
Proceedings of the Generative AI and Knowledge Graph Workshop (GenAIK), pages 87–99
January 19, 2025. ©2025 International Committee on Computational Linguistics (ICCL)

87

Can LLMs be Knowledge Graph Curators for Validating Triple Insertions?
André Gomes Regino

Institute of Computing – University of Campinas – Brazil
Center for Information Technology Renato Archer – Brazil

andre.regino@students.ic.unicamp.br

Julio Cesar dos Reis
Institute of Computing – University of Campinas – Brazil

jreis@ic.unicamp.br

Abstract
As Knowledge Graphs (KGs) become central
to modern applications, automated methods for
validating RDF triples before insertion into
these graphs are essential. The complexity
and scalability challenges in manual valida-
tion processes have led researchers to explore
Large Language Models (LLMs) as potential
automated validators. This study investigates
the feasibility of using LLMs to validate RDF
triples by focusing on four distinct and com-
plementary validation tasks: class and prop-
erty alignment, URI standardization, semantic
consistency, and syntactic correctness. We pro-
pose a systematic validation method that uses
prompts to guide LLMs through each stage of
the triple evaluation of the RDF. In our experi-
ments, four models are evaluated across these
tasks. Our results reveal that more advanced
models like Llama-3-70B-Instruct offer supe-
rior accuracy and consistency. Our findings
emphasize the practical open challenges of de-
ploying LLMs in real-world RDF validation
scenarios, including domain generalization, se-
mantic drift, and the need for human-in-the-
loop interventions. This investigation advances
the research on the refinement and integration
of LLM-based RDF validation techniques into
KG management workflows.

1 Introduction

Knowledge Graphs (KGs) have emerged as essen-
tial artifacts to represent structured knowledge in
various digital applications, such as search engines,
recommendation systems, and question-answering
platforms. Having underlying logical and seman-
tically consistent KGs is relevant for applications
because they rely on them to improve user experi-
ence and help decision making.

At the core of KGs are Resource Description
Framework (RDF) triples, which consist of subject-
predicate-object expressions that form the basic
building blocks of KGs. An RDF triple links a sub-
ject to an object through a predicate, encapsulating

a single piece of knowledge (Bizer et al., 2023).
In this context, ontologies play a significant role
in KGs by defining structured schema by ensur-
ing consistency and semantic integrity within KGs.
Ontologies specify the classes, properties, and rela-
tionships that form the backbone of KGs by guiding
the data management and querying processes.

Maintaining the integrity and consistency of
KGs as new RDF triples are added is a complex
and ongoing challenge. Traditional methods for
validating and inserting RDF triples often involve
manual efforts by ontology experts, which can be
time consuming and prone to human errors. These
methods struggle to keep pace with modern data
environments’ dynamic and large-scale nature. The
limitations of current approaches highlight the ur-
gent need for advanced automated tools that can
support ontology experts in the management of
KG. Automating the identification and elimination
of erroneous information improves efficiency and
accuracy, reducing the dependency on extensive
human intervention.

The insertion of new RDF triples into an existing
KG presents issues that can undermine the graph’s
reliability and usability. First, there is the problem
of violating the predefined classes and properties
in place, where new triples might not conform to
the established ontology schema. Second, URI
standardization and duplication pose significant
challenges; ensuring that new triples do not intro-
duce redundant or conflicting URIs is essential for
maintaining a coherent KG. Third, semantic incon-
sistency is an issue, as newly added triples might
contradict existing knowledge, leading to logical in-
consistencies within the graph. Lastly, the syntactic
correctness of the triples, respecting a pre-defined
language (e.g., n-triples (Beckett et al., 2014) and
turtle (Beckett et al., 2014) syntax), avoids mal-
formed triple errors in RDF parsers. These is-
sues collectively impact the overall effectiveness of
KGs, compromising their ability to deliver accurate

88

and reliable knowledge representation.
Recent advancements in Language Models

(LLMs) have opened new avenues for addressing
the challenges associated with KG management.
LLMs, which excel in various natural language
processing (NLP) tasks, have demonstrated capa-
bilities in understanding and generating human lan-
guage with contextual and semantic accuracy (Tang
et al., 2023). The intersection of KGs and LLMs
presents a promising opportunity to leverage these
models to enhance KG management processes (Pan
et al., 2024). We originally hypothesized that the
advanced semantic understanding of LLMs could
assist in identifying violations of classes and prop-
erties, standardizing URIs, and ensuring syntac-
tic and semantic consistency of triples. This inte-
gration has the potential to significantly improve
the efficiency and reliability of KG management,
providing ontology experts with powerful tools to
maintain high-quality KGs.

This study investigates and evaluates the use of
LLMs in validating and inserting RDF triples into
existing KGs without negatively impacting their
integrity. Specifically, we develop a methodology
that ensures new triples are consistent with the ex-
isting KG and conform to underlying ontologies.

The broader implications of this research include
potential benefits for both academia and industry,
such as more reliable KGs and improved data man-
agement processes over time. Integrating LLMs
into KG curation tasks can lead to more intelligent
and automated knowledge management systems,
offering enhanced capabilities for handling com-
plex and dynamic data environments.

