it possible to
use graph embeddings by graph neural network
as the input word embeddings of PLM for gener-
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ating text after their representation alignment (Li
et al., 2021). Relation-biased breadth first search
was used to linearize the graph structure for PLM
sequence decoder as it saves information about
nodes at the same level with relevant semantics
and forces more human-like order of description
for relations. Another solution (Guo et al., 2020)
proposes a relational graph convolutional network
which is used as a planner to linearize the graph
in the correct order before feeding it to the pre-
trained T5 model (Raffel et al., 2020) for the final
text generation. This solution shows the best qual-
ity in the WEBNLG 2020 challenge. PLM can
provide high quality result for the task of Graph-to-
Text generation even without special graph-based
neural networks (Ribeiro et al., 2020). Fine-tuned
for a few epochs BART (Lewis et al., 2020) and
T5 models were evaluated on the WEBNLG and
AGENDA (Koncel-Kedziorski et al., 2019) datasets
with linear traversal graph linearization. While
such models as T5 and BART required extra fine-
tuning on the task dataset modern general purpose
Large Language Models like ChatGPT can provide
comparable quality results for the Graph-to-Text
translation even in zero-shot mode (Axelsson and
Skantze, 2023). Comparison of ChatGPT and GPT-
3 (Brown et al., 2020) Large Language Models with
pretrained T5 and BART models shows that Large
Language Models provide comparable quality re-
sults, but tend to generate text with hallucinations
and irrelevant information (Yuan and Färber, 2023).
In this work we will show that this problem can be
solved by prompt engineering and replacing Large
Language Model by modern one.

2.3 Large Language Models

Large language models such as Chat-GPT and GPT-
3 are based on the transformer decoder architec-
ture (Vaswani et al., 2017). They were designed
to provide even zero-shot text generation for user
request based on the huge train dataset and large
amount of tuned parameters used in their training
process. Development of these models by OpenAI
lead to the next generation model called GPT-4 4.
It demonstrates better quality on creative and long
context tasks but it is also not open-source and
OpenAI doesn’t publish any paper about its archi-
tecture and training process. An alternative to the
GPT-4 model was provided by Meta AI with their
Llama 3 models family (Dubey et al., 2024). This

4https://openai.com/index/gpt-4

Large Language Model is open-source and enough
powerful to be used instead of GPT-4, according
to provided results of comparison. At the same
time Gemma 2 model (Rivière et al., 2024) was
introduced by Google. It beats Llama 3 models of
the nearly same size and even can be competitive
among models with larger amount of parameters.
It was also published to open-source.

Quality of Large Language Model answers can
be enriched not only by applying new training tech-
niques and increasing of train dataset or model
parameters amount but also by different prompt-
ing techniques during evaluation of the user re-
quest. Providing Large Language Model with a
few examples of processing the requested task can
lead to the better performance and model adapta-
tion to the new kinds of tasks (Brown et al., 2020).
Such method is also known as few-shot prompting.
Large Language Model are different from people
in their process of thinking, so it is important to
generate intermediate thoughts to provide better
final quality of generation (Wei et al., 2022). It is
called Chain-of-Thoughts method and can be ap-
plied both to zero-shot prompt using "Think step
by step" phrase or even to a few-shot prompt by
including examples with intermediate steps.

2.4 Fact Verification Metric

Employing modern Large Language Models for
tasks like text summarization or graph-to-text trans-
lation produces favorable results; nevertheless,
these models still have the propensity to halluci-
nate, and such hallucinations can be particularly
harmful when they arise in factual statements. To
detect factual inconsistency in the Large Language
Models output factual consistency metrics such as
AlignScore (Zha et al., 2023) can be used. Align-
Score is based on RoBERTa (Liu et al., 2019)
model which was trained to estimate the informa-
tion alignment score between two arbitrary text
pieces: context and claim. Given text pieces con-
text and claim, claim is aligned with context if
context contains all information from claim and
claim does not contradict context. AlignScore was
trained on several fact verification datasets (Schus-
ter et al., 2021; Nie et al., 2019) that consist of
claims paired with relevant contexts derived from
Wikipedia 5 pages, alongside labels indicating the
veracity of the claims. To enhance the metric’s abil-
ity for continuous prediction, semantic text similar-

5https://www.wikipedia.org
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ity datasets (Marelli et al., 2014; Cer et al., 2017)
were incorporated into AlignScore’s training cor-
pus. These datasets consist of sentence pairs and
corresponding similarity scores, illustrating the de-
gree of semantic relatedness or independence be-
tween the sentences.

3 Proposed Framework

We propose a universal and easy-to-use framework
for the Graph-to-Text task that does not require fine-
tuning or the use of specialized trained modules
or models, yet still achieves state-of-the-art results.
We use common instruction-based Large Language
Models, such as LLaMA 3 (Dubey et al., 2024),
Gemma 2 (Rivière et al., 2024) or GPT-4o6, to
generate comprehensive, natural-style text from
KG triplets using carefully selected prompt with
various prompting techniques.

In our work, as with any system development,
we start from a simple zero-shot baseline and sim-
ply ask the LLM to convert KG triples into text
using the following prompt: "Translate from graph
to text". This straightforward approach suffers from
a lot of hallucinations, so we asked the model not
to hallucinate: "Describe all nodes of the graph
with edges as a connected text. Talk only about
items from graph and use information only if graph
contains it. Write only description without head-
ers and titles.", and it actually works, with better
results. After that, we tried adding some general
hacks, such as a few short learning examples and
a chain of thoughts, to improve it. Finally, we
provided the following prompt template:

Act as a system which describes all nodes of the
graph with edges as a connected text. Follow the exam-
ples. Talk only about items from graph and use informa-
tion only if graph contains it. Validate each written fact
and correct it if mistake is found, do it silently without
extra notes. Let’s think step by step. For each step show
described triple and check that all words from it is used
in your description.

Task:
Graph: LINEARIZED GRAPH FROM EXAMPLE 1

Model answer:
Step-by-step solution:
MODEL STEP BY STEP SOLUTION FROM EXAM-

PLE 1
Description: MODEL GRAPH DESCRIPTION FROM

EXAMPLE 1
... (Here comes more examples) ...

6https://openai.com/index/gpt-4

Nie Haisheng

Fighter pilot1964-10-13

birthDate occupation

Figure 2: Visualization of the graph described in the
Table 1

Now provide answer for the next task yourself.

Task:

Graph: LINEARIZED GRAPH

Model answer:

Step-by-step solution:

It actually works efficiently with the small
LLaMA-3-8B-Instruct model and the big propri-
etary GPT-4o model. Examples of generated out-
puts for small graph, consisting of two triples (Fig-
ure 2), are presented in Table 1.

4 Experiments

Opposite to the previous works (Axelsson and
Skantze, 2023; Yuan and Färber, 2023) for the
evaluation we have used more actual Large Lan-
guage Models such as open-source LLaMA-3-8B-
Instruct, gemma-2-9b and proprietary gpt-4o and
gpt-4o-mini. As a source of Knowledge Graphs
we have chosen WEBNLG 2020 English dataset
as it is one of the main benchmarks for the Graph-
to-Text task. All models were evaluated on the
test set using modified tripleset — graph descrip-
tion in the triple form where some predicates are
replaced according to the official WEBNLG rec-
ommendation7. It helps models better understand
directions of the links between entities. Each graph
was linearized in the order triples are stated in the
dataset. Example of the final graph input format
is [graph][head] Expect a Miracle [relation] runtime [tail]
3274.0</s>, where [graph] and </s> denote start and
end of the graph description and [head], [relation]
and [tail] divide parts of the triple. We also replaced
all underscore symbols by spaces to prevent Large
Language Model from generation incorrect object
names.

7https://synalp.gitlabpages.inria.fr/
webnlg-challenge/docs/#triple-modification
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G2T Model Prompt BLEU↑ BERTScore F1↑ Example

Reference – 1 1
Nie Haisheng, born on October 13, 1964,
worked as a fighter pilot.

Llama-3-8B-Instruct zero-shot (simple) 0.1402 0.9455
Nie Haisheng is a person born on
October 13, 1964. As a Fighter pilot, he is
a professional aviator.

Llama-3-8B-Instruct
zero-shot
(anti-hallucinations)

0.5548 0.9771
Nie Haisheng, born on October 13, 1964,
is a Fighter pilot.

Llama-3-8B-Instruct few-shot 0.2647 0.9754
Nie Haisheng is a fighter pilot
born on October 13, 1964.

Llama-3-8B-Instruct CoT few-shot 0.2370 0.9458
The fighter pilot Nie Haisheng was born
on October 13, 1964.

Gemma-2-9b zero-shot (simple) < 0.0001 0.9124
Nie Haisheng’s birthdate is 1964-10-13.
Nie Haisheng’s occupation is Fighter pilot.

Gemma-2-9b
zero-shot
(anti-hallucinations)

< 0.0001 0.9238
Nie Haisheng was born on 1964-10-13.
Nie Haisheng’s occupation is Fighter pilot.

Gemma-2-9b few-shot < 0.0001 0.9541
Nie Haisheng was born on 1964-10-13
and is a Fighter pilot.

Gemma-2-9b CoT few-shot < 0.0001 0.9235
Fighter pilot Nie Haisheng was
born on 1964-10-13.

GPT-4o zero-shot (simple) 0.3388 0.9673
Nie Haisheng was born on October 13, 1964,
and hisoccupation is a fighter pilot.

GPT-4o
zero-shot
(anti-hallucinations)

0.3388 0.9673
Nie Haisheng was born on October 13, 1964,
and hisoccupation is a fighter pilot.

GPT-4o few-shot 0.4572 0.9797
Nie Haisheng was born on October 13, 1964,
and works as a fighter pilot.

GPT-4o CoT few-shot 0.6407 0.9839 Nie Haisheng, born on October 13, 1964,
is a fighter pilot.

Table 1: Examples of Large Language Model outputs with different prompts on the graph, consisting of two triples.
Blue text means model hallucinations.

To measure the results we have used stan-
dard WEBNLG metrics:Meteor (Banerjee and
Lavie, 2005), BLEU (Papineni et al., 2002),
Chrf (Popovic, 2015), TER (Snover et al., 2006)
and BertScore (Zhang et al., 2020). Moreover,
we additionally computed AlignScore metric (Zha
et al., 2023) to detect factual inconsistency in the
model answers.

For comparison reasons we have also evaluated
GAP (Colas et al., 2022) and calculated metrics for
the P 2 model (Guo et al., 2020), which is top-1 so-
lution from WEBNLG 2020 competition, based on
the model outputs published by authors8. Results
of our evaluation are presented in the Table 2.

While by some metrics we can easily define the
better model, it can be seen that BERTScore F1 is
nearly equal both for Large Language Models and
P 2 and requires more detailed analysis.

5 Analytics

While by classical translation metrics Large Lan-
guage Models are slightly worse that the P 2 model,

8https://github.com/QipengGuo/P2_WebNLG2020/
blob/main/output.txt

it was expected as fine-tuned models were adopted
for the style of reference answers during training on
the train part of the dataset and these metrics reward
word match (Axelsson and Skantze, 2023). On one
hand it gives P 2 advantage, but on the other hand
it can’t be applied to another dataset without extra
fine-tuning process, while Large Language Mod-
els can be evaluated just with other examples in
few-shot part of the prompt. As difference between
Large Language Models and P 2 by BERTScore F1
is at the margin of statistical error we go deeper
and compared factual consistency of the generated
results with AlignScore. While Large Language
Models all as one show high score by this met-
ric, P 2 demonstrates much worse quality. It can
be explained by hallucinations or missed facts in
the model answers. To define the reasons of such
problems with factual consistency we reviewed ex-
amples from the dataset where P 2 suffers from fact
inconsistency, but two best of compared Large Lan-
guage Models (Gemma 2 and GPT-4o) still provide
high-quality results. One pattern we detected is
that P 2 model tends to hallucinate if graph contains
multiple triples with the same subject and property
but different objects. Examples of the such graph
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G2T Model Setup AlignScore↑ Meteor↑ BLEU↑ Chrf↑ TER↓ BERTScore F1↑
GAP task-specific 0.7797 0.5333 0.2398 0.5985 70.4437 0.9298
P 2 task-specific 0.1511 0.6286 0.4054 0.6434 44.2396 0.9549
Llama-3-8B-Instruct zero-shot 0.8959 0.5507 0.2690 0.6312 66.7051 0.9381
Gemma-2-9b zero-shot 0.9100 0.5816 0.3148 0.6363 55.4666 0.9448
GPT-4o zero-shot 0.8909 0.5970 0.2872 0.6559 69.0469 0.9455
GPT-4o-mini zero-shot 0.8826 0.5940 0.2916 0.6488 66.8438 0.9442
Llama-3-8B-Instruct CoT few-shot 0.9021 0.5487 0.2492 0.6136 62.5371 0.9432
Gemma-2-9b CoT few-shot 0.9459 0.5818 0.3298 0.6300 48.2942 0.9517
GPT-4o CoT few-shot 0.9514 0.6079 0.3402 0.6536 52.8860 0.9520
GPT-4o-mini CoT few-shot 0.9436 0.5873 0.3036 0.6417 53.9540 0.9509

Table 2: Comparison of modern Large Language Models Graph-to-Text evaluation on WEBNLG 2020 dataset using
simple zero-shot prompts and CoT few-shot prompts which also ask model not to hallucinate; AlignScore (Roberta-
base).
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Figure 3: Comparison of AlignScore of P 2 model on
graphs which contains multiple triples with the same
subject and property but different objects and graphs
without such triples.

are provided in the Table 4. To prove this point we
aggregated AlignScore results by cases where the
graph satisfies this condition and cases where such
triplets are absent. The comparison is shown in the
Figure 3. It can be seen that P 2 shows 24% less
quality in such situations.

Another problem is connected with the size of
the graph provided to the model. While Large Lan-
guage Models show stable quality on any number
of triples in the graph P 2 loses more than 50% of
quality on the graphs with seven triples. Example
of such graph and models output are presented in
the Table 3. Comparison of AlignScore for graphs
with different triples count is provided in th Fig-
ure 4. We have also detected that even on smaller
graphs P 2 often skips one of the facts from the
graph which led to great but not full description.
Examples are given in Table 3 and 5.

To sum up, P 2 shows great results by classic
translation metrics because of special graph reorder-
ing and language model fine-tuning which makes
model answer similar to the references, but still suf-
fers from hallucinations more than modern Large

Amount of triples in the graph

0,00

0,25

0,50

0,75

1,00

1 2 3 4 5 6 7

P^2 Gemma-2-9b GPT-4o GPT-4o-mini
Llama-3-8B-Instruct gap

Figure 4: Comparison of AlignScore for P 2 and CoT
few-shot prompted Large Language Models grouped by
the graphs size in triples.

Language Models because of the under the hood
T5 model limitations. While generating the result
with P 2 requires less computational resources it
can be used in further processing only after fac-
tual consistency check to detect possible skipped
or incorrect facts.

6 Conclusion

We have shown how to select prompt for the mod-
ern Large Language Model to show competitive
results in Graph-to-Text task with top-1 specialized
model fine-tuned for the specific dataset. We pro-
vide final few-shot prompt based on the Chain-of-
Thoughts technique. Also we evaluated four mod-
ern Large Language Models on the graph-to-text
task and compared their results with state-of-the-art
solution in this task. Based on these evaluation we
provided detailed analytics about potential factual
errors which can be caused by model hallucina-
tions. Moreover, we described how they can be
omitted behind classic translation metrics on the
example of the P 2 model.
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English Without Tears

89.0

runtime

Nicholas Brodszky

musicComposer

1944-07-28

releaseDate

Harold French

director

Alan Jaggs

editing

Anatole de Grunwald

producer writer

Reference

English Without Tears is a 89 minute film that was written and produced by
Anatole de Grunwald. The movie was released on July 28th, 1944. Nicholas
Brodszky was the musical composer and Harold French was the director.
The editing was done by Alan Jaggs.

P 2
English Without Tears was produced by Anatole de Grunwald and written by
Nicholas Brodszky. It was edited by Alan Jaggs and released on 28th July 1944.
It has a runtime of 89.0 and was directed by Harold French.

GPT-4o

Released on July 28, 1944, "English Without Tears" runs for 89 minutes.
The film was directed by Harold French and edited by Alan Jaggs. The music
was composed by Nicholas Brodszky. Anatole de Grunwald contributed
as both the producer and the writer.

Gemma2

*English Without Tears*, released on 1944-07-28, is a film with a runtime of
89.0 minutes. It was directed by Harold French and written by Anatole de
Grunwald who also produced it. The music was composed by Nicholas
Brodszky and edited by Alan Jaggs.

Table 3: Example of the graph with seven triples where P 2 made a factual incorrect statement. Red text means
incorrect fact detected by AlignScore, green text marks correct description

Bootleg Series Volume 1: The Quine Tapes

Polydor Records

recordLabel

Universal Music Group

recordLabel

Lucian Grainge

keyPerson

Reference
Bootleg Series Volume 1: The Quine Tapes was released by Universal Music Group,
a record label run by key person Lucian Grainge. Polydor Records recorded Bootleg
Series Volume 1: The Quine Tapes.

P 2 Lucian Grainge is a key person at Universal Music Group, the label that signed
Bootleg Series Volume 1: The Quine Tapes to Polydor Records.

GPT-4o Bootleg Series Volume 1: The Quine Tapes is associated with Polydor Records and
Universal Music Group. A key person in Universal Music Group is Lucian Grainge.

Gemma2
Bootleg Series Volume 1: The Quine Tapes was released by both Polydor Records
and Universal Music Group. Lucian Grainge is a significant figure at Universal Music
Group.

Table 4: Example of the graph with multiple triples with the same subject and property but different objects. Red
text means incorrect fact detected by AlignScore, green text marks correct description
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Nurhan Atasoy

1934-01-01

birthDate

Istanbul

residence

Turkey

citizenship birthPlace residence

Reference Nurhan Atasoy was born in Turkey on January 1st, 1934. He is a Turkish citizen
and resides in Istanbul, Turkey.

P 2 Nurhan Atasoy was born in Turkey on January 1st 1934. He resides in Istanbul
and has Turkish citizenship.

GPT-4o Nurhan Atasoy, born in Turkey on January 1, 1934, holds Turkish citizenship
and resides in Istanbul, Turkey.

Gemma2 Nurhan Atasoy, who was born on 1934-01-01 in Turkey, is Turkish and lives in
Istanbul and Turkey.

Table 5: Examples of graph to text generation with various models. The P 2 model omits one of the facts.

7 Limitations

The presented approach of Graph-to-Text transla-
tion using Large Language Models requires more
computational resources than the state-of-the-art
solution. Additionally, it is possible to measure
the amount of model hallucinations using human
evaluation in addition to the AlignScore.

References
Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami

Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554–3565, Online. As-
sociation for Computational Linguistics.

Agnes Axelsson and Gabriel Skantze. 2023. Using
large language models for zero-shot natural language
generation from knowledge graphs. In Proceedings
of the Workshop on Multimodal, Multilingual Natu-
ral Language Generation and Multilingual WebNLG
Challenge (MM-NLG 2023), pages 39–54, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings
of the Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Sum-
marization@ACL 2005, Ann Arbor, Michigan, USA,
June 29, 2005, pages 65–72. Association for Compu-
tational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated graph
neural networks. In Proceedings of the 56th Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 273–283,
Melbourne, Australia. Association for Computational
Linguistics.

Julia Belikova, Evegeniy Beliakin, and Vasily Kono-
valov. 2024. JellyBell at TextGraphs-17 shared
task: Fusing large language models with external
knowledge for enhanced question answering. In Pro-
ceedings of TextGraphs-17: Graph-based Methods
for Natural Language Processing, pages 154–160,
Bangkok, Thailand. Association for Computational
Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity - multilin-
gual and cross-lingual focused evaluation. CoRR,
abs/1708.00055.

Anthony M. Colas, Mehrdad Alvandipour, and
Daisy Zhe Wang. 2022. GAP: A graph-aware lan-
guage model framework for knowledge graph-to-text
generation. In Proceedings of the 29th International
Conference on Computational Linguistics, COLING
2022, Gyeongju, Republic of Korea, October 12-17,
2022, pages 5755–5769. International Committee on
Computational Linguistics.

50



Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Daniel Duma and Ewan Klein. 2013. Generating nat-
ural language from linked data: Unsupervised tem-
plate extraction. In Proceedings of the 10th Inter-
national Conference on Computational Semantics
(IWCS 2013) – Long Papers, pages 83–94, Potsdam,
Germany. Association for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 179–188, Vancouver, Canada. Association for
Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

E. Goldberg, N. Driedger, and R.I. Kittredge. 1994. Us-
ing natural-language processing to produce weather
forecasts. IEEE Expert, 9(2):45–53.

Qipeng Guo, Zhijing Jin, Ning Dai, Xipeng Qiu, Xi-
angyang Xue, David Wipf, and Zheng Zhang. 2020.
P 2: A plan-and-pretrain approach for knowledge
graph-to-text generation. In Proceedings of the 3rd

International Workshop on Natural Language Gen-
eration from the Semantic Web (WebNLG+), pages
100–106, Dublin, Ireland (Virtual). Association for
Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph
Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
generation from knowledge graphs with graph trans-
formers. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 2284–2293. Association for Computational
Linguistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
S. Auer, and Christian Bizer. 2015. Dbpedia - a
large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6:167–195.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Zhicheng Wei,
Nicholas Jing Yuan, and Ji-Rong Wen. 2021. Few-
shot knowledge graph-to-text generation with pre-
trained language models. In Findings of the Associa-
tion for Computational Linguistics: ACL/IJCNLP
2021, Online Event, August 1-6, 2021, volume
ACL/IJCNLP 2021 of Findings of ACL, pages 1558–
1568. Association for Computational Linguistics.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard S. Zemel. 2015. Gated graph sequence neu-
ral networks. arXiv: Learning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Diego Marcheggiani and Laura Perez-Beltrachini. 2018.
Deep graph convolutional encoders for structured
data to text generation. In Proceedings of the 11th

51



International Conference on Natural Language Gen-
eration, pages 1–9, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation, LREC 2014,
Reykjavik, Iceland, May 26-31, 2014, pages 216–223.
European Language Resources Association (ELRA).

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 6859–
6866. AAAI Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311–318. ACL.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo,
Haizhou Shi, Chuntao Hong, Yan Zhang, and Siliang
Tang. 2024. Graph retrieval-augmented generation:
A survey. CoRR, abs/2408.08921.

Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and
Francesco Osborne. 2023. Knowledge graphs:
Opportunities and challenges. Artif. Intell. Rev.,
56(11):13071–13102.

Rivindu Perera and Parma Nand. 2015. A multi-strategy
approach for lexicalizing linked open data. In Com-
putational Linguistics and Intelligent Text Process-
ing, pages 348–363, Cham. Springer International
Publishing.

Maja Popovic. 2015. chrf: character n-gram f-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
WMT@EMNLP 2015, 17-18 September 2015, Lis-
bon, Portugal, pages 392–395. The Association for
Computer Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Anton Razzhigaev, Mikhail Salnikov, Valentin Malykh,
Pavel Braslavski, and Alexander Panchenko. 2023.
A system for answering simple questions in multiple
languages. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 524–537,

Toronto, Canada. Association for Computational Lin-
guistics.

Leonardo F. R. Ribeiro, Martin Schmitt, Hinrich
Schütze, and Iryna Gurevych. 2020. Investigating
pretrained language models for graph-to-text genera-
tion. CoRR, abs/2007.08426.

Morgane Rivière, Shreya Pathak, Pier Giuseppe
Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos,
Ravin Kumar, Charline Le Lan, Sammy Jerome, An-
ton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan
Girgin, Nikola Momchev, Matt Hoffman, Shantanu
Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin
Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Pater-
son, Ben Bastian, Bilal Piot, Bo Wu, Brandon
Royal, Charlie Chen, Chintu Kumar, Chris Perry,
Chris Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijayku-
mar, Dominika Rogozinska, Dustin Herbison, Elisa
Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin,
Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska,
Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway,
Jetha Chan, Jin Peng Zhou, Joana Carrasqueira,
Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost
van Amersfoort, Josh Gordon, Josh Lipschultz,
Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin
McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish
Greene, Lars Lowe Sjösund, Lauren Usui, Laurent
Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
Nealus. 2024. Gemma 2: Improving open language
models at a practical size. CoRR, abs/2408.00118.

Mikhail Salnikov, Hai Le, Prateek Rajput, Irina Nik-
ishina, Pavel Braslavski, Valentin Malykh, and
Alexander Panchenko. 2023. Large language models
meet knowledge graphs to answer factoid questions.
In Proceedings of the 37th Pacific Asia Conference
on Language, Information and Computation, pages
635–644, Hong Kong, China. Association for Com-
putational Linguistics.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin c! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 624–643. Association for
Computational Linguistics.

Matthew G. Snover, Bonnie J. Dorr, Richard M.
Schwartz, Linnea Micciulla, and John Makhoul.
2006. A study of translation edit rate with targeted

52



human annotation. In Proceedings of the 7th Con-
ference of the Association for Machine Translation
in the Americas: Technical Papers, AMTA 2006,
Cambridge, Massachusetts, USA, August 8-12, 2006,
pages 223–231. Association for Machine Translation
in the Americas.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.
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Abstract

This study explores the integration of graph-
based methods into Retrieval-Augmented Gen-
eration (RAG) systems to enhance efficiency,
reduce hallucinations, and improve explainabil-
ity, with a particular focus on financial and reg-
ulatory document retrieval. We propose two
strategies—FactRAG and HybridRAG—which
leverage knowledge graphs to improve RAG
performance. Experiments conducted using Fi-
nance Bench, a benchmark for AI in finance,
demonstrate that these approaches achieve a
6% reduction in hallucinations and an 80%
decrease in token usage compared to conven-
tional RAG methods. Furthermore, we evaluate
HybridRAG by comparing the Digital Opera-
tional Resilience Act (DORA) from the Euro-
pean Union with the Federal Financial Institu-
tions Examination Council (FFIEC) guidelines
from the United States. The results reveal a
significant improvement in computational effi-
ciency, reducing contradiction detection com-
plexity from O(n2) to O(k ·n)—where n is the
number of chunks—and a remarkable 734-fold
decrease in token consumption. Graph-based
retrieval methods can improve the efficiency
and cost-effectiveness of large language model
(LLM) applications, though their performance
and token usage depend on the dataset, knowl-
edge graph design, and retrieval task.

1 Introduction

Generative Artificial Intelligence (GenAI), exem-
plified by Large Language Models (LLMs) such
as OpenAI’s GPT series (Brown et al., 2020; Ope-
nAI, 2023), Meta’s LLaMA models (Touvron et al.,
2023), and Mistral’s Mixtral (AI, 2023), has gained
prominence in various fields, including healthcare,
finance, and education. These models, while highly
capable of producing coherent and contextually rel-
evant responses, face challenges in generating fac-
tually accurate content—a phenomenon referred to
as hallucination (Ji et al., 2023; Bang et al., 2023).

Figure 1: Graph RAG Pattern (Rathle)

Hallucination arises from LLMs’ reliance on po-
tentially outdated or domain-general training data,
leading to inaccuracies in real-world applications
where precision is critical (Dziri et al., 2022).

To address the issue of hallucinations, Retrieval-
Augmented Generation (RAG) has emerged as a
promising approach. Introduced by Lewis et al.
(2020), RAG combines a retriever that identifies
relevant documents and a generator that creates
coherent responses from this information. By com-
bining LLMs with external knowledge bases, RAG
systems can enhance response accuracy and rele-
vance by dynamically incorporating up-to-date and
verifiable information into generated outputs (Kang
and Lee, 2023). The original approach suggested
dividing documents into 100-word disjoint chunks,
but this can disrupt semantics and lead to halluci-
nations, as noted by Qian et al. (2024). To mitigate
these issues, enhancements like sliding window
chunking, sentence-level splitting with surround-
ing context, and incorporating metadata such as
document titles have been proposed to improve the
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quality and relevance of the generated outputs (Gao
et al., 2023).

While RAG often improves the relevance of lan-
guage model outputs, it faces notable limitations in
real-world applications:

1. Neglect of Structured Relationships: Tradi-
tional RAG focuses on textual relevance and
often overlooks structured relationships criti-
cal in domains like citation networks, limiting
its effectiveness for complex, interconnected
data (Yao et al., 2021).

2. Redundancy and Lengthy Contexts: Con-
catenated text snippets in RAG can lead to
redundancy and excessively lengthy inputs,
causing the model to lose focus and obscure
key information (Longpre et al., 2021).

3. Limited Global Context: RAG’s restricted
retrieval scope hinders its ability to capture
broader contexts necessary for tasks like
query-focused summarization (Lewis et al.,
2020).

These limitations highlight the need for ad-
vanced approaches, such as GraphRAG (Figure 1),
to incorporate structured relationships and pro-
vide richer, more contextually accurate informa-
tion, while being more efficient in terms of token
usage. To overcome these limitations, we explore
several distinct approaches to enhancing RAG sys-
tems with graphs, including:

1. FactRAG: We propose a graph-based ap-
proach, "FactRAG," for a question-answering
search engine that is more efficient in term of
tokens and reduces hallucinations compared
to classical RAG.

2. KG-RAG: We introduce a knowledge graph-
enhanced technique, "KG-RAG," for docu-
ment comparison tasks, that significantly im-
proves token efficiency and reduces compu-
tational complexity from O(n2) to O(k · n)
in LLM-driven retrieval tasks, where n is the
number of chunks/nodes and k the number of
clusters in the KNN algorithms specifically for
detecting contradictions between documents.

3. HybridRAG: We provide open-source code
for a graph-based Hybrid RAG, which inte-
grates symbolic and sub-symbolic retrieval for
flexible question-answering.

2 Related Work

Knowledge Graphs (KGs) play a crucial role in
enhancing the interpretability and factual accuracy
of large language models (LLMs) by structuring
information as entities and relationships (Hogan
et al., 2022; Rosin et al., 2022). The integration of
graph structures within Retrieval-Augmented Gen-
eration (RAG) frameworks has shown significant
improvements in model performance. Zhao et al.
(2023) demonstrate that Graph-based Retrieval-
Augmented Generation enhances contextual ac-
curacy by allowing systems to retrieve relevant
entities and relationships from KGs. Similarly,
Yasunaga et al. (2022) highlights the benefits of
Graph-based Retrieval-Augmented Language Mod-
els for fact verification and knowledge enrichment,
ensuring that generated outputs are relevant and
accurate. Liu et al. (2022) introduces the con-
cept of Graph Retrieval Augmentation, which en-
hances contextual and semantic understanding in
LLMs, resulting in more coherent and pertinent
responses. Furthermore, the work of Guu et al.
(2020) illustrates how training in a language model
with augmented retrieval with knowledge graphs
can improve the accuracy and depth of the answer
by using KG for the retrieval and structured data.
Graph RAG stands out by retrieving graph ele-
ments from a pre-constructed knowledge graph,
thereby enriching LLM-generated responses with
structured knowledge (Rosin et al., 2022). This
structure allows Graph RAG to capture semantic
nuances, maintain contextual coherence, and re-
duce verbosity, making it particularly effective for
applications in question-answering, recommenda-
tion systems, and complex information retrieval
tasks relying on structured knowledge.

3 Problem Statement

Large Language Models (LLMs) augmented by
Retrieval-Augmented Generation (RAG) systems
have advanced the ability to generate contextually
relevant responses. However, despite RAG’s poten-
tial to reduce inaccuracies by integrating external
knowledge, hallucinations – defined as the genera-
tion of factually incorrect or fabricated information
– remain a significant issue. This paper explores
the relevance of a graph-based approach to reduce
hallucinations and optimize token consumption in
language models.
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3.1 Graph-based technique
We identify two key approaches to minimizing hal-
lucinations in RAG systems: pre-generation and
post-generation(Agrawal et al., 2023). The pre-
generation approach enhances the input context
with high-quality, semantically relevant passages
to help the model produce accurate outputs. The
post-generation approach, on the other hand, vali-
dates and corrects factual accuracy using verifica-
tion processes(Sansford et al., 2024).

Knowledge graphs (KGs) support both ap-
proaches by providing structured knowledge. In
pre-generation, KGs can insert accurate facts into
the input context. In post-generation, KGs help
validate generated content for factual correctness.

However, post-generation faces challenges such
as converting text to graph representations and the
computational costs of iterative LLM calls (Cabot
et al., 2023). Additionally, post-generation correc-
tions may introduce further errors, and the itera-
tive calls to LLMs increase computational costs,
making large-scale applications impractical. Given
these limitations, our work focuses on the pre-
generation approach, aiming to reduce hallucina-
tions by using KGs to provide more accurate and
reliable context before generation, improving both
factual accuracy and efficiency in RAG systems.

3.2 Problem formalization - Building a RAG
system with minimal hallucinations

In Retrieval-Augmented Generation (RAG) sys-
tems, hallucinations occur when the language
model generates content that is factually incorrect
or unsupported by retrieved documents. Given a
set of documents D = {d1, d2, . . . , dn} and a set
of user queries Q = {q1, q2, . . . , qm}, the goal is
to design a RAG system that minimizes the gener-
ation of hallucinated responses while maximizing
response accuracy.

We define a RAG system as a function RAG :
Q→ A, where each query q ∈ Q is mapped to an
answer a ∈ A based on retrieved context C ⊆ D.
Let C(q) = {c1, c2, . . . , ck} represent the set of
retrieved documents for a query q, where C(q) ⊆
D. Es et al. (2023) define the below evaluation
measures:

1. Hallucination Score, H(a), for each answer
a ∈ A as the proportion of information in a
that is unsupported by C(q):

H(a) =
Unsupported Information in a

Total Information in a

2. Faithfulness Score, F (a), for each answer
a ∈ A as the proportion of information in
a that is directly supported by the retrieved
context C(q):

F (a) =
Supported Information in a

Total Information in a
= 1−H(a)

Objective We aim to minimize the overall hal-
lucination rate H(A) across all answers A =
{a1, a2, . . . , am} while ensuring that each a ∈ A
remains relevant to the query q. This objective can
be formulated as:

min
RAG

H(A) =
1

m

m∑

i=1

H(ai)

subject to:

F (ai) ≥ δ ∀ai ∈ A

where δ is a predefined faithfulness threshold
(e.g., 0.9), ensuring that each generated answer is
primarily supported by the retrieved context C(q).

4 Proposal: Graph-based RAG System

We propose to enhance the classical RAG system
with knowledge from graph databases instead of
raw texts. To this aim, we build a traditional text
RAG system to serve as a baseline, as well as two
graph-flavored variants, which we call Facts and
KG-RAG in the following.
Reproducibility Code for both text and facts RAG
are available on Github1.

4.1 Text RAG
Our text baseline is very classical, we set up
a standard RAG pipeline. We relied on the
unstructured2 Python package to extract non-
overlapping chunks of approximately 500 charac-
ters and we used the all-MiniLM-L6-v2 model
provided by sentence-transformers3 (Reimers
and Gurevych, 2019) to embed them. We stored the
chunks and their embedding inside a chromadb4

database.

4.2 Facts RAG
Our second system rely on LLM to automatically
extract entities and relations from raw text, then

1https://github.com/gcaillaut/
financebench-graph-rag

2https://github.com/Unstructured-IO/
unstructured

3https://github.com/UKPLab/
sentence-transformers

4https://github.com/chroma-core/chroma
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Figure 2: Facts extraction process. We first extract
entities from a raw and potentially noisy text. Then
we build triples using the text and the extracted entities.
Finally, we generate textual description of the triples,
which we call facts.

convert these triples into short sentences. We call
these sentences facts. Hence, this system is very
similar to our baseline, the difference being an ad-
ditional step to convert relevant chunks into facts.
Practically speaking, we first ask an LLM to extract
all entities inside a relevant chunk, then we ask for
the relations between them. Finally, the LLM gen-
erate triples and a short sentence (the fact) describ-
ing the triple in natural language inside a JSON
array. The resulting sentences are much more con-
cise, contain less noise, and are more direct. We
then provide these generated facts to the LLM in-
stead of the raw chunks. The complete prompt we
used to generate these facts is given in Appendix C
and the overall process is described in Figure 2.

The purpose of this system is to validate the rel-
evance of LLM-based knowledge graph extraction
methods (Zhang and Soh, 2024; Carta et al., 2023)
in the context of RAG. While we pointed out the
limitations of these approaches in the previous sec-
tion, we also believe that extracting graphs from
text is a powerful summarization and noise filter-
ing tool, as it removes all uninformative tokens
and the facts generated are very clear and easy to
understand.

4.3 KG-RAG (Knowledge Graph based RAG)

Our third system is based on a graph representation
of the document to be queried. The document is

processed to extract a knowledge graph, given a pre-
defined graph schema. Then, text chunks and their
embeddings are stored inside a node and linked to
the entities they contain. More specifically, we rely
on the llm-graph-builder tool from Neo4j5 to
extract a knowledge graph from pdf files. The tool
can also automatically generate a graph schema
from raw text, so we use the questions in our dataset
(more details in Section 5) to extract a schema suit-
ing our target task.

Finally, we use the user’s query to find the most
relevant chunks using traditional embedding simi-
larity, then we explore the graph using the chunks
as seed to retrieve potentially useful entities and
relations, in the form of triples. We limit the explo-
ration of the graph to the direct neighbors of the
relevant chunks, but more sophisticated exploration
strategies are possible, such as re-ranking docu-
ments using graph-based algorithms like PageR-
ank.

4.4 Hybrid RAG

The last system we experimented with aims to
leverage explicit and implicit relationships from
the knowledge graph using an hybrid architecture.
As illustrated in Figure 3.

We introduce a GraphRAG framework that
combines explicit (symbolic) and implicit (sub-
symbolic) retrieval methods to enhance retrieval-
augmented generation (RAG) systems. Our ap-
proach allows for adaptive retrieval based on the na-
ture of the user question, with Explicit RAG using
text-to-Cypher translation for structured queries,
while Implicit RAG leverages vector similarity to
find k-nearest neighbours. The system employs an
LLM to determine the optimal retrieval method, uti-
lizing the retrieved context to generate precise an-
swers, offering a versatile solution for better knowl-
edge retrieval tasks.

Our approach to HybridRAG is tested with a
comparative analysis of two regulatory documents:
the Digital Operational Resilience Act (DORA)
from the European Union and the Federal Financial
Institutions Examination Council (FFIEC) guide-
lines from the United States.

The HybridRAG system is designed to optimize
the retrieval and contradiction identification pro-
cess in large regulatory documents using a knowl-
edge graph-based KNN clustering approach. Tra-
ditional Retrieval-Augmented Generation (RAG)

5https://llm-graph-builder.neo4jlabs.com/
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Figure 3: Hybrid Graph RAG: Explicit vs. Implicit
RAG, e.g Symbolic vs. Sub-Symbolic Retrieval. The
framework offers two retrieval strategies based on the
nature of the user’s query.

methods often suffer from high token consumption
due to the computationally expensive Cartesian
product of document segments. To overcome this,
HybridRAG uses KNN clustering to group simi-
lar document segments, reducing computational
costs. The system captures the context for each
document node, generates text embeddings, and
clusters nodes based on cosine similarity.

5 Experiments and evaluation

We conducted experiments to address the following
two research questions on datasets related to the
financial domain.