This article is organized as follows: Section 2 re-
views related work, discussing previous approaches
for RDF triple validation. Section 3 defines the ad-
dressed issues in validating RDF triples. Section 4
outlines our designed method. Section 5 presents
the evaluation procedures and obtained results. Sec-
tion 6 discusses our findings and open research
challenges. Finally, Section 7 draws conclusion
remarks.

2 Related Work

This section summarizes existing investigations
and approaches to validating RDF triples. A re-
cently published survey describing the intersection
between LLMs and KGs (Khorashadizadeh et al.,
2024) identified KG validation as an essential re-
search venue. KG validation is categorized into two

main approaches: fact-checking and inconsistency
detection. Our present solution concentrates on
inconsistency detection, a relatively underexplored
area within the broader context of KG validation.
The survey highlights only one significant study
in this domain: ChatRule (Luo et al., 2023). Cha-
tRule is a framework that leverages KGs to build
LLM prompts, generating rules to detect inconsis-
tencies within the KG. Our work further extends
this field by systematically evaluating the capabil-
ity of LLMs to validate RDF triples in KG insertion
operations, focusing on various types of inconsis-
tencies.

Huaman and Fensel presents a methodical ap-
proach to improving KG quality without using
LLMs (Huaman and Fensel, 2021). The frame-
work integrates existing tools and workflows to
ensure correctness, completeness, and usability of
KGs. It employs rule-based methods for quality
assessment, using metrics like accuracy and com-
pleteness. Cleaning tasks involve schema verifica-
tion through constraint languages (e.g., SHACL,
ShEx) and fact validation using internal consis-
tency checks or external sources like Wikipedia.
For enrichment, it detects duplicates and resolves
conflicts using tools such as SILK and LIMES.

Frey et al. (Frey et al., 2023) demonstrated
the evaluation of various LLMs, including GPT-
41 and Claude 22, revealing their proficiency in
working with Turtle, an RDF triple serialization
format. Their study introduced some tasks to as-
sess the models’ ability to parse, understand, and
create KGs in Turtle syntax. While newer versions
of GPT and Claude demonstrate promising capabil-
ities, they frequently struggle with strict output for-
matting, often including unnecessary explanations,
complicating their integration with RDF tools. We
face similar problems with our method and despite
these challenges, the models show huge potential
for assisting in KG engineering.

The Triples Accuracy Assessment (TAA) (Liu
et al., 2017) approach offers an automated method
for validating RDF triples in a KG using other KGs.
Unlike traditional methods that rely on internal
information, TAA identifies equivalent resources
across different KGs and matches predicates to
assess the correctness of triples. A confidence score
is generated to indicate the accuracy of each triple,
showing promising results with high F-measure

1https://openai.com/index/gpt-4/
2https://www.anthropic.com/research

https://openai.com/index/gpt-4/
https://www.anthropic.com/research

89

scores in evaluations using the FactBench dataset.
Our originality lies in the innovative use of

LLMs to validate RDF triples for KG insertion
operations, which traditionally solely rely on rule-
based methods or external KG interlinks. Unlike
prior approaches, such as the Triples Accuracy As-
sessment (Liu et al., 2017), which leverages other
KGs for validation, our study explores the potential
of LLMs to bring deeper semantic understanding
and context to the validation process. To the best
of our knowledge, this study is the first to system-
atically assess the potential effectiveness of LLMs
in this specific application and across various RDF
validation tasks. Our study offers new, original in-
sights into LLMs’ potential to enhance the accuracy
and efficiency of RDF triple validation.

3 Problem Formulation

This section outlines four critical problems our
approach addresses when validating and inserting
new triples into a KG using LLMs. The rationale
behind choosing the following problems is
that they align with existing standards and best
practices in RDF and ontology management. They
are common underlying problems encountered
during the construction and maintenance of KGs.

Problem 1: Violation of Predefined Classes
and Properties

One fundamental issue in maintaining KG’s in-
tegrity is ensuring that new triples adhere to the
predefined classes and properties outlined in the
ontology. During the generation of triples, it is
essential to specify which classes and properties
the KG structure requires. The critical task is to
verify if any generated triple contains classes or
properties not part of the predefined list provided
by the ontology maintainer.

Let C be the set of essential classes and Pr be the
important properties the ontology defines. For each
triple t = (s, p,o) in the set of T , the predicate p,
and the object o (if it is a class) must be elements
of Pr and C , respectively.

For C = {Person,Organization,Product},
Pr = {hasName, isPartO f , produces}, t1 =
(Organization/X , produces,Product/X_AI) and
t2 = (Person/SteveJobs,born,State/Cali f ornia).
All the elements from t1 can be found in C and Pr.
If the object "State" is not in C , then t2 should be
flagged.

Problem 2: URI Standardization
The addition of new triples requires no dupli-

cated URIs within the KG. Duplicates and redun-
dancies increase the size of KGs without adding
relevant knowledge. This problem arises when
different URIs refer to the same real-world entity.
Guaranteeing the uniqueness of URIs is vital to
maintaining a coherent representation of entities.

For any new triple t = (s, p,o) in T , the subject
s and the object o – if it is a URI – must be checked
against existing URIs in the KG. Let U be the set
of all URIs in the existing KG. The new URIs s
and o must not introduce duplicates.