1. RQ1: Does a graph-based RAG system re-
duce hallucinations compared to a classical
RAG system for a question-answering task?

2. RQ2: How efficient is Graph/Hybrid RAG in
terms of token consumption for retrieval tasks
involving document comparison?

5.1 Datasets in Finance Domain
The datasets used in this study include Fi-
nanceBench (Islam et al., 2023), a benchmark
for evaluating AI systems in finance, which con-
tains various financial documents like regulatory
reports and financial statements. Additionally, we
utilized DORA (Digital Operational Resilience
Act)(European Parliament and Council of the Eu-
ropean Union, 2022), a European Union regulation
on managing IT risks in the financial sector, and
the FFIEC IT Handbook(Federal Financial Insti-
tutions Examination Council, 2019), which offers

guidelines for IT management in U.S. financial in-
stitutions. These data sets were used to assess the
performance of the proposed methods in financial
document retrieval and contradiction detection.

5.2 Metrics

We will use the metrics of Deep Eval (AI, 2024) to
evaluate RQ1. Since we are not interested in assess-
ing the overall RAG quality or the retrieval mecha-
nism, but rather the probability to hallucinate, we
focused on the two hallucinations measures avail-
able in DeepEval. The Faithfulness Metric first
uses an LLM to extract all claims made in the ac-
tual_output, before using the same LLM to classify
whether each claim is truthful based on the facts
presented in the retrieval_context. The Halluci-
nation metric employs an LLM to evaluate each
context in a set of contexts, determining whether
there are any contradictions with the actual_output.

The metrics are calculated according to the fol-
lowing equation:

Faithfulness =
Number of Truthful Claims

Total Number of Claims
(1)

the Number of Truthful Claims represents the
count of accurate statements, and the Total Number
of Claims represents the overall number of state-
ments evaluated.

Hallucination =
NB of Contradicted Contexts

Total Number of Contexts
(2)

5.3 RQ1: Hallucinations of RAG systems
(FactRAG & KG-RAG)

Recent studies (Kamalloo et al., 2023; Tan et al.,
2023) on LLM show that they are good at answer-
ing mainstream, general domain-related questions,
without needing any kind of knowledge injection,
such as RAG. Hence, we chose to experiment on
the Financebench (Islam et al., 2023) dataset, as
it contains questions on financial documents from
the filings of public companies6, which are less
likely to have been seen and memorized by cur-
rently available LLM. The dataset is comprised of
150 questions and 84 documents. For each pair
(question, document) in this dataset, we retrieved
the 8 most relevant chunks and asked an LLM to

6https://www.sec.gov/search-filings
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faithfulness ↑ hallucination ↓

Llama 3.2 3B
Text RAG 0.844 0.704
Facts RAG 0.937 0.679
KG-RAG 0.790 0.660

Llama 3.1 8B
Text RAG 0.843 0.659
Facts RAG 0.891 0.658
KG-RAG 0.890 0.532

Qwen 2.5 32B
Text RAG 0.954 0.395
Facts RAG 0.970 0.594
KG-RAG 0.963 0.407

Table 1: DeepEval scores with GPT4o as a judge.

generate an answer. Finally, we relied on Deep-
Eval7 to perform the evaluation. DeepEval relies
on a strong LLM to automatically score RAG sys-
tems, we chose GPT-4o since it has been reported
as being one of the most accurate. In order to eval-
uate the propensity to hallucinate, we report in the
following the faithfulness measures from DeepE-
val, as it quantifies the consistency of the gener-
ated answer given contextual information. This is a
good proxy for hallucination because we expect the
LLM’s response to be aligned with the retrieved
chunks, and it is also the recommended way to mea-
sure hallucination. We also report the hallucination
measure from DeepEval for completeness.

For each RAG system, we experimented with
three LLMs: Llama 3.2 3B, Llama 3.1 8B (Dubey
et al., 2024) and Qwen 2.5 32B (Team, 2024). We
used these same LLM to generate facts during the
facts-RAG experiments.

The results of the DeepEval evaluation are
shown in Table 1. We observe an increase in faith-
fulness when switching from text to graph-based
RAG systems, except with the smaller model. This
observation fits our prior hypothesis stating that
providing contextual information from KG can re-
duce hallucinations.

We also observe that the gap between Text and
Facts RAG is higher with smaller, and supposedly
less powerful, models. Since this measure quanti-
fies the consistency between the retrieved context
and the generated answer, we conclude that smaller
models have some difficulties to filter out noise in

7https://github.com/confident-ai/deepeval
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Figure 4: Total number of input tokens consumed dur-
ing our experiments, for all 150 questions. Facts RAG
uses dense and effective prompts while producing less
hallucinations than Text RAG.

raw texts, thus providing cleaner facts help them
generating more appropriate answers; while larger
models have better reasoning capabilities and can
filter irrelevant information on their own.

5.3.1 Ablation studies
We conducted ablation studies to measure the in-
dividual contribution of text and graph contexts.
These experiments focus on our KG-RAG system,
we removed either the text chunks or the triples
extracted from the KG and we computed the faith-
fulness and hallucination measures from DeepEval
. The results, shown in Table 2, shows that the
faithfulness is always better when providing only
triples from our KG.

We also observe that the relative differences be-
tween all setups (hybrid, no text and no graph) tend
to decrease the larger the model is. This validates
our previous assumption, large models can filter out
irrelevant and useless information by themselves.
However, we argue that letting the model do the fil-
tering is suboptimal as it requires to provide every
bits of available information to the LLM. We al-
ready showed that graph-based RAG improves the
overall response by reducing hallucinations, and
we show in the following that it also has the bene-
fit of being a lot more efficient in terms of tokens
consumption as illustrated in Figure 4.

5.4 RQ2: HybridRAG optimizing tokens
usage in Graph-based RAG Systems

This experiment examines GraphRAG’s capabil-
ity to detect contradictions in regulatory language
across jurisdictions, specifically between DORA
(EU) and FFIEC (US) documents, demonstrating
its efficiency in large-scale regulatory analysis.

Using a knowledge-graph-based KNN cluster-
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faithfulness ↑ hallucination ↓

Llama 3.2 3B
text + graph 0.790 0.660
graph only 0.940 0.665
text only 0.807 0.690

Llama 3.1 8B
text + graph 0.890 0.532
graph only 0.965 0.576
text only 0.866 0.592

Qwen 2.5 32B
text + graph 0.963 0.407
graph only 0.988 0.619
text only 0.945 0.365

Table 2: DeepEval scores with GPT4o as a judge when
removing text or graph contexts.

ing approach, HybridRAG minimizes token con-
sumption by streamlining contradiction detection.
Unlike traditional RAG methods that rely on costly
pairwise comparisons (O(n2) complexity), Hy-
bridRAG clusters document segments with KNN
(O(k · n) complexity), - where n being the num-
ber of chunks - reducing retrieval to targeted, con-
textually relevant nodes. This approach involves
embedding each document node, clustering similar
segments, and generating optimized LLM prompts
for contradiction detection.

With this clustering method (k = 10), API calls
decreased from almost 2 million (1 975 944 with
the classical approach) to just 2 690, achieving a
734-fold reduction in token consumption. Eight po-
tential contradictions were identified, underscoring
GraphRAG’s effectiveness in enhancing computa-
tional efficiency and cost-effectiveness in regula-
tory document retrieval.

6 Perspectives and Future Work

6.1 Limitations

This work focuses exclusively on the English lan-
guage, and as such, we cannot confidently general-
ize our findings to other languages, even those with
high resource availability.

Several limitations are associated with the Deep-
Eval toolkit used for evaluating our RAG systems.
Generally speaking, the use of LLM as a judge
offers numerous advantages, such as ease of use
and the ability to enable reproducible evaluations
through hard-coded prompts and standard evalu-

ation pipeline, it also presents some drawbacks.
Firstly, it requires a lot of computing power and
is impractical for large-scale evaluations due to
high latency and potentially prohibitive costs. For
instance, evaluating a single system (only 150 ques-
tions) necessitates processing approximately 4 mil-
lion input tokens and 0.4 million output tokens.
Secondly, the prompts utilized are often hard-coded
in English, which renders the toolkit unsuitable for
applications in other languages.

Lastly, even if we showed that introducing
knowledge from KG enhances RAG systems, it
is important to point out the difficulties of building
and querying a graph that suits our target task. The
underlying schema of existing KG might not fit the
target use case, hence the KG often has to be ei-
ther hand-crafted (extremely costly and difficult to
maintain) or automatically generated (error-prone
and compute-intensive). For instance, Mihinduku-
lasooriya et al. (2023) show that precision and re-
call are very low even when the set of relation’s
types to extract is restricted.

6.2 Future work
Future work could extend graph-based RAG ap-
proaches to handle diverse datasets, including vi-
sually rich and multilingual documents, by inte-
grating visual embeddings from Vision-Language
Models (Faysse et al., 2024) and heterogeneous
data (Sun et al., 2024). Fine-tuning language mod-
els with domain-specific knowledge could further
reduce hallucination rates. Additionally, incor-
porating multimodal capabilities (e.g., text and
images) could enhance contextual understanding
and retrieval precision. Improving the scalability
of knowledge graph construction and integrating
external sources like ontologies could further re-
duce hallucinations (Agrawal et al., 2023). Explor-
ing hybrid models combining symbolic reasoning
with deep learning (Ambrogio et al., 2023) and ad-
vanced post-generation verification (Sansford et al.,
2024) could also improve RAG systems.

6.3 Architecture design to industrialize RAG
systems in production

We propose a design to smoothly deploy RAG sys-
tems in production. The architecture schema in the
appendix of Figure 6 demonstrates how modular
design can ensure scalability and system reliability.

The RAG logic is composed of most of the app
that the user interacts with containing the RAG
logic, the models hub (green) which is deployed on
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its infrastructure mostly based on GPU, the Data
Module (red) which consists of the Data ingestion
layer of RAG, the Evaluation Module (light blue)
which is responsible of all functional evaluations of
the RAG and lastly one of the most important parts,
the monitoring and the logging (orange), which en-
sure that our system works well, help with debug-
ging, audits, updates, and gives the entire vision
of the RAG. This setup allows each component
to operate independently and cohesively, support-
ing efficient scaling, robust functionality, and clear
traceability.

6.4 Lessons learned and best practices for
deploying RAG systems in Production

We share some recommendations based on lessons
learned in large-scale banking infrastructure.

To maintain efficient operation, several best prac-
tices must be followed when deploying RAG sys-
tems in production. First, a modular design should
be implemented to allow easier maintenance, up-
dates, and scalability (Zhang et al., 2021). Caching
frequently accessed queries can help reduce latency
and improve performance. Additionally, using an
LLM gateway enables switching between models
based on task requirements.

Real-time monitoring and logging mechanisms
should track system health, latency, error rates, and
performance metrics, enabling prompt issue res-
olution and continuous improvement (Smith and
Roberts, 2022). Appropriate evaluation metrics
should asses system accuracy and reliability, with
faithfulness as a key metric to ensure the generated
responses align with the intended outputs (Kumar
et al., 2023). Finally, security measures such as in-
put and output guardrails are necessary to maintain
ethical boundaries (Patel and Gupta, 2024). Regu-
lar backups and audit logging ensure data integrity,
traceability, and reproducibility across the system.

7 Conclusion

This study demonstrates three significant contri-
butions of graph-based approaches in enhancing
classical RAG systems:

1. Reduction of Hallucinations: The use of
graph-based structures, such as Fact-RAG,
significantly reduces hallucinations by link-
ing contextually relevant information. This
leads to more precise and complete responses,
with experimental evaluations showing a 6%

reduction in hallucinations while using 80%
fewer tokens compared to text-only RAG.

2. Efficiency and Cost Savings: For document
comparison use-case, GraphRAG improves
efficiency by filtering out irrelevant data, re-
ducing computational costs, and enhancing
scalability. Using semantic clustering, it re-
duces the complexity of detecting contradic-
tions from O(n2) to O(k · n) where n is the
number of chunks and nodes in the graph.

3. Enhanced Explainability and Traceability:
HybridRAG, using knowledge graphs, allows
users to trace responses back to specific data
sources and relationships as shown in Figure
5 (an example of the output of the demo using
NEO4J). This transparency is crucial for sec-
tors like finance and banking, enabling better
governance, easier audits, and a more thor-
ough understanding of the reasoning behind
answers.

This efficiency demonstrates that graph-based
retrieval methods can make large-scale LLM appli-
cations more cost-effective and accessible. How-
ever, their effectiveness depends on factors such
as the dataset, knowledge graph modeling, and
the specific retrieval task, highlighting that graph-
based approaches are not always inherently more
efficient.
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A Reproducibility of HybridRAG demo

Reproducibility The code source for HybridRAG
demo is open-sourced 10 to facilitate adoption.

A.1 Use-Case for Efficient Contradiction
Detection in Regulatory Documents

The problem focuses on efficiently detecting contra-
dictions between document segments, such as those
from regulatory documents (DORA and FFIEC),
using a Retrieval-Augmented Generation (RAG)
system. The approach consists of two key steps:

1. KNN Clustering: A semantic similarity re-
lation is used to group similar document seg-
ments based on cosine similarity, reducing the
complexity from O(n2) to O(k · n) by con-
sidering only the top k-nearest neighbours for
each node, where n is the number of chunks
(nodes in the graph).

10https://github.com/halftermeyer/
dora-ffiec-hybrid-rag-neo4j

63



2. Contradiction Detection: An LLM is used to
detect contradictions between pairs of similar
segments, reducing the number of LLM calls
and the associated token consumption.

A.2 Approach: HybridRAG for Optimized
Retrieval and Contradiction
Identification

Traditional RAG systems often suffer from high
token consumption due to the computationally ex-
pensive Cartesian product of document segments.
HybridRAG addresses this by utilizing a stream-
lined pipeline that applies KNN clustering :

1. Optimization of Retrieval and Contradic-
tion Identification: HybridRAG enhances
efficiency in retrieving and identifying contra-
dictions within large regulatory documents.

2. Knowledge-Graph-Based KNN Clustering:
It utilizes KNN clustering with knowledge
graph embeddings to group similar document
segments, reducing computational costs.

3. Context Capture: Context for each docu-
ment node is captured, incorporating its con-
tent, structural relationships, and citations.

4. Embedding Creation: Text embeddings are
generated by concatenating contextual infor-
mation, encapsulating the semantic essence of
document segments.

5. KNN Clustering: Cosine similarity is ap-
plied to cluster document segments, creating
labeled edges (e.g., SIMILAR_TO) for efficient
comparison.

6. Contradiction Discovery: LLM prompts are
used to assess contradictions between docu-
ment segments, yielding a simple "Yes" or
"No" answer.

B Architectural Design for RAG in
Production

We propose a design schema in Figure 6 that
demonstrates how modular design can ensure scal-
ability and system reliability.

C Facts extraction on finance data (Islam
et al., 2023)

The prompt used to extract a knowledge graph from
a text is given below. The first assistant answer is

forced, the others are generated by the LLM and
are not reported here.

## User
Please read the text below, I will ask
you questions afterwards.

{{ INPUT_TEXT }}

## Assistant
I have read the text, I am ready to answer
your questions.

## User
The end goal is to build a knowledge
graph from the text. We will do it
step by step. First, extract all named
entities (persons, organizations, events,
...), dates (times and epochs too) and
locations. Put them in a list.

## Assistant
<list of entities>

## User
Perfect, now generate a list of triples
(subject, predicate, object). Subjects
and objects must come from the list
of entities you extracted beforehand.
Predicates are very short text (up to
3 words) describing the relation between
subjects and objects. Try to extract only
*interesting* triples, do not report too
obvious triples.

## Assistant
<list of triples>

## User
Great, now format the triples as a JSON
list. Add a "text" attribute containing
a sentence in natural language fully
describing the fact held by the triple.
Just write the JSON content.

## Assistant
<JSON content>
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Figure 5: HybridRAG: Example of potential contradiction between articles in DORA and FFIEC

Figure 6: Architectural Design and Components to Deploy RAG in Production
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Abstract

Large Language Models (LLMs) excel at gen-
erating fluent text but struggle with context
sensitivity, logical reasoning, and personaliza-
tion without extensive fine-tuning. This paper
presents a logical modulator: an adaptable com-
munication layer between Knowledge Graphs
(KGs) and LLMs as a way to address these lim-
itations. Unlike direct KG-LLM integrations,
our modulator is domain-agnostic and incorpo-
rates logical dependencies and commonsense
reasoning to achieve contextual personalization.
By enhancing KG interaction, this method will
produce linguistically coherent and logically
sound outputs, increasing interpretability and
reliability in generative AI.

1 Introduction

As LLMs gain prominence in generating natural
language, surveys point out that their reasoning
capabilities become increasingly apparent (Chang
et al., 2024). When dealing with critical applica-
tions like healthcare (Nazi and Peng, 2024), trust
is vital and well-informed decisions need to be
guaranteed. Hence, the gaps related to the black
box nature of LLMs highlight the need for models
that cannot only generate human-like text but also
make informed, context-aware decisions. Unlike
existing methods that attempt to incorporate KGs
as external sources (Sui and Hooi, 2024), our ap-
proach centers on a bidirectional mediator that en-
ables a dynamic and adaptable exchange between
the LLM and KG. The KG serves as the primary
source for grounded, factual, and explainable infor-
mation, while the LLM provides the necessary flu-
ency and cohesiveness to translate structured data
into human-readable language. This framework en-
sures that responses are not only accurate but also
explainable, aligning well with applications where
trust and transparency are essential.

2 Related Work

LLMs rely on statistical patterns learned through
extensive amounts of data, rather than true logi-
cal reasoning. This can lead to errors in context-
sensitive tasks (Zhou et al., 2024). This limita-
tion is especially problematic in sensitive fields
like medicine and law (Wang et al., 2023), where
accuracy and logical consistency are crucial. Ap-
proaches following retrieval-augmented generation
(RAG) (Lewis et al., 2020) revolutionize factual ac-
curacy by incorporating external knowledge. How-
ever, they primarily rely on surface-level match-
ing and embedding similarities, lacking the depth
needed for complex reasoning (Mao et al., 2021).
Graph-based enhancements of this approach, such
as GraphRAG (Peng et al., 2024), offer structured
knowledge integration through KGs but reduce KG
data to vector embeddings, which strips away im-
portant logical dependencies. Some studies explore
utilizing KGs as a prompt mechanism to support
graph-based reasoning tasks in LLMs. (Zhang,
2023; Huang et al., 2024). They find that embed-
ding graph data into LLM prompts can improve
reasoning capabilities, while there is also a key lim-
itation: The integration often fails to retain the full
relational structure of the KG, leading to limitations
in multi-step reasoning and contextual consistency.

3 A Framework for KG-Enhanced LLM
Reasoning

To enhance reasoning and personalization in LLMs,
we propose a domain-independent end-to-end
framework centered around an independent me-
diator as shown in Figure 1. This mediator can
be perceived as a way to perform the retrieval part
of RAG. The main difference in our architecture
from traditional methods is that it better structures
the reasoning behind the retrieval through a de-
compositional querying mechanism. This way a
more optimal use of structured knowledge can be
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Figure 1: Modular Architecture for our proposed end-
end framework for KG-enhanced LLM reasoning.

achieved. The mediator breaks down user inputs
into KG queries, interprets KG responses for the
LLM by extracting the needed nodes and relation-
ships (which can be not very prose friendly), and
handles the back and forth communication between
separate LLM and KG modules to achieve compre-
hensive answers. By coordinating these interac-
tions, the mediator enables the KG to act as the pri-
mary source of reasoning, while the LLM provides
fluent language generation. This design offers a
versatile solution that addresses gaps in LLM rea-
soning and adapts seamlessly to various domains.
Separating the modules in our systems and con-
necting the dots through our proposed modulator
organizes the communication between these mod-
ules, making the pipeline more flexible and inter-
pretable. With this approach, we aim at aligning
outputs with user-specific data from the KG, pre-
serving logical depth that simpler KG-LLM inte-
grations lack. Moreover, integrating symbolic AI
with LLMs supports explainability, a key issue in
AI (Longo et al., 2024), by allowing responses to
be traced back to specific KG elements and rules,
enhancing transparency and fostering trust. Fur-
thermore, we aim for organizing the pipeline by
separating the modules and facilitating the commu-
nication between them. Unlike retrieval-based ap-
proaches (e.g., GraphRAG, LightRAG (Guo et al.,
2024)), which reduce KG data to vector represen-

tations, our framework directly interacts with the
KGs through a dynamic reasoning layer. This hy-
brid approach combines the structured knowledge
of KGs with the linguistic capabilities of LLMs,
improving factual accuracy, logical depth, and per-
sonalization.

4 Conclusion and Future Work

By introducing a decompositional reasoning layer
to interface with KGs, this research offers a novel
approach to improve reasoning in LLMs. Our
method targets responses that are contextually
grounded and linguistically fluent by giving LLMs
fine-grained access to structures of KGs. Applica-
tions where sophisticated reasoning is crucial are
particularly promising for this hybrid architecture.
KG-enhanced models that adjust to particular user
demands while retaining logical accuracy could
be extremely helpful in domains including career
development, healthcare planning, and legal advis-
ing. These domains offer use-cases to be explored
when conducting empirical studies with our ap-
proach. Moreover, since knowledge needs to be
updated regularly in practical applications, future
work includes investigating how KG completion
with LLMs can benefit from our proposed reason-
ing mediator. This way, the bidirectional property
of the mediator is leveraged to dynamically enrich
the KG with new, contextually relevant knowledge,
without the need to manually modify it.

Limitations and Ethical Considerations

Integrating KGs with LLMs, despite its advantages,
faces key challenges. Real-time KG querying can
introduce latency, especially when responses re-
quire multiple reasoning steps or extensive entity
retrieval. Accurate entity linking is also complex
due to ambiguity, synonyms, and domain-specific
terms, requiring advanced learning for reliable map-
ping, as misalignment can reduce response rele-
vance. Scalability poses further issues, as expand-
ing the KG for broader knowledge increases stor-
age and rule complexity. Additionally, evaluat-
ing reasoning quality, particularly for personalized
tasks, often demands expert review, limiting scal-
ability. Overcoming these obstacles is crucial for
a robust, high-performance KG-augmented LLM
system. Ensuring transparency in KG construction,
regular bias mitigation, and accountability in how
responses are generated will be essential to address
ethical concerns.
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Abstract

Generative AI has simplified information ac-
cess by enabling natural language-driven in-
teractions between users and automated sys-
tems. In particular, Question Answering (QA)
has emerged as a key application of AI, facili-
tating efficient access to complex information
through dialogue systems and virtual assistants.
The Large Language Models (LLMs) combined
with Knowledge Graphs (KGs) have further
enhanced QA systems, allowing them to not
only correctly interpret natural language but
also retrieve precise answers from structured
data sources such as Wikidata and DBpedia.
However, enabling LLMs to generate machine-
readable SPARQL queries from natural lan-
guage questions (NLQs) remains challenging,
particularly for complex questions.

In this study, we present experiments in fine-
tuning LLMs for the task of NLQ-to-SPARQL
transformation. We rely on benchmark datasets
for training and testing the fine-tuned models,
generating queries directly from questions writ-
ten in English (without further processing of
the input or output). By conducting an ana-
lytical study, we examine the effectiveness of
each model, as well as the limitations associ-
ated with using fine-tuned LLMs to generate
SPARQL.

1 Introduction

In recent years, the interaction between users and
automated systems across various domains has be-
come the center of Artificial Intelligence (AI) re-
search. One of the main challenges in this inter-
action is translating human-written questions into
machine-readable formats. This is specifically true
for knowledge graphs represented in RDF format.
Those contain vast amounts of information on a
wide variety of topics, but would generally require
a user to write a query in the SPARQL language
to use them to answer specific questions. Such
queries provide accurate answers from reliable and

structured data sources. However, they are accessi-
ble only to people with SPARQL knowledge and
the time to formulate such queries. This is a sig-
nificant barrier to the accessibility of information
embedded in KGs.

This study explores how LLMs, when fine-tuned,
can generate accurate SPARQL queries from NLQ,
allowing direct human-friendly interaction with
KGs such as DBpedia1 and Wikidata2, thus giv-
ing access to complicated systems to a wider range
of people, including non-specialists. By investi-
gating a range of LLMs, we aim to identify the
conditions under which these models produce ac-
curate SPARQL queries, while highlighting their
limitations. These limitations include syntactic er-
rors in generated queries, hallucinated identifiers,
etc. Our objective is to better understand the ca-
pabilities of different LLMs in this task, and to
identify potential areas of improvement for future
research.

The remainder of this paper is organized as fol-
lows. In Section 2, we present related works on
QA and LLM development. Then, in Section 3,
we present our analytic study and the fine-tuning
process of various Meta’s LLaMA models to get
a new model specialized on transforming NLQ
to SPARQL queries, called Llama-KGQA (Llama
based model for Knowledge Graph Question An-
swering). Section 4 presents our results, comparing
the fine-tuned models with each other, as well as
with other existing QA systems. Finally, Section 5
summarizes our findings and outlines future per-
spectives to enhance Llama-KGQA’s capabilities.

2 Related Works

Question-answering is a branch of Natural Lan-
guage Processing (NLP) that aims to automatically
respond to user questions asked in natural language.

1https://www.dbpedia.org/
2https://www.wikidata.org/
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The goal of QA systems is to provide precise and
contextually relevant answers to a wide range of
questions by accessing various data sources, such
as unstructured text (see, for example, (Nassiri
and Akhloufi, 2023)), structured databases (see,
for example, (Khanam and Subbareddy, 2017)), or
knowledge graphs (see, for example, (Pramanik
et al., 2024)). QA systems have become central to
many applications, including search engines, intel-
ligent virtual assistants (e.g. Siri, Alexa, etc.), and
customer support chatbots.

QA systems are typically classified according
to the type of data on which they rely to an-
swer questions: text-based QA systems (TBQA)
and knowledge-based QA systems (KBQA). The
TBQA systems extract answers from large col-
lections of unstructured or semi-structured text,
such as documents, web pages, or research papers.
They involve tasks such as document retrieval and
answer extraction, relying heavily on NLP tech-
niques such as information retrieval (see, for ex-
ample, (Arbaaeen and Shah, 2020; Abbasiantaeb
and Momtazi, 2021; Otegi et al., 2022), text clas-
sification (see, for example, (Fields et al., 2024)),
and semantic matching (see, for example, (Zhang
et al., 2019)). KBQA systems utilize structured
data sources, such as knowledge bases or knowl-
edge graphs, where information is stored in a highly
organized manner (such as RDF data). These sys-
tems interpret user queries given as NLQ and trans-
late them into formal queries (e.g. SPARQL for
RDF-based knowledge graphs) that can directly
retrieve factual answers from the knowledge base.

In this paper, we focus specifically on KBQA
systems that rely on knowledge graphs. Those
systems are discussed later in this section.

Large Language Models (LLMs) have signifi-
cantly advanced the field of QA by enhancing the
ability of AI assistance and chatbots to comprehend
and generate natural language responses. LLMs
such as GPT (Achiam et al., 2023), BERT (Devlin
et al., 2019), Mixtral (Jiang et al., 2024), and Meta-
Llama Models (AI@Meta, 2024) are pre-trained on
massive datasets that include diverse text sources
such as books, web pages, and scientific articles.
This extensive pre-training enables LLMs to in-
ternalize vast amounts of general knowledge and
linguistic structures, allowing them to respond to
open-domain questions across various fields with
minimal task-specific training. Unlike traditional
QA systems that rely on explicit query-to-answer

mappings or structured knowledge bases, LLMs
can generate nuanced, context-aware responses by
leveraging their pre-trained language understand-
ing models.

However, LLMs also face challenges, such as
actual generated errors or “hallucination” (Min
et al., 2023), where the models generate plausible
but incorrect answers due to their reliance on
learned patterns rather than factual verification.
Despite these challenges, LLM-based QA systems
are at the forefront of NLP, offering robust
capabilities for applications in virtual assistants,
search engines, and more.

Among the research questions that have arisen
in recent years is the possibility for LLMs to
efficiently generate machine-readable queries
from questions written in natural language to
interrogate information sources. For knowledge
graphs, this involves transforming a question posed
(for example) in English into a valid SPARQL
queries to a specified KG (Khorashadizadeh et al.,
2024). This could significantly improve linking
human language with machine-readable data
stores, such as KGs. This capability is crucial
because KGs, such as DBpedia and Wikidata, store
vast amounts of structured information that can be
accessed through SPARQL queries. By enabling
LLMs to automatically convert user questions into
SPARQL, QA systems can provide accurate and
rich responses by tapping directly into these vast
repositories. Furthermore, automating this process
would reduce the need for defining the query
manually, which will improve the accessibility to
complex data for non-expert users.

This line of research contributes to the devel-
opment of Knowledge Graph Question Answer-
ing (KGQA) systems, which utilize KG to retrieve
answers from structured data repositories. To as-
sess the performance of these systems, a KGQA
leaderboard has been established, as presented by
the authors in (Perevalov et al., 2022c), which
allows the evaluation of KGQA systems using
benchmark datasets. In this context, several bench-
marking frameworks have been proposed, such as
GERBIL QA (Usbeck et al., 2019), which is de-
signed to evaluate KGQA systems in a compre-
hensive way. Among the widely used datasets for
KGQA system evaluation, the Question Answer-
ing over Linked Data (QALD) dataset series is
considered a standard. In particular, the QALD
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challenge3 was launched to compare KGQA sys-
tems on various benchmarks, including QALD-9-
plus (Perevalov et al., 2022b) and QALD-10 (Us-
beck et al., 2023). Furthermore, detailed evalua-
tions tracking the progress of KGQA systems are
available through the QALD leaderboard4, provid-
ing valuable insights into the evolution of these
systems.

3 The analytic study

In this analytic study, we fine-tuned several LLMs,
all based on the Llama architecture, including
Llama-3-8b5, Llama-2-7b6, Llama-3-70b7, and
Mixtral-8x7b8, to evaluate their performance in
generating SPARQL queries from NLQ and com-
pare the results with existing similar systems re-
ported in the KGQA leaderboard9 and in (Perevalov
et al., 2022b). The reason to choose Llama-based
LLMs is both their availability, so they could be
downloaded and fine-tuned locally, and their rela-
tive high performance in NLP related tasks.

The models were trained and tested against two
KGs, DBpedia and Wikidata, providing a compre-
hensive comparison of their capabilities. The latest
KGQA benchmark datasets for these KGs are pro-
vided in QALD-9-plus10 and QALD-1011 respec-
tively.

The proposed method fine-tunes an LLM such
as Meta-Llama and MistralAI-Mixtral to transform
NLQ into SPARQL queries. The objective is to
create a robust NLQ-to-SPARQL transformation
system capable of querying complex KGs accu-
rately with minimal human input.

Since we, at this stage, only focus on questions
in English, the first step involves filtering training
datasets that pair NLQs with their corresponding
SPARQL queries, retaining only English-language
entries. These datasets, including benchmarks like

3https://www.nliwod.org/challenge
4https://github.com/KGQA/leaderboard?tab=

readme-ov-file
5https://huggingface.co/meta-llama/

Meta-Llama-3-8B-Instruct
6https://huggingface.co/togethercomputer/

Llama-2-7B-32K-Instruct
7https://huggingface.co/meta-llama/

Meta-Llama-3-70B-Instruct
8https://huggingface.co/mistralai/

Mixtral-8x7B-Instruct-v0.1
9https://github.com/KGQA/leaderboard?tab=

readme-ov-file
10https://github.com/KGQA/QALD_9_plus/tree/

main/data
11https://github.com/KGQA/QALD-10

QALD-9-plus and QALD-10, offer rich annota-
tions for NLQ-to-SPARQL transformations.

Since these LLMs are pre-trained on general
language modeling tasks, the next step involves
fine-tuning them on the filtered NLQ-SPARQL
dataset. The fine-tuning follows a sequence-to-
sequence learning paradigm, where the model takes
a natural language question as input and generates
the corresponding SPARQL query as output. The
model learns to align the structure of the NLQ
with the syntax of SPARQL queries. To enhance
the efficiency of the fine-tuning process, we used
the Parameter-Efficient Fine-Tuning12 (PEFT) li-
brary, along with the LoRA technique (Hu et al.,
2021), which adapts pre-trained models by fine-
tuning only an additional subset of parameters (the
adapters). In this LoRA configuration, we have
set the lower-rank matrices of the adapter at 16
to save memory and reduce computational cost by
training fewer parameters. We also have set the
scaling factor for the low-rank matrices at 32 to
scale up the impact of adapters to help the model
learn the task-specific adjustments more effectively.
In order to prevent overfitting, the dropout prob-
ability for LoRA layers is set at 0.05. We have
also specified the task of the model fine-tuning as
“causal language modeling”, so the model is trained
to predict the next word in a sequence. In this
configuration, LoRA is enabled only to adapt at-
tention mechanisms (“k_proj”, “q_proj”, “v_proj”,
and “o_proj”) and feed-forward layers (“up_proj”
and “down_proj”). By selectively adapting only
these modules, we focus on the parts of the model
most relevant to language generation while preserv-
ing computational efficiency. In this configuration,
no additional bias terms are learned in the adapters,
i.e. the bias is set at “none”. This simplifies the
structure of the model.

This approach reduces memory consumption
and accelerates the fine-tuning process without
compromising on model performance.

Once trained, the model performance is validated
on a testing set of NLQ-SPARQL pairs. During
the testing phase, an execution correctness cycle
is applied over 10 attempts, i.e. if a generated
SPARQL query contains syntactic errors, the same
NLQ is re-processed to generate a different query,
thereby improving the chances of generating a valid
query.

12https://huggingface.co/docs/peft/main/en/
index
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4 Experiment

All codes were written in Python using the Hug-
gingface Transformer library13. The models were
trained and tested on two NVIDIA RTX A6000
GPUs with 48 GB GDDR6 memory. During the
fine-tuning and the testing phases, we used DB-
pedia and Wikidata QALD datasets, which both
include a training set and a testing set. DBpedia
benchmark version is provided in QALD-9-plus
as a set of question-query pairs. The question is
formulated in many languages, including English
that we have used, and the query is the SPARQL
translation of the question. QALD-9-plus DBpedia
training set contains 408 question-query pairs, and
its testing set contains 150 pairs. Wikidata is pro-
vided in QALD-10 with a training set that contains
412 pairs and a testing set that contains 395 pairs.

The experimental results, including detailed out-
puts for various models tested on QALD-9-plus
and QALD-10 datasets, are available in the Llama-
KGQA GitHub repository14.

Comparison between LLMs
In this comparison, we evaluate the performance of
four LLMs: Llama-3-8b, Llama-2-7b, Mixtral-7b,
and Llama-3-70b on the latest DBpedia benchmark
version provided in the QALD-9-plus dataset; this
benchmark is designed for question-answering over
DBpedia KG. We used GERBIL QA metrics15 to
evaluate the accuracy of the models. In this evalu-
ation, we used the micro as well as the macro ver-
sion of precision (Equation 1), recall (Equation 2),
and F-measure (Equation 3), in addition of QALD-
specific Macro F1 metric. In all of those metrics,
the items considered are the individual responses
to SPARQL queries. In other words, the best re-
sult is obtained when the generated query gives
exactly the same set of answers as the one in the
gold standard.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-measure = 2 · Precision×Recall

Precision+Recall
(3)

13https://huggingface.co/docs/transformers/
14https://github.com/ThamerMECHARNIA/

Llama-KGQA.
15https://github.com/dice-group/gerbil/wiki/

Precision,-Recall-and-F1-measure

For micro measures, they are calculated based
on the overall counts of true positives (TP), false
negatives (FN), and false positives (FP) across all
queries, without considering the individual predic-
tions for each query. However, the macro measures
are calculated for each query, and returns the aver-
age.

The additional Macro F1 QALD metric, which
is usually used to compare the models in QALD
challenge, is calculated differently. The Macro F1
QALD metric builds upon Equation 3, incorporat-
ing additional semantic information as described
in (Usbeck et al., 2019); if the golden answer is not
empty but the generated query retrieves an empty
answer, it is assumed that the model cannot gener-
ate a correct query. So, the precision of this query
is set to 1 and its recall and F-measure are set to 0.

We fine-tuned each model with different epoch
settings: 2, 4, 6, 8, and 10. During the testing phase,
we made 5 runs per epoch upon the same testing
set, i.e. we asked the model to generate SPARQL
queries from the same NLQs in the testing set 5
times. Therefore, we performed 25 runs and used
the GERBIL QA tool16 version 0.2.5 to evaluate
the results of each run and calculate the average
Macro F1 QALD of the 5 runs per epoch. Table 1
shows that Llama-3-8b with 6 epochs achieves the
highest Macro F1 score, demonstrating superior
performance in generating SPARQL queries for
DBpedia KG. In most other epoch settings (4, 8,
and 10), Llama-3-70b has obtained slightly better
results than Llama-3-8b. Although this can sim-
ply be attributed to Llama-3-70b being a larger
model, which enables better handling of intricate
language structures and knowledge graph queries,
the differences in performance between the two
remain small. Llama-2-7b and Mixtral-7b show
competitive performance, although with slightly
lower Macro F1 scores than Llama-3-8b, indicating
an effective yet more limited capacity for precision
and recall in this task. This comparison highlights
the trade-off between model size and performance,
particularly in knowledge-intensive tasks such as
KGQA. As a result, we chose Llama-3-8b with 6
epochs as the base model to fine-tune for Llama-
KGQA.

Table 2 shows the detailed results obtained by the
representative run (the run with the closest Macro
F1 QALD to the average Macro F1 QALD) of the
Llama-KGQA model that obtained the best results

16https://gerbil-qa.aksw.org/gerbil/
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Epoch Llama-3-8b Llama-2-7b Mixtral-7b Llama-3-70b

Average Macro F1 QALD

2 52.89% 49.78% 50.64% 52.57%
4 56.34% 55.66% 54.73% 57.75%
6 60.65% 57.19% 54.88% 58.78%
8 57.64% 55.95% 55.64% 59.86%

10 57.79% 58.03% 57.78% 58.38%

Table 1: Average Macro F1 QALD of Llama-3-8b, Llama-2-7b, Mixtral-7b, and Llama-3-70b on QALD-9-plus
DBpedia dataset.

(fine-tuned Llama-3-8b with 6 epochs), as trained
and tested on the DBpedia KG. These results are
published in GERBIL QA17.

The experiments indicated that, on average, the
model generated SPARQL queries with syntactic
errors for approximately 3 questions in this run
(the one shown in Table 2) out of 150 questions
asked. This represents a 2% error rate. How-
ever, prompting the model with the same question
again led to successful error correction, yielding
a valid SPARQL query within just one additional
attempt. This suggests that such errors are rare
cases where the model randomly failed to generate
a valid SPARQL query, since additional attempts
consistently led to correct queries. This iterative
querying approach therefore offers a practical solu-
tion to improving the accuracy of the LLM-based
NLQ-to-SPARQL models.

Comparison with other QA models
We have also compared our results to existing
KGQA systems using DBpedia and Wikidata as
KG. The results of these models are performed us-
ing QALD-9-plus dataset benchmarks for DBpedia
and QALD-10 for Wikidata. All results are re-
ported in the QALD leaderboard. The training and
the testing sets are both using English questions
only for all systems.