If the resource Car/Tesla_S_2023 is
present in the KG, then the addition of t =
(Car/Tesla_S_23,hasFeature,Electric_Drive)
should be flagged since Car/Tesla_S_2023 and
Car/Tesla_S_23 refer to the same entity.

Problem 3: Semantic Inconsistency
Semantic inconsistency occurs when new triples

contradict the existing triples in the KG. A resource
cannot simultaneously possess mutually exclusive
properties. Ensuring semantic consistency requires
checking the logical compatibility of new triples
with the existing KG data.

Let R be a set of semantic statements and con-
straints the ontology defines. For each new triple
t = (s, p,o) in T , we must verify that t does not
violate any rule r ∈ R based on the existing triples
in the KG.

An example of a rule using Semantic Web
Rule Language (SWRL) states that a person can
not be sibling and married to the same person:
Sibling(?x,?y) ∧MarriedTo(?x,?y)→ f alse.

If t1 = (Phone/iPhone_X , isCompatibleWith,
Gadget/USB_C) in T , and there is an existing
t2 in the KG which states that the iPhone X is
incompatible with USB C, adding t1 would create
a contradiction with t2, based on a criterion r ∈ R
that states that two resources cannot be compatible
and incompatible with each other simultaneously.

Problem 4: Syntactic Inconsistency
In addition to semantic checking, ensuring the

syntactic correctness of RDF triples is essential to
maintaining the structural integrity of a KG. For
instance, a syntactically valid RDF triple using the
n-triples syntax must have three components: a
subject, a predicate, and an object. Any deviation
from this, such as triples with fewer or more than
three components, constitutes a syntactic error and

90

can disrupt the proper functioning of the KG.
Each triple t = (s, p,o) in T must adhere to the

required syntactic structure. This involves checking
that each triple has precisely one subject, predicate,
and object.

For instance, an existing triple t1 =
(Island/Santorini,hasPopulation), which lacks
an object, would be flagged as a syntactic error. A
triple like t2 = (Island/Crete,hasArea,8336,km)
with an extra component would also be erroneous.

4 Validating Generated RDF Triples
based on LLMs

Our proposed method consists of four main steps,
each involving a specific prompt and requiring the
intervention of an ontology maintainer to ensure
correctness. These steps systematically validate
and prepare RDF triples for precise insertion into
an existing KG. The steps address the critical issues
of class and property compliance, URI uniqueness,
semantic and syntactic consistency, and challenges
explained with more details in Section 3. Figure 1
presents our method to validate RDF triples.

The input is a set of RDF triples formatted as
T = {(s1, p1,o1),(s2, p2,o2), ...,(sn, pn,on)}. The
output is a set of final validated RDF triples as
Tf inal = {(s1, p1,o1),(s2, p2,o2), ...,(sn, pn,on)}.
Algorithm 1 shows the procedure of our method.

The first step (#1 in Figure 1) aims to verify
that T contains classes and properties listed as nec-
essary by the ontology maintainer. The process
begins with the maintainer creating a List of Im-
portant Classes and Properties Lc,p (line 2 in Algo-
rithm 1). This list outlines the crucial classes and
properties that must be present in the RDF triples.

The list Lc,p is manually curated by the ontology
maintainer, who possesses a deep knowledge of the
KG’s structure and the relevant domain. This list is
derived directly from the ontology (cf. Figure 1).

Although the important classes and properties
human-curated lists may limit generalizability, they
are important for ensuring semantic coherence and
alignment with the KGs domain. These curated
inputs are minimal compared to the automated pro-
cessing enabled by LLMs in the pipeline.

The LLM evaluates each triple from all triples
T (line 3 of Algorithm 1) to check for compli-
ance with the provided list. The compliance check
is defined as: ∀(s, p,o) ∈ T ,(class(s) ∈ Lc,p)∧
(property(p) ∈ Lc,p).

To materialize this step (line 4 of Algorithm 1),

we use the prompt3 pr1 = (i1,T ,Lc,p) composed
of the following components: an initial instruc-
tion i1 on evaluating the presence of properties and
classes, the set of RDF triples to be analyzed T
and the List of Important Classes and Properties
Lc,p. Line 4 of Algorithm 1 shows a summarized
version of i1.

Any triples containing classes or properties not
included in the List of Important Classes and Prop-
erties are flagged (lines 5 and 6 of Algorithm
1). The ontology maintainer reviews these non-
compliant triples and determines whether they
should be removed (line 9 of Algorithm 1). This
step ensures that all generated triples adhere to the
predefined schema.

The second step (#2 in Figure 1) ensures that
new triples do not introduce duplicate resources
into the KG. After removing the triples flagged in
Step 1, the remaining triples T are checked for
resource duplication.

The LLM performs SPARQL queries on the ex-
isting KG to identify similar resources, generating
a List of Duplicate Resources Ldr (line 12 of Al-
gorithm 1). Different from Lc,p, the generation of
Ldr does not require human intervention.

SPARQL queries serve as an interface with the
KG. The second step uses SPARQL queries to re-
trieve resources in the KG similar to those in the
triples under analysis. We identify these similar
resources by querying the KG with SPARQL and
filling Ldr with the results.

The prompt (line 13 of Algorithm 1) for this step
pr2 = (i2,T ,Ldr) includes an initial instruction i2
on identifying duplicate resources, the set of RDF
triples to be checked T and the List of Duplicate
Resources Ldr.

The ontology maintainer reviews the flagged du-
plicates and updates the triples as necessary. If a
resource is confirmed as duplicate, the maintainer
updates the triples to use the correct, existing re-
source values (line 18 of Algorithm 1). If a resource
is erroneously marked as a duplicate, it is ignored.
This step guarantees the uniqueness of URIs in the
KG, preventing conflicts and ensuring a coherent
representation of entities.

The third step (#3 in Figure 1) ensures that the
new triples do not violate predefined semantic re-
strictions. The ontology maintainer provides a List
of Semantic Restrictions Lsr (line 21 of Algorithm

3All the prompts listed in this section can be found in
https://zenodo.org/records/13712876

https://zenodo.org/records/13712876

91

Figure 1: Method to validate RDF triples. The boxes with grey circles represent the steps to transform the initial
triples T in the validated triples Tf inal . Among the steps, the method requires human intervention, represented by
the human icon. Steps 1, 2, and 3 use three lists as input: Lc,p and Lsr – part of the ontology – and Ldr – part of the
KG.

1), primarily consisting of rules specified in SWRL.
The set of triples modified by the previous steps

T is then compared against these restrictions by
the LLM (line 22 of Algorithm 1). The language
model identifies any triples that potentially violate
the semantic rules.

The prompt for this step pr3 = (i3,T ,Lsr) in-
cludes an initial instruction i3 on identifying triples
with semantic restrictions, the set of RDF triples
to be analyzed T and the List of Semantic Restric-
tions Lsr.

The ontology maintainer reviews the flagged
triples and decides whether to remove them (line
27 of Algorithm 1). This step prevents the intro-
duction of logical contradictions, such as an object
being simultaneously marked as compatible and
incompatible with another object, thus maintaining
the semantic integrity of the KG.

The final step (#4 in Figure 1) ensures the syn-
tactic correctness of the RDF triples before they are
inserted into the KG. The set of triples modified
by the previous steps, T , is provided as input, and
the language model checks for any syntactic errors
(line 30 of Algorithm 1).

This step does not require additional lists as the
previous steps. The language model identifies and

flags triples that do not conform to the required
RDF structure (line 34 of Algorithm 1), ensuring
that only syntactically correct triples are considered
for insertion into the KG.

The prompt for this step pr4 = (i4,T) includes
an initial instruction i4 about the syntactic valida-
tion and the set of RDF triples to be analyzed T .

The ontology maintainer proceeds with a final
validation on the flagged triples and Tf inal , ensuring
they are ready to be inserted in the KG.

5 Evaluation

This evaluation assesses if the developed method
and the designed prompts instructing the LLMs
can effectively identify and correct specific issues
within the RDF triples. The evaluation focuses on
the four distinct problems identified in Section 3
and addressed by our solution (Section 4).

Section 5.1 describes the models, datasets, and
procedures used in this evaluation. Section 5.2
demonstrates the obtained results.

5.1 Setup and Procedures

The experimental evaluation used four distinct Lan-
guage Models: Bloom-176B (Scao et al., 2022),
Mixtral-7B-Instruct (Jiang et al., 2024), Gemma2-

92

9B-Instruct (Team, 2024; Team et al., 2024), and
Llama-3-70B-Instruct (AI@Meta, 2024). We
chose Bloom because it was one of the first large-
scale language models launched, setting a prece-
dent in the open-source community. Among the
four models, Bloom is the largest, with 176 bil-
lion parameters, which enables it to capture a wide
range of linguistic nuances and knowledge. Bloom
is free, although it limits the number of tokens gen-
erated per minute4. These factors were key reasons
for including Bloom in our evaluation.

Mixtral was selected for its unique architecture
as a mixture of experts (Jiang et al., 2024), dif-
ferentiating it from the other LLMs. This model
combines multiple specialized sub-models, or “ex-
perts", to process different input parts, allowing
for more efficient computations. Despite being a
smaller language model with 7 billion parameters,
Mixtral is cost-effective and has demonstrated im-
pressive results, even outperforming some closed-
source LLMs like GPT-3.5 (Jiang et al., 2024).

Gemma 2 was included because it originated as
an open-source model developed by Google (Team
et al., 2024), known for competitive results on pub-
lic LLM leaderboards. With 9 billion parameters,
Gemma 2 balances size and computational cost.
Its performance relative to its size, cost, and open-
source nature justified its selection for our study.

Finally, Llama-3-70B was chosen because it is
one of the top-performing models on the LLM
leaderboard5, especially considering its size of 70
billion parameters. Produced by Meta, Llama-3 in-
clusion in our evaluation was driven by its leading
performance, size, and alignment with the other
open-source models in our study. Together, these
models represent the current state of open-source
LLMs across various scales and architectures.