Table 3 compares the results obtained by Llama-
KGQA, with QAnswer (Diefenbach et al., 2020),
DeepPavlov (Burtsev et al., 2018), and Platy-
pus (Pellissier Tanon et al., 2018) using the QALD-
9-plus DBpedia dataset. The results of these mod-
els are reported in (Perevalov et al., 2022a). We
notice that our fine-tuned Llama-3-8b significantly
outperforms the top systems of the leaderboard, ob-
taining 60.68% vs 30.39% of QAnswer. This is
a surprising result considering the relatively low
effort required to fine-tune Llama3-8b to achieve it.
However, this is probably explained by the fact that

17https://gerbil-qa.aksw.org/gerbil/experiment?
id=202410290002

DBpedia is a well-known resource derived from
Wikipedia and using human-readable identifiers. In
other words, Llama3-8b likely already had a strong
ability to relate to the content of DBpedia from
its pre-training, on which the fine-tuning process
could rely.

Table 4 compares Llama-KGQA that is fine-
tuned this time with QALD-1018, with the results
reported in (Usbeck et al., 2023) that were obtained
by (Borroto et al., 2022), QAnswer (Shivashankar
et al., 2022), (Baramiia et al., 2022), Gavrilev et
al.19. This comparison uses the Wikidata dataset
in QALD-10. This table shows that Llama-KGQA
struggled with Wikidata and only obtained 13.36%
Macro F1 QALD. This low performance refers
to Wikidata queries in the dataset that use entity
identifiers instead of named entities (property and
individual names). In other words, our model not
having access to or a way to actually query the KG,
it could not accurately generate SPARQL queries
with valid identifiers in DBpedia. In fact, it would
often hallucinate them.

Runtime analysis

This study aims to assess not only accuracy but
also the trade-offs in computational efficiency and
scalability. To evaluate the efficiency of model
fine-tuning, we tracked the training process with
Weights & Biases20 in order to generate the run
history and summary. The performance metrics of
the model are shown in Figures 1, 2, and 3.

Figure 1 shows the training loss graph of the
model with the run that fine-tunes Llama-KGQA.
Since the model is configured for causal language
model task, it is fine-tuned with the cross-entropy
loss function. The X-axis of this graph represents
the training steps, each step on this axis reflects a
single update to the model parameters during train-

18https://gerbil-qa.aksw.org/gerbil/experiment?
id=202410290003

19Their findings are reported in (Usbeck et al., 2023)
20https://wandb.ai/site
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Micro
F1

Micro
Precision

Micro
Recall

Macro
F1

Macro
Precision

Macro
Recall

Macro
F1 QALD

Llama-KGQA 18.97% 20.00% 18.04% 45.34% 45.82% 46.93% 60.68%

Table 2: Detailed GERBIL QA results for Llama-KGQA.

Model / System Year Macro Precision Macro Recall Macro F1 QALD
Llama-KGQA 2024 45.82% 46.93% 60.68%

QAnswer 2022 - - 30.39%
DeepPavlov 2022 - - 12.40%

Platypus 2022 - - 15.03%

Table 3: Comparison between Llama-KGQA and QAnswer, DeepPavlov, and Platypus using QALD-9-plus
DBpedia benchmarking dataset.

Figure 1: The training loss of Llama-KGQA on QALD-
9-plus and QALD-10.

ing, so as the number of steps increases, the model
iteratively learns from the training data. The Loss
is used in this graph to measure the performance of
the model at each step of the training process, i.e. it
quantifies the difference between the model’s pre-
dictions and the actual target values in the training
dataset. This graph contains 2 curves for training
the model on QALD-9-plus and QALD-10. We
notice that in both cases, both curves show a con-
sistent downward trend in losses, suggesting that
the model is learning effectively.

Figure 2 shows the evaluation loss (test loss)
graph of the same model as Figure 1 (Llama-
KGQA) to evaluate it. The evaluation loss is cal-
culated on a separate validation dataset (the testing
set) in order to indicate how well the model gen-
eralizes to new inputs and to help in monitoring
overfitting. We notice in the QALD-10 curve that
the loss starts to increase while the training loss in
Figure 1 continues to decrease, which means that
the model struggles to generate good predictions
for the testing data. This overfitting is explained
by the fact that the model cannot find the correct
entity identifiers from Wikidata because it has no

Figure 2: The evaluation loss of Llama-KGQA on
QALD-9-plus and QALD-10.

context that incorporates the KG.
The curves of QALD-9-plus in both graphs

(training loss and evaluation loss) have a smaller
loss than the curves of QALD-10, and the mar-
gin becomes bigger in the evaluation loss, which
refers to better performance in both training and
-especially- testing. This is explained by the model
struggling with Wikidata identifiers used in the
queries in the training set and the testing set.

Figure 3 shows the utilization of the GPU pro-
cess and its allocated memory graphs during model
fine-tuning. We notice that the memory allocation
and the GPU utilization were higher when fine-
tuning the model using QALD-9-plus compared
to QALD-10. It also takes longer for the model
to train with QALD-9-plus (1171s) compared to
QALD-10 (1005s).

Limitations of the Approach
While our approach demonstrates promising re-
sults in generating SPARQL queries from NLQ,
two main limitations warrant discussion. The first
limitation is that the performance of our fine-tuned
model, Llama-KGQA, is notably lower for Wiki-
data KG, where content is not transparent due to
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Model / System Year Macro Precision Macro Recall Macro F1 QALD
(Borroto et al., 2022) 2022 45.38% 45.74% 59.47%

QAnswer 2022 50.68% 52.38% 57.76%
(Shivashankar et al., 2022) 2022 32.06% 33.12% 49.09%

(Baramiia et al., 2022) 2022 42.89% 42.72% 42.81%
Gavrilev et al. 2022 14.21% 14.00% 19.48%
Llama-KGQA 2024 7.46% 7.43% 13.36%

Table 4: Comparison between Llama-KGQA and (Borroto et al., 2022), QAnswer, (Shivashankar et al., 2022),
(Baramiia et al., 2022), Gavrilev et al. using QALD-10 Wikidata benchmarking dataset.

Figure 3: A: GPU process utilization during Llama-KGQA fine-tuning. B: GPU process allocated memory during
Llama-KGQA fine-tuning.

the use of non-human-readable identifiers. This
limitation underscores the difficulty of interpreting
the KG data that was not explicitly available dur-
ing training. For example, to generate a SPARQL
query for the following question in the QALD-10
testing set: “After whom is the Riemannian ge-
ometry named?”, Llama-KGQA has generated the
following SPARQL query:

SELECT DISTINCT?uri WHERE {
<http ://www.wikidata.org/

entity/Q160544 > <http ://
www.wikidata.org/prop/
direct/P31 >?uri.

}

While the golden query is:

...
PREFIX wd: <http ://www.wikidata.

org/entity/>
PREFIX wdt: <http ://www.wikidata.

org/prop/direct/>
SELECT DISTINCT ?result WHERE {

wd:Q761383 wdt:P138 ?result.
}

This example highlights the issue of the model
using incorrect identifiers.

Another limitation is that the model occasionally
generates SPARQL queries that use incorrect URIs

for properties or individuals, leading to inaccurate
or invalid results. This issue arises because the
model has no access to the target KG, and therefore
may not correctly represent the mappings between
natural language expressions and the corresponding
KG entities. For example, to answer the following
question in the QALD-9-plus testing set: “What is
the profession of Frank Herbert?”, Llama-KGQA
has generated the following SPARQL query:

PREFIX dbo: <http :// dbpedia.org/
ontology/>

PREFIX res: <http :// dbpedia.org/
resource/>

SELECT DISTINCT?uri WHERE {
res:Frank_Herbert dbo:

profession?uri
}

While the golden query is:

PREFIX dbpedia2: <http :// dbpedia.
org/property/>

PREFIX res: <http :// dbpedia.org/
resource/>

SELECT DISTINCT ?string WHERE {
res:Frank_Herbert dbpedia2:

occupation ?string
}

This example demonstrates the model’s difficulty
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in identifying the correct property name used in this
KG.

Such limitations highlight the need for improved
mechanisms to ensure the correct association be-
tween natural language input and the appropriate
identifiers or URIs in the target knowledge graph.

5 Conclusion

This study conducted an analysis that compared
several Llama-based LLMs for their ability to gen-
erate SPARQL queries from NLQ. Our results
reveal that Llama-KGQA, the fine-tuned version
of Llama-3-8b, has obtained a higher accuracy
than larger models like Llama-3-70b, while re-
maining efficient and scalable for real-world ap-
plications. The fine-tuning process using QALD
question-answering datasets has shown potential
in enhancing the overall effectiveness and adapt-
ability of our new QA model, Llama-KGQA, mark-
ing a significant step forward in the application
of LLMs within knowledge-driven AI. However,
we also showed that for a KG (namely wikidata)
which content would not have been transparent to
the LLM from its pretraining, especially due to
non-human-readable identifiers, the performance
Llama-KGQA is dramatically lower.

Future work should therefore further explore in-
corporating the KG context into LLM fine-tuning,
which could improve the model’s ability to interpret
and generate more accurate queries. This perspec-
tive will target the challenges of using fine-tuned
LLMs in efficient QA systems powered by knowl-
edge graphs, in particular by enabling the LLM
to make use of information about relevant content
in the knowledge graph during generation of the
SPARQL query.
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Abstract

Knowledge graphs (KGs) represent structured
real-world information composed by triplets
of head entity, relation, and tail entity. These
graphs can be constructed automatically from
text or manually curated. However, regard-
less of the construction method, KGs often suf-
fer from misinformation, incompleteness, and
noise, which hinder their reliability and util-
ity. This study addresses the challenge of noisy
KGs, where incorrect or misaligned entities and
relations degrade graph quality. Leveraging re-
cent advancements in large language models
(LLMs) with strong capabilities across diverse
tasks, we explore their potential to detect and
refine noise in KGs. Specifically, we propose a
novel method, LLM_sim, to enhance the detec-
tion and refinement of noisy triples. Our results
confirm the effectiveness of this approach in
elevating KG quality in noisy environments.
Additionally, we apply our proposed method to
Knowledge Graph Completion (KGC), a down-
stream KG task that aims to predict missing
links and improve graph completeness. Tra-
ditional KGC methods assume that KGs are
noise-free, which is unrealistic in practical sce-
narios. Our experiments analyze the impact
of varying noise levels on KGC performance,
revealing that LLMs can mitigate noise by iden-
tifying and refining incorrect entries, thus en-
hancing KG quality.

1 Introduction

Knowledge Graphs (KGs) provide a structured
framework for representing interconnected data,
widely used in research fields such as natural lan-
guage processing and recommendation systems.
However, automated KG construction often intro-
duces noise, leading to inaccurate or misaligned
triples that degrade the quality and reliability of
downstream tasks like Knowledge Graph Comple-
tion (KGC) (Xie et al., 2018). Addressing noise in
KGs is crucial for maintaining KGC performance,

as this task relies on accurate triples to infer miss-
ing links and enhance KG completeness.

Large Language Models (LLMs), which demon-
strate impressive capabilities across a variety of
tasks like question answering (Lála et al., 2023),
summarization (Jin et al., 2024), and translation
(Huang et al., 2023), offer a promising solution for
KG noise detection. By encoding extensive fac-
tual and contextual knowledge, LLMs can evaluate
the coherence of entity-relationship pairs based
on learned semantic patterns (Petroni et al., 2019).
Leveraging LMs for noise detection presents a po-
tential advancement over traditional noise detec-
tion methods, which typically depend on KG em-
bedding models or rule-based techniques that may
not effectively handle nuanced or context-specific
noise.

In this study, we propose a novel approach,
LLM_sim, which uses a LLM, Llama31, to detect
and refine erroneous triples in noisy KGs. Our
LLM_sim, generates candidate triples for detected
noise and refines them using contextual similarity,
matching them to existing KG triples. Our experi-
ments show that LLM_sim is particularly effective
under high noise conditions, underscoring the value
of LLMs for KG refinement.

The contributions of this paper are as follows:

• We introduce LLM_sim, which leverages
LLMs to detect and refine noise in KGs, im-
proving downstream KG task performance.

• We validate our approach through experiments
on WN18RR2 and FB15k-2373.

• We systematically evaluate the impact of
various noise levels on KGC, showing our

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B

2https://huggingface.co/datasets/VLyb/WN18RR
3https://huggingface.co/datasets/VLyb/

FB15k-237
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method’s robustness under different noise con-
ditions.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work on noise
detection and KGC methods. Section 3 explains
our proposed method LLM_sim for detecting and
refining noisy KGs. Section 4 describes the experi-
mental setup, including datasets and model config-
urations. Section 5 presents experimental results,
highlighting the effectiveness of our approach. Fi-
nally, Section 6 concludes the paper and outlines
future research directions.

2 Related Work

In noise detection research, various approaches
have been proposed to demonstrate the effective-
ness of their models in detecting noise. These meth-
ods can be broadly categorized into three types:
traditional KG embedding models, noise detection
based on pre-trained language models(PLMs), and
unsupervised rule-based noise detection models.

Knowledge Graph Embedding (KGE) models
assess the validity of triples by estimating confi-
dence scores for embedded representations, based
on the principle that correct triples approximate
the vector equation h+ r ≈ t, where h and t rep-
resent the head and tail entities, and r represents
the relationship. Notable models in this category
include TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), DistMult (Yang et al., 2014), and
ComplEx (Trouillon et al., 2016). However, noise
in training data can degrade embedding quality, as
KG embeddings rely on clean data for optimal per-
formance. While KGE models can determine a
triple’s validity, their performance remains limited
due to their sensitivity to noisy data.

PLMs, such as GPT-2 XL4, approach noise detec-
tion by assessing the semantic relationship between
text and entities within a triple. They evaluate
correctness by measuring the model’s confidence
or probability score for a given triple. However,
these models often struggle with domain-specific
or temporal knowledge, as they depend on the con-
texts present in their training data. Additionally,
these models primarily rely on associative reason-
ing rather than causal inference, making it challeng-
ing to detect implicit noise in complex knowledge
reasoning scenarios. Consequently, such models of-
ten have limited capacity for inferring non-explicit

4https://huggingface.co/openai-community/
gpt2-xl

relationships and may not effectively detect noise
in superficially similar triples.

Unsupervised rule-based noise detection models
use predefined rules or constraints to detect anoma-
lies or noise in triples. For example, (Hong et al.,
2021) introduced a rule-based triple confidence
framework for noise detection in KGE, assigning
confidence scores to improve noise filtering and
enhance the robustness and accuracy of embedding
models. Probabilistic models have also been ap-
plied to noisy data (Yi and Wu, 2019; Garg et al.,
2021), using statistical methods to quantify uncer-
tainty and model noise, facilitating robust error
correction and data refinement, thereby enhanc-
ing the quality, usability, and reliability of KGs.
However, these models often struggle to intuitively
grasp the semantic information of triples and lack
a solid foundation of real facts and logical coher-
ence. Although they are not dependent on labeled
data, rule-based approaches lose efficacy in dy-
namic KGs or frequently updated datasets, as fixed
rules may become outdated, leading to inefficiency
and reduced scalability.

3 Methodology

To effectively detect noise in KGs, which refers to
erroneous triples, we propose a novel framework
to detect and refine noisy triples in large-scale KGs
using LLMs. Our approach consists of two key
components: noise detection and noise refinement.
Figure 1 illustrates the overall process of noise de-
tection and refinement in KGs. The LLM detection
model first identifies noise within the KG, which
is detected as noise data, filtered KG in the figure,
which is then passed to the LLM refinement for cor-
rection. The refined KG along with detected correct
triplets, filtered KG, forms a new dataset, renewed
KG, which is subsequently utilized for KGC tasks.
The refinement process begins with the LLM gener-
ating five candidate triples for a given noisy triple.
The candidates are divided into head-relation and
relation-tail pairs, which are then matched against
the noisy KG. The most suitable candidate is se-
lected based on similarity calculations and used as
the final refinement triple.

3.1 Noise Detection

Noise detection plays a crucial role in our proposed
method. In this paper, we propose a novel ap-
proach that leverages the generative capabilities
of LLMs to detect noisy triples. We call this pro-
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Figure 1: Overview of LLM_sim. The red circles represent noisy triples, the blue circles indicate correct triples, and
the green circles represent stochastic triples, which may be either correct or noisy.

cess LLM_sim detection. To enhance the LLM’s
evaluation with relevant contextual information, we
employ a fuzzy search (Fu et al., 2016) to search
similar triplets within the original KG, which is pro-
vided as ADDITIONAL_CONTEXT. This context
includes triples that are structurally and semanti-
cally similar to the target triple ⟨E1, R,E2⟩, aid-
ing the LLM in evaluating factual accuracy. Our
method involves the following five steps.

Query Vector Construction: We encode the tar-
get triple as a query vector q that captures its se-
mantic information.

q = f(realization(E1, R,E2)), (1)

where f(·) is a function based on the Sentence
Transformer model all-MiniLM-L6-v25, mapping
each entity or relation to its corresponding embed-
ding. The function realization() is used to create
a simple sentence from a triple into a statement like
“E1 R E2".

Fuzzy Search in KG: We use the query vector q
to perform a fuzzy search over the KG and identify
triples with high semantic similarity, calculated
using cosine similarity:

5https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

cosine(q, t) =
q · t

||q|| · ||t|| , (2)

where t represents embedding vectors of other
triples in the KG, as computed by Equation 1.

Selection of Similar Triples: To avoid confusion
from multiple contexts, we select the single triple
⟨E1′, R′, E2′⟩ most similar to q based on similar-
ity scores computed by Equation 2. This selected
triple serves as ADDITIONAL CONTEXT to sup-
port the LLM in assessing the validity of the target
triple.

Prompt Design: A structured prompt leverages
the ADDITIONAL CONTEXT to assist the LLM in
accurately evaluating the relationship between enti-
ties. The prompt is crafted to ensure the LLM can
process and reason through the query effectively.
The prompt format is as follows:

Based on all your knowledge and the given
context ⟨ADDITIONAL_CONTEXT⟩. De-
termine if the ⟨E1⟩ has a ⟨R⟩ with the ⟨E2⟩.
Answer the question by reasoning step-by-
step, and provide your final answer within
’yes’ or ’no’.
Answer in this format:
Final Answer: [yes/no]
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Filtering of Erroneous Triplets : By system-
atically applying the prompt and interpreting the
LLMs’ responses, we effectively filter out false
triples, thereby enhancing the overall quality and
reliability of the data.

3.2 Noise Refinement

The bottom half of Figure 1 illustrates the work-
flow of refining noisy triples in KGs using LLMs.
Starting with a set of noisy triples, despite provid-
ing context, directly correcting erroneous triples
remains challenging for LLMs. In order to balance
model efficiency and prediction accuracy, the LLM
generates five candidate triples for each noisy in-
stance. These candidate triples are grouped based
on two distinct pairings: Head-relation and relation-
Tail. The KG is then utilized to compute similarity
scores between the candidate triples and the ref-
erence triples in the KG. Finally, the candidate
triple with the highest similarity score is selected
as the optimal refinement for the noisy triple, en-
suring improved data quality in the KG. This ap-
proach achieves higher accuracy compared to di-
rectly using the LLM to correct noisy triples (as
demonstrated in our experiments). In summary,
this methodology comprises three key steps: candi-
date generation, grouping strategy, and similarity
calculation.

3.2.1 Candidate Generation

To address the noisy triples, we designed a prompt
that allows the LLM to automatically refine the
mismatches. We designed the prompt as follows:

The entities in the given triple do not
correctly correspond to each other.
Based on your knowledge, please rectify
the triple and generate five correct triples,
ensuring that the original ⟨R⟩ remains
unchanged. Each refined triple should
include either ⟨E1⟩ or ⟨E2⟩ from the
given triple.
Please output the refined triples in the
following format:
1. (entity, relation, entity)
2. (entity, relation, entity)
3. (entity, relation, entity)
4. (entity, relation, entity)
5. (entity, relation, entity)

In this prompt, we first need to clearly indicate
that the given triples are not correct. In generating

refined triples, the task requires the model to retain
the original relation while modifying one of the
entities. This constraint significantly reduces
the likelihood of the LLM producing fabricated
or irrelevant information. By grounding the
refinement process in the given structure—fixing
either the head or tail entity and preserving the
original relation, we aim to enhance the factual
accuracy of the output and maintain consistency
with the KGs.

Each triple consists of a head entity (E1), a rela-
tion (r), and a tail entity (E2). In cases where the
entities and relations within a triple are misaligned,
it is often unclear whether the mismatch originates
from the E1 or the E2. To tackle this uncertainty,
our prompt instructs the model to fix one entity and
the relation while predicting the other entity. This
approach mitigates the risk of LLM hallucination
and improves both the prediction accuracy and the
efficiency of the model by systematically narrow-
ing down the sources of error within the triples.

3.2.2 Grouping Strategy
To address the uncertainty about whether noise
originates from the head or tail entity in a triple, we
employ a grouping strategy that enhances the accu-
racy of LLM predictions for both entities. Specifi-
cally, we organize generated candidate triples into
two grouping criteria: (1) the "Head-relation" pair
(E1, r), where triples that share the same head en-
tity and relation and (2) the "relation-Tail" pair
(r, E2), where those that share the same relation
and tail entity. This grouping process helps to miti-
gate noise introduced by entity permutations, ensur-
ing that semantically similar triples are compared
effectively.

After grouping, we search for similar combina-
tions in the reference dataset, which is the original
KG in this study. Instead of searching for the com-
plete triple (E1, r, E2), we search separately for
either the (E1, r) or the (r, E2) in the reference
dataset.

Without grouping, directly matching entire
triples (E1, r, E2) may lead to incorrect alignments
with unrelated KG entries. Grouping enables a fo-
cused comparison on each entity’s role, ensuring
accuracy and reducing noise.

3.2.3 Similarity Calculation
Both the original noisy triple and its generated can-
didates are embedded into a dense vector space by
converting them into textual representations. For
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any given triple (E1, r, E2), we construct its text
representation by concatenating the head entity, re-
lation, and tail entity into a single sequence:

T = “E1 r E2”. (3)

To represent these triples in a vector space, we
employ the Sentence Transformer model, specifi-
cally the all-MiniLM-L6-v2 variant. The model
encodes each triple’s textual representation into a
dense vector:

vT = SentenceTransformer(T ). (4)

Thus, for the sequence T of the given triple, the
corresponding embedding vector vT is obtained by
encoding its textual representation.

After generating embeddings for candidate and
reference triples, we measure their similarity using
cosine similarity. For a pair of triples (T1, T2), the
cosine similarity between their embeddings vT1

and vT2 is calculated as:

cos_sim(vT1 ,vT2) =
vT1 · vT2

∥vT1∥∥vT2∥
. (5)

For each group, we select the candidate triple
with the highest cosine similarity to any reference
triple, a triple in KG. A higher cosine similarity
indicates that the textual representations of the two
triples are more semantically consistent, suggest-
ing that the entity relationships they express are
more closely aligned. Let Gj represent a candidate
triple and Fi represent a reference triple from the
dataset. We aim to find the candidate triple G∗

j that
maximizes the cosine similarity to any reference
triple within the group:

G∗
j = arg max

Gj∈gen

(
max
Fi∈ref

cos_sim(vj ,vi)

)
, (6)

• gen represents the set for all generated candi-
date triples.

• ref represents the set for all reference triples
in the dataset.

Despite the presence of noise in the dataset, the
majority of triples remain accurate. Leveraging
this fact, our method addresses noise effectively
by calculating cosine similarity between generated
triples and reference triples. This similarity-based
approach allows us to isolate noise from correct

data with high accuracy, thereby enhancing the
dataset’s reliability.

This three-step refinement process aims to ef-
fectively enhance the quality of KGs by correcting
noisy triples.

4 Experiment

This section describes our experimental setup, in-
cluding the dataset description, noise construction
methods, and evaluation metrics.

4.1 Dataset

We conduct experiments on two datasets, WN18RR
and FB15k-237, derived from WordNet (Miller,
1995) and Freebase (Bollacker et al., 2008), respec-
tively, that are widely used for KGC benchmarks.
Both datasets contain structured triples represent-
ing relationships between entities, making them
suitable for evaluating KGC. Table 1 summarizes
key statistics for each dataset.

Dataset WN18RR FB15k-237
Entities 40,943 14,541
Relationships 11 237
Train Triples 86,835 272,115
Validation Triples 3,034 17,535
Test Triples 3,134 20,466

Table 1: WN18RR and FB15k-237 Datasets

4.2 Noisy KG Dataset Construction

To simulate real-world conditions where KGs are
often noisy, we introduce controlled levels of noise
into WN18RR and FB15k-237 by injecting erro-
neous triples. Specifically, we vary the noise ratio
at 10%, 20%, and 30%, based on reported noise
levels in real-world datasets (Hasan and Chu, 2022;
Song et al., 2022). Noise is introduced by replacing
one of the entities in a triple as:

G′ = (h′, r, t) or (h, r, t′), (7)

where h′ and t′ represent randomly chosen entities
that do not relate to t or h in the context of the
original relation r.

4.3 Baseline Methods

We evaluate our proposed method, LLM_sim,
against several baselines categorized as follows:
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Pre-trained Language Models: GPT-2 XL,
which detects noise based on general language
understanding. A prompt used for noise detection:

Is ⟨Entity1⟩ a ⟨relationship⟩ of ⟨Entity2⟩?
Answer the question within yes and no:

Note that this prompt differs from the one used for
Llama3, as described in subsection 3.1. Initially,
we used identical prompts for both GPT-2 XL
and Llama3. When Llama3 received prompts
designed for GPT-2 XL, the lack of specificity
led to irrelevant responses. Similarly, GPT-2
XL struggled with prompts tailored for Llama3,
resulting in inadequate answers. Consequently,
we developed distinct prompts for each model to
better suit their capabilities and improve output
quality.

KGE Models: We include TransE, RotatE, and
ExpressivE (Pavlović and Sallinger, 2022) as base-
line models, where the validity of triples is assessed
using embeddings from these models. For TransE,
for instance, noise detection is performed by veri-
fying if the norm of ||(h + r − t)|| is less than a
threshold γ. After testing various values from 0 to
1, we chose γ = 0.1 for TransE and RotatE, and
γ = 0.2 for ExpressivE for each score function,
respectively.

Rule-based Methods: For WN18RR, we iden-
tify noisy triples by assessing the consistency of
the part-of-speech tags for the head and tail enti-
ties in each relation. In FB15k-237, however, the
larger variety of relations makes it impractical to
design rules for each one. Instead, we first group
triples by relation, apply Named Entity Recogni-
tion (NER) within each group, and filter out entities
whose types deviate from the dominant entity types,
identifying them as noise.

Noise Detection Methods: For robust noise de-
tection, we adopt CAGED (Zhang et al., 2022) as
our baseline, a state-of-the-art approach renowned
for its effectiveness in identifying and filtering
noisy relations. CAGED leverages advanced entity
and relation embedding techniques to detect incon-
sistencies within KGs, providing high precision
in distinguishing authentic triples from erroneous
data.

4.4 Evaluation Metric
4.4.1 Noise Detection
The performance of noise detection is measured
using accuracy, precision, recall, and F1 score.

4.4.2 Noise Refinement
We evaluated the refinement process using two pri-
mary methods due to the lack of gold-standard
labels, which made direct evaluation challenging.
First, we assessed whether the generated triples
were present in the original noise-free dataset, refer-
ring to this metric as "correctness." This approach
offers an initial indication of refinement accuracy
by checking alignment with verified data. Sec-
ond, we performed a manual evaluation, where
100 randomly selected samples were inspected to
qualitatively assess refinement accuracy.

4.4.3 KGC task
We use KGC metrics to evaluate the impact of noise
detection and noise refinement on the downstream
task, selecting the ExpressiveE model to perform
KGC on the datasets. Evaluation metrics include
Mean Reciprocal Rank (MRR) and Hit@k (Hit@1,
Hit@3, and Hit@10), measuring model effective-
ness in predicting missing links. Specifically, MRR
represents the average of the reciprocal ranks of
the correct entities, highlighting how close the pre-
dictions are to the top rank. Hit@k calculates the
proportion of correct entities ranked within the top
k predictions, reflecting the model’s ability to rank
true triples highly.

We compare the following KGC models using
different KGs to systematically compare different
noise detection and refinement methods:

KGC: Original KG with injected noise at varying
ratios, without any filtering or refinement.

KGC + CAGED: KG filtered using the CAGED
model, which removes noisy triples based on
domain-specific criteria.

KGC + GPT2: KG filtered using GPT-2 XL,
which removes detected noisy triples.

KGC + LLM_sim: without context KG filtered
using Llama3. Noisy triples are not refined but just
removed. The additional context is not used for
noise detection.

KGC + LLM_sim: detection Similar to KGC
+ LLM_sim detection without context, but it in-
cludes context-based filtering, with neighboring
triples providing additional information for noise
detection.

KGC + LLM_sim: Final refined KG consisting
of both filtered and refined triples.
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Noise Level Model
WN18RR FB15k-237

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10% Noise

TransE 0.473 0.896 0.468 0.615 0.411 0.884 0.398 0.549
RotatE 0.511 0.900 0.509 0.650 0.464 0.895 0.459 0.606
ExpressivE 0.603 0.902 0.585 0.709 0.527 0.890 0.521 0.660
GPT-2 XL 0.823 0.562 0.468 0.511 0.787 0.899 0.860 0.879
Rule-base 0.672 0.900 0.715 0.797 0.681 1.000 0.645 0.784
CAGED 0.853 0.963 0.856 0.906 0.839 0.850 0.857 0.900
LLM_sim without context 0.868 0.980 0.871 0.922 0.806 0.969 0.810 0.883
LLM_sim detection 0.911 0.934 0.969 0.951 0.806 0.962 0.816 0.883

20% Noise

TransE 0.335 0.708 0.305 0.426 0.353 0.724 0.325 0.449
RotatE 0.423 0.774 0.407 0.533 0.438 0.782 0.425 0.551
ExpressivE 0.593 0.810 0.558 0.661 0.501 0.811 0.501 0.619
GPT-2 XL 0.786 0.811 0.960 0.829 0.775 0.809 0.945 0.872
Rule-base 0.634 0.811 0.715 0.760 0.719 1.000 0.653 0.790
CAGED 0.804 0.933 0.814 0.869 0.712 0.694 0.927 0.794
LLM_sim without context 0.869 0.960 0.875 0.915 0.798 0.935 0.807 0.866
LLM_sim detection 0.883 0.894 0.971 0.930 0.784 0.918 0.806 0.858

30% Noise

TransE 0.310 0.553 0.278 0.370 0.322 0.568 0.291 0.385
RotatE 0.377 0.630 0.352 0.452 0.403 0.655 0.383 0.483
ExpressivE 0.504 0.728 0.511 0.600 0.486 0.720 0.483 0.578
GPT-2 XL 0.712 0.730 0.960 0.829 0.717 0.737 0.953 0.831
Rule-base 0.600 0.730 0.716 0.723 0.749 1.000 0.656 0.792
CAGED 0.734 0.895 0.703 0.788 0.732 0.702 0.892 0.785
LLM_sim without context 0.865 0.934 0.875 0.904 0.798 0.903 0.809 0.854
LLM_sim detection 0.853 0.850 0.970 0.906 0.777 0.842 0.855 0.848

Table 2: Comparison of various noise detection models on WN18RR and FB15k-237 with different levels of noise
(10%, 20%, 30%).

WN18RR FB15k-237

correctness
Human evaluation

(randomly select 100 refined triple) correctness
Human evaluation

(randomly select 100 refined triple)

10% noise 82.37% 89.00% 87.24% 92.00%
20% noise 80.75% 87.00% 85.27% 88.00%
30% noise 78.46% 82.00% 83.46% 83.00%

Table 3: Results of noise refinement

5 Results and Analysis

In this section, we present the results of our ex-
periments and conduct a thorough analysis to gain
insight into the outcomes.

5.1 Result of Noise Detection

We analyze the performance of LLM_sim in
noise detection for both WN18RR and FB15k-237
datasets, using prior work as a baseline for compar-
ison.

Tables 2 shows the results for WN18RR and
FB15k-237 with 10%, 20%, and 30% noise, re-
spectively.

Our experimental results reveal several key in-
sights. First, both the PLMs and the noise detection
models outperform KGE models. KGE models per-
form notably worse in noise detection, likely due to

their inability to account for noise during training.

Second, the PLM, represented by GPT-2 XL,
performs well in recall but underperforms in other
metrics. This could be due to the high proportion of
positive samples in the datasets, making it difficult
for the model to distinguish between noisy and
non-noisy samples.

Third, the performance of LLM_sim differs be-
tween WN18RR and FB15k-237. In WN18RR,
LLM_sim detection surpasses LLM_sim without
context, at 10% and 20% noise. However, at 30%
noise, LLM_sim without context performs better,
possibly due to degraded quality from increased
noise. In contrast, LLM_sim detection consistently
underperforms in FB15k-237 due to low inter-triple
correlation, reducing the value of contextual infor-
mation.
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WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

KGC in clean data 0.506 0.459 0.519 0.597 0.212 0.148 0.235 0.339
KGC 0.423 0.375 0.448 0.508 0.191 0.128 0.214 0.319
KGC + CAGED 0.400 0.343 0.429 0.505 0.176 0.117 0.195 0.298
KGC + GPT2 0.412 0.359 0.433 0.467 0.143 0.106 0.156 0.216
KGC + LLM_sim without context 0.402 0.343 0.430 0.509 0.174 0.116 0.193 0.293
KGC + LLM_sim detection 0.434 0.380 0.460 0.533 0.173 0.116 0.190 0.292

10% noise

KGC + LLM_sim 0.404 0.346 0.431 0.510 0.183 0.122 0.206 0.302
KGC 0.363 0.317 0.396 0.435 0.174 0.116 0.192 0.293
KGC + CAGED 0.351 0.295 0.381 0.450 0.168 0.115 0.185 0.276
KGC + GPT2 0.338 0.396 0.370 0.404 0.171 0.115 0.188 0.286
KGC + LLM_sim without context 0.370 0.312 0.401 0.473 0.175 0.117 0.196 0.294
KGC + LLM_sim detection 0.390 0.333 0.421 0.487 0.170 0.115 0.187 0.284

20% noise

KGC + LLM_sim 0.376 0.318 0.407 0.481 0.178 0.120 0.201 0.306
KGC 0.290 0.246 0.324 0.358 0.141 0.109 0.152 0.201
KGC + CAGED 0.294 0.241 0.327 0.382 0.167 0.116 0.185 0.273
KGC + GPT2 0.321 0.271 0.356 0.401 0.167 0.114 0.184 0.278
KGC + LLM_sim without context 0.335 0.280 0.367 0.429 0.169 0.115 0.188 0.281
KGC + LLM_sim detection 0.343 0.289 0.375 0.434 0.166 0.113 0.185 0.277

30% noise

KGC + LLM_sim 0.370 0.312 0.391 0.463 0.177 0.119 0.199 0.295

Table 4: Performance KGC task for WN18RR and FB15k-237 datasets with different noise conditions

Finally, as the noise ratio increases, the overall
model performance declines. Nevertheless, the
performance of LLMs remains relatively stable,
further demonstrating their robustness in handling
noisy datasets.

5.2 Result for Noise Refinement

Table 3 presents the results of both evaluations. The
results suggest that our refinement method effec-
tively refines triples to a certain extent. Notably, the
manual inspection scores are slightly higher than
those of correctness, likely due to dataset incom-
pleteness. This implies that the model may predict
correct triples that do not appear in the original
dataset, resulting in some cases being marked as
incorrect even if they are accurate.

5.3 Result and Analysis for KGC Task

The experimental results offer key insights into
the impact of dataset noise on downstream KGC
tasks. As expected, increased noise ratios corre-
late with greater performance degradation in KGC.
However, an intriguing exception occurred in the
FB15k-237 dataset with 10% noise: the dataset
with noise (i.e., KGC) performed better than the
data where the noise is detected and corrected. This
outcome may be attributed to the relatively small
proportion of noise within a large dataset, suggest-
ing that the KGC model can still perform better
due to the abundance of correct data.

Additionally, Tables 2 and 4 show a clear rela-

tionship that higher noise detection accuracy leads
to better KGC performance. This highlights the im-
portance of effective noise detection in improving
downstream task accuracy. When the noise detec-
tion method is imperfect, filtering out noisy data
results in a reduction in the number of good data
samples, reducing the effectiveness of the model.

Our LLM_sim method also demonstrated distinct
effects under varying noise levels. In the low-noise
WN18RR dataset, while it achieved slightly bet-
ter results than the LLM_sim without context but
did not surpass LLM_sim detection. However, in
high-noise conditions, LLM_sim significantly im-
proved performance, demonstrating its value in
noise-heavy scenarios.

Finally, our refinement method showed a sub-
stantial positive effect on the FB15k-237 dataset,
likely due to the LLM’s reliance on factual concepts
(in FB15k-237) rather than purely semantic con-
tent (in WN18RR). This preference for fact-based
knowledge enables LLMs to perform particularly
well on datasets that prioritize factual correctness.

6 Conclusion

The results confirmed that our proposed LLM_sim
method significantly enhanced KG reliability, ben-
efiting downstream tasks such as KGC. These find-
ings underscored the broader potential of LLMs for
KG-specific tasks by detecting and refining noise in
dynamic, evolving KGs. The demonstrated robust-
ness of LLMs in high-noise settings highlighted
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their applicability to real-world scenarios where
KGs are frequently updated.

Moving forward, we plan to refine our methods
to enhance noise detection and refinement capabili-
ties, aiming for improved robustness and adaptabil-
ity across diverse datasets.

7 Limitations

While our method achieved promising results on
the WN18RR and FB15k-237 datasets, we have
not yet tested it on real-world datasets. Addition-
ally, our approach is limited by the difficulty of
rigorously evaluating refined triples, a common
challenge in practical KG applications. As a result,
some limitations remain in fully identifying and
removing all noise.
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Abstract
As Knowledge Graphs (KGs) become central
to modern applications, automated methods for
validating RDF triples before insertion into
these graphs are essential. The complexity
and scalability challenges in manual valida-
tion processes have led researchers to explore
Large Language Models (LLMs) as potential
automated validators. This study investigates
the feasibility of using LLMs to validate RDF
triples by focusing on four distinct and com-
plementary validation tasks: class and prop-
erty alignment, URI standardization, semantic
consistency, and syntactic correctness. We pro-
pose a systematic validation method that uses
prompts to guide LLMs through each stage of
the triple evaluation of the RDF. In our experi-
ments, four models are evaluated across these
tasks. Our results reveal that more advanced
models like Llama-3-70B-Instruct offer supe-
rior accuracy and consistency. Our findings
emphasize the practical open challenges of de-
ploying LLMs in real-world RDF validation
scenarios, including domain generalization, se-
mantic drift, and the need for human-in-the-
loop interventions. This investigation advances
the research on the refinement and integration
of LLM-based RDF validation techniques into
KG management workflows.

1 Introduction

Knowledge Graphs (KGs) have emerged as essen-
tial artifacts to represent structured knowledge in
various digital applications, such as search engines,
recommendation systems, and question-answering
platforms. Having underlying logical and seman-
tically consistent KGs is relevant for applications
because they rely on them to improve user experi-
ence and help decision making.