The dataset consists of 500 records of questions
and answers related to product compatibility from
ten different e-commerce stores. This dataset was
generated in 2023 using random samples of actual
customer interactions. These e-commerce stores
are customers of GoBots6, a Brazilian AI startup
specializing in e-commerce solutions. The GoBots
maintains an existing KG focused on product com-
patibility, which has been successfully deployed in
a production environment. The triples used in our
evaluation are sourced directly from this KG. They

4https://huggingface.co/bigscience/bloom
5https://huggingface.co/spaces/lmsys/

chatbot-arena-leaderboard
6https://gobots.ai/

reflect real-world scenarios and have proven their
utility in supporting e-commerce operations.

Each of the 500 records includes (1) A ques-
tion posed by a customer about the compatibility
of a car with a product; (2) An answer provided
by a seller indicating compatibility or incompat-
ibility; (3) A set of RDF triples associated with
the question-answer pair, representing the car, the
product, and their compatibility status7. The RDF
triples were automatically generated by a system
developed by the Brazilian AI startup. This sys-
tem generates and integrates RDF triples into an
existing KG (Sant’Anna et al., 2020).

To evaluate specific aspects of this investigation,
noise was randomly introduced into the dataset,
targeting particular defined problems. It is impor-
tant to note that these noises were added automati-
cally, ensuring the randomness of the process and
eliminating any possibility of bias that could be
attributed to manual interference. This approach
was deliberately chosen to ensure a fair and un-
biased evaluation of the model’s ability to handle
data inconsistencies, regardless of how the noise
was introduced.

• Noise type 1: For 100 randomly chosen
records, triples with classes and properties
not allowed are added to the existing triples
(problem 1);

• Noise type 2: For another 100 randomly cho-
sen records, resources similar to existing re-
sources (with minor modifications like year
changes) are added (problem 2);

• Noise type 3: For another 100 randomly cho-
sen records, RDF triples indicating false com-
patibility (contradicting existing SWRL rules)
are introduced (problem 3);

• Noise type 4: For another 100 randomly cho-
sen records, RDF triples with four compo-
nents are added at the end of the triple list (sub-
ject, predicate, object, and a random fourth
component), disrupting the syntactic consis-
tency (problem 4);

• Control: No noise is added for the remaining
100 records of the dataset, serving as a control
group.

7An example of a dataset record can be found in https:
//zenodo.org/records/13722627

https://huggingface.co/bigscience/bloom
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://gobots.ai/
https://zenodo.org/records/13722627
https://zenodo.org/records/13722627

93

Each of the 500 records contains either one type
of noise or no noise (in the case of the 100 records
from the control group). No record contains more
than one type of noise. The evaluation measured
each model’s accuracy, precision, recall, and F1
score in identifying the introduced noise types.

The evaluation followed the following steps:

1. Noise Introduction: Introduced specific
types of noise into the dataset to simulate the
four problems (as described).

2. Method Execution: Apply the corresponding
prompts to the dataset:

• Prompt 1: Identifies triples with classes
and properties not allowed by the ontol-
ogy. We added a noisy RDF triple, indi-
cating the car speed. There is no class
or property in the ontology (and conse-
quently in the list of allowed classes and
properties) related to car speed;

• Prompt 2: Detects duplicate resources.
We added noisy RDF triples related to
the model year of a car. For instance, we
added the triple related to the car “HRV
21", expecting that the LLM could detect
the duplication with an already existing
resource in the KG, “HRV 2021";

• Prompt 3: Checks semantic consis-
tency by searching for contradictions in
compatibility among products and cars.
We added the example from Section 4,
adding SWRL related to compatible and
incompatible products and cars. We
added noisy compatibility triples, expect-
ing that the LLM could identify them;

• Prompt 4: Verifies the correct syntax of
triple insertion. We added noisy RDF
triples with four components.

3. Metrics Computation: Calculate accuracy,
precision, recall, and F1 for each prompt by
each model, evaluating the number of cor-
rectly identified records versus false positives
and false negatives. For example, in the case
of 100 records with noise from problem 1, a
true positive is when the model correctly iden-
tifies the problem in a record. A true negative
occurs when the model correctly identifies
that one of the remaining 400 records has no
issues. A false negative would be when the
model fails to identify problem 1 in one of the

100 problematic records, while a false positive
would occur if the model incorrectly identifies
one of the 400 noise-free records as problem-
atic. These values are used to compute the
evaluation metrics for each model.

4. Analysis of Results: Quantitative analysis to
determine the effectiveness of each prompt in
addressing the specific problems.

5.2 Results

In evaluating the models across the four RDF vali-
dation problems, a clear trade-off emerges between
precision, recall, and accuracy. For instance, in
the Class and Properties Violation Problem, the
Llama-3 70B Instruct model got an accuracy of
0.84, coupled with a balanced precision and recall
of 0.78 and 0.89, respectively. This indicates that
the model was good at identifying valid triples and
minimizing false positives and negatives. On the
other hand, Bloom-176B showed a more balance
between precision and recall (0.54 vs. 0.56) but at
a much lower accuracy (0.55), reflecting difficult-
to-maintain consistent results across the scenarios.

We observed that models like Mixtral-7B and
Gemma2-9B exhibit higher recall than precision in
some instances, such as the “Class and Properties
Violation” and “Syntactic Inconsistency Problem”.
This comes at the cost of higher false positives,
reflected in lower precision. The balance between
these metrics suggests that selecting a model for
RDF validation requires prioritizing the metrics
most relevant to the specific validation scenario,
whether catching more errors (recall) or ensuring
fewer false positives (precision).

The models showed varying degrees of sensitiv-
ity to different types of RDF validation issues, re-
vealing insights into their strengths and weaknesses.
In the “Syntactic Inconsistency Problem”, where
adherence to RDF structure is required, Llama-3
70B Instruct outperformed all other models with
almost perfect accuracy (0.99) and F1 score (0.98).
This indicates that this model is well-suited for
tasks requiring precise syntactic validation. How-
ever, Bloom-176B struggled with syntactic errors,
achieving a low accuracy of 0.36, suggesting it is
less adept at handling structural rules.

In the “Semantic Inconsistency Problem” and
“URI Standardization”, which involves relation-
ships and contextual knowledge, Gemma2-9B
showed higher metric values than in syntactic tasks.
This could be attributed to their ability to recog-

94

nize complex ontological relationships, although
their recall and F1 scores are behind Llama-3. The
results suggest that while some models specialize
in specific RDF issues, they face challenges when
encountering unfamiliar error types.

6 Discussion and Open Research
Challenges

This research inquired how LLMs can be suited
to contribute as KG Curators in the operations of
triple insertion. This research demonstrated that
LLMs for the distinct problems addressed can be
applicable as an approach to help ontology engi-
neers address RDF validation. In the following,
we underline key findings and challenges regarding
several aspects of our experimental results and the
consequences of applying our solution to opera-
tional settings.

The most performing LLM. Overall, we found
that the Llama-3 70B Instruct model consistently
outperformed the others across all validation prob-
lems, excelling in tasks that demand high precision
and recall. Its effectiveness in the “Syntactic In-
consistency Problem” (0.99 accuracy) and “URI
Standardization Problem” (0.96 accuracy) under-
scored its robustness in handling structural data
such as RDF triples. In our understanding, this
model’s success is due to its large parameter size
and fine-tuning, which are geared explicitly to-
wards instruction-based tasks, enabling it to gener-
alize across diverse RDF validation scenarios.

Underperformance consistently. Conversely,
Bloom-176B consistently underperformed, partic-
ularly in the “Semantic Inconsistency Problem”
(0.29 accuracy) and “Syntactic Inconsistency Prob-
lem” (0.36 accuracy). Its lower accuracy and incon-
sistent precision-recall balance show its limitations
in handling the rule-based nature of RDF validation.
The gap in results between Llama-3 and Bloom can
be explained by differences in model size, training
datasets, domain-specific tuning, and more than
two years between the release of both models.

The most challenging problems. Discussing
the four validation problems, the “URI Standard-
ization Problem” obtained the best overall results,
with a mean accuracy of 0.71. This can be at-
tributed to the nature of ’standardizing URIs’,
which primarily involves pattern recognition that
LLMs are well-equipped to handle. The best model,
Llama-3, achieved a near-perfect accuracy of 0.96
for this problem, showing its ability to manage

standardized data consistently. On the contrary, the
“Syntactic Inconsistency Problem” proved to be the
most challenging overall, with an average accuracy
of 0.53 and a mean F1 score of 0.47. This difficulty
arose from Gemma 2 reaching a precision of 0.08
and accuracy of 0.26, which was the worst preci-
sion and accuracy of the evaluation. Mixtral-7B
got better results in this task. Comparing the two
models with similar sizes, Mixtral outperformed
Gemma 2 in semantic-related tasks, and Gemma 2
outperformed Mixtral in syntactic-related tasks.

Cost vs. Accuracy Trade-off. The cost-
effectiveness of deploying different LLMs for RDF
triple validation is critical for real-world appli-
cations. For instance, while the Llama model
achieved superior accuracy and overall metrics,
it comes with a significant computational cost of
$0.88 per million tokens. In contrast, the Gemma-2
9B Instruct model, which costs $0.30 per million
tokens, provides a balanced trade-off between cost
and accuracy but falls short of achieving the preci-
sion needed for more complex scenarios. Mixtral
7B Instruct offers a middle ground in cost and per-
formance at $0.60 per million tokens. At the same
time, Bloom is a freely available model that, de-
spite being cost-free, exhibits significantly lower
accuracy and reliability. These costs were gathered
in two companies that provide LLMs APIs: To-
getherAI8 and Hugging Face9. The costs reflect
the price found when this manuscript was written -
September 2024.

Semantic Drift in Long Triple Chains. One
issue encountered in RDF triple validation using
LLMs is the potential for semantic drift when eval-
uating long chains of interconnected triples. In this
context, semantic drift refers to the model losing
coherence as it processes extended sequences. This
drift is increased by the models’ limited memory
retention and inability to consistently track relation-
ships across multiple triples. Triples involving big
and deep ontological hierarchies or chains that span
various levels may introduce errors as the models
struggle to maintain context. As a future work,
addressing this challenge may require fine-tuning
LLMs with specific datasets designed to enhance
memory retention over long sequences or integrat-
ing mechanisms that allow for continuous context
tracking in KG context. Without such interventions,
long triple chains remain a source of inaccuracy.