At the core of KGs are Resource Description
Framework (RDF) triples, which consist of subject-
predicate-object expressions that form the basic
building blocks of KGs. An RDF triple links a sub-
ject to an object through a predicate, encapsulating

a single piece of knowledge (Bizer et al., 2023).
In this context, ontologies play a significant role
in KGs by defining structured schema by ensur-
ing consistency and semantic integrity within KGs.
Ontologies specify the classes, properties, and rela-
tionships that form the backbone of KGs by guiding
the data management and querying processes.

Maintaining the integrity and consistency of
KGs as new RDF triples are added is a complex
and ongoing challenge. Traditional methods for
validating and inserting RDF triples often involve
manual efforts by ontology experts, which can be
time consuming and prone to human errors. These
methods struggle to keep pace with modern data
environments’ dynamic and large-scale nature. The
limitations of current approaches highlight the ur-
gent need for advanced automated tools that can
support ontology experts in the management of
KG. Automating the identification and elimination
of erroneous information improves efficiency and
accuracy, reducing the dependency on extensive
human intervention.

The insertion of new RDF triples into an existing
KG presents issues that can undermine the graph’s
reliability and usability. First, there is the problem
of violating the predefined classes and properties
in place, where new triples might not conform to
the established ontology schema. Second, URI
standardization and duplication pose significant
challenges; ensuring that new triples do not intro-
duce redundant or conflicting URIs is essential for
maintaining a coherent KG. Third, semantic incon-
sistency is an issue, as newly added triples might
contradict existing knowledge, leading to logical in-
consistencies within the graph. Lastly, the syntactic
correctness of the triples, respecting a pre-defined
language (e.g., n-triples (Beckett et al., 2014) and
turtle (Beckett et al., 2014) syntax), avoids mal-
formed triple errors in RDF parsers. These is-
sues collectively impact the overall effectiveness of
KGs, compromising their ability to deliver accurate
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and reliable knowledge representation.
Recent advancements in Language Models

(LLMs) have opened new avenues for addressing
the challenges associated with KG management.
LLMs, which excel in various natural language
processing (NLP) tasks, have demonstrated capa-
bilities in understanding and generating human lan-
guage with contextual and semantic accuracy (Tang
et al., 2023). The intersection of KGs and LLMs
presents a promising opportunity to leverage these
models to enhance KG management processes (Pan
et al., 2024). We originally hypothesized that the
advanced semantic understanding of LLMs could
assist in identifying violations of classes and prop-
erties, standardizing URIs, and ensuring syntac-
tic and semantic consistency of triples. This inte-
gration has the potential to significantly improve
the efficiency and reliability of KG management,
providing ontology experts with powerful tools to
maintain high-quality KGs.

This study investigates and evaluates the use of
LLMs in validating and inserting RDF triples into
existing KGs without negatively impacting their
integrity. Specifically, we develop a methodology
that ensures new triples are consistent with the ex-
isting KG and conform to underlying ontologies.

The broader implications of this research include
potential benefits for both academia and industry,
such as more reliable KGs and improved data man-
agement processes over time. Integrating LLMs
into KG curation tasks can lead to more intelligent
and automated knowledge management systems,
offering enhanced capabilities for handling com-
plex and dynamic data environments.

This article is organized as follows: Section 2 re-
views related work, discussing previous approaches
for RDF triple validation. Section 3 defines the ad-
dressed issues in validating RDF triples. Section 4
outlines our designed method. Section 5 presents
the evaluation procedures and obtained results. Sec-
tion 6 discusses our findings and open research
challenges. Finally, Section 7 draws conclusion
remarks.

2 Related Work

This section summarizes existing investigations
and approaches to validating RDF triples. A re-
cently published survey describing the intersection
between LLMs and KGs (Khorashadizadeh et al.,
2024) identified KG validation as an essential re-
search venue. KG validation is categorized into two

main approaches: fact-checking and inconsistency
detection. Our present solution concentrates on
inconsistency detection, a relatively underexplored
area within the broader context of KG validation.
The survey highlights only one significant study
in this domain: ChatRule (Luo et al., 2023). Cha-
tRule is a framework that leverages KGs to build
LLM prompts, generating rules to detect inconsis-
tencies within the KG. Our work further extends
this field by systematically evaluating the capabil-
ity of LLMs to validate RDF triples in KG insertion
operations, focusing on various types of inconsis-
tencies.

Huaman and Fensel presents a methodical ap-
proach to improving KG quality without using
LLMs (Huaman and Fensel, 2021). The frame-
work integrates existing tools and workflows to
ensure correctness, completeness, and usability of
KGs. It employs rule-based methods for quality
assessment, using metrics like accuracy and com-
pleteness. Cleaning tasks involve schema verifica-
tion through constraint languages (e.g., SHACL,
ShEx) and fact validation using internal consis-
tency checks or external sources like Wikipedia.
For enrichment, it detects duplicates and resolves
conflicts using tools such as SILK and LIMES.

Frey et al. (Frey et al., 2023) demonstrated
the evaluation of various LLMs, including GPT-
41 and Claude 22, revealing their proficiency in
working with Turtle, an RDF triple serialization
format. Their study introduced some tasks to as-
sess the models’ ability to parse, understand, and
create KGs in Turtle syntax. While newer versions
of GPT and Claude demonstrate promising capabil-
ities, they frequently struggle with strict output for-
matting, often including unnecessary explanations,
complicating their integration with RDF tools. We
face similar problems with our method and despite
these challenges, the models show huge potential
for assisting in KG engineering.

The Triples Accuracy Assessment (TAA) (Liu
et al., 2017) approach offers an automated method
for validating RDF triples in a KG using other KGs.
Unlike traditional methods that rely on internal
information, TAA identifies equivalent resources
across different KGs and matches predicates to
assess the correctness of triples. A confidence score
is generated to indicate the accuracy of each triple,
showing promising results with high F-measure

1https://openai.com/index/gpt-4/
2https://www.anthropic.com/research
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scores in evaluations using the FactBench dataset.
Our originality lies in the innovative use of

LLMs to validate RDF triples for KG insertion
operations, which traditionally solely rely on rule-
based methods or external KG interlinks. Unlike
prior approaches, such as the Triples Accuracy As-
sessment (Liu et al., 2017), which leverages other
KGs for validation, our study explores the potential
of LLMs to bring deeper semantic understanding
and context to the validation process. To the best
of our knowledge, this study is the first to system-
atically assess the potential effectiveness of LLMs
in this specific application and across various RDF
validation tasks. Our study offers new, original in-
sights into LLMs’ potential to enhance the accuracy
and efficiency of RDF triple validation.

3 Problem Formulation

This section outlines four critical problems our
approach addresses when validating and inserting
new triples into a KG using LLMs. The rationale
behind choosing the following problems is
that they align with existing standards and best
practices in RDF and ontology management. They
are common underlying problems encountered
during the construction and maintenance of KGs.

Problem 1: Violation of Predefined Classes
and Properties

One fundamental issue in maintaining KG’s in-
tegrity is ensuring that new triples adhere to the
predefined classes and properties outlined in the
ontology. During the generation of triples, it is
essential to specify which classes and properties
the KG structure requires. The critical task is to
verify if any generated triple contains classes or
properties not part of the predefined list provided
by the ontology maintainer.

Let C be the set of essential classes and Pr be the
important properties the ontology defines. For each
triple t = (s, p,o) in the set of T , the predicate p,
and the object o (if it is a class) must be elements
of Pr and C , respectively.

For C = {Person,Organization,Product},
Pr = {hasName, isPartO f , produces}, t1 =
(Organization/X , produces,Product/X_AI) and
t2 = (Person/SteveJobs,born,State/Cali f ornia).
All the elements from t1 can be found in C and Pr.
If the object "State" is not in C , then t2 should be
flagged.

Problem 2: URI Standardization
The addition of new triples requires no dupli-

cated URIs within the KG. Duplicates and redun-
dancies increase the size of KGs without adding
relevant knowledge. This problem arises when
different URIs refer to the same real-world entity.
Guaranteeing the uniqueness of URIs is vital to
maintaining a coherent representation of entities.

For any new triple t = (s, p,o) in T , the subject
s and the object o – if it is a URI – must be checked
against existing URIs in the KG. Let U be the set
of all URIs in the existing KG. The new URIs s
and o must not introduce duplicates.

If the resource Car/Tesla_S_2023 is
present in the KG, then the addition of t =
(Car/Tesla_S_23,hasFeature,Electric_Drive)
should be flagged since Car/Tesla_S_2023 and
Car/Tesla_S_23 refer to the same entity.

Problem 3: Semantic Inconsistency
Semantic inconsistency occurs when new triples

contradict the existing triples in the KG. A resource
cannot simultaneously possess mutually exclusive
properties. Ensuring semantic consistency requires
checking the logical compatibility of new triples
with the existing KG data.

Let R be a set of semantic statements and con-
straints the ontology defines. For each new triple
t = (s, p,o) in T , we must verify that t does not
violate any rule r ∈ R based on the existing triples
in the KG.

An example of a rule using Semantic Web
Rule Language (SWRL) states that a person can
not be sibling and married to the same person:
Sibling(?x,?y) ∧MarriedTo(?x,?y)→ f alse.

If t1 = (Phone/iPhone_X , isCompatibleWith,
Gadget/USB_C) in T , and there is an existing
t2 in the KG which states that the iPhone X is
incompatible with USB C, adding t1 would create
a contradiction with t2, based on a criterion r ∈ R
that states that two resources cannot be compatible
and incompatible with each other simultaneously.

Problem 4: Syntactic Inconsistency
In addition to semantic checking, ensuring the

syntactic correctness of RDF triples is essential to
maintaining the structural integrity of a KG. For
instance, a syntactically valid RDF triple using the
n-triples syntax must have three components: a
subject, a predicate, and an object. Any deviation
from this, such as triples with fewer or more than
three components, constitutes a syntactic error and
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can disrupt the proper functioning of the KG.
Each triple t = (s, p,o) in T must adhere to the

required syntactic structure. This involves checking
that each triple has precisely one subject, predicate,
and object.

For instance, an existing triple t1 =
(Island/Santorini,hasPopulation), which lacks
an object, would be flagged as a syntactic error. A
triple like t2 = (Island/Crete,hasArea,8336,km)
with an extra component would also be erroneous.

4 Validating Generated RDF Triples
based on LLMs

Our proposed method consists of four main steps,
each involving a specific prompt and requiring the
intervention of an ontology maintainer to ensure
correctness. These steps systematically validate
and prepare RDF triples for precise insertion into
an existing KG. The steps address the critical issues
of class and property compliance, URI uniqueness,
semantic and syntactic consistency, and challenges
explained with more details in Section 3. Figure 1
presents our method to validate RDF triples.

The input is a set of RDF triples formatted as
T = {(s1, p1,o1),(s2, p2,o2), ...,(sn, pn,on)}. The
output is a set of final validated RDF triples as
Tf inal = {(s1, p1,o1),(s2, p2,o2), ...,(sn, pn,on)}.
Algorithm 1 shows the procedure of our method.

The first step (#1 in Figure 1) aims to verify
that T contains classes and properties listed as nec-
essary by the ontology maintainer. The process
begins with the maintainer creating a List of Im-
portant Classes and Properties Lc,p (line 2 in Algo-
rithm 1). This list outlines the crucial classes and
properties that must be present in the RDF triples.

The list Lc,p is manually curated by the ontology
maintainer, who possesses a deep knowledge of the
KG’s structure and the relevant domain. This list is
derived directly from the ontology (cf. Figure 1).

Although the important classes and properties
human-curated lists may limit generalizability, they
are important for ensuring semantic coherence and
alignment with the KGs domain. These curated
inputs are minimal compared to the automated pro-
cessing enabled by LLMs in the pipeline.

The LLM evaluates each triple from all triples
T (line 3 of Algorithm 1) to check for compli-
ance with the provided list. The compliance check
is defined as: ∀(s, p,o) ∈ T ,(class(s) ∈ Lc,p)∧
(property(p) ∈ Lc,p).

To materialize this step (line 4 of Algorithm 1),

we use the prompt3 pr1 = (i1,T ,Lc,p) composed
of the following components: an initial instruc-
tion i1 on evaluating the presence of properties and
classes, the set of RDF triples to be analyzed T
and the List of Important Classes and Properties
Lc,p. Line 4 of Algorithm 1 shows a summarized
version of i1.

Any triples containing classes or properties not
included in the List of Important Classes and Prop-
erties are flagged (lines 5 and 6 of Algorithm
1). The ontology maintainer reviews these non-
compliant triples and determines whether they
should be removed (line 9 of Algorithm 1). This
step ensures that all generated triples adhere to the
predefined schema.

The second step (#2 in Figure 1) ensures that
new triples do not introduce duplicate resources
into the KG. After removing the triples flagged in
Step 1, the remaining triples T are checked for
resource duplication.

The LLM performs SPARQL queries on the ex-
isting KG to identify similar resources, generating
a List of Duplicate Resources Ldr (line 12 of Al-
gorithm 1). Different from Lc,p, the generation of
Ldr does not require human intervention.

SPARQL queries serve as an interface with the
KG. The second step uses SPARQL queries to re-
trieve resources in the KG similar to those in the
triples under analysis. We identify these similar
resources by querying the KG with SPARQL and
filling Ldr with the results.

The prompt (line 13 of Algorithm 1) for this step
pr2 = (i2,T ,Ldr) includes an initial instruction i2
on identifying duplicate resources, the set of RDF
triples to be checked T and the List of Duplicate
Resources Ldr.

The ontology maintainer reviews the flagged du-
plicates and updates the triples as necessary. If a
resource is confirmed as duplicate, the maintainer
updates the triples to use the correct, existing re-
source values (line 18 of Algorithm 1). If a resource
is erroneously marked as a duplicate, it is ignored.
This step guarantees the uniqueness of URIs in the
KG, preventing conflicts and ensuring a coherent
representation of entities.

The third step (#3 in Figure 1) ensures that the
new triples do not violate predefined semantic re-
strictions. The ontology maintainer provides a List
of Semantic Restrictions Lsr (line 21 of Algorithm

3All the prompts listed in this section can be found in
https://zenodo.org/records/13712876
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Figure 1: Method to validate RDF triples. The boxes with grey circles represent the steps to transform the initial
triples T in the validated triples Tf inal . Among the steps, the method requires human intervention, represented by
the human icon. Steps 1, 2, and 3 use three lists as input: Lc,p and Lsr – part of the ontology – and Ldr – part of the
KG.

1), primarily consisting of rules specified in SWRL.
The set of triples modified by the previous steps

T is then compared against these restrictions by
the LLM (line 22 of Algorithm 1). The language
model identifies any triples that potentially violate
the semantic rules.

The prompt for this step pr3 = (i3,T ,Lsr) in-
cludes an initial instruction i3 on identifying triples
with semantic restrictions, the set of RDF triples
to be analyzed T and the List of Semantic Restric-
tions Lsr.

The ontology maintainer reviews the flagged
triples and decides whether to remove them (line
27 of Algorithm 1). This step prevents the intro-
duction of logical contradictions, such as an object
being simultaneously marked as compatible and
incompatible with another object, thus maintaining
the semantic integrity of the KG.

The final step (#4 in Figure 1) ensures the syn-
tactic correctness of the RDF triples before they are
inserted into the KG. The set of triples modified
by the previous steps, T , is provided as input, and
the language model checks for any syntactic errors
(line 30 of Algorithm 1).

This step does not require additional lists as the
previous steps. The language model identifies and

flags triples that do not conform to the required
RDF structure (line 34 of Algorithm 1), ensuring
that only syntactically correct triples are considered
for insertion into the KG.

The prompt for this step pr4 = (i4,T ) includes
an initial instruction i4 about the syntactic valida-
tion and the set of RDF triples to be analyzed T .

The ontology maintainer proceeds with a final
validation on the flagged triples and Tf inal , ensuring
they are ready to be inserted in the KG.

5 Evaluation

This evaluation assesses if the developed method
and the designed prompts instructing the LLMs
can effectively identify and correct specific issues
within the RDF triples. The evaluation focuses on
the four distinct problems identified in Section 3
and addressed by our solution (Section 4).

Section 5.1 describes the models, datasets, and
procedures used in this evaluation. Section 5.2
demonstrates the obtained results.

5.1 Setup and Procedures

The experimental evaluation used four distinct Lan-
guage Models: Bloom-176B (Scao et al., 2022),
Mixtral-7B-Instruct (Jiang et al., 2024), Gemma2-
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9B-Instruct (Team, 2024; Team et al., 2024), and
Llama-3-70B-Instruct (AI@Meta, 2024). We
chose Bloom because it was one of the first large-
scale language models launched, setting a prece-
dent in the open-source community. Among the
four models, Bloom is the largest, with 176 bil-
lion parameters, which enables it to capture a wide
range of linguistic nuances and knowledge. Bloom
is free, although it limits the number of tokens gen-
erated per minute4. These factors were key reasons
for including Bloom in our evaluation.

Mixtral was selected for its unique architecture
as a mixture of experts (Jiang et al., 2024), dif-
ferentiating it from the other LLMs. This model
combines multiple specialized sub-models, or “ex-
perts", to process different input parts, allowing
for more efficient computations. Despite being a
smaller language model with 7 billion parameters,
Mixtral is cost-effective and has demonstrated im-
pressive results, even outperforming some closed-
source LLMs like GPT-3.5 (Jiang et al., 2024).

Gemma 2 was included because it originated as
an open-source model developed by Google (Team
et al., 2024), known for competitive results on pub-
lic LLM leaderboards. With 9 billion parameters,
Gemma 2 balances size and computational cost.
Its performance relative to its size, cost, and open-
source nature justified its selection for our study.

Finally, Llama-3-70B was chosen because it is
one of the top-performing models on the LLM
leaderboard5, especially considering its size of 70
billion parameters. Produced by Meta, Llama-3 in-
clusion in our evaluation was driven by its leading
performance, size, and alignment with the other
open-source models in our study. Together, these
models represent the current state of open-source
LLMs across various scales and architectures.

The dataset consists of 500 records of questions
and answers related to product compatibility from
ten different e-commerce stores. This dataset was
generated in 2023 using random samples of actual
customer interactions. These e-commerce stores
are customers of GoBots6, a Brazilian AI startup
specializing in e-commerce solutions. The GoBots
maintains an existing KG focused on product com-
patibility, which has been successfully deployed in
a production environment. The triples used in our
evaluation are sourced directly from this KG. They

4https://huggingface.co/bigscience/bloom
5https://huggingface.co/spaces/lmsys/

chatbot-arena-leaderboard
6https://gobots.ai/

reflect real-world scenarios and have proven their
utility in supporting e-commerce operations.

Each of the 500 records includes (1) A ques-
tion posed by a customer about the compatibility
of a car with a product; (2) An answer provided
by a seller indicating compatibility or incompat-
ibility; (3) A set of RDF triples associated with
the question-answer pair, representing the car, the
product, and their compatibility status7. The RDF
triples were automatically generated by a system
developed by the Brazilian AI startup. This sys-
tem generates and integrates RDF triples into an
existing KG (Sant’Anna et al., 2020).

To evaluate specific aspects of this investigation,
noise was randomly introduced into the dataset,
targeting particular defined problems. It is impor-
tant to note that these noises were added automati-
cally, ensuring the randomness of the process and
eliminating any possibility of bias that could be
attributed to manual interference. This approach
was deliberately chosen to ensure a fair and un-
biased evaluation of the model’s ability to handle
data inconsistencies, regardless of how the noise
was introduced.

• Noise type 1: For 100 randomly chosen
records, triples with classes and properties
not allowed are added to the existing triples
(problem 1);

• Noise type 2: For another 100 randomly cho-
sen records, resources similar to existing re-
sources (with minor modifications like year
changes) are added (problem 2);

• Noise type 3: For another 100 randomly cho-
sen records, RDF triples indicating false com-
patibility (contradicting existing SWRL rules)
are introduced (problem 3);

• Noise type 4: For another 100 randomly cho-
sen records, RDF triples with four compo-
nents are added at the end of the triple list (sub-
ject, predicate, object, and a random fourth
component), disrupting the syntactic consis-
tency (problem 4);

• Control: No noise is added for the remaining
100 records of the dataset, serving as a control
group.

7An example of a dataset record can be found in https:
//zenodo.org/records/13722627
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Each of the 500 records contains either one type
of noise or no noise (in the case of the 100 records
from the control group). No record contains more
than one type of noise. The evaluation measured
each model’s accuracy, precision, recall, and F1
score in identifying the introduced noise types.

The evaluation followed the following steps:

1. Noise Introduction: Introduced specific
types of noise into the dataset to simulate the
four problems (as described).

2. Method Execution: Apply the corresponding
prompts to the dataset:

• Prompt 1: Identifies triples with classes
and properties not allowed by the ontol-
ogy. We added a noisy RDF triple, indi-
cating the car speed. There is no class
or property in the ontology (and conse-
quently in the list of allowed classes and
properties) related to car speed;

• Prompt 2: Detects duplicate resources.
We added noisy RDF triples related to
the model year of a car. For instance, we
added the triple related to the car “HRV
21", expecting that the LLM could detect
the duplication with an already existing
resource in the KG, “HRV 2021";

• Prompt 3: Checks semantic consis-
tency by searching for contradictions in
compatibility among products and cars.
We added the example from Section 4,
adding SWRL related to compatible and
incompatible products and cars. We
added noisy compatibility triples, expect-
ing that the LLM could identify them;

• Prompt 4: Verifies the correct syntax of
triple insertion. We added noisy RDF
triples with four components.

3. Metrics Computation: Calculate accuracy,
precision, recall, and F1 for each prompt by
each model, evaluating the number of cor-
rectly identified records versus false positives
and false negatives. For example, in the case
of 100 records with noise from problem 1, a
true positive is when the model correctly iden-
tifies the problem in a record. A true negative
occurs when the model correctly identifies
that one of the remaining 400 records has no
issues. A false negative would be when the
model fails to identify problem 1 in one of the

100 problematic records, while a false positive
would occur if the model incorrectly identifies
one of the 400 noise-free records as problem-
atic. These values are used to compute the
evaluation metrics for each model.

4. Analysis of Results: Quantitative analysis to
determine the effectiveness of each prompt in
addressing the specific problems.

5.2 Results

In evaluating the models across the four RDF vali-
dation problems, a clear trade-off emerges between
precision, recall, and accuracy. For instance, in
the Class and Properties Violation Problem, the
Llama-3 70B Instruct model got an accuracy of
0.84, coupled with a balanced precision and recall
of 0.78 and 0.89, respectively. This indicates that
the model was good at identifying valid triples and
minimizing false positives and negatives. On the
other hand, Bloom-176B showed a more balance
between precision and recall (0.54 vs. 0.56) but at
a much lower accuracy (0.55), reflecting difficult-
to-maintain consistent results across the scenarios.

We observed that models like Mixtral-7B and
Gemma2-9B exhibit higher recall than precision in
some instances, such as the “Class and Properties
Violation” and “Syntactic Inconsistency Problem”.
This comes at the cost of higher false positives,
reflected in lower precision. The balance between
these metrics suggests that selecting a model for
RDF validation requires prioritizing the metrics
most relevant to the specific validation scenario,
whether catching more errors (recall) or ensuring
fewer false positives (precision).

The models showed varying degrees of sensitiv-
ity to different types of RDF validation issues, re-
vealing insights into their strengths and weaknesses.
In the “Syntactic Inconsistency Problem”, where
adherence to RDF structure is required, Llama-3
70B Instruct outperformed all other models with
almost perfect accuracy (0.99) and F1 score (0.98).
This indicates that this model is well-suited for
tasks requiring precise syntactic validation. How-
ever, Bloom-176B struggled with syntactic errors,
achieving a low accuracy of 0.36, suggesting it is
less adept at handling structural rules.

In the “Semantic Inconsistency Problem” and
“URI Standardization”, which involves relation-
ships and contextual knowledge, Gemma2-9B
showed higher metric values than in syntactic tasks.
This could be attributed to their ability to recog-
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nize complex ontological relationships, although
their recall and F1 scores are behind Llama-3. The
results suggest that while some models specialize
in specific RDF issues, they face challenges when
encountering unfamiliar error types.

6 Discussion and Open Research
Challenges

This research inquired how LLMs can be suited
to contribute as KG Curators in the operations of
triple insertion. This research demonstrated that
LLMs for the distinct problems addressed can be
applicable as an approach to help ontology engi-
neers address RDF validation. In the following,
we underline key findings and challenges regarding
several aspects of our experimental results and the
consequences of applying our solution to opera-
tional settings.

The most performing LLM. Overall, we found
that the Llama-3 70B Instruct model consistently
outperformed the others across all validation prob-
lems, excelling in tasks that demand high precision
and recall. Its effectiveness in the “Syntactic In-
consistency Problem” (0.99 accuracy) and “URI
Standardization Problem” (0.96 accuracy) under-
scored its robustness in handling structural data
such as RDF triples. In our understanding, this
model’s success is due to its large parameter size
and fine-tuning, which are geared explicitly to-
wards instruction-based tasks, enabling it to gener-
alize across diverse RDF validation scenarios.

Underperformance consistently. Conversely,
Bloom-176B consistently underperformed, partic-
ularly in the “Semantic Inconsistency Problem”
(0.29 accuracy) and “Syntactic Inconsistency Prob-
lem” (0.36 accuracy). Its lower accuracy and incon-
sistent precision-recall balance show its limitations
in handling the rule-based nature of RDF validation.
The gap in results between Llama-3 and Bloom can
be explained by differences in model size, training
datasets, domain-specific tuning, and more than
two years between the release of both models.

The most challenging problems. Discussing
the four validation problems, the “URI Standard-
ization Problem” obtained the best overall results,
with a mean accuracy of 0.71. This can be at-
tributed to the nature of ’standardizing URIs’,
which primarily involves pattern recognition that
LLMs are well-equipped to handle. The best model,
Llama-3, achieved a near-perfect accuracy of 0.96
for this problem, showing its ability to manage

standardized data consistently. On the contrary, the
“Syntactic Inconsistency Problem” proved to be the
most challenging overall, with an average accuracy
of 0.53 and a mean F1 score of 0.47. This difficulty
arose from Gemma 2 reaching a precision of 0.08
and accuracy of 0.26, which was the worst preci-
sion and accuracy of the evaluation. Mixtral-7B
got better results in this task. Comparing the two
models with similar sizes, Mixtral outperformed
Gemma 2 in semantic-related tasks, and Gemma 2
outperformed Mixtral in syntactic-related tasks.

Cost vs. Accuracy Trade-off. The cost-
effectiveness of deploying different LLMs for RDF
triple validation is critical for real-world appli-
cations. For instance, while the Llama model
achieved superior accuracy and overall metrics,
it comes with a significant computational cost of
$0.88 per million tokens. In contrast, the Gemma-2
9B Instruct model, which costs $0.30 per million
tokens, provides a balanced trade-off between cost
and accuracy but falls short of achieving the preci-
sion needed for more complex scenarios. Mixtral
7B Instruct offers a middle ground in cost and per-
formance at $0.60 per million tokens. At the same
time, Bloom is a freely available model that, de-
spite being cost-free, exhibits significantly lower
accuracy and reliability. These costs were gathered
in two companies that provide LLMs APIs: To-
getherAI8 and Hugging Face9. The costs reflect
the price found when this manuscript was written -
September 2024.

Semantic Drift in Long Triple Chains. One
issue encountered in RDF triple validation using
LLMs is the potential for semantic drift when eval-
uating long chains of interconnected triples. In this
context, semantic drift refers to the model losing
coherence as it processes extended sequences. This
drift is increased by the models’ limited memory
retention and inability to consistently track relation-
ships across multiple triples. Triples involving big
and deep ontological hierarchies or chains that span
various levels may introduce errors as the models
struggle to maintain context. As a future work,
addressing this challenge may require fine-tuning
LLMs with specific datasets designed to enhance
memory retention over long sequences or integrat-
ing mechanisms that allow for continuous context
tracking in KG context. Without such interventions,
long triple chains remain a source of inaccuracy.

8https://api.together.ai/models
9https://huggingface.co/models
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Ontology Complexity and Coverage. The com-
plexity of ontologies, characterized by rich hierar-
chies, specialized vocabularies, and relationships,
introduces significant challenges for LLM-based
RDF validation. The method revealed that as on-
tologies grow more complex, models like Bloom
and Mixtral struggle to navigate the intricate set of
classes and properties accurately. A notable issue
is incomplete ontology coverage, where the models
lack sufficient information about specialized vo-
cabularies, leading to false positives or negatives
during validation. For example, triples involving
lesser-known properties or deep subclass hierar-
chies often went unrecognized, highlighting gaps
in the models’ ontological understanding. Address-
ing this issue may require expanding the training
datasets to include more comprehensive ontology
samples for future work.

Ontology Size. The experiments conducted in
this study did not suffer from token limitation,
as the ontology used is relatively small and well
within the context size limits of the employed
LLMs. However, we acknowledge that scaling
the approach to large ontologies remains an open
issue. Future work will explore strategies to handle
extensive schemas, such as breaking them into sub-
sets or leveraging hierarchical representations to fit
within the token constraints of LLMs.

7 Conclusion

Ensuring the quality and consistency of KGs is
critical for real-world applications that rely on se-
mantic accuracy. As KGs become more integral
to artificial intelligence systems, advancing meth-
ods for their automated validation might play a key
role in driving accurate, reliable, and scalable se-
mantic solutions. Our study explored using LLMs
to validate RDF triples by addressing critical chal-
lenges in automating a traditionally manual process.
We showcased the strengths and limitations of cur-
rent LLMs in KG curation by examining the effec-
tiveness of models like Llama-3-70B-Instruct and
Bloom-176B across four RDF validation tasks. The
Llama-3 model demonstrated competitive results,
particularly in maintaining syntactic and semantic
consistency, showing the potential for real-world
deployment. Our results highlighted the complex-
ity and cost implications, especially in handling
errors requiring more context. The findings sug-
gested future research directions, including more
sophisticated approaches to reducing semantic drift

in longer triple chains and enhancing model gen-
eralization across domains. Also, incorporating
humans into the loop and refining prompt engineer-
ing techniques could enhance LLM results.

Limitations

One limitation found during the development of
this investigation is the low accuracy of some mod-
els when handling intricate RDF syntax and se-
mantics. For instance, models like Bloom-176B
demonstrated considerable inconsistency in detect-
ing syntactic errors, due to their less targeted train-
ing. This variability among models indicates that
not all LLMs can address complex validation tasks,
suggesting a need for further fine-tuning and model
selection based on specific KG characteristics.

Another limitation was handling with long triple
chains, where models experienced semantic drift.
Certain LLMs struggled to retain the necessary
context across interconnected triples as the chain
increased, leading to validation inaccuracies. Ad-
dressing this drift might require models specifically
trained to manage extended sequences or incorpo-
rate a human-in-the-loop strategy. Additionally,
the significant computational cost of more accu-
rate models, like Llama-3-70B, limits scalability
in practical applications, where cost-effective but
reliable validation solutions are desirable.

We acknowledge that the proposed approach
involves some degree of manual effort, mainly
through the involvement of the ontology maintainer
in providing inputs such as lists of essential classes
and properties. However, this involvement is nec-
essary to ensure the RDF’s semantic alignment and
domain specificity triples with the existing KG and
ontology. Although LLM automation significantly
reduces the overall workload, human oversight re-
mains essential to maintain the quality and reliabil-
ity of the KG.
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A Appendix - Algorithm

B Appendix - Summary of Results

Table 1 presents the results. It demonstrates varied
effectiveness across the four evaluated problems,
with differences in accuracy, precision, recall, and
F1-score among the four language models.

For Problem 1, which focused on detecting
violations of predefined classes and properties,
Llama-3-70B-Instruct achieved the highest ac-
curacy (0.84) and F1-score (0.80), followed by
Mixtral-7B-Instruct with an accuracy of 0.64 and
an F1-score of 0.61. The overall mean accuracy
for this problem across all models was 0.61, with a
mean precision of 0.65, recall of 0.71, and F1-score
of 0.58.

96



Algorithm 1 Our Method for Validating RDF Triples for Knowledge Graph Insertion

Require: Set of RDF triples T , List of Important Classes and Properties Lc,p, Knowledge Graph K G ,
List of Semantic Restrictions Lsr

1: Step 1: Verify Classes and Properties using LLM and Prompt 1
2: Lc,p← createListOfImportantClassesAndProperties() ▷ Created by ontology maintainer
3: for each (s, p,o) ∈ T do
4: response← LLM(Prompt 1: "Check if the triple (s, p,o) violates any predefined classes or

properties in Lc,p")
5: if response = violation then
6: f laggedTriples1← f laggedTriples1∪{(s, p,o)}
7: end if
8: end for
9: T ← T \ f laggedTriples1 ▷ Reviewed by ontology maintainer

10: Step 2: Verify Redundancies using LLM and Prompt 2
11: for each (s, p,o) ∈ T do
12: Ldr← queryForDuplicateResources(s,o, K G)
13: response← LLM(Prompt 2: "Check if the triple (s, p,o) contains duplicate or similar resources

in Ldr")
14: if response = duplicate then
15: f laggedTriples2← f laggedTriples2∪{(s, p,o)}
16: end if
17: end for
18: T ← updateResourcesInTriples(T , f laggedTriples2, K G) ▷ Reviewed by ontology maintainer
19: Step 3: Verify Semantic Consistency using LLM and Prompt 3
20: for each (s, p,o) ∈ T do
21: Lsr← createListOfRules() ▷ Created by ontology maintainer
22: response← LLM(Prompt 3: "Check if the triple (s, p,o) violates any semantic restrictions defined

in Lsr")
23: if response = violation then
24: f laggedTriples3← f laggedTriples3∪{(s, p,o)}
25: end if
26: end for
27: T ← T \ f laggedTriples3 ▷ Reviewed by ontology maintainer
28: Step 4: Verify Syntactic Consistency using LLM and Prompt 4
29: for each (s, p,o) ∈ T do
30: response← LLM(Prompt 4: "Check if the triple (s, p,o) is syntactically correct")
31: if response = correct then
32: T f inal ← T f inal ∪{(s, p,o)}
33: else
34: f laggedTriples4← f laggedTriples4∪{(s, p,o)}
35: end if
36: end for
37: T ← T \ f laggedTriples4 ▷ Reviewed by ontology maintainer
38: f laggedTriples← f laggedTriples1∪ f laggedTriples2∪ f laggedTriples3∪ f laggedTriples4
39: return T f inal, f laggedTriples ▷ Final set of triples ready for insertion into the Knowledge Graph

Concerning Problem 2, which involved identify-
ing and standardizing duplicate resources, Llama-
3-70B-Instruct achieved the highest results with
an accuracy of 0.96, precision of 0.92, recall of

0.97, and F1-score of 0.94. The mean accuracy of
each model for this problem was 0.71, with a mean
precision of 0.75, recall of 0.73, and F1-score of
0.67.
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Table 1: Results of the experimental evaluation. The first column lists the four problems described in Section 3; the
second column lists the four LLMs used in the evaluation; the remaining columns show the values of each metric in
each model and problem. Bold values represent the best score for each metric and each problem.

Problem Model Accuracy Precision Recall F1
Bloom-176B 0.55 0.54 0.56 0.50

Mixtral-7B-Instruct 0.64 0.67 0.77 0.61
Gemma2-9B-Instruct 0.42 0.59 0.61 0.42
Llama-3-70B-Instruct 0.84 0.78 0.89 0.80

1 - Class and Properties Violation

Mean 0.61 0.65 0.71 0.58

Bloom-176B 0.44 0.50 0.49 0.41
Mixtral-7B-Instruct 0.52 0.64 0.69 0.51

Gemma2-9B-Instruct 0.90 0.93 0.75 0.80
Llama-3-70B-Instruct 0.96 0.92 0.97 0.94

2 - URI Standardization

Mean 0.71 0.75 0.73 0.67

Bloom-176B 0.29 0.34 0.26 0.26
Mixtral-7B-Instruct 0.56 0.39 0.36 0.37

Gemma2-9B-Instruct 0.81 0.83 0.53 0.50
Llama-3-70B-Instruct 0.92 0.86 0.95 0.89

3 - Semantic Inconsistency

Mean 0.65 0.61 0.53 0.51

Bloom-176B 0.36 0.32 0.23 0.27
Mixtral-7B-Instruct 0.50 0.59 0.63 0.49

Gemma2-9B-Instruct 0.26 0.08 0.37 0.13
Llama-3-70B-Instruct 0.99 0.99 0.97 0.98

4 - Syntactic Inconsistency

Mean 0.53 0.50 0.55 0.47

Problem 3, focused on detecting semantic in-
consistencies, yielded similar trends, with Llama-3-
70B-Instruct showing the highest accuracy (0.92)
and F1-score (0.89). The mean accuracy across all
models for this problem was 0.65, with a precision
of 0.61, recall of 0.53, and F1-score of 0.51.

For Problem 4, which addressed syntactic in-
consistencies in RDF triples, Llama-3-70B-Instruct
delivered the best results with an accuracy of 0.99,
precision of 0.99, recall of 0.97, and F1-score of
0.98. The mean accuracy for this problem across
models was 0.53, with a mean precision of 0.50,
recall of 0.55, and F1-score of 0.47.

Figure 2 presents the mean metric values across
all four problems, highlighting Llama-3-70B-
Instruct as the top-performing model, with a mean
accuracy of 0.93, precision of 0.89, recall of 0.95,
and F1-score of 0.90. Mixtral-7B-Instruct and
Gemma2-9B-Instruct had moderate overall results,
with mean accuracies of 0.55 and 0.59, respectively.
Mixtral-7B-Instruct exhibited a mean precision of

0.57, recall of 0.61, and F1-score of 0.50, while
Gemma2-9B-Instruct achieved a mean precision of
0.60, recall of 0.56, and F1-score of 0.46. Bloom-
176B had the lowest mean with an accuracy of 0.41,
precision of 0.42, recall of 0.38, and F1-score of
0.36 across all problems.
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Figure 2: Summarization of the results achieved in the experimental evaluation. The x-axis represents the models.
The y-axis represents values in the range [0,1] of each metric. The values shown are the mean values for each metric
(accuracy, precision, recall, and F1) across all four problems. For example, the accuracy for Bloom-176B (0.41) was
calculated by averaging the accuracy results obtained across the four problems, and similarly for the other metrics
and models.
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Abstract

Knowledge graphs use nodes, relationships,
and properties to represent arbitrarily complex
data. When stored in a graph database, the
Cypher query language enables efficient mod-
eling and querying of knowledge graphs. How-
ever, using Cypher requires specialized knowl-
edge, which can present a challenge for non-
expert users. Our work Text2Cypher aims to
bridge this gap by translating natural language
queries into Cypher query language and ex-
tending the utility of knowledge graphs to non-
technical expert users. While large language
models (LLMs) can be used for this purpose,
they often struggle to capture complex nuances,
resulting in incomplete or incorrect outputs.
Fine-tuning LLMs on domain-specific datasets
has proven to be a more promising approach,
but the limited availability of high-quality, pub-
licly available Text2Cypher datasets makes this
challenging. In this work, we show how we
combined, cleaned and organized several pub-
licly available datasets into a total of 44,387
instances, enabling effective fine-tuning and
evaluation. Models fine-tuned on this dataset
showed significant performance gains, with im-
provements in Google-BLEU and Exact Match
scores over baseline models, highlighting the
importance of high-quality datasets and fine-
tuning in improving Text2Cypher performance.