8https://api.together.ai/models
9https://huggingface.co/models

https://api.together.ai/models
https://huggingface.co/models

95

Ontology Complexity and Coverage. The com-
plexity of ontologies, characterized by rich hierar-
chies, specialized vocabularies, and relationships,
introduces significant challenges for LLM-based
RDF validation. The method revealed that as on-
tologies grow more complex, models like Bloom
and Mixtral struggle to navigate the intricate set of
classes and properties accurately. A notable issue
is incomplete ontology coverage, where the models
lack sufficient information about specialized vo-
cabularies, leading to false positives or negatives
during validation. For example, triples involving
lesser-known properties or deep subclass hierar-
chies often went unrecognized, highlighting gaps
in the models’ ontological understanding. Address-
ing this issue may require expanding the training
datasets to include more comprehensive ontology
samples for future work.

Ontology Size. The experiments conducted in
this study did not suffer from token limitation,
as the ontology used is relatively small and well
within the context size limits of the employed
LLMs. However, we acknowledge that scaling
the approach to large ontologies remains an open
issue. Future work will explore strategies to handle
extensive schemas, such as breaking them into sub-
sets or leveraging hierarchical representations to fit
within the token constraints of LLMs.

7 Conclusion

Ensuring the quality and consistency of KGs is
critical for real-world applications that rely on se-
mantic accuracy. As KGs become more integral
to artificial intelligence systems, advancing meth-
ods for their automated validation might play a key
role in driving accurate, reliable, and scalable se-
mantic solutions. Our study explored using LLMs
to validate RDF triples by addressing critical chal-
lenges in automating a traditionally manual process.
We showcased the strengths and limitations of cur-
rent LLMs in KG curation by examining the effec-
tiveness of models like Llama-3-70B-Instruct and
Bloom-176B across four RDF validation tasks. The
Llama-3 model demonstrated competitive results,
particularly in maintaining syntactic and semantic
consistency, showing the potential for real-world
deployment. Our results highlighted the complex-
ity and cost implications, especially in handling
errors requiring more context. The findings sug-
gested future research directions, including more
sophisticated approaches to reducing semantic drift

in longer triple chains and enhancing model gen-
eralization across domains. Also, incorporating
humans into the loop and refining prompt engineer-
ing techniques could enhance LLM results.

Limitations

One limitation found during the development of
this investigation is the low accuracy of some mod-
els when handling intricate RDF syntax and se-
mantics. For instance, models like Bloom-176B
demonstrated considerable inconsistency in detect-
ing syntactic errors, due to their less targeted train-
ing. This variability among models indicates that
not all LLMs can address complex validation tasks,
suggesting a need for further fine-tuning and model
selection based on specific KG characteristics.

Another limitation was handling with long triple
chains, where models experienced semantic drift.
Certain LLMs struggled to retain the necessary
context across interconnected triples as the chain
increased, leading to validation inaccuracies. Ad-
dressing this drift might require models specifically
trained to manage extended sequences or incorpo-
rate a human-in-the-loop strategy. Additionally,
the significant computational cost of more accu-
rate models, like Llama-3-70B, limits scalability
in practical applications, where cost-effective but
reliable validation solutions are desirable.

We acknowledge that the proposed approach
involves some degree of manual effort, mainly
through the involvement of the ontology maintainer
in providing inputs such as lists of essential classes
and properties. However, this involvement is nec-
essary to ensure the RDF’s semantic alignment and
domain specificity triples with the existing KG and
ontology. Although LLM automation significantly
reduces the overall workload, human oversight re-
mains essential to maintain the quality and reliabil-
ity of the KG.

Acknowledgments

This study was financed by the National Council for
Scientific and Technological Development - Brazil
(CNPq) process number 140213/2021-0. In ad-
dition, this research was partially funded by the
São Paulo Research Foundation (FAPESP) (grants
#2022/13694-0, #2022/15816-5 and #2024/07716-
6). The opinions expressed in this work do not
necessarily reflect those of the funding agencies.
We thank GoBots for providing the infrastructure
used in this research.

96

References

AI@Meta. 2024. Llama 3 model card.

David Beckett, Tim Berners-Lee, Eric
Prud’hommeaux, and Gavin Carothers.
2014. Rdf 1.1 turtle. World Wide Web
Consortium, pages 18–31.

Christian Bizer, Tom Heath, and Tim Berners-Lee.
2023. Linked data-the story so far. In Link-
ing the World’s Information: Essays on Tim
Berners-Lee’s Invention of the World Wide
Web, pages 115–143.

Johannes Frey, Lars-Peter Meyer, Natanael Arndt,
Felix Brei, and Kirill Bulert. 2023. Bench-
marking the abilities of large language mod-
els for rdf knowledge graph creation and com-
prehension: How well do llms speak turtle?
arXiv preprint arXiv:2309.17122.

Elwin Huaman and Dieter Fensel. 2021. Knowl-
edge graph curation: a practical framework.
In Proceedings of the 10th International Joint
Conference on Knowledge Graphs, pages 166–
171.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego
de las Casas, Emma Bou Hanna, Florian Bres-
sand, et al. 2024. Mixtral of experts. arXiv
preprint arXiv:2401.04088.