1 Introduction

Databases are essential in applications, support-
ing data storage and knowledge management,
and are typically accessed via query languages
like SQL (for relational databases) or Cypher
(for graph databases). With advancements in
LLMs, users can now query databases using nat-
ural language through applications that perform
tasks such as Text2SQL or Text2Cypher. Con-
sequently, even with minimal technical expertise,
users can easily retrieve information, build applica-
tions such as dashboards or analytics, or integrate

Figure 1: User wants to write a Cypher query for
‘What are the movies of Tom Hanks‘. A Text2Cypher
model translates the input natural language ques-
tion into Cypher, i.e., ‘MATCH (actor:Person {name:
"Tom Hanks"})-[:ACTED_IN]->(movie:Movie) RE-
TURN movie.title AS movies‘

knowledge into other systems, such as Retrieval-
Augmented Generation (RAG). The Text2Cypher
task converts plain language questions into Cypher
query language (see Figure 1). In the figure, a
user wants to write a Cypher query for ‘What
are the movies of Tom Hanks‘. A Text2Cypher
model translates the input natural language ques-
tion into Cypher, i.e., it returns ‘MATCH (ac-
tor:Person {name: "Tom Hanks"})-[:ACTED_IN]-
>(movie:Movie) RETURN movie.title AS movies‘.
This generated Cypher query can then be used to
retrieve relevant data from the database, allowing
for utilization based on the needs of the user.

Foundational large language models (LLMs) can
be utilized for Text2Cypher task directly with an ap-
propriate prompt. However, they may struggle with
complex queries, leading to incomplete or incor-
rect outputs which damage the utility of the knowl-
edge graph. Fine-tuning LLMs on domain-specific
datasets offers a promising solution but requires
high quality data that pairs natural language queries
with Cypher translations, plus schema information
for greater accuracy. However, creating such a
dataset is challenging, as it requires an understand-
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ing of graph representation, domain-specific knowl-
edge to formulate effective natural language ques-
tions, and proficiency in Cypher syntax. If the train-
ing set does not include high-quality, diverse and
sufficient examples, the fine-tuned Text2Cypher
model may underperform.

The number of publicly available Text2Cypher
datasets is limited. A few examples include
those created by Neo4jLabs (Neo4jLabs, 2024),
datasets converted from Text2SQL sets (Zhao et al.,
2023c,b; SemanticParser4Graph, 2024), and oth-
ers constructed synthetically (Zhong et al., 2024).
However, these datasets are prepared indepen-
dently, which makes it difficult to use them together.
In this work, we combine and refine instances from
publicly available datasets, creating a large dataset
for training and testing, and use it to benchmark and
fine-tune foundational models for Text2Cypher.

Our main contributions are as follows:

• We combine instances from publicly available
datasets, refining and organizing them to en-
hance usability. The final dataset includes
44, 387 instances, with a training and test split,
of 39, 554 and 4, 833 instances, respectively.
The dataset is made available to the public 1.

• We use this new dataset to benchmark foun-
dational and previously fine-tuned models on
the Text2Cypher task. The results showed
that large-foundational models performed the
best, however, the fine-tuned models showed
promise for improving performance.

• We fine-tuned a set of selected foundational
models using the new dataset and compared
their performance to benchmark results. The
results showed that all the fine-tuned models
achieve better results than their baseline mod-
els. One of the fine-tuned models are made
publicly accessible 2.

The paper is structured as follows: Section 2 dis-
cusses related work on translating natural language
to query languages, with a focus on Text2Cypher.
Section 3 details the dataset preparation process.
Section 4 and Section 5 present our experiments
for benchmarking and fine-tuning. Finally, Section
6 concludes the paper.

1Dataset: https://huggingface.co/datasets/neo4j/
text2cypher-2024v1

2A finetuned model: https://huggingface.co/neo4j/
text2cypher-gemma-2-9b-it-finetuned-2024v1

2 Related Work

2.1 Graph Databases and Cypher Language

Graph Database Systems store, manage, and re-
trieve graph data, where nodes, relationships, and
their properties are used for representing real-world
knowledge (Zheng et al., 2024). These systems en-
able efficient querying of relationships and offer
easy visualization (Yoon et al., 2017).

Companies specializing in graph databases in-
clude Neo4j (Neo4j, 2024), NebulaGraph (Wu
et al., 2022), and Amazon Neptune (Bebee et al.,
2018). In April 2024, GQL standard (ISO/IEC
39075:2024) (languages – GQL, 2024) was re-
leased, providing a unified query language for
graph databases. The ISO GQL standard is heav-
ily influenced by Neo4j’s Cypher language (both
share a large amount of syntax and they are both
declarative pattern-matching languages). So while
this work focuses on translating natural language
into Cypher queries, the general approach will be
applicable to GQL when it is more widespread.

2.2 Natural Language to Code Generation

Converting natural language to executable code is
essential for applications like database interfaces
and virtual assistants (Pasupat and Liang, 2015;
Yu et al., 2018; Agashe et al., 2019; Lai et al.,
2023; Zhong et al., 2024). Advancements in large
language models (LLMs) have enabled significant
progress in translating natural language into query
languages like SQL or Cypher. This capability
allows users to retrieve information, build dash-
boards, and integrate database knowledge into sys-
tems like Retrieval-Augmented Generation (RAG).

There has been extensive research on the
Text2SQL task, which translates natural language
queries to SQL (Yu et al., 2018; Guo et al., 2019;
Rajkumar et al., 2022; Li et al., 2023; Fan et al.,
2024; Li et al., 2024). In contrast, there is less work
focused on the Text2Cypher task, which translates
natural language queries into Cypher. This dis-
parity stems from SQL’s dominance in relational
databases and traditionally high industry demand
(Memgraph, 2024). However, graph-based data
representation is not only a more obvious fit for
knowledge graphs, but is gaining recognition for
addressing issues like hallucinations in RAG mod-
els. As such interest in Cypher is increasing, and
Cypher’s efficiency in expressing complex, inter-
connected queries makes it a compelling alternative
to SQL for knowledge graphs (and other domains).
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2.3 Text2Cypher Task

The Text2Cypher task translates natural language
queries into Cypher queries (see Figure 1). Large
language models (LLMs) can handle this with
zero- or few-shot prompts, which have shown
promise but are still imperfect (Chen et al., 2021).
Fine-tuning LLMs offers a more robust alterna-
tive, though it is limited by the scarcity of relevant
datasets and high computational costs (Ni et al.,
2023). Some research has focused on creating
datasets for Text2Cypher, while others have con-
centrated on model benchmarking and fine-tuning
for this task.

Some dataset preparation efforts for
Text2Cypher involve translating existing datasets
from other query languages, while others focus
on creating dedicated datasets. Examples of
translations include S2CTrans (Zhao et al., 2023a),
which converts SPARQL queries into Cypher
in order to handle complex graph queries, and
CySpider (Zhao et al., 2023b) and Rel2Graph
(Zhao et al., 2023c), which map SQL queries
to Cypher and create parallel corpora of natural
language-to-Cypher pairs. Specific Text2Cypher
datasets include Neo4jLabs datasets (Neo4jLabs,
2024), which are generated via LLMs and their
crowd-sourcing tool (Bratanič, 2024c). Opitz and
Hochgeschwender (Opitz and Hochgeschwender,
2022) and SyntheT2C (Zhong et al., 2024) used
synthetic methods to generate Cypher query data.
While several efforts have been made to create
datasets for the Text2Cypher task, these datasets
are often developed independently. In this work,
we aim to compile a well-structured Text2Cypher
dataset by combining and structuring instances
from publicly available sources.

Some research has focused on benchmarking and
fine-tuning models for the Text2Cypher task: Au-
thors from Neo4j (Bratanič, 2024a) released fine-
tuned models based on their datasets, using LLMs
like LLama and Codestral. GPT4Graph (Guo
et al., 2023) evaluated LLMs on graph tasks, includ-
ing Cypher query generation, using the MetaQA
(Zhang et al., 2018) dataset and testing InstructGPT-
3 (Ouyang et al., 2022) in zero- and one-shot set-
tings. TopoChat (Xu et al., 2024) developed a ma-
terial sciences dataset, using prompts to generate
Cypher queries with foundational LLMs. Baraki
et al. (Baraki, 2024) leveraged Neo4jLabs’ crowd-
sourced and synthetic datasets to fine-tune models,
using the crowd-sourced set for evaluation. Tran-

Table 1: Data fields

Field name Description
question Textual question
schema The database schema
cypher Output cypher query
data_source Alias of the dataset source
database_reference Alias of the database
instance_id Incremental index

sKGQA (Chong et al., 2024) extracted informa-
tion from knowledge graphs, using the ‘sentence-
transformers/all-MiniLM-L12-v2’ model to gen-
erate Cypher queries. Although these works have
provided fine-tuned models, the number of models
used was limited. In our work, after constructing a
larger and more organized dataset, we benchmark
and fine-tune a wider range of baseline LLMs.

3 Dataset Construction

While several Text2Cypher datasets exist, many
are prepared separately, making them hard to use
together. In this work we bring instances from
publicly available datasets together, clean and or-
ganize them for smoother use. For this purpose,
we executed three main steps: (i) Identification and
collection of publicly available datasets, (ii) Com-
bining and cleaning the data, and (iii) Creating the
training and test splits.

3.1 Identification and collection of publicly
available datasets

As the initial step, we identified the datasets which
are already publicly available. We have identified
25 different resources from (i) Neo4j resources (in-
cluding Neo4jLabs) (ii) HuggingFace (HF) datasets
and (iii) Academic papers. Out of these resources,
we were able to utilize 16 of those datasets, as they
met our criteria of including natural language ques-
tion and Cypher query pairs, as well as database
schema information, along with appropriate licens-
ing and accessibility.

3.2 Combining and cleaning the data

After identifying the input datasets, we standard-
ized them into a single format. Each row was re-
formatted to include fields ["question", "schema",
"cypher", "data_source", "database_reference", "in-
stance_id"], as described in Table 1. One of the
fields, namely "database_reference", requires par-
ticular attention. In some cases within the com-
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bined dataset, database access is available where
the reference or the generated Cypher queries
can be executed. Further details about these
databases can be found at the page of Neo4jLabs-
Crowdsourcing Initiative (Bratanič, 2024c). The
combined dataset is further cleaned in two steps:

• Manual checks and updates: This step aims
to produce more reliable and error-free out-
put data. Queries are manually reviewed, and
errors are corrected through straightforward
removals or updates: (i) Updating Cypher
queries, such as removing unwanted char-
acters (e.g., back-tick) (ii) Removing irrele-
vant questions (e.g., "Lorem ipsum . . . ") (iii)
Deduplicating rows based on the ["question",
"cypher"] pairs.

• Syntax validation: Each Cypher query is
checked for syntax errors by running ’EX-
PLAIN‘ clauses in a local Neo4j database.
Queries that trigger syntax errors are iden-
tified and removed from the combined dataset.
Additionally, the queries are de-duplicated.

3.3 Creating the training and test splits
Having the cleaned dataset, the final step is to pre-
pare the training and test splits. We have identified
3 groups of datasets: (i) Train-specific datasets:
Files with "train" in the name, used for training. (ii)
Test-specific datasets: Files with "test" or "dev"
in the name, used for testing. (iii) Remaining
datasets: Files with no specified use. We assigned
Train-specific datasets to the training split and Test-
specific datasets to the test split. The remaining
datasets were split 90:10 for training and testing,
respectively. Each split was shuffled to prevent
over-fitting from sequence or repetitive questions.

The data preparation resulted in 44, 387 in-
stances, with 39, 554 instances in the training split
and 4, 833 instances in the test split. The train and
test splits contain ∼89% and ∼11% of the overall
data, respectively. Their distribution across data
sources is similar, as shown in Figure 2. As ex-
plained previously, not every instance in the train-
ing and test sets has database access, as indicated
by the "database_reference" field. Analyzing the
distribution of instances with database access re-
veals that the training set contains 22, 093 such
instances (55.85% of the total), while the test set
has 2, 471 instances (51.12% of the total). These
instances are later used in the experimentation with
an additional evaluation procedure.

Figure 2: Data distribution: The train and test splits con-
tain ∼89% and ∼11% of the overall data, respectively.

4 Model Evaluation and Benchmarking

After constructing a larger and more organized
dataset, this section presents the benchmarking re-
sults.

4.1 Evaluation metrics

Text2Cypher is a type of text-to-text generation
task, where natural language questions are trans-
lated into Cypher queries. Therefore, evaluation
metrics commonly used in other text-to-text tasks,
such as machine translation and summarization,
can also be applied to this task. Using Hugging-
Face Evaluate library (HuggingFace, 2024), we
computed: (i) Text2Text comparison metrics, such
as ROUGE, BLEU, METEOR (ii) Embedding sim-
ilarity metrics, such as BERTScore, FrugalScore
(iii) Text similarity metrics, such as Cosine and
Jaro-Winkler similarity, and (iv) Exact Match score.
Although we calculated all these metrics, we pri-
marily use Google-BLEU and Exact Match scores
throughout the paper.

4.2 Experimental Setup

For benchmarking the models, we used the test
split of the larger dataset introduced in Section 3.
Closed models were evaluated through APIs pro-
vided by the respective companies. For the other
models, which are openly accessible via Hugging-
Face (HF), we utilized HF interfaces. To access
GPUs for evaluation, we employed RunPod (Run-
Pod, 2024) environments. Where relevant, we fol-
lowed the instructions outlined in Table 3, which
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Table 2: Models used for benchmarking

Type Name Base model
HF hf_ft_lakkeo_stable_cypher_instruct3B Stability AI/Stable-code-instruct-3b
HF hf_ft_tomasonjo_text2cypher Meta/Llama-3-8b-Instruct
HF hf_ft_neo4j_text2cypher_23_codellama Meta/CodeLlama13B
OpenAI openai_ft_neo4j_text2cypher_23_gpt3_5 OpenAI/GPT3.5
HF hf_foundational_meta_llama3_1_8B_instruct Meta/LLama-3.1-8B-instruct
HF hf_foundational_codeLlama_7B_instruct_hf Meta/CodeLLama-7B-instruct
HF hf_foundational_gemma2_9B_it Google/Gemma-2-9B-it
HF hf_foundational_codegemma_7B_it Google/CodeGemma-7B-it
OpenAI openai_gpt3_5 OpenAI/GPT-3.5
OpenAI openai_gpt4_o OpenAI/GPT-4o
OpenAI openai_gpt4_o_mini OpenAI/GPT-4o-mini
VertexAI gemini-1.0-pro-002 Google/Gemini-1.0-Pro
GoogleAIStudio gemini-1.5-flash-001 Google/Gemini-1.5-Flash
GoogleAIStudio gemini-1.5-pro-001 Google/Gemini-1.5-Pro

Table 3: Instructions used

Type Instruction prompt
System
Instruct.

Task: Generate Cypher statement to
query a graph database. Instructions:
Use only the provided relationship types
and properties in the schema. Do
not use any other relationship types or
properties that are not provided in the
schema. Do not include any explana-
tions or apologies in your responses.
Do not respond to any questions that
might ask anything else than for you to
construct a Cypher statement. Do not
include any text except the generated
Cypher statement.

User
Instruct.

Generate Cypher statement to query a
graph database. Use only the provided
relationship types and properties in the
schema.
Schema: {schema}
Question: {question}
Cypher output:

were inspired from tips provided by authors from
Neo4j (Bratanič, 2024b).

We defined two types of evaluation procedures:

• Translation-based evaluation: The gener-
ated Cypher queries are compared with the
reference Cypher queries based solely on the
textual content. The evaluation metrics used
for this comparison are detailed in Section 4.1.

• Execution-based evaluation: The generated
and reference Cypher queries are executed on
the target databases, and their outputs are col-
lected. The collected execution results are con-
verted into string representations (ordered lexi-
cographically for consistency). The same eval-
uation metrics used in the translation-based
evaluation are then applied to these outputs.

4.3 Benchmarking results
For benchmarking, we aimed to evaluate not only
baseline LLMs but also previously fine-tuned mod-
els specifically tailored for the Text2Cypher task.
The list of models used for benchmarking pur-
pose are listed in Table 2. In the table, first group
includes the fine-tuned models, second group in-
cludes the open-weighted models and the last group
includes the closed models.

Figure 3 presents the performance comparison
of the selected models on the test split. The figure
presents Google-BLEU score for translation-based
and Exact Match score for execution-based eval-
uation. Among the previously fine-tuned models,
i.e., with different data, HF/tomasonjo_text2cypher
performed best, but this may be misleading as
it had encountered 14.4% of the test data dur-
ing training. Among the open-weighted mod-
els, Google/Gemma-2-9B-it is the best perform-
ing model. Contrary to expectations, the code-
focused models (e.g., CodeGemma) did not out-
perform the baseline models. This may be at-
tributed to the fact that Cypher queries are rela-
tively closer to natural language, reducing the ad-
vantage of code-specific models. Among closed-
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Figure 3: Performance comparison of the baseline and finetuned models. Presents Google-BLEU score for
translation-based and Exact Match score for execution-based evaluation.

foundational models, the best performing mod-
els are OpenAI/GPT4o, OpenAI/GPT4o-mini, and
Google/Gemini-1.5-Pro-001 led in performance,
with larger models outperforming smaller ones.

Overall, closed foundational models like GPT
and Gemini achieved the best performance, though
at higher costs. Fine-tuned models improved base-
line open-weighted models. In the next section,
we explore the process of fine-tuning models and
evaluating them using the new dataset introduced
in Section 3.

5 Model Finetuning and Evaluation

Based on the findings of benchmarking, presented
in Section 4, we selected six baseline models for
our subsequent steps, presented in Table 4. In the ta-
ble, first group includes the open-weighted models,
while the second group includes the closed models.
Although some models, such as Google/Gemini-
1.5-Pro, demonstrated better performance in the
benchmark results, they were unavailable for fine-
tuning at the time of this analysis and are therefore
not included in this work.

Table 4: Models used for fine-tuning

Type Base model
HF Meta/LLama-3.1-8B-instruct
HF Google/Gemma-2-9B-it
OpenAI OpenAI/GPT-4o
OpenAI OpenAI/GPT-4o-mini
VertexAI Google/Gemini-1.0-Pro
GoogleAIStudio Google/Gemini-1.5-Flash

5.1 Experimental setup

For the finetuning process, we used the training
split of the larger dataset introduced in Section
3. The closed models were trained through APIs
provided by their respective companies, while the
other models were finetuned using HuggingFace
(HF) or Unsloth (Unsloth, 2024) interfaces on GPU
machines hosted in RunPod (RunPod, 2024) envi-
ronments. The evaluation procedures and metrics
were identical to those used in benchmarking sec-
tion, Section 4. The instructions remained con-
sistent with those outlined in Table 3. We used
Google-BLEU score for translation-based and Ex-
act Match score for execution-based evaluation.

105



Table 5: The improvements of the fine-tuned models
over the baseline models

Baseline model ∆Google
BLEU

∆Exact
Match

HF/LLama3.1-8B-it ∼0.14 ∼0.11
HF/Gemma2-9B-it ∼0.13 ∼0.07
VertexAI/Gemini-1.0-
Pro-002

∼0.34 ∼0.11

GoogleAIStudio/Gemini-
1.5-Flash-001

∼0.27 ∼0.09

OpenAI/Gpt-4o-mini ∼0.20 ∼0.06
OpenAI/Gpt-4o ∼0.18 ∼0.01

5.2 Finetuning results

The evaluation results for all models, including
those previously benchmarked, are shown in Fig-
ure 3. The last group in the figure highlights
the fine-tuned models trained on the dataset in-
troduced in Section 3. For easier comparison,
red shapes are used to link each fine-tuned model
with its corresponding baseline version. The fig-
ure shows that all fine-tuned models achieve better
results than their baseline models. The best re-
sults are obtained by the Finetuned-OpenAI/Gpt4o,
Finetuned-OpenAI/Gpt4o-mini and Finetuned-
GoogleAIStudio/Gemini-1.5-Flash-001 models.

The improvements in the fine-tuned models over
the baseline models are presented in Table 5. The
enhancements for models that have already per-
formed well are relatively smaller than others. For
example, OpenAI/Gpt-4 shows an 0.18 increase in
the Google-BLEU score, while VertexAI/Gemini-
1.0-Pro-002 demonstrates a 0.34 increase. The im-
provements of the finetuned open-weighted models,
i.e. HF/LLama3.1-8B-it and HF/Gemma2-9B-it,
are relatively less pronounced. During fine-tuning
of these models, our goal was to minimize re-
source usage (e.g., cost and memory). As a result,
with better-tuned parameters, we could potentially
achieve even stronger results.

Although all the fine-tuned models showed im-
provements in Google-BLEU and Exact Match
scores, it is important to remain aware of the poten-
tial risks and pitfalls associated with fine-tuning.

6 Conclusion

Databases are essential for data storage, manage-
ment, and retrieval, often accessed through query
languages like Cypher. Recent advancements in
large language models (LLMs) have made it pos-

sible to access databases using natural language
through tasks like Text2Cypher. While LLMs can
be directly used for this task, they often strug-
gle with complex queries, resulting in incomplete
or incorrect Cypher outputs. Fine-tuning LLMs
on specific Text2Cypher datasets offers a more
effective solution. However, publicly available
Text2Cypher datasets are limited and often created
independently, making them difficult to combine
and use effectively. To address this, we combined
and refined several datasets into a unified set of
44,387 instances, with 89% in the training split and
11% in testing. Fine-tuned models trained on this
dataset outperformed baselines, achieving up to a
0.34 increase in Google-BLEU score and a 0.11
increase in Exact Match score. This work high-
lights the importance of dataset and fine-tuning
for Text2Cypher task. Future work will refine the
dataset further, analyze challenging cases, and ex-
plore improvements through prompt engineering
and model optimization.

Limitations

The previous sections demonstrated how fine-tuned
models significantly boost performance. However,
there are several risks and pitfalls that must be
considered.

Even though we de-duplicated the dataset by
["question", "cypher"] pairs, it is still possible to
have instances where the same "question" appears
with different "cypher" outputs. In such cases,
these instances may have been split between the
training and test sets, meaning that fine-tuned mod-
els could have already encountered the same "ques-
tion" during training. However, since these in-
stances have different "cypher" outputs, even if the
fine-tuned models memorize the "cypher" output
for the question, their generated response would be
incorrect. This essentially penalizes the models for
having seen and memorized the question. In the fu-
ture, we plan to clean the test set of such instances,
re-run the evaluation, and assess any performance
differences.

Our dataset is constructed by collecting and com-
bining publicly available datasets, which may in-
clude paraphrased versions of the same questions.
It is known that training on paraphrased examples
of the test set may artificially inflate the perfor-
mance of the fine-tuned model (Yang et al., 2023).
Additionally, both the training and test sets are
drawn from the same data distribution, sampled
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from a larger dataset. If the data distribution shifts,
the results may not hold up in the same way.

Finally, the dataset used was gathered from pub-
licly available sources. Over time, foundational
models may gain access to both the training and
test sets, potentially achieving similar or even better
performance results in the future.
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Abstract

The proliferation of fake news on social media
has intensified the spread of misinformation,
promoting societal biases, hate, and violence.
While recent advancements in Generative AI
(GenAI), particularly large language models
(LLMs), have shown promise, these models
often need more structured representation for
accurate verification, as they rely on pre-trained
data patterns without access to real-time or vali-
dated information. This study presents a frame-
work that utilizes Open Information Extrac-
tor 6 (OpenIE6) to extract triplet relationships
(subject-predicate-object) from statements and
justifications to compute the cosine similarity
between the Knowledge Graphs (KGs) of the
statements and their supporting justification
to precisely measure the relevance and align-
ment between them. This similarity feature is
integrated with an attention mechanism over
GenAI-generated embeddings to enhance the
model’s ability to capture semantic features ac-
curately. In addition, a Multi-Layer Percep-
tron (MLP) classifier is employed to integrate
all features, resulting in a 4% improvement in
accuracy and a 5% increase in F1-score over
state-of-the-art LLM-based approaches.

1 Introduction

"A lie gets halfway around the world before the
truth has a chance to get its boots on."

Attributed to Winston Churchill

The rapid spread of misleading and factually in-
accurate information, commonly called fake news,
has become a critical issue in the digital age. Mis-
information disrupts democratic processes, dis-
torts public discourse, and misguides individual
decision-making (Sharma et al., 2019). With dig-
ital platforms serving as the primary source for
news consumption, the influence of fake news has
grown exponentially, leading to significant soci-
etal consequences. These platforms allow for the

swift dissemination of information, creating an en-
vironment where fake news can influence elections,
deepen societal divides, and, in extreme cases, in-
cite violence.

As the volume of information expands, tradi-
tional manual fact-checking methods cannot keep
pace, highlighting the need for automated detection
systems. Moreover, early models for fake news de-
tection(Girgis et al., 2018; Trueman et al., 2021;
Long et al., 2017) primarily focused on statement-
level analysis, classifying statements as true or
false. However, real-world misinformation often
blends truth and falsehood, defying simple cate-
gorization. This complexity has led to the use of
intermediate truth classifications—such as “half
true,” “barely true,” and “mostly false”—which bet-
ter capture the nuanced nature of many news items
and emphasize the need for more sophisticated de-
tection models.

To address this, the LIAR dataset by (Wang,
2017), sourced from POLITIFACT1, introduced
a more granular classification approach, catego-
rizing statements across six levels of truthfulness,
from "true" to "pants on fire". Models using the
LIAR dataset have utilized linguistic features such
as emotional tone, hedging, and speaker-related
attributes (Thorne and Vlachos, 2018) to improve
detection. However, while the LIAR dataset sup-
ports nuanced classification, it lacks external evi-
dence. To address this gap, the LIAR-PLUS dataset
(Alhindi et al., 2018) extends LIAR by providing
additional contextual information, including justifi-
cations and detailed fact-checking verdicts for each
labeled statement.

With the growing prominence of Generative AI
(GenAI) models (Brown et al., 2020; AI, 2024) in
Natural Language Processing (NLP) tasks such as
machine translation, text classification, and data
extraction, these models have also been explored

1https://www.politifact.com/
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for applications in fake news detection (Hu et al.,
2022). Although powerful, GenAI models, partic-
ularly large language models (LLMs), are limited
by their lack of structured representation, as they
largely rely on patterns from pre-trained datasets
without access to real-time, validated information
sources. This limitation raises concerns about the
reliability of GenAI models in fact-checking tasks,
as they lack the capability to cross-reference real-
world facts dynamically. Recent research has ad-
dressed this limitation by integrating knowledge
graphs (KGs) with GenAI models (Gu and Krenn,
2024), utilizing KG-structured, entity-based repre-
sentations to enrich models with factual and con-
textually relevant information.

Knowledge Graph (KG) embeddings allow mod-
els to capture relationships and concepts in a struc-
tured format, storing entities (like "Paris" or "Ein-
stein") and their relationships (e.g., "is the capital
of," "was born in") in a graph form that enables effi-
cient retrieval of factual information. By leveraging
KG embeddings capture structured relationships
that enhance verification, helping reduce hallucina-
tions and improve accuracy. Moreover, Open Infor-
mation Extraction (OpenIE) (Banko et al., 2007)
has become essential for transforming unstructured
text into structured knowledge. OpenIE62 (Kolluru
et al., 2020), the latest research, enables the extrac-
tion of factual statements by identifying subject-
predicate-object triplets, which form the backbone
of knowledge graphs. OpenIE6 surpasses earlier
versions with improved contextual accuracy and
scalability, making it particularly effective for large-
scale data sources. By allowing dynamic extraction
of factual relationships directly from a wide array
of sources, OpenIE6 equips models with up-to-date,
contextually relevant information—a valuable trait
for domains requiring dynamic knowledge updates.

Our proposed framework, KGNewsNet, lever-
ages OpenIE6 to extract triplet relationships from
statements and justifications, generating Knowl-
edge Graphs (KGs) that capture structured seman-
tic relationships. Afterwards, the cosine similarity
between the statement and justification KGs is com-
puted to generate a feature that quantifies alignment
between statement and their justifications. The KG
embeddings and OpenIE6 reduce hallucinations
by grounding answers in structured data. Com-
bined with GenAI-generated embeddings and en-
hanced by an attention mechanism, this feature en-

2https://github.com/dair-iitd/openie6

ables our model to prioritize relevant aspects of the
statement-justification pairs, improving overall de-
tection accuracy. Additionally, a Multi-Layer Per-
ceptron (MLP) classifier integrates these features,
yielding substantial improvements in detection per-
formance. Our model achieves a 4% increase in
accuracy and a 5% boost in F1-score over existing
LLM-based approaches, demonstrating the efficacy
of KG-enhanced fact-checking. The key contribu-
tions of this work are as follows:

• OpenIE6-Driven Knowledge Graph Inte-
gration: We integrate KGs generated by
OpenIE6 to provide structured, context-rich
knowledge that strengthens the structured rep-
resentation of the GenAI model, enhancing
statement verification.

• Enhanced statement-justification Align-
ment: Our framework employs an attention
mechanism that emphasizes critical aspects of
statement-justification pairs, utilizing a spe-
cialized attention module within the GenAI
model to improve semantic comprehension of
misinformation. Additionally, a cosine sim-
ilarity feature derived from the Knowledge
Graph further refines the alignment, enhanc-
ing the model’s ability to verify statements
accurately.

• Enhanced Detection Performance with
Multi-Layer Perceptron (MLP) Classifier:
Integrating KG-based features, GenAI embed-
dings, and attention yields substantial perfor-
mance improvements, achieving a 45.4% ac-
curacy in six-class classification and outper-
forming established GenAI models.

2 Related Work

Identifying fake news has evolved through exten-
sive research, progressing from traditional fact-
checking approaches to advanced machine learn-
ing and deep learning techniques. Initial methods
primarily relied on manual fact-checking and infor-
mation retrieval, but as the volume of online mis-
information increased, the demand for automated
solutions became imperative. Research in this area
has largely focused on combining natural language
processing (NLP) with machine learning to identify
linguistic and thematic patterns indicative of fake
news. For example, Latent Dirichlet Allocation
(LDA) (Casillo et al., 2021) has been employed
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to reveal hidden topics within news content, high-
lighting patterns that suggest deceptive intent. This
early content-based approach has provided a foun-
dational technique for detecting inconsistencies in
fabricated stories. Supervised learning algorithms,
including support vector machines (SVMs) and ran-
dom forests, have also demonstrated effectiveness
in misinformation classification, leveraging labeled
data to identify fake news.

The advent of deep learning methods, such as
convolutional neural networks (CNNs) and bidi-
rectional long short-term memory networks (BiL-
STMs), further improved detection by capturing
nuanced textual features. Introducing pre-trained
language models (PLMs) like BERT (Devlin et al.,
2019; Kotonya and Toni, 2020; Shu et al., 2019;
Yang et al., 2022a; Atanasova et al., 2020) marked
a significant advancement in the field, as these
models harness vast corpora to recognize complex
language structures, capturing subtler cues of mis-
information. Recent studies have also explored
the role of influential users in amplifying misin-
formation, contributing valuable perspectives for
detection systems targeting social network effects.

Label Train Validation Test
Barely True 1654 237 212
False 1995 263 249
Half True 2114 248 265
Mostly True 1962 251 241
Pants on Fire 839 116 92
True 1676 169 208
Total 10240 1284 1267

Table 1: Dataset Statistics showing the distribution of
labels across training, validation, and test splits.

The automated fact-checking systems have
emerged as essential tools for combating misin-
formation, scaling up the verification process by
cross-referencing claims with authoritative sources.
Complementary approaches, including source ver-
ification, metadata analysis, and digital forensics,
enhance these systems by assessing the credibility
of information sources. A prominent advancement
in this area involves integrating external knowledge
bases (KBs) with PLMs to improve claim verifi-
cation. Models like ERINE (Zhang et al., 2019)
and TagMe (Ferragina and Scaiella, 2010) lever-
age structured factual data from repositories such
as WikiData (Vrandečić and Krötzsch, 2014), al-
lowing for more robust fact-checking by anchor-

ing statements in verified, external data. However,
despite improved accuracy, challenges remain in
ensuring that relevant knowledge is effectively ap-
plied to specific statements, with issues often aris-
ing from the overgeneralization or irrelevance of
incorporated knowledge. Addressing these limita-
tions requires a balance between leveraging exter-
nal data and maintaining relevance to the context
of the claims being verified.

The rise of Generative AI (GenAI) models has in-
troduced new possibilities for scalable misinforma-
tion detection by utilizing advanced language un-
derstanding and generation capabilities (Hu et al.,
2022). Instruction-following models like Instruct-
GPT (Ouyang et al., 2022) and Self-Instruct (Wang
et al., 2023) have demonstrated efficacy in validat-
ing content by following structured prompts, com-
bining data analysis with instruction-based guide-
lines to enhance claim verification. ChatGPT (Ope-
nAI, 2024) adds a conversational aspect to fact-
checking, enabling real-time, interactive validation
through human-like dialogue, though its propri-
etary constraints limit customization for broader
research applications.

Open-source alternatives, such as Stanford’s Al-
paca (Taori et al., 2023) built on the LLaMA frame-
work (Touvron et al., 2023), offer more flexible
options, allowing researchers to integrate external
knowledge sources and customize models for spe-
cific applications. Recent research continues to
explore instruction-following GenAI for misinfor-
mation detection, as seen in (Cheung and Lam,
2023), where external evidence retrieval is com-
bined with instruction-based models, and in (Wang
et al., 2024), which employs prompt-based modules
to generate claim justifications. However, these
models still face significant challenges with hallu-
cinations, particularly in cases lacking structured,
factual grounding. Integrating GenAI models with
knowledge-rich databases can help mitigate this
issue by supporting accuracy and consistency in
generated responses, providing a clearer factual
foundation for misinformation detection.

Our work, KGNewsNet, builds upon these
advancements by addressing key limitations in
GenAI-based misinformation detection models,
particularly the insufficient integration of exter-
nal evidence in models like (Cheung and Lam,
2023). KGNewsNet enhances fake news detection
by combining knowledge graphs (KGs) with the
LIAR-PLUS dataset, leveraging KG embeddings
and attention mechanisms to incorporate structured,
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Index Column Liar-Plus
1 ID 11972.json
2 Label TRUE
3 Statement Building a wall on the U.S.-Mexico border will take literally years.
4 Subject Immigration
5 Speaker Rick Perry
6 Job Title Governor
7 State Info Texas
8 Party Affiliation Republican
9 True Counts 30
10 Mostly True Counts 30
11 Half True Counts 42
12 False Counts 23
13 Pants on Fire Counts 18
14 Context Radio interview

15 Justification

Meantime, engineering experts agree the wall would most likely
take years to complete. Keep in mind, too, that it took more than
six years to build roughly 700 miles of fence and barriers along
the roughly 2,000-mile U.S.-Mexico border.

Table 2: Example entry from the LIAR-PLUS dataset, showcasing metadata such as speaker details, historical
truthfulness counts, and a justification for the claim.

external data into the model more effectively. This
approach provides a grounded, contextually rel-
evant framework that addresses gaps in existing
PLM-based models. Our experimental results in-
dicate a substantial improvement, with KGNews-
Net achieving an accuracy of 0.454, outperforming
comparable models and demonstrating its effective-
ness in misinformation detection.

3 Preliminaries

3.1 Problem Definition
This work aims to develop a model that can ac-
curately classify statements into multiple truthful-
ness categories by leveraging external knowledge
and justifications. Let S = {s1, s2, . . . , sn} and
J = {j1, j2, . . . , jn} represent the set of state-
ments and justification to be classified, where each
statement si and ji is associated with a truthful-
ness label, the goal is to predict its truthfulness
label yi ∈ {c1, c2, . . . , ck}, with k = 6 correspond-
ing to the six truthfulness categories (e.g., true,
mostly true, half-true, barely true, false, and pants
on fire) by considering; The textual content of the
statement si. The corresponding justification Ji
provides factual support or context for the state-
ment. External knowledge K is derived from a
knowledge graph (KG) that includes relevant fac-
tual information. Metadata M , such as the speaker

information and context.
Thus, the classification function can be defined

as:
ŷi = f(si, Ji,K,M)

Where f is the model that learns to map the com-
bination of the statement, justification, external
knowledge, and metadata to the correct truthful-
ness category.

The model aims to minimize the classification
error across all statements in the dataset:

L =
1

n

n∑

i=1

L(f(si, Ji,K,M), yi)

Where L is the loss function (e.g., categorical cross-
entropy loss) and n is the number of statements.

3.2 Dataset
The development of our advanced fact-checking
model began with the use of the LIAR-PLUS
dataset(Alhindi et al., 2018), an enhanced version
of the original LIAR dataset(Wang, 2017). Com-
piled by Alhindi et al.(Alhindi et al., 2018), LIAR-
PLUS consists of approximately 12.8K annotated
short statements. This dataset extends beyond the
original LIAR dataset by incorporating justifica-
tions, which provide essential context and expla-
nations for each statement’s truthfulness classifica-
tion.
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Figure 1: This framework represents the architecture of KGNewsNet computes value P (from TransE embeddings)
and Q (from GPT (Black et al., 2022) embeddings) using attention mechanisms. These, along with metadata vector
R, are concatenated into Z and passed through an MLP for final classification.

The LIAR-PLUS dataset is divided into three
distinct subsets as shown in table ??, each of which
plays a crucial role in model training, validation,
and testing. A key feature of the LIAR-PLUS
dataset is the inclusion of a "Justification" column,
which offers textual explanations or evidence sup-
porting each statement’s verdict. This addition en-
hances the fact-checking process by providing con-
textual information that the model can leverage
when determining the truthfulness of a statement.
By incorporating these justifications, the model
can make more informed and accurate decisions
based on the statement and the rationale behind the
verdict.

Table 2 outlines the feature structure in the LIAR
dataset, where rows 1 to 15 represent various data
points. Feature 1 provides the label, while Feature
2 includes the main statement or news text, which
forms the primary content analyzed for truthful-
ness. Contextual details are provided by features
{4, 5, 6, 7, 8, 15}: feature 4 specifies the subject,
offering insight into the topic; feature 5 identifies
the speaker, establishing the source; feature 6 in-
cludes the speaker’s job title, adding professional
background; feature 7 provides state information,
offering geographical context; feature 8 denotes
the speaker’s party affiliation; and feature 15 offers
additional context to enrich the background of the
statement. Additionally, features {9, . . . , 13} de-

tail the speaker’s historical truthfulness record by
counting previous statements categorized by verac-
ity, which is crucial for assessing credibility and
adds an essential dimension to the analysis.

The wealth of information in the LIAR-PLUS
dataset offered us a unique opportunity to delve
deeper into fact-checking. It allowed our model to
harness the statement’s words and underlying justi-
fications, producing a more nuanced and accurate
understanding of truth in an age where misinforma-
tion often spreads unchecked.

4 Methodology

This section describes the methodology used to
develop our proposed model, KGNewsNet, shown
in Figure 1. The model integrates multiple layers of
textual analysis, knowledge graph embeddings, and
metadata, including sentiment analysis, to improve
the accuracy of fake news detection.

4.1 Attention Module

Let Si and Ji represent the i-th statement and
its corresponding justification, respectively, where
each has up to ni tokens. Each token in Si and Ji
is using GPT-NeoX(Black et al., 2022) to get token
embeddings. Let si,t ∈ RD and ji,t ∈ RD denote
the embedding vectors for the t-th tokens in the
i-th statement Si and justification Ji, respectively.
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Thus, we have

Si = {si,1, si,2, . . . , si,ni}

Ji = {ji,1, ji,2, . . . , ji,ni}
where ni = 512 is the number of tokens in Si and
Ji and padding is applied if Si or Ji contains fewer
than ni tokens.

To capture the alignment between each
statement-justification pair, we compute a matrix
of attention weights αi between Si & Ji. The at-
tention weight αi,t,u between the t-th token in Si

and the u-th token in Ji is given by

αi,t,u =
exp

(
si,t·ji,u√

D

)

∑ni
t=1,v=1 exp

(
si,t·ji,v√

D

) (1)

where si,t · ji,u denotes the dot product between
the t-th token embedding in Si and the u-th token
embedding in Ji, computed as

si,t · ji,u =
D∑

p=1

si,t,p ji,u,p (2)

and D = 150 is the dimensionality of the em-
beddings. The softmax normalization ensures that
αi,t,u forms a probability distribution over the to-
kens in Ji for each token in Si, capturing the rel-
ative alignment of each justification token with
respect to each statement token.

Next, we construct a context-aware representa-
tion ci,t for each token si,t in the statement Si by
computing a weighted sum of the token embed-
dings in Ji based on the attention weights:

ci,t =

ni∑

u=1

αi,t,u ji,u (3)

where ci,t ∈ RD is the attended representation of
the t-th token in Si, taking into account its align-
ment with each token in Ji.

To obtain a single content-based attention vec-
tor Qi for each statement Si that incorporates the
context from the justification Ji, we aggregate the
ci,t vectors across all tokens in Si. We use average
pooling over the ci,t vectors to produce Qi:

Qi =
1

ni

ni∑

t=1

ci,t (4)

Where Qi ∈ RD is the content-based attention vec-
tor that summarizes the alignment between each

statement Si and its corresponding justification Ji
across all tokens. This process effectively cap-
tures token-level alignment for multiple statement-
justification pairs, yielding a context-aware repre-
sentation for each statement based on its justifica-
tion.

4.2 Knowledge Graph Extraction and
Embedding Module

Our dataset contains n statement-justification pairs,
where each statement Si has a corresponding justifi-
cation Ji. For each i-th statement-justification pair,
we use OpenIE6(Kolluru et al., 2020) to extract
structured knowledge graphs in the form of triplets
(h, r, t), where h is the head entity, r is the relation,
and t is the tail entity. For more information about
OpenIE6, please refer to Appendix A.3.

Since a single statement or justification can yield
multiple triplets, we limit the number of extracted
triplets to a maximum of m1 for statements and
m2 for justifications, where m1 = 3 and m2 = 6
as expressed in (Kolluru et al., 2020) it reflects the
length of statements and justifications. Let the sets
of triplets extracted from the i-th statement Si and
justification Ji be represented as:

KGSi = {(hSi,k, rSi,k, tSi,k)}
min(nSi

,m1)

k=1

KGJi = {(hJi,l, rJi,l, tJi,l)}
min(nJi

,m2)

l=1

where nSi and nJi are the total number of possi-
ble triplets extracted by OpenIE6 from Si and Ji,
respectively.

Each triplet (h, r, t) is then represented by em-
beddings h, r, and t using TransE. The TransE
model ensures that the relationship holds by ap-
proximating the translation:

h+ r ≈ t (5)

where h, r, and t are the vector representations
for the head, relation, and tail entities, respectively,
typically in RD where D is the embedding dimen-
sionality.

For each possible pair of triplets from KGSi

and KGJi , we compute the cosine similarity (CS)
between their embeddings. This results in a total
of m1×m2 = M cosine similarity values for each
statement-justification pair. Each pairwise cosine
similarity is computed as follows:

CS((hSi,k, r
S
i,k, t

S
i,k), (h

J
i,l, r

J
i,l, t

J
i,l)) =

hi,k·ti,l√
∥hi,k∥2·

√
∥ti,l∥2

(6)
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Models Accuracy F1-Score
LSTM(Girgis et al., 2018) 0.224 0.217
Hybrid CNN(Girgis et al., 2018) 0.247 0.274
SNN (LM + KG + KG-ENTITY)(Koloski et al., 2022) 0.267 0.267
KnowBert-W+W(Whitehouse et al., 2022) 0.294 0.289
CofCED(Yang et al., 2022b) 0.294 0.295
AC-BiLSTM(Trueman et al., 2021) 0.338 0.351
P_Bi_LSTM(Alhindi et al., 2018) 0.374 0.361
CapsulNet(Goldani et al., 2021) 0.395 -
Hybrid LSTM(Long et al., 2017) 0.407 0.415
DSNDM + Att.(Chernyavskiy and Ilvovsky, 2020) 0.412 0.402

Generative AI Model Performances
ChatGPT(OpenAI, 2024) 0.263 0.251
FactLLaMA(Cheung and Lam, 2023) 0.304 0.299
FactLLaMAknow(Cheung and Lam, 2023) 0.313 0.304
L-DefenseLLaMA2(Wang et al., 2024) 0.328 0.314
L-DefenseChatGPT (Wang et al., 2024) 0.311 0.305
Proposed KGNewsNet without KG 0.441 0.436
Proposed KGNewsNet 0.454 0.450

Table 3: Comparison of the proposed KGNewsNet with previous state-of-the-art models. Results are evaluated
based on Accuracy and F1-Score. The proposed KGNewsNet achieves the best performance.

where hi,k and ti,l are the embeddings of the
head and tail entities in each pair of triplets from
KGSi and KGJi , respectively, and ∥hi,k∥ denotes
the Euclidean norm of vector hi,k.

The final output of this module for each i-th
statement-justification pair is a vector Pi ∈ RM ,
containing cosine similarity scores:

Pi =
[
CS((hSi,k, r

S
i,k, t

S
i,k), (h

J
i,l, r

J
i,l, t

J
i,l))

]m1,m2

k=1,l=1
(7)

This vector Pi captures the alignment between
each combination of triplet pairs across the state-
ment and justification. By iterating through each
of the n statement-justification pairs, we maintain
consistency and manageability in the knowledge
graph representations while capturing detailed rela-
tional alignment within the text.

4.3 Feature Vector Construction and
Classification

To build the final feature vector, we concatenate
the attention module vector Q, KG module vector
P, and metadata features R. The metadata fea-
tures R include the information shown in Table 2,
such as speaker information, party affiliation, and
count information that details the speaker’s histori-
cal truthfulness record. This information, derived
by counting previous statements categorized by ve-
racity, is crucial for assessing credibility and adds

an essential dimension to the analysis. The final
feature vector Z, which is a concatenation of all
the above vectors, is defined as:

Z = [Q∥P∥R] (8)

The feature vector Z is then passed into a Multi-
Layer Perceptron (MLP) for classification, where
the veracity prediction output ŷ is calculated as:

ŷ =
exp(wTZ+ b)∑
k exp(w

T
k Z+ bk)

(9)

where w and b represent the weight vector and bias
for each class in the MLP, and wk and bk are the
weight vector and bias for each potential class k.
To optimize the model, we use categorical cross-
entropy loss:

L = −
N∑

i=1

K∑

k=1

yi,k log(ŷi,k) (10)

where yi is the true label for sample i and ŷi is the
predicted probability for the true class.

The KGNewsNet algorithm, as outlined in Al-
gorithm 1, provides a detailed implementation of
the methodology described in this work. The algo-
rithm highlights how features from attention and
KG alignment are fused with metadata and pro-
cessed through a Multi-Layer Perceptron (MLP)
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Algorithm 1 KGNewsNet: Fake News Detection
Data: S = {Si}: Statements, J = {Ji}: Justifications, R: Metadata, Knowledge Graph Triplets

(Head,Relation,Tail)
Result: Veracity predictions ŷ = {ŷi}
Initialize Embed, attention mechanism, KG embedding lookup, and MLP classifier Set loss function L
for epoch = 1 to N do

foreach batch (Si, Ji,Ri) do
Step 1: Compute token embeddings for statements and justifications:
Si,t = Embed(si,t), Ji,t = Embed(ji,t)

Step 2: Compute attention weights between tokens in Si and Ji:

αi,t,u =
exp(

si,t·ji,u√
D

)
∑ni

t=1,v=1 exp(
si,t·ji,v√

D
)

Step 3: Compute context-aware representation of Si:
Qi =

1
ni

∑ni
t=1

∑ni
u=1 αi,t,uji,u

Step 4: Retrieve KG embeddings for Si and Ji from the lookup dictionary & Compute cosine
similarity between all triplet pairs:
CS((hSi,k, r

S
i,k, t

S
i,k), (h

J
i,l, r

J
i,l, t

J
i,l)) =

hi,k·ti,l√
∥hi,k∥2·

√
∥ti,l∥2

Construct the cosine similarity vector:

Pi =
[
CS((hSi,k, r

S
i,k, t

S
i,k), (h

J
i,l, r

J
i,l, t

J
i,l))

]m1,m2

k=1,l=1

Step 5: Concatenate features from attention, KG embeddings, and metadata:
Zi = [Qi∥Pi∥Ri]

Step 6: Perform classification using MLP:
ŷi = Softmax(WZi + b)

Step 7: Compute loss and update model parameters:
L = −∑N

i=1

∑K
k=1 yi,k log(ŷi,k)

end
Step 8: Evaluate metrics on validation data

end
Result: Compute ŷi for unseen Si, Ji using trained parameters.

for final classification. By following the step-by-
step process.

Time Complexity: The overall time complexity
of KGNewsNet algorithm 1 is O(N ·B · (T · E +
T 2 ·D+T 2 ·D+m1 ·m2 ·D+D+L ·D2)), where
N is the number of epochs, B is the batch size, T
is the token sequence length, E is the embedding
computation cost, D is the embedding dimensions,
m1 and m2 are the numbers of triplets in statements
and justifications, and L is the number of MLP
layers.

5 Experiments and Results

In this section, we present the experimental setup
and results of our proposed model, KGNewsNet,
as well as its comparison with other state-of-the-
art models for fake news detection. The experi-
ments are conducted on the LIAR-PLUS dataset,
and the results demonstrate how the integration
of statement, justification, and external knowledge
representations leads to significant performance

improvements. We use accuracy and F1-score as
the evaluation metrics to benchmark KGNewsNet’s
performance.

5.1 Experimental Setup

The experiments were conducted in a cloud envi-
ronment with 40 vCPUs, a Tesla V100-PCIE GPU
with 32GB of memory, and 256GB of RAM, pro-
viding ample resources for efficient model training.
We used the LIAR-PLUS dataset (Alhindi et al.,
2018) for veracity prediction, leveraging tokeniza-
tion, padding or truncating to a fixed length, and
embedding generation as outlined in the Method-
ology section. KGNewsNet was trained using the
LIAR-PLUS dataset (Alhindi et al., 2018), with
preprocessing and embedding techniques outlined
in the Methodology section. Additional details re-
garding the parameter details for result replication
are provided in Appendix A.1.
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5.2 Results

Table 3 presents the performance of KGNewsNet
compared with previous state-of-the-art models, in-
cluding traditional models, advanced architectures,
and recent Generative AI approaches. Traditional
models such as LSTM (Girgis et al., 2018), Hybrid
CNN (Girgis et al., 2018), and KnowBert-W+W
(Whitehouse et al., 2022) achieve moderate accu-
racy scores of 0.224, 0.247, and 0.294, respectively.
Their limited performance can be attributed to the
absence of structured knowledge integration, which
restricts their ability to capture contextual and rela-
tional nuances in statements and justifications.

Advanced architectures, such as CapsuleNet
(Goldani et al., 2021) and Hybrid LSTM (Long
et al., 2017), introduce richer representational tech-
niques, achieving accuracy scores of 0.395 and
0.407, respectively. Generative AI models like
FactLLaMAknow (Cheung and Lam, 2023) and L-
DefenseLLaMA2 (Wang et al., 2024) show incre-
mental gains, with accuracies of 0.313 and 0.328.
However, these models struggle to match KGNews-
Net’s performance due to their lack of explicit
knowledge integration. Generative models rely on
pre-trained contextual embeddings but lack mecha-
nisms to align statements with external knowledge,
making it difficult to validate claims effectively.
Furthermore, their probabilistic nature and sensi-
tivity to prompt design often result in inconsistent
performance, particularly for claims requiring nu-
anced reasoning or factual grounding.

KGNewsNet demonstrates the effectiveness of
integrating Knowledge Graph (KG) embeddings
to address these limitations. By leveraging KG
triplets, the model achieves an accuracy of 0.454
and an F1-score of 0.450, outperforming all other
methods. This improvement underscores the im-
portance of knowledge grounding in aligning state-
ments and justifications. The KG module enhances
token-level alignment and enriches the content-
based attention vector, enabling the model to cap-
ture complex relationships effectively.

As outlined in Algorithm 1, KGNewsNet’s com-
putational complexity. Unlike traditional models
with linear operations or generative models rely-
ing on token embeddings, KGNewsNet introduces
additional computational cost through explicit pair-
wise alignment between statements and justifica-
tions. This higher complexity enables superior per-
formance in tasks requiring structured support and
nuanced veracity detection.Additionally, Appendix

A.2 illustrates triplet alignment and prediction re-
sults (Tables 4 and 5), showing strong alignment in
"true" cases and partial alignment in "barely-true"
or "half-true" cases. These examples highlight
KGNewsNet’s ability to capture contextual rela-
tionships while revealing challenges in distinguish-
ing closely related truthfulness categories, pointing
to potential refinements for interpreting nuanced
distinctions.

6 Conclusion

This paper presents KGNewsNet, a model for fake
news detection that harnesses statements, justifi-
cations, metadata, and external knowledge graph
embeddings to enhance classification performance.
The results indicate that incorporating external
knowledge sources and meticulously extracting
features from both statements and justifications
are pivotal in advancing fake news detection ac-
curacy. While the model achieves strong overall
performance, there remain opportunities for im-
provement, particularly in addressing complex fi-
nancial statements and nuanced claims requiring
intricate reasoning.

7 Limitations

KGNewsNet demonstrates significant potential in
leveraging Knowledge Graph (KG) triplet align-
ment for veracity assessment but faces several lim-
itations. The reliance on OpenIE6 for triplet ex-
traction often generates lengthy or overly detailed
triplets, which can dilute focus on critical infor-
mation and complicate alignment. The evaluation,
conducted exclusively on the LIAR-PLUS dataset,
aligns well with the model’s capabilities but limits
its generalizability to datasets with less structured
justifications or evidence-based fact-checking (e.g.,
FEVER). Extending evaluations to diverse datasets
and optimizing the computational overhead of KG
embedding and triplet alignment processes remain
key areas for future work. Additionally, further
improvements in explainability, such as visualizing
triplet alignment or providing user-friendly insights
into the model’s decisions, would enhance its ap-
plicability in real-world fact-checking scenarios.
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A Appendix

A.1 Parameter Details
The experiment is conducted on LIAR-PLUS
dataset (Alhindi et al., 2018) for veracity predic-
tion, leveraging tokenization, padding or truncating
to a fixed length, and embedding generation as
outlined in the Methodology section. For classifica-
tion, an MLPClassifier with the Adam solver was
configured to ensure effective optimization. The
learning rate initialization was set to 0.001, and
the learning rate scheduling was adaptive, reduc-
ing the rate if no improvement was observed in
validation performance, aiding convergence. The
network architecture consisted of a single hidden
layer with 50 neurons, balanced for computational
efficiency and model complexity. ReLU activation
was used to expedite training, and the batch size
was set to ’auto’, adjusting based on available mem-
ory. Additional controls included a tolerance level
(tol) of 0.0001 to set a minimum threshold for per-
formance improvement, and an early stopping cri-
terion n_iter_no_change=10, halting training if no
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Statement triplets: (Americans, working, now), (Americans, working, 70s), (Americans, working,
less than in the 70s)
Justification triplets: (Hartzler, talking about, decade of the 70s), (first eight years of the 70s,
employment-population ratio, lower than 2015),
(first eight years of the 70s, labor force participation rate, lower than 2015), (employment-population
ratio, comparison, 2015 vs. 70s),
(labor force participation rate, comparison, 2015 vs. 70s), (decade of the 70s, employment-popula-
tion and labor force participation, lower than 2015)
Explanation: The label is "barely-true." Partial alignment occurs as the justification triplets provide
historical employment data in the 70s, but there’s no direct comparison with "now," supporting only
a partial truth.
Statement triplets: (Republicans, attacks, programs in stimulus plan), (programs in stimulus plan,
not stimulative, less than 1 percent),
(programs, account for, less than 1 percent of package)
Justification triplets: (Obama, point, perspective in order), (legislators, quibbling over, small
portion of spending), (publicized projects, represent, small portion of spending),
(Republicans, said, large percentages of stimulus plan not stimulative), (stimulus plan, criticized by,
Republicans), (spending, ineffective use of, taxpayer money)
Explanation: The label is "half-true." Some alignment occurs as the justification acknowledges the
criticism but lacks specifics about "less than 1 percent," resulting in partial support consistent with
the "half-true" label.
Statement triplets: (Canada, created, more jobs), (time period, January), (Canada, created, more
jobs than U.S.)
Justification triplets: (November 2010, U.S. economy created, 93,000 jobs), (December 2010,
U.S. created, 121,000 jobs),
(recent months, U.S. job creation, exceeded Canada only in October), (January, U.S. job creation,
especially low), (January, Canadian job creation, especially high),
(comparison, job creation, Canada vs. U.S.)
Explanation: The label is "true." Strong alignment as the justification confirms high Canadian job
creation relative to the US in January, fully supporting the statement and matching the "true" label.

Table 4: Case Study of Triplet Alignment Between Statements and Justifications for Veracity Labels by highlighting
aligned justification triplets. For "true" labels, strong alignment with multiple highlighted triplets provides clear
support, while partial alignment in "half-true" or "barely-true" cases indicates incomplete support. The use of a
Knowledge Graph (KG) structures these comparisons, capturing subtle distinctions and improving the accuracy of
veracity assessment.

improvement was observed for 10 iterations. Early
stopping was applied to prevent overfitting, and
validation performance was monitored throughout
training. This setup, with adaptive learning rates,
controlled complexity, and early stopping, was op-
timized to achieve stable convergence and reliable
generalizability on the LIAR-PLUS dataset.

A.2 Case study

Table 4 presents case studies that illustrate how
our methodology, KGNewsNet, uses structured
triplet alignment between statements and justifi-
cations to assess veracity accurately. In each ex-
ample, KGNewsNet extracts key entities and rela-
tionships from both statements and justifications,

creating triplets that are compared to determine fac-
tual alignment. By leveraging Knowledge Graph
(KG) embeddings, our model captures not only the
semantic content of each entity but also its con-
textual relationship within the statement, enabling
nuanced verification.

For "true" labels, strong alignment is observed,
with multiple justification triplets highlighted in
green, providing direct and clear support for the
statement. For instance, in the "Canada created
more jobs than the U.S." example, both statement
and justification triplets align on key factors like
"job creation," "January," and "comparative per-
formance," resulting in a high degree of factual
support. This alignment showcases KGNewsNet’s
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Statement Justifications Label Prediction
Pregnant women are at an
increased risk of pre-term
pregnancy by 80 percent.

"The statement attributes the statistic to the
Women’s Fund of Rhode Island".

barely-true barely-true

Elizabeth Warren lied
about wanting to abolish
the Federal Minimum
Wage.

"Trump said, "Elizabeth Warren lied about
abolishing the Federal Minimum Wage." Yet,
when Trump was asked if he would have a fed-
eral floor with states going higher, he replied,
"No." She simply used Trump’s own words".

barely-true false

Every dollar the state
spent on audits last year
delivered $64 in cost sav-
ings.

"Brown said that for every dollar the Secretary
of State spent on audits last year, it found $64
in cost savings. However, the total potential
savings might be underestimated".

true barely-true

Public display of a long
rifle is perfectly legal in
Texas.

"Texas law explicitly restricts handguns and
some other weapons from being openly car-
ried around. However, the law is silent on long
rifles, meaning that their public display is le-
gal".

true true

We were the last flag fly-
ing in Benghazi.

"The meaning of the phrase "last flag flying"
shifted from its original meaning as politicians
used it as a rhetorical talking point. In his tes-
timony, the phrase was used more rhetorically
than literally".

false false

Table 5: Prediction Results of KGNewsNet

ability to interpret context-sensitive data accurately,
supported by the structured comparison of triplets
that validates the statement comprehensively.

In contrast, examples with "half-true" or "barely-
true" labels show only partial alignment, with fewer
highlighted triplets in the justification. For the
statement "Republicans attack the stimulus plan
for programs that account for less than 1 percent
of spending," some alignment is achieved as the
justification acknowledges similar criticisms. How-
ever, it lacks explicit confirmation of the "less than
1 percent" detail, reflecting partial support for the
statement. This partial alignment, captured through
KG-guided triplet comparison, helps KGNewsNet
differentiate between full and partial truths.

By structuring comparisons with KG triplets,
KGNewsNet effectively reduces ambiguity in cases
with close but distinct veracity labels. Table 5 fur-
ther illustrates KGNewsNet’s performance, where
it accurately captures veracity by aligning enti-
ties, relationships, and contexts in diverse exam-
ples, including statements about economic data,
policy claims, and public figures. This structured
approach allows KGNewsNet to distinguish be-
tween factual alignment levels, refining its predic-

tions with a greater degree of accuracy than con-
ventional models. Through KG triplet alignment,
our model benefits from enhanced tructured repre-
sentation, yielding consistent and reliable veracity
assessments across challenging, context-dependent
statements.

A.3 OpenIE6

Our methodology leverages OpenIE6 for extract-
ing structured triplets from statements and justifica-
tions, which enhances the accuracy and efficiency
of Open Information Extraction (OpenIE) through
its novel Iterative Grid Labeling (IGL) approach.
OpenIE6 frames extraction as a 2-D grid labeling
task, where rows represent potential extractions,
and columns correspond to words in the sentence.
This design enables rapid extraction processing
without compromising on quality, as it reduces the
need for repeated encoding steps common in earlier
OpenIE systems.

To improve extraction comprehensiveness, Ope-
nIE6 imposes constraints during training to ensure
high recall, incorporating penalties for omitted in-
formation. Furthermore, it addresses complex co-
ordination structures, such as conjunctive phrases,
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Parameter Description
–mode splitpredict Enables prediction mode, allowing the

model to split conjunctive structures for
better extraction.

–inp sentences.txt Specifies the input file containing sen-
tences for which triplet relations are ex-
tracted.

–out predictions.txt Sets the output file where extracted
triplets will be saved.

–rescoring Applies a rescoring mechanism to en-
hance prediction accuracy.

–task oie Defines the task as Open Information
Extraction (OIE).

–gpus 1 Configures the process to run on one
GPU for computational efficiency.

–oie_model
models/oie_model/epoch=14_eval_acc=0.551_v0.ckpt

Path to the pre-trained OpenIE model
used for relation extraction.

–conj_model
models/conj_model/epoch=28_eval_acc=0.854.ckpt

Path to the conjunction handling model
that processes compound structures.

–rescore_model models/rescore_model Path to the rescoring model to refine
extraction accuracy.

–num_extractions m1 = 3 & m2 = 6 Limits the number of extractions per
sentence to a maximum of m1 = 3 for
statements and m2 = 6 for justifica-
tions.

Table 6: Parameters used to configure OpenIE6 for triplet relation extraction tasks.

through a specialized coordination analyzer built
on the same grid-based framework. This unique
combination of constraints and coordination han-
dling allows OpenIE6 to set new standards in Ope-
nIE performance, achieving notable improvements
in recall and extraction quality at speeds up to 10
times faster than prior models.

Table 6 outlines the key parameters used to con-
figure OpenIE6 for our triplet extraction tasks.
These settings include options for mode, in-
put/output file handling, rescoring, GPU usage, and
model paths for specific tasks, ensuring optimized
processing for our experimental setup. We limited
extractions to a maximum of m1 = 3 triplets for
statements and m2 = 6 triplets for justifications to
maintain extraction relevance and computational
efficiency.
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Abstract

Text style transfer is the task of modifying the
stylistic attributes of a given text while preserv-
ing its original meaning. This task has also
gained interest with the advent of large lan-
guage models. Although knowledge graph aug-
mentation has been explored in various tasks,
its potential for enhancing text style transfer has
received limited attention. This paper proposes
a method to create a Style Knowledge Graph
(SKG) to facilitate and improve text style trans-
fer. The SKG captures words, their attributes,
and relations in a particular style, that serves
as a knowledge resource to augment text style
transfer. We conduct baseline experiments to
evaluate the effectiveness of the SKG for aug-
menting text style transfer by incorporating rel-
evant parts from the SKG in the prompt. The
preliminary results demonstrate its potential for
enhancing content preservation and style trans-
fer strength in text style transfer tasks, while
the results on fluency indicate promising out-
comes with some room for improvement. We
hope that the proposed SKG and the initial ex-
periments will inspire further research in the
field.

1 Introduction

Text style transfer (TST) is the task of modify-
ing particular stylistic features of a text while pre-
serving its original meaning. The task involves
rewriting a text to match several stylistic attributes
such as sentiment, formality, or politeness without
changing the semantic meaning. With the emer-
gence of large language models (LLMs), their ap-
plication for TST gained attention primarily fo-
cused on prompting techniques (Reif et al., 2022;
Suzgun et al., 2022) that reduce the need for ex-
tensive parallel datasets. Other approaches like
fine-tuning (Mukherjee and Dušek, 2023), rein-
forcement learning (Deng et al., 2022), knowledge
augmentation (Zong et al., 2024), and others (Lai

Figure 1: Examples for zero-shot and SKG-augmented
zero-shot prompts for text style transfer that were used
to evaluate and compare the proposed style knowledge
graph.

et al., 2024; Pan et al., 2024) have also inspired
recent research.

Knowledge graphs (KGs) provide a structured
representation of knowledge that enables efficient
organization and retrieval across various domains.
By integrating structured knowledge from KGs,
LLMs can provide more accurate and contextually
relevant outputs. We believe that combining both
structured knowledge representation in KGs and
the generative capabilities of LLMs has the poten-
tial to improve text style transfer tasks. While aug-
mentation with KGs has been explored for many
tasks, to the best of our knowledge, its application
in text style transfer remains relatively understud-
ied. Existing research is primarily focused on in-
tegrating knowledge base information to provide
particular words for the desired style (Xu et al.,
2022), similar sentences to the input to provide
context (Toshevska and Gievska, 2024) or guide-
lines for the desired style (Zong et al., 2024).
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Figure 2: Overview of the prompting strategies. a) Standard prompting. b) Prompting augmented with SKG.

To combine the advantages of both approaches
and facilitate further research in the field, we pro-
pose a Style Knowledge Graph (SKG) for text style
transfer. The SKG is designed to capture words,
their attributes, and relations for various styles with
the aim of providing a source of knowledge that can
enhance text style transfer. To evaluate the effec-
tiveness of the proposed SKG we perform several
prompting experiments where parts of the proposed
SKG, that are relevant to the particular input sen-
tence, are provided in the prompt. An example of
the used prompts is shown in Table 1. We hope that
the proposed SKG and the preliminary experiments
will motivate further research.

The main contributions of the paper are: (1) We
propose a knowledge graph for text style transfer,
which we refer to as a Style Knowledge Graph
(SKG). (2) We evaluate the effectiveness of aug-
menting text style transfer with SKG via prompting.
(3) We analyze the influence of various parts of the
SKG on the text style transfer task.

The rest of the paper is organized as follows.
A brief introduction of previous text style transfer
methods and knowledge augmentation is presented
in Section 2. The definition and creation process
of SKG is provided in Section 3. The preliminary
experiments and baseline results are presented in
Section 4 and Section 5, respectively. Section 6
concludes the paper.

2 Related Work

Before the advent of LLMs, TST methods
commonly employed encoder-decoder architec-
tures (Sutskever et al., 2014), Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014),
and Reinforcement Learning (RL) (Williams,
1992). The methods based on encoder-decoder
comprise an encoder to produce a style-neutral rep-
resentation and a decoder to generate a sentence
in the desired style, often augmented by additional
components such as style classifiers (Lample et al.,

2019; Xu et al., 2019; Cheng et al., 2020), and
style embeddings (Li et al., 2018). GAN-based
approaches use a generator to produce a sentence
in the target style trained with adversarial objec-
tives (Hu et al., 2017; Shen et al., 2017; Fu et al.,
2018). RL-based approaches use a reward-based
system to generate sentences in the desired style, by
using multi-part rewards combining content preser-
vation, style change, and fluency (Luo et al., 2019).

Prompting techniques are among the first ap-
proaches for text style transfer with LLMs, that
explore zero-shot and few-shot techniques. Aug-
mented zero-shot (Reif et al., 2022) explores a
vanilla prompt that specifies the target style aug-
mented with a single set of exemplars within the
prompt to include a variety of sentence rewriting
operations instead of exemplars specific to the
target style. In addition to the vanilla prompt,
Prompt&Rerank (Suzgun et al., 2022) explores
a contrastive prompt to specify both the source
and the target style that create a clear contrast be-
tween them, and two negation prompts to specify
the target style as a negation of the source style
and vice versa. Several approaches focus on edit-
ing the input sentence via prompting. PromptE-
dit, assesses TST as a text classification task with
the goal of generating candidate sentences with an
edit-based search algorithm that employs insertion,
deletion, and replacement as edit operations, and
then determining a style score for them with an
LLM (Luo et al., 2023). PEGF utilizes two-way
prompting that first identifies stylistic words as
words with a score higher than a particular thresh-
old via an initial prompt and then edits those stylis-
tic words via implicit or explicit masking with a
second prompt (Liu et al., 2024).

Continuing the research in the prompting di-
rections, our proposed method introduces a style
knowledge graph to augment text style transfer by
including relevant parts of the graph in the prompt.
Unlike previous research that relies primarily on

124



Dataset Style 1 (s1) Style 2 (s2) Parallel? # Samples Task
Yelp negative positive ✗ 428,632 sentiment transfer

Politeness neutral polite ✗ 371,018 politeness transfer
GYAFC informal formal ✓ 330,060 formality transfer
WNC biased neutral ✓ 111,006 neutralizing

subjective bias
Shakespeare modern Shakespearean ✓ 42,150 personal style transfer
ParaDetox toxic neutral ✓ 31,302 detoxification

Table 1: Statistics for the text style transfer datasets.

Figure 3: A visual representation of the style knowledge graph. The graph contains four types of nodes: nouns,
verbs, adjectives, and adverbs; and six types of edges: PMI from style 1, PMI from style 2, synonyms, antonyms,
hyponyms, and hypernyms.

generative capabilities or edit-based techniques,
our approach aims to provide structured knowl-
edge in the form of word suggestions to assist the
LLM in the word choices for the output sentence.
The combination of knowledge graphs and LLMs
opens new directions for further research in the
domain.

3 Style Knowledge Graph

3.1 Text Style Transfer Datasets

Text style transfer methods were evaluated using
many parallel and non-parallel datasets. We se-
lected a set of datasets that were mostly used for
assessing text style transfer methods which we be-
lieve have the potential to foster further research in
the field. The total number of datasets is six: Yelp1,
Politeness (Madaan et al., 2020), GYAFC (Rao
and Tetreault, 2018), WNC (Pryzant et al., 2020),
Shakespeare (Xu et al., 2012; Xu, 2014), and Pa-
raDetox (Logacheva et al., 2022). Their statistics
are summarized in Table 1.

1https://www.yelp.com/dataset, last visited: 05.09.2024

3.2 Style Knowledge Graph Creation
We create a heterogeneous graph for each text
style transfer dataset which we refer to as Style
Knowledge Graph (SKG).2 The graph contains
four types of nodes: nouns, verbs, adjectives, and
adverbs; and six types of edges: PMI from style 1,
PMI from style 2, synonyms, antonyms, hyponyms,
and hypernyms. A visual representation of the
graph is shown in Figure 3.

3.2.1 Nodes
Nodes in the SKG are derived from the words that
are present in the corresponding text style transfer
dataset as follows. For each word in the sentences,
its grammatical category is determined using the
Part-of-Speech (PoS) tagger available in the NLTK
Python library3. Based on the determined cate-
gory, the words are grouped into four node types.
Considering that a word may have a different cate-
gory in a different sentence, the same word may be
present as two different nodes. Each pair of words
and categories that appear at least once is part of
the candidate node set. For each node (word and

2The official GitHub repository for this paper is:
https://github.com/mtoshevska/SKG

3https://www.nltk.org/, last visited: 05.09.2024
125



Yelp Politeness GYAFC WNC Shakespeare ParaDetox
Nouns 32,715 14,255 5,391 9,426 2,077 2,343
Verbs 10,453 5,622 3,789 4,435 1,336 864

Adjectives 15,646 5,020 3,025 6,839 732 807
Adverbs 2,306 891 889 1,467 287 174
# Nodes 61,120 25,788 13,094 22,167 4,432 4,188
PMI s1 136,107 95,284 27,734 400,521 3,966 3,614
PMI s2 573,226 241,565 18,540 367,898 3,213 1,417

Synonyms 14,202 10,763 5,731 18,443 2,448 585
Antonyms 523 668 392 1,576 116 13
Hyponyms 16,637 16,962 7,705 26,961 3,169 234

Hypernyms 14,042 16,129 6,538 25,840 2.834 219
# Edges 754,737 381,371 66,640 841,239 15,746 6,082

Table 2: Graph statistics (number of nodes and edges) for the six style knowledge graphs.

its grammatical category), we calculate the polari-
ties (Li et al., 2018) in both styles using the Eq. 1:

p(w, si) =
count(w,Dsi) + λ

count(w,Dsj ) + λ
(1)

where count(w,Dsi) is the number of times a
word w appears in the set Dsi of sentences with
style si, and λ is the smoothing parameter. Then
the absolute difference between both polarities is
computed. The first 20% of the words with the
highest polarity difference compose the final set of
nodes for the graph.

3.2.2 Edges
The edges in the graph belong to two categories
based on the creation technique: edges based on
the information extracted from the corresponding
text style transfer dataset and edges based on Word-
Net (Miller, 1995) semantic relations. Edges are
created only between nodes in the final set.

To create edges based on the text style transfer
datasets, we calculated point-wise mutual informa-
tion (PMI) in a particular style si for a pair of nodes
m and n (Yao et al., 2019) using the Eq 2:

PMI(m,n, si) = log
p(m,n, si)

p(m, si) · p(n, si)
(2)

p(m,n, si) =
#W (m,n, si)

#Wsi

(3)

p(m, si) =
#W (m, si)

#Wsi

(4)

where #W (m,n, si) is the number of sliding win-
dows that contain both words m and n, #W (m, si)
is the number of sliding windows that contain word

m, and #Ws1 is total number of sliding windows
in the corpus. A positive PMI value implies a high
semantic correlation of words in the dataset and
therefore we add an edge between a pair of nodes
for which the PMI value in the corresponding style
is greater than 0. Two sets of edges are created for
the two styles.

We used the WordNet implementation in the
NLTK Python library to extract semantic relations
between words. For each word in the final set of
nodes, we extracted four semantic relations: syn-
onyms, antonyms, hyponyms, and hypernyms. The
grammatical category of the word is also consid-
ered when extracting the semantic relations. Since
our nodes set contains only a subset of the total
words, an edge is added only if the two nodes are
already part of the graph. The statistics for the six
SKGs are summarized in Table 2.

4 Baseline Experiments

4.1 Text Style Transfer Tasks and Datasets
We performed prompting experiments to evaluate
the effectiveness of augmenting text style transfer
tasks with a style knowledge graph. For the prelim-
inary results, we evaluate the approach on four text
style transfer tasks using the parallel datasets and
the created SKGs described in the previous section:
formality transfer with the GYAFC dataset, neu-
tralizing subjective bias with the WNC dataset, per-
sonal style transfer with the Shakespeare dataset,
and text detoxification with ParaDetox dataset.

4.2 SKG-augmented Prompting
Two prompting strategies were explored for text
style transfer across our selected tasks. An example
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Model Technique rBLEU↑ sBLEU↓ Acc↑ PPL↓ GM2↑ GM3↑
Standard prompting

T5small 0-shot 12.7 52.4 49.4 185.4 25.0 21.6
T5base 4-shot 10.9 13.9 27.8 262.8 17.4 16.6

FLAN-T5small 1-shot 38.7 40.9 71.0 396.8 52.4 34.0
FLAN-T5base 1-shot 36.6 47.2 73.9 229.7 52.0 34.8

Prompting augmented with SKG
T5small 1-shotSKG 10.8 27.5 17.2 395.3 13.7 13.9
T5base 4-shotSKG 12.4 17.8 18.5 456.6 15.1 14.8

FLAN-T5small 1-shotSKG 46.8 23.6 73.7 461.9 58.7 36.4
FLAN-T5base 1-shotSKG 48.9 25.8 88.0 201.4 65.6 40.9

Table 3: Zero-shot and few-shot performance with standard prompting and prompting augmented with SKG for
formality transfer on the GYAFC dataset. Only the best result per model is shown. rBLEU - reference-BLEU.
sBLEU - self-BLEU. Acc - Accuracy. PPL - Perplexity. GM2 - Geometric Mean (rBLEU and Acc). GM3 -
Geometric Mean (rBLEU, Acc, and PPL). The best value is bold and the second best is underlined.

of the two prompting strategies is shown in Fig-
ure 1. The first approach employs a simple prompt
that specifies only the input and desired target style
designed following the recommendations from re-
lated research that evaluate prompting techniques
for text style transfer. It was used as a baseline
for comparison. The second approach integrates
style-relevant semantic information from a style
knowledge graph to enrich the prompt with con-
textually relevant alternatives that guide the model
toward generating outputs in line with the desired
style attributes. Beginning with identifying the top
three words in the input sentence with the highest
target style polarity, a corresponding subgraph is
extracted from the style knowledge graph for each
of the three words. The semantic relations of the
top three words (synonyms, antonyms, hyponyms,
and hypernyms) are added to the prompt to enrich
the input with contextual clues. For both prompting
strategies, we experimented with zero-shot and few-
shot settings. An overview of the two strategies is
displayed in Figure 2.

4.3 Evaluation metrics

Evaluation has been performed across three dimen-
sions to comply with the previous research in the
field. The semantic content preservation was eval-
uated with the BLEU (Papineni et al., 2002) met-
ric. The Prompt-and-Rerank (Suzgun et al., 2022)
method proposed using self-BLEU (sBLEU) to
measure the degree to which the model directly
copies the input sentence and reference-BLEU
(rBLEU) to measure the distance from the ground-
truth references. We also report on these two met-

rics. Style transfer strength was calculated with the
accuracy of a pre-trained DistilRoBERTa (Sajjad
et al., 2020) model on the style detection task as a
percentage of the generated sentences labeled with
the target style by the model. To measure the flu-
ency, the perplexity of the generated sentences with
a pre-trained GPT-2 (Radford et al., 2019) model
was computed. Several studies (Li et al., 2018;
Luo et al., 2019, 2023) use the geometric mean of
rBLEU and accuracy to compute a single joint met-
ric. While we calculated the two-fold joint metric,
we also included the inverse perplexity value to
compute a three-fold joint metric that integrates the
three evaluation dimensions. The inverse perplexity
was computed using the Eq. 5:

PPLinv =
1

1 + ln(PPL)
(5)

4.4 Implementation Details

For both prompting strategies, we assess the perfor-
mance of multiple LLMs that encompass different
parameter sizes: T5 (Raffel et al., 2020) and FLAN-
T5 (Chung et al., 2022). Following the previous
studies, we experiment with zero-shot and few-shot
settings. For the few-shot setting, we explored with
1, 2, 3, and 4 demonstrations. We have used Py-
Torch implementation of the models available in
the HuggingFace Transformers library4 and evalua-
tion metrics available in the HuggingFace Evaluate
library5.

4https://huggingface.co/docs/transformers/en/index, last
visited: 15.09.2024

5https://huggingface.co/docs/evaluate/en/index, last vis-
ited: 15.09.2024
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5 Results and Discussion

In this section, we present the main results for the
proposed approach of augmenting text style trans-
fer with SKG which we hope to serve as a baseline
for comparison of further research in the field. Due
to space limitations, we present only the results
for formality transfer. For the results on the other
datasets and results with other LLMs for the for-
mality transfer task on the GYAFC dataset, we
encourage the reader to refer to the Appendix.

5.1 Main Results

Table 3 presents the evaluation results of standard
prompting and prompting augmented with SKG.
Both prompting strategies were evaluated on four
models: T5small, T5base, FLAN-T5small, and FLAN-
T5base. A total of five experiments were performed
for each model and prompting strategy. For brevity,
only the best-performing one in terms of geometric
mean is shown.

The evaluation results suggest that SKG-
augmented prompting improves content preserva-
tion for formality transfer, as demonstrated by
higher rBLEU and lower sBLEU scores when com-
pared with standard prompting. A possible reason
may be the structure of the prompt that provides
specific word choices. This approach includes spe-
cific word suggestions as part of the input prompt
that help the model to choose particular words for
the output sentence.

For style transfer strength, FLAN-T5 achieved
higher accuracy with SKG-augmented prompting,
while T5 achieved higher accuracy with standard
prompting. FLAN-T5, which is an instruction-
tuned LLM, may benefit more from structured
prompts that offer more context for the word
choices that align with the desired target style. The
prompt design closely resembles the instruction
setting that was used for training. Both geometric
mean scores further confirm this hypothesis.

Although SKG-augmented prompting improves
content preservation and in some cases improves
style transfer strength, this approach fails to re-
tain the fluency for three out of four models. As
indicated by the higher perplexity, we observe a
decrease in fluency in the SKG-augmented setting.
A possible reason may be the word suggestions in
the prompt that potentially increase the complexity
and result in less fluent outputs. By adding particu-
lar word suggestions, sometimes the model tends
to copy and include them in the output which has

rBLEU sBLEU Acc PPL
0-shot 18.4 72.2 22.6 4935.6
1-shot 48.9 25.8 88.0 201.4
2-shot 44.9 29.7 74.8 338.2
3-shot 42.1 32.3 69.3 318.6
4-shot 40.0 32.7 61.8 635.2

Table 4: Comparison of different number of demonstra-
tions in the prompt for our best-performing approach for
SKG-augmented prompting (FLAN-T5base). rBLEU -
reference-BLEU. sBLEU - self-BLEU. Acc - Accuracy.
PPL - Perplexity. The best value is bold and the second
best is underlined.

a potential negative impact of fluency. To address
this limitation a future direction would be to exper-
iment with LLMs with more parameters, as these
models are typically more fluent.

5.2 Effect of Number of Demonstrations in
the Prompt

Our best-performing model for formality transfer
is FLAN-T5base augmented with SKG in a one-
shot setting. For further analysis, we use only this
model. Next, we explore how the different num-
ber of demonstrations in the prompt affects the
performance. Following the prior studies, we ex-
perimented with 0-4 demonstrations. The results
are summarized in Table 4. The results suggest
that the best performance is achieved with a single
demonstration i.e. in a one-shot setting. One-shot
prompting yielded the highest rBLEU and accuracy,
and the lowest perplexity and sBLEU.

The zero-shot approach showed the worst per-
formance across all metrics, with a significant de-
crease in fluency. We hypothesize that the absence
of demonstrations negatively impacts the capabil-
ity of generating fluent outputs in the desired tar-
get style. While there is an improvement with the
switch from a zero-shot to a one-shot setting, fur-
ther increasing the number of demonstrations also
results in lower performance. In contrast to pre-
vious findings, in our approach, adding additional
examples in the prompt may introduce complexity
that reduces overall performance.

5.3 Comparison with Pre-LLM and
LLM-based methods

Table 5 shows the performance of our best model
against previous LLM and pre-LLM approaches. In
comparison with pre-LLM unsupervised methods,
SKG-augmented prompting showed competitive
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Approach rBLEU↑ sBLEU↓ Acc↑ PPL↓
Pre-LLM approaches

CAAE (Shen et al., 2017) 17.9 - 75.3 -
DeleteOnly (Li et al., 2018) 29.2 - 18.8 -

DeleteAndRetrieve (Li et al., 2018) 21.2 - 55.2 -
MultiDecoder (Fu et al., 2018) 12.3 - 17.9 -

StyleEmbedding (Fu et al., 2018) 7.9 - 22.7 -
DualRL (Luo et al., 2019) 41.9 - 71.1 -

LLM approaches
P&R (Suzgun et al., 2022) 36.4 49.6 85.0 68.0

PromptEdit (Luo et al., 2023) 37.7 50.2 81.0 87.0
PEGF (Liu et al., 2024) 38.2 46.4 88.0 31.0

SKGPrompt (Ours) 48.9 25.8 88.0 201.4

Table 5: Comparison of our best-performing approach for SKG-augmented prompting with previous pre-LLM
and LLM-based approaches for formality transfer on the GYAFC dataset. rBLEU - reference-BLEU. sBLEU -
self-BLEU. Acc - Accuracy. PPL - Perplexity. The best value is bold and the second best is underlined. The results
for previous approaches were obtained either from the original papers that introduce the particular approach or,
if an approach was not initially designed for formality transfer, from other studies that re-ran those approaches
for comparison. Results for DeleteOnly, DeleteAndRetrieve, MultiDecoder, StyleEmbedding, and CAAE were
obtained from (Luo et al., 2019). Results for P&R and PromptEdit were obtained from (Liu et al., 2024). For all
other approaches the results were obtained from their original paper.

performances, surpassing them in content preser-
vation and accuracy, despite not being trained or
fine-tuned on the task.

When compared with previous LLM prompting-
based approaches, SKG-augmented prompting
achieves the overall best performance for con-
tent preservation, as suggested by its highest
rBLEU score. Demonstrated by similar accuracy
scores, we observe that our approach matches the
PEGF (Liu et al., 2024) approach for style transfer
strength. Both approaches share a similar idea of
identifying stylistic words. PEGF identifies stylis-
tic words via prompting and replaces them with a
second prompt, while our approach utilizes style
polarities to determine stylistic words and provides
word suggestions based on semantic relations.

As indicated by the higher perplexity score, our
approach demonstrates worse performance in flu-
ency. Its outputs are less fluent compared to other
LLM-based prompting methods. One possible rea-
son could be the fact that these models utilize
LLMs with more parameters that are considered to
generate more fluent outputs.

5.4 Ablation Experiments

To analyze the contribution of different parts of the
SKG to the text style transfer task, we perform abla-
tion experiments. The experiments were performed
for our best-performing model (FLAN-T5base in a

rBLEU sBLEU Acc PPL
no SR 48.3 26.6 86.1 306.6
o/ Syn 48.5 26.4 87.3 232.7
o/ Ant 48.3 26.5 86.4 349.4

o/ HypR 48.5 26.6 87.1 232.9
o/ HypO 48.5 26.5 87.9 285.7
w/o Syn 48.8 26.0 87.7 234.3
w/o Ant 48.8 26.0 87.7 228.0

w/o HypR 48.9 25.8 88.1 230.8
w/o HypO 48.9 25.9 87.9 243.6

all SR 48.9 25.8 87.9 201.4

Table 6: Results of the ablation experiments for our best-
performing approach for SKG-augmented prompting
for formality transfer on the GYAFC dataset. rBLEU -
reference-BLEU. sBLEU - self-BLEU. Acc - Accuracy.
PPL - Perplexity. The best value is bold and the second
best is underlined.

one-shot setting): no SR - prompt without seman-
tic relations, all SR - prompt with all semantic
relations, o/ Rel - prompt with a single semantic re-
lation Rel, and w/o Rel - prompt with all semantic
relations except Rel. The results are summarized
in Table 6

The results of the ablation experiments demon-
strate that semantic relations have a positive im-
pact on performance. The best overall results are
achieved when all semantic relations are used. Ex-
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cluding specific semantic relations results in an in-
crease in perplexity thus confirming that although
the overall perplexity is relatively high, they have a
positive impact.

Excluding hypernyms or hyponyms does not
change the rBLEU score suggesting that these re-
lations may not have a critical role in preserving
the content. This is further confirmed by the in-
crease in the accuracy score when hypernyms are
excluded. On the contrary, excluding synonyms
and antonyms negatively impacts the performance
with an increase in perplexity and a slight decrease
in accuracy and rBLEU.

6 Conclusion

In this paper, we proposed a Style Knowledge
Graph for augmenting text style transfer using large
language models. The SKG captures words, their
attributes, and relations in a particular style to pro-
vide additional information for the task. We con-
ducted preliminary experiments with prompting
where the relevant part of the SKG was added as
part of the prompt. The evaluation results demon-
strated the potential of this method for enhancing
content preservation and accuracy while highlight-
ing areas for further improvement, particularly in
fluency. We hope that this research will inspire fur-
ther research in the field, extending beyond prompt-
ing to investigate new approaches and methodolo-
gies for text style transfer. SKGs have the potential
to augment other text generation tasks beyond text
style transfer, for example by guiding the model
to generate more coherent summaries based on the
selection of key parts of the input. We hope that
future research will further explore this direction
for SKGs for more context-aware and reliable text
generation.

7 Limitations

Based on our experiments, we identified a few limi-
tations. In some cases, parts of the instruction were
returned as part of the output. This occurred more
frequently with the T5 model. Since T5 is not an
instruction fine-tuned model, challenges in distin-
guishing task instructions from the input content
may be due to its lack of instruction-tuning. We ob-
served lower performance for the SKG-augmented
prompting when using smaller datasets. Since
smaller datasets will lead to creating smaller SKGs
we believe that this drop in performance is a direct
result of the reduced richness and coverage of the

SKG. A possible future direction to address this
limitation may be to enrich the SKG with more
information.

8 Ethical Considerations

As with other text generation tasks, our approach
holds potential risks of misuse for malicious pur-
poses, such as generating text that is negative, toxic,
text that contains subjective bias, or text imperson-
ating a specific author. Since we used existing text
style transfer datasets to construct the SKG, any
potential biases present in those datasets could be
transferred and replicated in the SKG. Moreover,
since LLMs are trained on datasets collected from
the web, any biases present in the training data
may be reflected in the outputs of our method. To
address these risks it is crucial to raise awareness
among researchers and users of such methods about
the ethical implications and to promote responsible
use for positive purposes.
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A Appendix

A.1 Evaluation Results with Other LLMs

Apart from the main experiments with T5 and
FLAN-T5 models, additional experiments with
LLaMA and GPT models were performed on the
formality transfer task with the GYAFC dataset.
Only the zero-shot experiments were performed
because of the time required for generating output
sentences with these models. Their evaluation with
few-shot prompting remains as future work.

LLaMa and GPT model variants showed unex-
pectedly low BLEU scores for content preservation.
We believe that the low BLEU scores are due to
the fact that the choice of words made by these
models differs from the words in the ground truth
sentence. BLEU is a metric based on n-gram over-
lap and it is expected to obtain lower scores when

there is a different choice of words in the generated
and the expected sentence. However, by manual
inspection, we noticed that the generated output
sentences managed to preserve the content of the
input sentence to some extent, but used different
words and often added additional explanations. To
evaluate content preservation, BERTScore (Zhang
et al., 2019), which compares the semantic mean-
ing based on embedding vectors, was computed
instead of BLEU. In Table 7, example outputs from
these models are shown, and the full evaluation
results are summarized in Table 8.

The results indicate that T5 and FLAN-T5 mod-
els obtain the best overall results for content preser-
vation as measured by the higher BERTScore for
both standard zero-shot and SKG-augmented zero-
shot prompting. In terms of style transfer strength
measured by accuracy, LLaMA-based models sig-
nificantly outperform the other approaches for
SKG-augmented prompting. For standard prompt-
ing, GPT-Neo showed the best performance thus
indicating that GPT-based models can better lever-
age structured prompts to generate a sentence in
the desired style. These models demonstrated sig-
nificantly better fluency than the T5-based and
LLaMA-based approaches. A possible reason
could be the setting for evaluating fluency which
relies on calculating perplexity with GPT-2. Con-
sidering that GPT-2 is a part of the same family of
models, output sentences generated by GPT-based
models may be more naturally aligned with the
evaluation metric therefore leading to significantly
higher fluency scores.

A.2 Evaluation Results for Other Datasets
In the tables below we present the evaluation results
for the remaining three text style transfer tasks with
parallel datasets: neutralizing subjective bias on
the WNC dataset (Table 9), personal style transfer
on the Shakespeare dataset (Table 10), and text
detoxification on the ParaDetox dataset (Table 11).
Both prompting strategies were evaluated on four
models: T5small, T5base, FLAN-T5small, and FLAN-
T5base. A total of five experiments were performed
for each model and prompting strategy. For brevity,
only the best-performing one in terms of geometric
mean is shown.

The results do not indicate a clear superiority
of the SKG-augmented approach when compared
against standard contrastive prompting among all
three tasks. The significantly smaller number of
samples in the corresponding datasets may be a

132



contributing factor for the lower performance. Con-
sidering that smaller datasets will lead to creating
smaller SKGs the lower performance could be a
result of the reduced richness and coverage of the
SKG. To address this limitation, a possible future
direction would be to enrich the SKG with more
information. Across all experiments, the sBLEU
scores are consistently lower suggesting that the
SKG-augmented approach may favor generating
more diverse outputs rather than simply copying
the input.
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Input sentence:
You can get almost anything on ebay!
Ground truth output sentence:
You can get almost anything on ebay!
Predicted output sentence:
It’s possible to obtain nearly any item through eBays online auction service.
Input:
Where in the world do you come up with these questions????
Ground truth output sentence:
How do you come up with these questions?
Predicted output sentence:
I am curious as to where your ideas for this quiz originated.
Input:
i think pretty much they’re all sort of humorous
Ground truth output sentence:
I think they are all very funny.
Predicted output sentence:
I believe that most are somewhat funny.

Table 7: Example output sentences for the formality transfer task on the GYAFC dataset. The outputs were generated
with the LLaMa-213B with zero-shot prompting augmented with SKG.

Model BERTScore↑ Acc↑ PPL↓ GM2↑ GM3↑
Standard prompting

T5small 99.0 49.4 185.4 66.6 41.5
T5base 91.7 37.2 340.3 18.5 17.1

FLAN-T5small 92.2 23.1 805.4 46.2 30.3
FLAN-T5base 93.5 24.5 318.9 47.9 32.4
LLaMA-27B 88.6 52.2 390.7 68.0 40.5
LLaMA-213B 81.2 36.5 64.5 54.4 38.6

LLaMA-2-chat7B 88.5 83.3 548.1 85.8 46.6
LLaMA-2-chat13B 88.0 84.4 610.2 86.1 46.4

GPT-J6B 81.6 31.4 95.7 50.6 35.9
GPT-Neo1.3B 87.2 84.7 46.6 85.0 53.4

Prompting augmented with SKG
T5small 88.8 21.3 330.2 43.4 30.3
T5base 89.1 37.2 476.3 18.2 16.7

FLAN-T5small 91.7 18.7 2081.6 41.5 27.1
FLAN-T5base 92.4 22.6 4935.6 45.7 28.0
LLaMA-27B 86.3 88.8 182.0 87.6 49.8
LLaMA-213B 86.0 93.4 142.7 89.6 51.3

LLaMA-2-chat7B 87.1 80.3 568.7 83.7 45.7
LLaMA-2-chat13B 87.3 81.5 629.3 84.4 45.7

GPT-J6B 81.8 36.9 102.2 54.9 37.7
GPT-Neo1.3B 87.0 79.5 55.9 83.1 51.6

Table 8: Zero-shot performance with standard prompting and prompting augmented with SKG for formality transfer
on the GYAFC dataset with T5, FLAN-T5, LLaMA-2, and GPT. BERTScore - reference-BERTScore. Acc -
Accuracy. PPL - Perplexity. GM2 - Geometric Mean (BERTScore and Acc). GM3 - Geometric Mean (BERTScore,
Acc, and PPL). The best value is bold and the second best is underlined.
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Model Technique rBLEU↑ sBLEU↓ Acc↑ PPL↓ GM2↑ GM3↑
Standard prompting

T5small 0-shot 56.9 62.7 60.4 225.2 58.6 37.7
T5base 0-shot 38.7 42.4 54.6 312.6 46.0 31.5

FLAN-T5small 3-shot 64.8 70.5 67.1 167.2 66.0 41.4
FLAN-T5base 4-shot 77.9 84.7 71.0 187.2 74.4 44.6

Prompting augmented with SKG
T5small 0-shotSKG 30.6 33.4 64.8 368.1 44.5 30.6
T5base 0-shotSKG 20.2 22.1 49.8 534.0 31.7 24.0

FLAN-T5small 0-shotSKG 46.7 50.7 54.5 1028.6 50.4 31.8
FLAN-T5base 0-shotSKG 19.6 21.3 55.4 170753.6 33.0 20.3

Table 9: Zero-shot and few-shot performance with standard prompting and prompting augmented with SKG for
neutralizing subjective bias on the WNC dataset. Only the best result per model is shown. rBLEU - reference-BLEU.
sBLEU - self-BLEU. Acc - Accuracy. PPL - Perplexity. GM2 - Geometric Mean (rBLEU and Acc). GM3 -
Geometric Mean (rBLEU, Acc, and PPL). The best value is bold and the second best is underlined.

Model Technique rBLEU↑ sBLEU↓ Acc↑ PPL↓ GM2↑ GM3↑
Standard prompting

T5small 0-shot 10.0 46.6 60.2 152.9 24.5 21.5
T5base 0-shot 11.3 52.5 82.8 1272.1 30.6 22.6

FLAN-T5small 1-shot 14.8 75.0 84.5 457.9 35.3 26.0
FLAN-T5base 2-shot 16.0 83.5 91.3 204.6 38.2 28.5

Prompting augmented with SKG
T5small 0-shotSKG 5.8 24.1 37.7 336.6 14.8 14.8
T5base 0-shotSKG 7.9 32.5 71.1 649.3 23.8 19.6

FLAN-T5small 0-shotSKG 12.7 72.5 87.8 797.4 33.4 24.4
FLAN-T5base 0-shotSKG 14.7 78.0 92.3 1190.5 36.8 25.6

Table 10: Zero-shot and few-shot performance with standard prompting and prompting augmented with SKG for
personal style transfer on the Shakespeare dataset. Only the best result per model is shown. rBLEU - reference-
BLEU. sBLEU - self-BLEU. Acc - Accuracy. PPL - Perplexity. GM2 - Geometric Mean (rBLEU and Acc). GM3 -
Geometric Mean (rBLEU, Acc, and PPL). The best value is bold and the second best is underlined.

Model Technique rBLEU↑ sBLEU↓ Acc↑ PPL↓ GM2↑ GM3↑
Standard prompting

T5small 0-shot 23.5 48.4 71.5 451.7 41.0 28.7
T5base 0-shot 26.6 53.2 63.5 2222.5 41.1 26.9

FLAN-T5small 1-shot 19.5 26.8 39.9 19440.1 27.9 19.3
FLAN-T5base 0-shot 29.8 46.5 54.2 5204.3 40.2 25.7

Prompting augmented with SKG
T5small 2-shotSKG 12.5 22.2 75.9 891.5 30.8 23.0
T5base 2-shotSKG 9.9 16.9 78.0 1342.7 27.8 21.1

FLAN-T5small 2-shotSKG 8.1 10.5 48.7 56816.4 19.8 14.9
FLAN-T5base 2-shotSKG 8.9 11.1 50.7 36454.2 21.2 15.8

Table 11: Zero-shot and few-shot performance with standard prompting and prompting augmented with SKG for text
detoxification on the ParaDetox dataset. Only the best result per model is shown. rBLEU - reference-BLEU. sBLEU
- self-BLEU. Acc - Accuracy. PPL - Perplexity. GM2 - Geometric Mean (rBLEU and Acc). GM3 - Geometric Mean
(rBLEU, Acc, and PPL). The best value is bold and the second best is underlined.
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Abstract

Most models for triple extraction from texts pri-
marily focus on named entities. However, real-
world applications often comprise non-named
entities that pose serious challenges for entity
linking and disambiguation. We focus on these
entities and propose the first LLM-based entity
revision framework to improve the quality of
extracted triples via a multi-choice question-
answering mechanism. When evaluated on two
benchmark datasets, our results show a signif-
icant improvement, thereby generating more
reliable triples for knowledge graphs.

1 Introduction

Triple extraction (TE) is a well-established NLP
task where several deep learning models (Bouziani
et al., 2024; Wang et al., 2022; Santosh et al., 2021;
Wadhwa et al., 2023; Xu et al., 2023), and more
recently, LLMs (Trajanoska et al., 2023; Chia et al.,
2022; Li et al., 2024; Chen et al., 2023) have suc-
cessfully been employed in benchmark datasets in
different domains and languages (e.g., SemEval-
2010 Task 8 (Hendrickx et al., 2010), TACRED
(Zhang et al., 2017), BioRed (Luo et al., 2022)).

Most relation extraction models focus primarily
on named entities such as person names, locations,
and organizations, making them fail in dealing
with a richer array of complex, non-named entities
(hearafter N-NE). According to Paris and Suchanek
(2021), N-NE are defined as noun phrases (NPs)
that can be the subject or object of a predicate
within a sentence such as "decision list" and
"parsing-based ne rules" in Figure 1. N-NE can
have several forms ranging from nominal group
(e.g., year 1944), containing adjectives and adverbs
(e.g., very good questions), prepositional phrases
(e.g., in the Arab World), relative clauses or more
complex syntactic constructions (e.g., near-term
growth prospects of the global economy). N-NE
are relatively frequent in textual data. For example,

when manually analysing around 2K NPs extracted
from Wikipedia, Paris and Suchanek (2021) found
that 78% of NP heads are N-NE among which 38%
are modified by an adjective, and 34% have a prepo-
sition. Despite their importance, their frequency in
popular benchmark datasets is relatively low (e.g.,
TACRED only involves named entities).

Figure 1: Triple extraction involving N-NE as given by
gold manual annotations, Falcon-2 and GPT4 models.
Wrong entities are in red.

N-NE pose serious challenges in knowledge
graph (KG) construction and reasoning, because
they remain silent with no chance to be linked into
an existing knowledge bases (KBs) such as YAGO4
(Tanon et al., 2020) or Wikidata (Vrandečić, 2012).
Figure 1 illustrates the impact these entities have on
triple extraction from a sentence taken for SemEval
2018 Task 7. We compare the outputs of Falcon-2
(Sakor et al., 2020), a entity and relation linking
tool over Wikidata, and zero-shot GPT-4 against
the gold label. Although both models successfully
identified the boundaries of the entities, they failed
to correctly extract both the head and tail entities
together.

N-NE have received little attention in the litera-
ture. Among the few works, Open Information Ex-
traction tools such as OpenIE (Angeli et al., 2015)
(see (Zhou et al., 2022) for a survey) output triples
of subject, predicate, and object in an unsupervised
way relaying on dependency parsers where relation
arguments can contain N-NE. Paris and Suchanek
(2021) performed a qualitative manual study of the
nature of N-NE in Wikipedia. In this paper, we go
one step further by proposing, for the first time as
far as we know, an end to end LLM-based entity
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revision framework that (a) automatically extracts
triples from raw texts, (b) identifies N-NE, (c) en-
hances their quality by augmenting their likelihood
of being successfully linked to an external knowl-
edge base, which is a first important step to overall
KG quality assessment (Chen et al., 2019).

To this end, we adopt a multiple choice prompt-
ing (MCP) strategy on top of a triple extractor to
verify the extracted entities. MCP has been success-
fully used as a self-evaluation method to mitigate
LLMs errors in complex problems like arithmetic
and commonsense reasoning (Miao et al., 2023;
Weng et al., 2023; Ren et al., 2023). It is newly
employed here for entity quality enhancement. Our
contributions are as follows:

1. A multiple-choice question answering
(MCQA) strategy for enhancing LLMs to
revise their extracted entities,

2. Comprehensive experiments with both open
source and closed LLMs on two benchmark
datasets for relation extraction,

3. A manual analysis of our results demonstrat-
ing the effectiveness of our framework in cor-
rectly identifying and selecting N-NE.

This paper is organized as follows. Section 2
presents our overall framework, Section 3 details
the datasets used for evaluation, the experimental
settings and evaluation metrics. We finally gives
our results together with an error analysis in Sec-
tion 4.

2 Entity Revision through LLM-based
Question Answering

Figure 3 shows our three-steps framework: (1) It
first extracts triples using an in-context learning ap-
proach. (2) It then ranks candidate entities and (3)
refines entity selection through a multiple-choice
format to improve accuracy by learning from com-
mon extraction errors.

It is important to note that our framework has
been designed with modularity in mind, indepen-
dently from the method used for triple extraction
and how N-NE are initially identified. However as
a first step and in order to evaluate the effective-
ness of our approach when evaluated on benchmark
datasets, we experiment with target relations as in-
put to Step 1, the subsequent steps are agnostic to
this guidance. This allows to increase the number

of matching triples generated by LLMs when com-
pared to gold annotations (see below) and therefore
ensure a sufficient number of instances to derive
meaningful conclusions (see Section 3.3 about the
evaluation protocols). We detail below each step.

2.1 Step 1: Triple Extraction and Matching
We instruct the LLMs to extract triples via an in-
context learning method following (Ozyurt et al.,
2024; Lyu et al., 2023; Ma et al., 2023a) where
prompts only contain the definition of the target
relation. Given is a set of contexts C = {ci}. For
each context ci, the aim is to enumerate triples
{(hij , rij , tij)}Ri

j=1, where rij ∈ R is a relation
and hij and tij are the head and tail entities for
the relation rij , and where Ri is the number of
relations in ci (cf. Figure 2).

Step 1 is evaluated by matching LLMs generated
triples to gold ones based on overlapping entities.
For instance, the gold triple for the given context
in Figure 2 is (global variables, USED-FOR,
global properties), of which only the ex-
tracted triple (global variables, USED-FOR,
representing global properties) matches the
gold standard.

Figure 2: Example of prompt used for triple extraction.
The green, blue and black in the top box represent the
instruction, demonstration and test context in the prompt
respectively. The red parts are the LLMs outputs.

2.2 Step 2: Candidates Selection
Let G = (E ,R, T ) be a knowledge graph, where
E is the set of entities, R the set of relations, and
T = {(h, r, t)|h ∈ E , r ∈ R, t ∈ E} the set of
triples. Given a query (h, r, ?) (resp. (?, r, t)), the
graph completion task ranks each entity by calcu-
lating its score to determine how well it makes the
query hold, thereby achieving knowledge graph
completion (Wei et al., 2023). This task inspired
our approach; however, as we do not possess a pre-
defined set of entities, we must generate a list of
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Figure 3: Overview of our entity revision framework: (1) Triple extraction from the given context to identify
relevant relationships; (2) Candidate selection, where potential entities are shortlisted as relevant targets; (3)
Multiple-choice question-answering to determine the most suitable entity.

potential candidates to fill the queries (hij , rij , ?)
(resp. (?, rij , tij)) based on context ci and utilize
LLMs as a ranker.

Our candidate selector relies on SpaCy 1 parser,2

known for its fast and accurate syntactic analysis,
to select all noun phrases from context ci that either
contain the entity tij (resp. hij) or are contained
by tij (resp. hij), along with the root of those
noun phrases. This method ensures that the se-
lected candidates are contextually relevant and are
more likely to be correct entities that can replace
low-quality extracted entities. Step 2 is then evalu-
ated by checking if the selected candidate entities
include the gold entities or not.

2.3 Step 3: Multiple Choice Question
Answering (MCQA).

LLMs are generally not effective as few-shot in-
formation extractors, but they excel as rankers Ma
et al. (2023b). We therefore employ prompting
strategies similar to QA4RE (Zhang et al., 2023),
transforming our task into multi-choice questions
to more accurately select entities.

To enhance entity extraction, we utilize a set of
K demonstration examples that target common ex-
traction errors. These include entities mistakenly
containing verbs, excessive adjectives, pronouns,
determiners, and pseudo-sentences. Such errors of-
ten lead to inaccuracies in the model’s outputs, par-
ticularly in sentences where the distance between

1https://spacy.io/
2Although this step could also be performed by LLMs, we

opted to use SpaCy here to keep the LLM more focused on
the entity revision task.

head and tail entities in the context is long (Xu
et al., 2023; Ezzabady et al., 2024). Following Mo
et al. (2024) that use direct comparisons to better
guide LLMs, each example is selected based on its
ability to clearly demonstrate these specific issues,
offering a dual presentation of both incorrect and
correct entity identifications.

Here are our demonstration questions-answer
pairs.

Verb phrase
Question: Which one is a better entity
for knowledge graphs?
1. slowing down of Japan’s economy
2. Japan’s economy
3. None of the above
Answer: 2. Japan’s economy

Redundant adjective
Question: Which one is a better entity
in a knowledge graph?
1. sars-cov-2 outbreak
2. outbreak
3. large sars-cov-2 outbreak
4. None of the above
Answer: 1. sars-cov-2 outbreak

Determiner
Question: Which one is a better entity
in a knowledge graph?
1. identification
2. both language identification
3. language identification
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4. None of the above
Answer: 3. language identification

Pronoun
Question: Which one is a better entity
in a knowledge graph?
1. application
2. My application
3. None of the above
Answer: 1. application

None of the above
Question: Which one is a better entity in
a knowledge graph?
1. keep inflation high in the near term
2. keep inflation high
3. None of the above
Answer: 3. None of the above

3 Experiments

3.1 Datasets
As far as we know, only two benchmark relation
extraction datasets involving N-NE exist: SemEval
2018 Task 7 (Gábor et al., 2018) and SciERC (Luan
et al., 2018). Both are document-based datasets
annotated for entities and their relations extracted
from scientific abstracts. They are a good choice
to evaluate our framework (see Table 1) as their
triples contain less than 5% of named entities (as
given by SpaCy) and more importantly less than
35% are linked to Wikidata. This is also aligned
with recent work by Zhu et al. (2024) who showed
that SciERC is a challenge for making knowledge
graphs, so that the performance of the best model
(GPT-4) is less than 10%.

SemEval SciERC
Gold Triples 1,595 4,265

Head Tail Both Head Tail Both

% Named entities 3.71 2.13 0.13 4.71 3.42 0.49
% Linked with Wikidata 35.05 31.97 13.29 29.00 28.07 8.30

Table 1: SemEval and SciERC datasets statistics.

3.2 Experimental Settings
To increase triple matching and simplify the pro-
cess for LLMs, we narrow down each document to
sentences such that our input is a set of sentences
{s|s ∈ d, h ∈ s, t ∈ s}.3 This leads to a total of

3We also tested using documents as input, but the outcomes
were inconclusive, e.g., in SciERC, the match rates for docu-
ments vs. sentences were 33.95% vs. 54.14%, respectively.

1,578 sentences for SemEval and 4,151 for SciERC.
For the inter-sentence relations (1.07% and 2.67%
of triples in SemEval and SciERC respectively),
we employ their documents as context.

Position bias and No answer is true are well
known issues in MCQA with language models
(Robinson et al., 2023). To address them, we fol-
low the solutions proposed by Ren et al. (2023) as
follows. We employ shuffle and average method
that de-bias and correct answer position effects. To
handle cases where none of the provided answers
may be correct, we introduce a None of the Above
option into the answer set, enhancing the model’s
ability to avoid overconfident incorrect predictions.

For our experiments, we rely on GPT-4,4

LLaMA-3.1 8B-instruct5 and Mistral 7B-instruct.6

We compare our MCQA framework against two
baselines:7

(a) LLM with simple prompt (simple): which
is similar to zero-shot learning where only the
description of the task is given,

(b) LLM with detailed prompt (detailed): that
provides in addition a definition of what are
considered to be good entities for a KG.

To demonstrate the superiority of our method
over having specific guideline, we applied our
method only on the simple baseline (hearafter sim-
ple+MCQA). Both baselines operate in a zero-shot
setting, MCQA being a few-shot prompting strat-
egy where demonstration question-answer pairs are
used to instruct the LLMs.

In Figure 4, we provide examples for different
prompts as input and the corresponding output from
GPT-4. In dialogues with LLMs, there are three
key roles: the System role, which sets how the
model answers; the User role, representing the
individual who inputs queries; and the Assistant
role, which encompasses the model’s responses
to user inputs. These roles collectively ensure a
structured and effective interaction. A multi-turn
dialogue involves a series of exchanges between the
user and the assistant where each response builds
on the previous interaction.

For all the models, and to avoid bias the same
prompts have been used and more importantly,

4https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

5https://llama.meta.com/llama3
6https://ollama.com/library/mistral:7b
7As this work focuses on improving LLMs performance,

non-LLM methods are out of the scope of this paper.
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demonstration questions were not sourced from
evaluation datasets (cf. Section 2.3). Additionally,
we set the number of demonstrations K to 4.8 For
implementation details see Appendix A.

3.3 Evaluation Protocol

We evaluate the performances in terms of four met-
rics, each metric aims to evaluate a particular step
of our approach:

(a) Matched Triples. It counts the number of ex-
tracted triples from Step 1 that successfully match
with at least one corresponding gold-standard
triple. The matching is determined based on an
overlap function, where a partial or complete
overlap between the extracted and gold triples is
sufficient to consider them matched. This metric
provides an initial measure of how accurately the
system can identify potential relationships from
the context. For example, in Figure 4, none of the
extracted triples via detailed prompt matches with
the gold triple (words, PART_WHOLE, corpus).

(b) Candidate selector success rate. It evaluates
the effectiveness of the candidate selection step
(Step 2). Specifically, it measures how often the
true gold-standard entity is included among the
set of candidates presented during the selection
process. A candidate selection is successful when
the gold entity is present in the generated options.
This metric highlights the robustness of the can-
didate generation process and its ability to retain
contextually relevant entities for further refinement.
For example in Figure 4, we can observe that the
candidate selector in our simple+MCQA method
successfully included the gold entity "words" as
options for the question corresponding to the triple
(words, PART_WHOLE, corpus).

(c) Correct entities. This metric evaluates
Step 3 and focuses on the quality of entities
within matched triples. It counts the number of
entities within these triples that exactly match
the corresponding entities in the gold-standard
triples. We consider matches of entities at the
head, tail and both head and tail positions. This
metric is essential for assessing how accurately the
framework identifies both the head and tail entities
in relation to their expected true values, providing
insight into the precision of the extraction pro-
cess. For the gold triple (words, PART_WHOLE,

8We tested several values of K∈ [1, 4] and 4 was the best.

corpus) from Figure 4, the outputs of the
simple baseline and our simple+MCQA approach
are 100,000 words and words, respectively, as
head entities, with the latter being the correct entity.

(d) Linking coverage. This metric is used to
evaluate the overall LLM-based revision frame-
work. It computes the percentage of entities that
are linked to Wikidata, the largest collaborative
general knowledge graph with more than 52 mil-
lion instances (Heist et al., 2020). For example,
in the gold triple (words, PART_WHOLE, corpus)
from Figure 4, the tail entity corpus was linked to
the entity with ID Q461183 in Wikidata. To this
end, we rely on SpaCy entity linker module9

4 Results and Discussions

4.1 Overall Results

Results are shown in Table 2. GPT-4 demonstrates
notable improvements post-revision across all met-
rics on both datasets, most significantly in the
whole triple category (i.e., head, tail and both),
where the performance scores in terms of correct
entities, rise 11% for SemEval and 9% for SciERC.

Conversely, LLaMA-3 exhibits a general decline
in performance after revision across all categories.
An interesting observation holds for the detailed
baseline where LLaMA-3 seems to handle guide-
lines better than GPT-4 in the SemEval dataset
where the matched triples was 323 vs. 218 for
GPT-4. This could suggest that despite its smaller
size and simpler architecture, which might hinder
the integration of sophisticated entity revision tech-
niques, LLaMA-3 is more compliant with struc-
tured guidelines.

Mistral initially performs worse than both GPT-4
and LLaMA-3; however, by applying our revision
framework, its results notably improve. For in-
stance, we observe an increase in correct entities
in the head, tail and both for both datasets (except
the head in SciERC). More importantly, the linking
coverage also increases in particular for entities in
tail positions in the extracted triples.

Finally, our results show the variability in per-
formances between different LLMs in the triple
extraction step where GPT4 is the best achieving a
matching triples of 87% and 54.13% in SemEval
and SciERC, respectively. This finding is inline
with recent studies in generative relation extrac-

9https://github.com/egerber/
spaCy-entity-linker
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Figure 4: Prompts and responses for our three models: LLM with simple prompt (the first baseline on the left), LLM
with detailed prompt (second baseline in the middle) and our framework (on the right, for the sake of readability we
only put one demonstration).

Method SemEval (1,595 gold triples) SciERC (4,265 gold triples)

Matched Triples Correct Head Correct Tail Correct Both Matched Triples Correct Head Correct Tail Correct Both

LLaMA-3 (simple) 310 232 (8.40) 210 (5.39) 171 (2.95) 957 688 (8.75) 551 (4.60) 435 (1.83)
LLaMA-3 (detailed) 323 223 (6.46) 211 (4.76) 161 (2.13) 1,010 545 (8.02) 472 (4.95) 283 (1.95)
LLaMA-3 (simple + MCQA) 310 [75] 215 (7.08) 199 (5.77) 137 (2.38) 957 [70] 621 (6.80) 542 (5.89) 381 (1.74)

Mistral (simple) 191 124 (2.19) 92 (1.38) 68 (0.25) 677 461 (2.58) 307 (1.74) 229 (0.47)
Mistral (detailed) 106 91 (1.76) 79 (1.07) 69 (0.38) 263 211 (1.34) 190 (0.94) 153 (0.19)
Mistral (simple + MCQA) 191 [72] 128 (1.88) 120 (1.82) 82 (0.31) 677 [70] 441 (2.30) 354 (1.85) 245 (0.38)

GPT-4 (simple) 1,384 694 (12.92) 833 (13.98) 454 (1.15) 2,309 1,745 (10.34) 1,137 (6.61) 935 (1.95)
GPT-4 (detailed) 218 159 (2.63) 93 (1.00) 79 (0.25) 1,948 1,106 (9.87) 850 (6.54) 547 (1.85)
GPT-4 (simple + MCQA) 1,384 [79] 850 (19.94) 890 (18.37) 609 (5.39) 2,309 [79] 1,794 (10.88) 1,408 (10.39) 1,142 (2.30)

Table 2: Overall results of our LLM-based revision framework, in terms of: (a) Matched triples and Correct entities
in the head, tail and both: number of instances, (b) Linking coverage: percentages between (), (c) Candidate selector
success rates: percentages between []. The best scores per LLM are in bold font whereas best overall results are
underlined. Please note that candidate selector success only concerns simple+MCQA as the baselines do not perform
any selection.

tion (see for example (Jiang et al., 2024)). The
second variability concerns LLMs performances
when applying the MCQA technique. While the
method demonstrates strong results with models
like GPT-4 due to its advanced contextual reason-
ing and comprehension capabilities, it does not

show similar improvements with models such as
LLaMA-3. This inconsistency points to potential
limitations in model architecture and pre-training
data, which may affect how effectively they handle
MCQA tasks. Future work should investigate these
disparities to understand the specific features that
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Figure 5: An example of errors made by our MCQA revision framework taken from the SciERC dataset. On the
left, the output from triple extraction and matching (step 1) is displayed, highlighting the target entity that needs
enhancement. On the right, we show a list of candidate entities obtained in step 2 (i.e., candidate selection) intended
to refine the target entity. The entities predicted by our MCQA method answers (step 3) are incorrect (red cross),
failing therefore in extracting the correct ones (marked by a green check).

enable some models to leverage MCQA success-
fully while identifying modifications or alternatives
needed to improve performance in others.

4.2 Error Analysis

A manual error analysis of GPT-4 simple+MPQA
outputs shows that our candidate selector missed
21% of the gold entities across both datasets. For
the remaining 79%, the question-answering com-
ponent achieved accuracies of 87% for SciERC
and 81% for SemEval. Figure 5 shows some incor-
rect answers produced by our approach. Although
providing demonstrations helped LLMs make bet-
ter choices, the error categories (containing verbs,
excessive adjectives, pronouns, determiners, and
pseudo-sentences) have not been completely elim-
inated. For example, in the SciERC dataset using
GPT-4, the number of entities containing verbs re-
duced from 737 to 352. Additionally, we observed
that when LLMs are given inputs targeting multiple
error categories (first example in Figure 5), they
struggle to avoid all of them.

5 Conclusion

In this paper, we explore the potential of LLMs in-
context learning for entity revision. To address the
challenges posed by non-named entities, we intro-
duced a multiple-choice question-answering frame-
work that revises extracted entities from LLMs

while increasing their linking coverage with the
largest open knowledge base. When evaluated on
two benchmark relation extraction datasets, our
results demonstrate the effectiveness of our frame-
work. We believe our work is a first important step
to account for non-named entities in knowledge
graph construction.

In this work, we apply a limited set of prompt-
ing techniques (zero-shot and few-shot in-context
learning), which can be further explored in future
research. We will also consider how improved en-
tities affect downstream applications like question
answering over knowledge graphs.
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for evaluating our approach’s efficacy on N-NEs.
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Despite their focus on scientific abstracts, our ap-
proach demonstrates the potential for broader appli-
cability. Future research will expand this evaluation
to include diverse datasets from various domains
and languages, thereby providing a comprehensive
assessment of the generalizability and robustness
of our framework.

Our evaluation metric is based on the percentage
of entities linked to Wikidata. Although it is the
largest open knowledge graph in terms of the num-
ber of instances, some entities correctly retrieved
by our model may be missed by the linking cov-
erage metric simply because those entities do not
exist in Wikidata. It will therefore be interesting to
also measure the linking rate with other knowledge
bases such as DBPedia and YAGO.
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are composed of scientific abstracts taken from
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nity. The datasets do not contain offensive or abu-
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A Implementation Details

In this section, we describe the specific methodolo-
gies and settings employed during our experiments
to ensure clarity and reproducibility of the results.
A unique separator token, “<==>”, was utilized to
facilitate the parsing of subjects and objects from
the text. This token is not present in the original
datasets, thereby avoiding any confusion with natu-
ral language text. Additionally, we inform LLMs
about the task by starting our prompts with an in-
struction of the task. It is important to note that
we have not conducted any prompt-tuning, as it
is not the focus of this paper. Furthermore, we
did not alter any hyperparameters related to the
LLMs. The only hyperparameter that our frame-
work includes is K, which represents the number
of demonstrations in step 3.
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Abstract

In the modern labor market, accurate match-
ing of job vacancies with suitable candidate
CVs is critical. We present a novel multilingual
knowledge graph-based framework designed to
enhance the matching by accurately extracting
the skills requested by a job and provided by a
job seeker in a multilingual setting and aligning
them via the standardized skill labels of the Eu-
ropean Skills, Competences, Qualifications and
Occupations (ESCO) taxonomy. The proposed
framework employs a combination of state-of-
the-art techniques to extract relevant skills from
job postings and candidate experiences. These
extracted skills are then filtered and mapped
to the ESCO taxonomy and integrated into a
multilingual knowledge graph that incorporates
hierarchical relationships and cross-linguistic
variations through embeddings. Our experi-
ments demonstrate a significant improvement
of the matching quality compared to the state
of the art.

1 Introduction

In the modern labour market, job portals serve as
key intermediaries, connecting employers with po-
tential employees by comparing job postings with
the CVs of job seekers, to find the best possible
matches and liaise both parties.1 Matching of the
required skills in a job posting with the skills out-
lined in the candidate’s experience is of special
relevance. For implementation of this matching,
recently a number of AI-based techniques have
been proposed. Zero-shot recommendation mod-
els (Kurek et al., 2024), attention-based scoring
mechanisms (Jiang et al., 2020), embedding-based
models (Zhao et al., 2021), or tensor decomposition
(Mao et al., 2023) have been used, with an empha-
sis of surface-level features, such as geographic

1In what follows, we use the term “job posting” to refer to
the description of a job vacancy and “candidate experience” to
refer to the professional history of a job seeker as documented
in their CV.

location and user data, including click-through
rates and other user engagement metrics, without a
deeper analysis of the semantics of the listed skills.
Other, more promising, proposals draw upon the
skills taxonomy of the European Skills, Compe-
tences, Qualifications and Occupations (ESCO)
classification2, which is, together with its US equiv-
alent O*Net3, a primary instrument used in inter-
national job markets for job offer and candidate
experience annotation. For instance, (Clavié and
Soulié, 2023) identify ESCO skill labels in job
offers / candidate experiences and provide the rea-
soning, which leads to the identification of skills by
the use of a Large Language Model (LLM), giving
guidance to it by detailed prompts, accompanied
by manually created examples, but without that the
LLM can re-evaluate its reasoning chain. This is
different from (Wang and Zhou, 2024), which uses
the “Chain of Thought" (CoT) strategy to make
the LLM use its own reasoning explanations as in-
context examples. However, as other proposals in
the field, these proposals neglect the hierarchically
organized, contextually diverse information in the
ESCO classification.Furthermore, they are prone
to biases inherent in LLMs when processing tex-
tual data, as they do not involve any human expert
control or human-generated ground truth data.

To address these challenges and to improve the
quality of skill extraction from job postings and
candidate experiences and their matching, we de-
veloped a knowledge graph-based multi-step frame-
work. The proposed architecture foresees skill ex-
traction using several state-of-the-art skill selec-
tion skills (Zhang and et al., 2024; D’Oosterlinck
et al., 2024; Nguyen et al., 2024) to whose output
(D’Oosterlinck et al., 2024)’s CoT prompting tech-
nique is applied to select the most relevant skills
by comparing the extracted skills with the ESCO

2https://esco.ec.europa.eu/en/classification
3https://www.onetonline.org/
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skill names and their corresponding descriptions.
Human labelers provide ground truth data, based
on which the model is optimized. The finally se-
lected skills from the job postings and candidate
experiences are linked in a knowledge graph with
the ESCO skills. The graph is fine-tuned with mul-
tilingual (in our case, Spanish) embeddings for
effective matching in a multilingual context.

Our tests demonstrate that the developed frame-
work significantly outperforms the state-of-the-art
skill extraction and job posting – candidate expe-
rience matching. The framework is about to be
deployed in a leading European job portal.

It will serve as a complementary instrument for
human job recruiters rather than a fully automated
service, in order to minimize any risk of faulty
recruitment suggestions.

2 Related Work

As already mentioned, a number of works deal
with the identification and matching of skills in
job postings and candidate experiences (Senger
et al., 2024). For instance, (Jia et al., 2018) and
(Sayfullina et al., 2018) focus on skill identification
through span labeling and binary classification. (Jia
et al., 2018) use sequence tagging with LSTM neu-
ral networks, and (Sayfullina et al., 2018) employ
exact match for skill spans. Both require extensive
optimization and are often limited by their depen-
dency on specific languages and datasets. (Goyal
et al., 2023) utilizes exact string matching with
NLP techniques for label extraction and incorpo-
rates a multi-hop job-skill graph neural network
with a Graph Isomorphism Network encoder, em-
ploying one-vs-many classification with softmax
attention and weighting skills based on their fre-
quency in job postings. (Zhang and et al., 2024)
emphasize the generation of mention-entity pairs
using ESCO skills as ground truth labels, their
methodology, which heavily depends on the pre-
cise detection of mentions and the disambiguation
of contexts, proves insufficient in real-world ap-
plications where such extraction methods are not
readily available. (Fettach et al., 2024) demon-
strates how knowledge graphs can bridge education
and employment domains to support job seekers’
skill development. They developed JobEdKG, an
uncertain knowledge graph embeddings to model
relationships between job market and educational
entities to predict required skills based on career
choices.

The systems by (Zhao et al., 2021; Jiang et al.,
2020) approach job-resume matching primarily as a
recommender system, incorporating non-textual in-
puts like geo-location and evaluating performance
based on click-through rates. This methodology
inherently restricts the comparison to surface-level
features shared between candidate experiences and
job postings, neglecting the deeper semantic re-
lationships and context that are crucial for accu-
rate skill matching. Similarly, (Kurek et al., 2024;
Mao et al., 2023) experiment with zero-shot learn-
ing using various embedding models and dimen-
sions. While this approach may be effective for
exploring a broad understanding of industrial prob-
lems, it overlooks several recent findings. Rely-
ing solely on embeddings with zero-shot classifi-
cation has notable weaknesses, such as the lack of
mechanisms to mitigate residual biases in textual
data and limited capability to integrate diverse data
sources. Moreover, zero-shot classification models
have been shown to be outperformed by in-context
learning models, particularly LLM, which offer su-
perior contextual understanding and adaptability
(Gurusamy et al., 2024; Hasan et al., 2024).

Apart from those that we already cited, in par-
ticular, (D’Oosterlinck et al., 2024) needs to be
highlighted. (D’Oosterlinck et al., 2024) intro-
duces “in-context learning for extreme multi-label
classification" and built on DSPy library (Khat-
tab et al., 2023). It consists of a collection of
DSPy programs that enable stateful interactions
with LLM. The LLM integrates the CoT methodol-
ogy with retrieval-augmented generation for skill
extraction, where classes—specifically, ESCO skill
names—are provided as embeddings. The model
learns classification through a novel optimization
technique that fine-tunes prompts at each step and
generates synthetic examples to enhance in-context
learning (ICL) (Wang and Zhou, 2024), thereby
aiming to maximize classification metrics. We use
(D’Oosterlinck et al., 2024) as foundation. We
employ human-labellers to evaluate the skills ex-
tracted by this model and introduce enhancements
to improve contextual understanding of the LLM
beyond the conventional NLP techniques utilized
in (Goyal et al., 2023) Additionally, we adapt this
model for multilingual applications and incorpo-
rate the hierarchical skill relationships defined in
the ESCO taxonomy.
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3 The Framework

In what follows, we first provide an overview of
our approach as a whole and then discuss the skills
extraction, filtering of the extracted skills and their
subsequent mapping onto the ESCO skills taxon-
omy, and construction of the knowledge graph as a
way of matching the skills extracted from the job
postings and candidate experiences.

3.1 Framework overview

Figure 1 illustrates our framework for skill extrac-
tion and matching of job postings and candidate
experiences.

Job postings and candidate experiences come
in structured forms. Skills, their descriptions, and
associated job titles are provided in separate fields,
such that we first retrieve the content of these fields
from the forms4. An LLM CoT prompting strategy
is applied to normalize the retrieved job titles to
unique labels, which are further extended by an
index (e.g. ix_000) from the InfoJobs database
in which the job postings and candidate experi-
ences are stored. For instance, a generic job title
like “administrativo/a" (Spanish term for “admin-
istrator") is transformed into a more specific and
unique title, such as “organizational support spe-
cialist_ix_14662" or “excel data coordinator – in-
ternational trade support_ix_4664". This prevents
inefficient expansion of the knowledge graph at a
later stage (see below), since multiple nodes that
represent the same concept or entity can lead to
redundant data and suboptimal graph performance
(Hofer et al., 2023; Zhang et al., 2022b).

The skills field in job postings and candidate ex-
periences often contains unstructured, ambigous,
or inconsistent information. For instance, job post-
ings may list skills using a variety of terminologies,
such as “project management", “PM", or “lead-
ing teams", all of which refer to the same skill in
different terms. These variations make the use of
skill extraction techniques to standardize relevant
information for matching necessary.

For skill extraction, we adapt three state-of-the-
art skills extraction techniques, which are applied
in parallel to the content retrieved from the job
postings and candidate experiences: entity link-
ing (Zhang and et al., 2024), extreme multi-label

4Prior to their processing, both job postings and candi-
date experiences are cleaned. Promotional content, sensitive
information, specific locations, names, and dates that could
reveal private details about the hiring company or job seeker
are removed.

classification (Khattab et al., 2023), and in-context
learning with LLMs (Nguyen et al., 2024). We use
three techniques instead of one because each of the
three approaches has its pros and cons, such that a
combination of them promises to provide the best
outcome possible.

The outputs of these three techniques are merged
and processed using the CoT with Hint reasoning
module (D’Oosterlinck et al., 2024) from the DSPy
library (Khattab et al., 2023). This module is re-
sponsible for both the final selection of the rele-
vant skills and their mapping to the corresponding
ESCO skills by introducing a hint during an inter-
mediate reasoning step to prompt stateful LLMs
within a multi-step framework. Additionally, the
hint also ensures that the extracted skills are trans-
lated into English (when the input is in another
language, e.g., Spanish)

With the selected skills at hand, we construct
a knowledge graph that links ESCO skill labels,
job postings, and candidate experiences. The hi-
erarchical relationships between the skills in the
ESCO taxonomy are incorporated, along with n-
gram matches, to assign initial weights to the edges
linking skills with job postings and candidate expe-
riences. The initial edge weights are subsequently
refined using Inverse Document Frequency (IDF)
scores. To further improve the multilingual ca-
pability of the knowledge graph and translate the
structural characteristics of the graph into a vector
space representation that enables precise compar-
ison of nodes, we fine-tune it on multilingual (so
far, Spanish) embeddings. This enables the knowl-
edge graph to account for linguistic variations be-
tween the description of the skills in ESCO and in
job postings / candidate experiences. Furthermore,
language-specific embeddings capture language-
specific nuances and cultural context, enabling pre-
cise alignment between English and data in the
language in question, unlike the initial alignment,
which offers a generalized, language-independent
representation.

3.2 Skills extraction

As mentioned above, we extract skills from job
postings and candidate experiences adapting three
state-of-the-art techniques, whose output we then
combine for more accurate performance: entity
linking, extreme multi-class classification, and few-
shot in-context learning.
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Figure 1: Overview of our framework for skills extraction and matching

3.2.1 Entity linking
Entity linking is used to link fine-grained span-level
mentions of skills in candidate experiences to skills
in the ESCO classification. We use (Zhang and
et al., 2024), which is based on the BLINK model
(Wu et al., 2020), adapted to the job domain. In this
context, the entities refer to ESCO skill names and
their corresponding descriptions. The descriptions
are derived from the ESCO taxonomy, which pro-
vides detailed contextual information for each skill.
BLINK first retrieves potential matches within a
dense vector space, where a bi-encoder separately
encodes the context of skill mentions and the de-
scriptions of entities, which are two distinct inputs.
The first input that represents the mention and its
context has the following format:

[CLS]ctxt_left[S]mention[E]
ctxt_right[SEP]

where “mention" refers to the tokens of the actual
mention, while “ctxt_left" and "ctxt_right" stand
for the tokens of the surrounding contextual infor-
mation. Special tokens [S] and [E] are used to
delineate the mention itself.

The second input, representing the ESCO skill
and its description, incorporates the skill’s name
(title) and its textual description, separated by a
special token.

[CLS]skill_name[S]skill_desc[SEP]

Following the retrieval stage, a cross-encoder re-
ranks the candidate experience entities by concate-
nating the mention and entity spans for a precise
alignment. The model aims to maximize the simi-
larity, measured by the dot product, of the [CLS]

token embeddings for the correct entity relative to
other entities in the batch.

Given that our data comprise job titles, descrip-
tions, and skills in plain text, we extract skill men-
tions along with their surrounding context to utilize
this model effectively. First, we employ a contin-
iously pre-trained, domain-adapted skill extraction
model5 proposed in (Zhang et al., 2022a) to identify
sequences that most likely contain skills. Sentences
containing these identified spans are selected as
inputs. Then, we refine the extracted spans by re-
moving, stop words, subword markers, punctuation,
and other non-letter characters to ensure coherence
and readability. The processed spans are format-
ted into a structure required by the BLINK model,
allowing accurate context and entity-linking. In
instances where the span appeared at the beginning
or end of a sentence, the context was represented
by an empty string, as outlined in (Zhang and et al.,
2024).

3.2.2 In-context learning for extreme
multi-label Classification

Our second technique for skill extraction is “Infer-
Retrieve-Rank" (IReRa) (D’Oosterlinck et al.,
2024) for tackling extreme multi-label classifica-
tion (XMC) problems that involve classifying items
into thousands of possible categories (Khattab et al.,
2023). IReRa employs a multi-step interaction be-
tween LLMs and retrievers, optimizing the process
using the DSPy programming model.

We reproduced the results from the original Ir-
eRa framework following the prescribed method-
ology, including the optimization of the language

5https://huggingface.co/jjzha/jobspanbert-base-cased
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Figure 2: DSPy signature used for Selecting and Nor-
malizing Extracted Skills.

model with examples provided in their repository6.

3.2.3 Few-shot skill extraction using Large
Language Models

As the third technique, we implemented prompt-
ing of an LLM for skill extraction through a few-
shot in-context learning, as proposed by (Nguyen
et al., 2024). We adopted their original proposal
to facilitate skill extraction from longer sentences.
The exact prompts and few-shot examples from the
original proposal. To ensure robustness and miti-
gate transient issues, we run the extraction up to
five times to mitigate errors (e.g., poorly structured
output from the LLM).

3.3 Skill selection and ESCO mapping

The skills extracted by the skill extraction tech-
niques from above are further filtered with re-
spect to their relevance, and their final selection is
mapped onto the ESCO skills taxonomy, see Figure
2 for the prompt used in the DSPy program. The fil-
tering model is a version of IReRa (D’Oosterlinck
et al., 2024) that has been specifically adapted for
multilingual skill extraction by incorporating ad-
ditional context from the ESCO taxonomy. The
model is further refined to improve the accuracy of
skill selection compared to the ground truth, allow-
ing for evaluation against its variations.

While building upon (D’Oosterlinck et al., 2024),
our framework introduces several key enhance-
ments to bridge the language gap between English
ESCO skill labels and job postings / candidate ex-
periences in other languages (in our case, Span-
ish): (1) integration of E5 multilingual embed-
dings7 (Wang et al., 2024) to handle cross-lingual

6https://github.com/KarelDO/xmc.dspy
7Instruction-tuned multilingual E5 text embeddings model

employs a multi-stage contrastive learning methodology to
obtain high-performance general-purpose embeddings.

variations, (2) incorporation of ESCO skill descrip-
tions into the vector database8 to provide richer
contextual understanding, and (3) development of
a novel knowledge graph structure that captures hi-
erarchical relationships between skills. But even if
we apply multilingual embeddings for processing
the job postings, we retain English for our prompts
to acknowledge that maintaining prompts in En-
glish can yield advantageous outcomes, even for
cases where the data is in another language (Razu-
movskaia et al., 2024). We use this multilingual
adaptation of IReRa with aforementioned enhance-
ments as the baseline model in our experiments.

To further improve (D’Oosterlinck et al., 2024)’s
model, we implemented a method similar to few-
shot in-context learning (ICL) (Nguyen et al.,
2024), using training ground truth data. Annotator-
agreed ground truth vacancies and their correspond-
ing skills were provided as examples. To orga-
nize examples for in-context learning (ICL), we
followed the multilingual alignment proposed by
(Tanwar et al., 2023), which states that using seman-
tically similar examples to construct the prompt-
context aids the model in in-context inference. The
alignment guides the LLM in mapping the source
job posting to relevant target examples. To select
the most semantically informative examples, we
employed cosine similarity between the input job
posting and segments of example job postings (Liu
et al., 2021). In addition, we optimized the model
through bootstrapping few-shot demonstrations, as
proposed in (Khattab et al., 2023). For this pur-
pose, we employed a random search method where
Claude 3.5 Sonnet served as the teacher model, and
Llama-3 served as the student model9.

3.4 Knowledge Graph Construction
To effectively match the candidate experiences with
job postings, we construct a knowledge graph and
refine it using multilingual (in our case, Spanish)
embeddings.

First, a graph is created with job postings and
ESCO skills as nodes, and the links between the
ESCO skills and the postings that possess them as
weighted edges. The initial weights of the edges
are determined by the hierarchical relationships
between skills as defined in the ESCO taxonomy.
ESCO organizes skills in a three-levels: broad skill
groups, intermediate sub-groups, and specific com-

8In all experiments with vector store, we use the open-
source platform https://www.trychroma.com/.

9https://ai.meta.com/blog/meta-llama-3/
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petencies. In this hierarchy, we utilize parent-child
relationships between adjacent levels to reflect how
general skills are linked to more specialized skills.
Additionally, we introduce an another parent-child
relation between skills when an n-gram of a skill is
mentioned within another skill, thereby designating
the former as the parent. For example, “graphical
designer" and “graphical designer intern" illustrate
a parent-child relation, with “graphical designer
intern" as the child node. Each parent node is as-
signed an initial weight of 1, while the child skill
nodes connected to them receive an initial weight
of 0.5. We refine the initial edge weights using In-
verse Document Frequency (IDF) scores to account
for skill specificity and relevance. This refinement
is to distinguish between common skills that appear
frequently across many job postings and candidate
experiences (receiving lower weights), and special-
ized skills that are more discriminative (receiving
higher weights). The IDF scores are multiplied
with the initial hierarchy-based weights, resulting
in a weighted graph that better reflects both the
hierarchical importance and the distinctiveness of
each skill connection.

As next, candidate experiences are incorporated
as nodes, and their skills are connected to the skill
nodes in the graph; skills present in candidate ex-
periences that were not previously defined in the
graph are omitted from consideration. IDF scores
are again used to assign weights to the edges con-
necting candidate experiences to their respective
skills.

To facilitate semantically meaningful connec-
tions within the knowledge graph, we fine-tune the
knowledge graph with Spanish embeddings since
in our implementation, job vacancies and candi-
date experiences are in Spanish, while ESCO skills
are in English. This ensures a more nuanced un-
derstanding that goes beyond a simple skills as-
signment. We first convert pre-trained fastText
Spanish embeddings (Cañete, 2019), which have
been opted for due to their superior performance on
multilingual data into Word2Vec format (Mikolov
et al., 2013). This conversion is necessary for the
subsequent transformation of the embeddings into
a Node2Vec graph (Grover and Leskovec, 2016),
which extends Word2Vec representations to graph-
structured data. Finally, we fine-tune the graph em-
beddings using a maximal-entropy biased random
walk approach (Sinatra et al., 2010) to optimize
the representation. We use biased random walks
instead of simple random walks because they have

been shown to be more effective, particularly for
preferentially exploring certain paths and handling
weighted graphs (Liu et al., 2022). As a result,
the graph’s topological information is translated
into a vector space, allowing efficient computation
of node similarities and facilitating various graph-
based tasks such as classification and clustering.

In formal terms, the knowledge graph is an undi-
rected graph G = (V, E), where V is the set of
nodes and E is the set of edges. For a node v ∈ V ,
a random walk of length T is a sequence of nodes
{v0 = v, v1, . . . , vT }, where each node vi is cho-
sen based on the following transition probabilities:

P (vi+1 = x | vi = y) =




1
p , if x = vi−1,
1
q , if distance(vi−1, x) = 2,

1, otherwise.

(1)

with the p parameter controlling the likelihood of
revisiting the previous node and selected as 0.5 and
q = 1/p influencing the exploration of more dis-
tant nodes. This process balances local and global
exploration of the graph structure.

The sequences generated by the biased random
walks are then used to learn node embeddings using
the Skip-Gram model, where the goal is to maxi-
mize the likelihood of observing a node’s neighbors
given its embedding:

max
f

∑

v∈V

∑

u∈Nv

log Pr(u | f(v)),

where Nv denotes the context nodes of v, and the
probability Pr(u | f(v)) is given by:

Pr(u | f(v)) = exp(f(u) · f(v))∑
v′∈V exp(f(v′) · f(v)) .

This optimization ensures that nodes with similar
structural roles in the graph have similar embed-
dings in the vector space.

To quantify the similarity between two nodes
vi, vj ∈ V , we compute the cosine similarity be-
tween their embeddings.

4 Experiments

4.1 Technical infrastructure
To ensure privacy of companies and users, all
models in our experiments were executed locally
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within an isolated environment.10 Blackbox mod-
els with internet access, which could potentially
share sensitive data were restricted to processing
only anonymized job postings and were never ap-
plied to candidate experiences.

As technical infrastructure, we use the DSPy
library (Khattab et al., 2023), which has been de-
signed to create and optimize language model (LM)
pipelines. We employed several DSPy programs
to structure the data and build our experimental
pipeline. One DSPy program processed chunks of
CV data to generate synthetic job experiences that
ideally match job postings as described in ’Data’
section. Another DSPy program, namely skill se-
lection model, see Figure 2, was used to automati-
cally normalize assigned skills against the ESCO
taxonomy. This ensured that no extracted skill was
omitted. Given the variability in user-generated
job titles, another DSPy program was employed to
generate unique job titles, thereby maintaining the
integrity and uniqueness of the Knowledge Graph.

The knowledge graph is constructed using the
StellarGraph library (Data61, 2018). Data is stored
in Amazon S3 buckets, with computational tasks
executed on an RTX 3090TI GPU for the local
LLM and deep learning models. Additionally, the
framework utilizes the Claude API via Amazon
Bedrock. The entire framework is containerized
and fully prepared for testing prior to deployment.

4.2 Evaluating Matching
To evaluate the proposed methodology against SoA
skill extraction techniques and skill alignment in
the knowledge graph, we use synthetic data. We
construct three distinct knowledge graphs with the
skills selected by two of the applied skill extraction
strategies BLINK (Zhang and et al., 2024) and
IReRa (D’Oosterlinck et al., 2024) and our final
skill filtering model. The few-shot skill extraction
(Nguyen et al., 2024) was not used here because
it is not designed for the development of ESCO
skills.

For the evaluation of the matching, we use Jac-
card and cosine measures. Jaccard similarity is ap-
plied to exact skill matches, and cosine similarity
to the vectorized graph with Spanish embeddings.

For our biased random walks in the knowledge
graph, random walks of length 30 were gener-
ated, with each node serving as the root for 10
walks. The bias parameters were set to p = 0.5

10We use dockerized models from the open-source Ollama
library https://ollama.com/ for all experiments.

and q = 2.0. Edge weights were determined by
multiplying the ESCO hierarchy coefficient (0.5 for
child nodes, 1 for parent nodes) with the IDF, and
these weights were considered during the walk gen-
eration. The process was seeded with a fixed value
of 42 to ensure reproducibility. The walks were
used to fine-tune a Word2Vec model with the fol-
lowing parameters: vector size of 100, window size
of 5, minimum count of 1, and Skip-Gram method
(sg=1). The model was initialized with pre-trained
vectors and fine-tuned on the generated walks. We
computed cosine similarity between node embed-
dings to evaluate their relational similarity.

4.3 Data
For the evaluation of our skill selection, we use
a subset of the job postings and candidate expe-
riences from the InfoJobs database, focusing on
records where both descriptions and user-defined
skills are included. Specifically, we selected 648
job postings and 1,200 candidate experiences from
the database. From this subset, we select ESCO
occupations that are particularly ambiguous due
to their inclusion in various other occupations.
Among the selected occupations are, e.g., “admin-
istrative assistant”, “office clerk”, “sales assistant”,
“project manager”, and “human resources assistant”.
These labels were assigned to job postings and can-
didate experiences, following the methodology de-
scribed in (Kavas et al., 2024). Non-informative
elements in job postings, such as company descrip-
tions and promotional content have been removed.
Sensitive information in both job postings and can-
didate experiences was anonymized by a DSPy
program that utilizes zero-shot LLM inference.

We used the 1,200 candidate experiences to
guide the generation of synthetic experiences by
providing real-world language and terminology.
These experiences were split into chunks and stored
in a vector database, to facilitate similarity searches
during the synthetic experience generation process.

For annotation detailed in the ‘Ground Truth
Creation’ section below, we have selected 120 job
postings from the obtained dataset characterized by
longer descriptions and detailed requirements. The
remaining 528 postings were used for testing and
validation purposes in our experiments.

To evaluate our knowledge graph-based match-
ing proposal, we generated synthetic job experi-
ences using the local Llama-3 model, implemented
through DSPy modules. First, a job posting with
predefined skills was randomly selected. We ex-
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tracted n-grams from the job posting description,
focusing on skill mentions detected by semantic
similarity. Candidate experiences were split into
chunks and were stored in a vector database. Vector
similarity using a multilingual retriever based on
the E5 model was employed to identify the most
relevant candidate experience chunks. Finally, a
DSPy program that employs a CoT methodology
and sample Spanish language expressions from can-
didate experiences was used to guide the generation
process for creation of synthetic experiences opti-
mized to match the selected job postings.

4.4 Ground Truth Creation

To evaluate the performance of our skill extrac-
tion, we conducted a systematic annotation of job
postings, engaging experts from a job market place
running company. To mitigate potential biases, we
ensured diversity among the annotators in terms of
their expertise and backgrounds. The skills pre-
sented to the annotators were derived from the
union of skills extracted by the three state-of-the-
art techniques and normalized, as described above.
To enhance the comprehension of the individual
ESCO skills, each ESCO skill was accompanied
by its corresponding description from the ESCO
classification.

The annotation involved 12 annotators: 10 classi-
fied the skills in the job postings, while the remain-
ing 2 focused on annotating training data and re-
solving controversies. For each job posting, about
30 automatically assigned skills were presented.
Annotators were instructed to classify each skill as
either “essential" or “irrelevant". It is noteworthy
that while the job offers were in Spanish, the ESCO
skills and their descriptions were presented in En-
glish. All annotators were native Spanish speakers
with proficiency in English.

We provided detailed guidelines to the annota-
tors, emphasizing objective evaluation based solely
on the content of the job postings to reduce personal
biases and ensure consistency across annotations.
The annotation was conducted in two rounds. In
the first round, each of the 10 annotators evaluated
10 job postings from the dataset. At the same time,
we employed the Claude 3.5 Sonnet model11 to per-
form the same labeling task as the human annota-
tors. We extracted the top 15 job postings where the
model and human annotators agreed and selected
15 job postings with the least agreement. Two re-

11https://www.anthropic.com/news/claude-3-5-sonnet

maining annotators re-evaluated the 30 annotations.
Skills derived from the combined annotations of
both rounds were then used in the experiments. To
mitigate potential biases, the task instructions were
ensured to avoid any implicit suggestion to the an-
notators. We deliberately refrained from providing
specific examples or controversial cases to prevent
any influence on the annotators’ judgments, allow-
ing them to rely on their professional expertise.

4.5 Results

Skill Selection Method P R F1 X̄

ICL enhanced (claude-3.5) 0.46 0.5 0.48 5.81
Baseline (claude-3.5) 0.58 0.34 0.43 3.12
DSPy Optimized (llama-3) 0.48 0.28 0.35 3.13
ICL enhanced (llama-3) 0.4 0.28 0.33 3.74
Baseline (llama-3) 0.36 0.23 0.28 3.40

Table 1: Comparison of the performance of skill se-
lection techniques (‘X̄’ stands for “average number of
predicted skills"; as Baseline, we use (D’Oosterlinck
et al., 2024))

Table 1 reports the results of our baseline skill
selection model and its enhancements, namely in-
context learning (ICL) and DSPy optimization with
human-annotated skills. Due to inherent limita-
tions of black-box models, which cannot be fine-
tuned or optimized with custom scripts, DSPy opti-
mization was applied exclusively to the LLaMA-3
model, with the Claude 3.5 Sonnet model serving
as the teacher. We see that particularly the Claude
model, when enhanced with in-context learning
(ICL), shows an increase in recall by recognizing a
broader range of potential skills in the text. How-
ever, this increase comes at the cost of precision, as
the model becomes more permissive, leading to an
increase in false positives. Similarly, the LLaMA-3
model exhibits comparable behavior, with recall
improving more substantially than precision under
ICL. The optimization proved effective, as it en-
hanced the F1 score, even if it predicted, in the
average, a lower number of skills.

Model Metric: Score
IReRa SE Model Jaccard: 0.3084
Blink SE Model Jaccard: 0.4157
Skill Selection (Baseline) Jaccard: 0.5002
Skill Selection (Fine-tuned) Cosine: 0.5761

Table 2: Matching Performance of Knowledge Graph

Table 2 shows the performance of the matching
of candidate experiences and job postings. Ac-
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cording to the Jaccard scores, the Blink model
(Zhang and et al., 2024) surpasses the IReRa model
(D’Oosterlinck et al., 2024) in performance. For
skill extraction, our integration of E5 multilingual
embeddings and CoT-guided filtering shows a sig-
nificant improvement in recall while maintaining
competitive precision. For matching, the incor-
poration of hierarchical and multilingual embed-
dings enhances the cosine similarity of candidate
experience-job posting pairs, achieving a higher
alignment score compared to the baseline method.

The Jaccard score of 0.5002 establishes a base-
line for our final model for skill selection. Sub-
sequent fine-tuning, which includes the vectoriza-
tion of the knowledge graph and incorporation of
Spanish embeddings, enhances the cosine similar-
ity score to 0.5761. This indicates that fine-tuning
has improved matching accuracy, suggesting a bet-
ter alignment between job postings and candidate
experiences.

5 Conclusions

Our knowledge graph-based framework for candi-
date experience–job posting matching combines
extensions of several state-of-the-art techniques,
which leads to a versatile and robust application,
apt for industrial use. The integration of entity link-
ing mechanisms (Zhang and et al., 2024) enhances
contextual precision, while extreme multi-label
classification (D’Oosterlinck et al., 2024) addresses
the extensive taxonomy of potential competencies,
and the use LLM with few-shot in-context learn-
ing methodologies (Nguyen et al., 2024) ensures
a high robustness of the skill extraction task. Our
extension of (D’Oosterlinck et al., 2024)’s model
provides enhanced reasoning capability by utiliz-
ing a CoT technique that allows LLM to review
its own reasoning. It also enforces the model to
respond in the input language, even when provided
with context in another language. Furthermore, it
normalizes the selected skills against the ESCO
taxonomy and incorporates a hint at an intermedi-
ate reasoning step, guiding the model to refine its
initial output. The extended model significantly
improves on the ability to accurately process mul-
tilingual data, compared to previous methods that
relied on string matching or regular expressions to
map extracted skills to the ESCO taxonomy.

Finally, representing job postings, candidate ex-
periences and skills as nodes within a knowledge
graph allows for detailed and structured analysis

of skill overlap and compatibility, often missed in
linear or non-relational models (Yu et al., 2024).

References
José Cañete. 2019. Compilation of large spanish unan-

notated corpora.

Benjamin Clavié and Guillaume Soulié. 2023. Large
language models as batteries-included zero-shot esco
skills matchers. Preprint, arXiv:2307.03539.

CSIRO’s Data61. 2018. Stellargraph machine learn-
ing library. https://github.com/stellargraph/
stellargraph.

Karel D’Oosterlinck, O. Khattab, François Remy,
Thomas Demeester, Chris Develder, and Christopher
Potts. 2024. In-context learning for extreme multi-
label classification. ArXiv, abs/2401.12178.

Yousra Fettach, Adil Bahaj, and Mounir Ghogho. 2024.
Jobedkg: An uncertain knowledge graph-based ap-
proach for recommending online courses and pre-
dicting in-demand skills based on career choices.
Engineering Applications of Artificial Intelligence,
131:107779.

Nidhi Goyal, Jushaan Kalra, Charu Sharma, Raghava
Mutharaju, Niharika Sachdeva, and Ponnurangam
Kumaraguru. 2023. JobXMLC: EXtreme multi-label
classification of job skills with graph neural networks.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 2181–2191, Dubrovnik,
Croatia. Association for Computational Linguistics.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. Preprint,
arXiv:1607.00653.

Bharathi Mohan Gurusamy, Prasanna Kumar Rangara-
jan, P. Krishh, A. Keerthinathan, G. Lavanya, Meka
Meghana, Sheba Sulthana, and Srinath Doss. 2024.
An analysis of large language models: their impact
and potential applications. Knowledge and Informa-
tion Systems, 66:1–24.

Md. Arid Hasan, Shudipta Das, Afiyat Anjum, Firoj
Alam, Anika Anjum, Avijit Sarker, and Sheak
Rashed Haider Noori. 2024. Zero- and few-shot
prompting with LLMs: A comparative study with
fine-tuned models for Bangla sentiment analysis. In
Proceedings of the 2024 Joint International Con-
ference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 17808–17818, Torino, Italia. ELRA and ICCL.

Marvin Hofer, Daniel Obraczka, Alieh Saeedi, Hanna
Köpcke, and Erhard Rahm. 2023. Construction of
knowledge graphs: State and challenges.

X. Jia, Y. Zhang, and Y. Wang. 2018. Representation
of job-skill in artificial intelligence with knowledge
graph analysis. In Proceedings of the 2018 IEEE
International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE), pages 1–8.

9

154



Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu, and
Xiaosheng Luo. 2020. Learning effective representa-
tions for person-job fit by feature fusion. In Proceed-
ings of the 29th ACM International Conference on
Information & Knowledge Management, CIKM ’20,
page 2549–2556, New York, NY, USA. Association
for Computing Machinery.

Hamit Kavas, Marc Serra-Vidal, and Leo Wanner.
2024. Job offer and applicant cv classification
using rich information from a labour market tax-
onomy. Elsevier. Available at SSRN: https://
ssrn.com/abstract=4519766 or http://dx.doi.
org/10.2139/ssrn.4519766.

O. Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. ArXiv, abs/2310.03714.

Jarosław Kurek, Tomasz Latkowski, Michał Bukowski,
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