Hanieh Khorashadizadeh, Fatima Zahra Amara,
Morteza Ezzabady, Frédéric Ieng, Sanju Ti-
wari, Nandana Mihindukulasooriya, Jinghua
Groppe, Soror Sahri, Farah Benamara, and
Sven Groppe. 2024. Research trends for
the interplay between large language mod-
els and knowledge graphs. arXiv preprint
arXiv:2406.08223.

Shuangyan Liu, Mathieu d’Aquin, and Enrico
Motta. 2017. Measuring accuracy of triples in
knowledge graphs. In Language, Data, and
Knowledge: First International Conference,
LDK 2017, Galway, Ireland, June 19-20, 2017,
Proceedings 1, pages 343–357. Springer.

Linhao Luo, Jiaxin Ju, Bo Xiong, Yuan-Fang Li,
Gholamreza Haffari, and Shirui Pan. 2023.
Chatrule: Mining logical rules with large lan-
guage models for knowledge graph reasoning.
arXiv preprint arXiv:2309.01538.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen,
Jiapu Wang, and Xindong Wu. 2024. Unifying
large language models and knowledge graphs:
A roadmap. IEEE Transactions on Knowledge
and Data Engineering.

Diogo Teles Sant’Anna, Rodrigo Oliveira Caus, Lu-
cas dos Santos Ramos, Victor Hochgreb, and
Julio Cesar dos Reis. 2020. Generating knowl-
edge graphs from unstructured texts: Expe-
riences in the e-commerce field for question
answering. In ASLD@ ISWC, pages 56–71.

Teven Le Scao, Angela Fan, Christopher Akiki,
Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni,
François Yvon, Matthias Gallé, et al. 2022.
Bloom: A 176b-parameter open-access mul-
tilingual language model. arXiv preprint
arXiv:2211.05100.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu
Meng, Song-Chun Zhu, Yitao Liang, and
Muhan Zhang. 2023. Large language mod-
els are in-context semantic reasoners rather
than symbolic reasoners. arXiv preprint
arXiv:2305.14825.

Gemma Team. 2024. Gemma.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mes-
nard, Bobak Shahriari, Alexandre Ramé, et al.
2024. Gemma 2: Improving open language
models at a practical size. arXiv preprint
arXiv:2408.00118.

A Appendix - Algorithm

B Appendix - Summary of Results

Table 1 presents the results. It demonstrates varied
effectiveness across the four evaluated problems,
with differences in accuracy, precision, recall, and
F1-score among the four language models.

For Problem 1, which focused on detecting
violations of predefined classes and properties,
Llama-3-70B-Instruct achieved the highest ac-
curacy (0.84) and F1-score (0.80), followed by
Mixtral-7B-Instruct with an accuracy of 0.64 and
an F1-score of 0.61. The overall mean accuracy
for this problem across all models was 0.61, with a
mean precision of 0.65, recall of 0.71, and F1-score
of 0.58.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.34740/KAGGLE/M/3301

97

Algorithm 1 Our Method for Validating RDF Triples for Knowledge Graph Insertion

Require: Set of RDF triples T , List of Important Classes and Properties Lc,p, Knowledge Graph K G ,
List of Semantic Restrictions Lsr

1: Step 1: Verify Classes and Properties using LLM and Prompt 1
2: Lc,p← createListOfImportantClassesAndProperties() ▷ Created by ontology maintainer
3: for each (s, p,o) ∈ T do
4: response← LLM(Prompt 1: "Check if the triple (s, p,o) violates any predefined classes or

properties in Lc,p")
5: if response = violation then
6: f laggedTriples1← f laggedTriples1∪{(s, p,o)}
7: end if
8: end for
9: T ← T \ f laggedTriples1 ▷ Reviewed by ontology maintainer

10: Step 2: Verify Redundancies using LLM and Prompt 2
11: for each (s, p,o) ∈ T do
12: Ldr← queryForDuplicateResources(s,o, K G)
13: response← LLM(Prompt 2: "Check if the triple (s, p,o) contains duplicate or similar resources

in Ldr")
14: if response = duplicate then
15: f laggedTriples2← f laggedTriples2∪{(s, p,o)}
16: end if
17: end for
18: T ← updateResourcesInTriples(T , f laggedTriples2, K G) ▷ Reviewed by ontology maintainer
19: Step 3: Verify Semantic Consistency using LLM and Prompt 3
20: for each (s, p,o) ∈ T do
21: Lsr← createListOfRules() ▷ Created by ontology maintainer
22: response← LLM(Prompt 3: "Check if the triple (s, p,o) violates any semantic restrictions defined

in Lsr")
23: if response = violation then
24: f laggedTriples3← f laggedTriples3∪{(s, p,o)}
25: end if
26: end for
27: T ← T \ f laggedTriples3 ▷ Reviewed by ontology maintainer
28: Step 4: Verify Syntactic Consistency using LLM and Prompt 4
29: for each (s, p,o) ∈ T do
30: response← LLM(Prompt 4: "Check if the triple (s, p,o) is syntactically correct")
31: if response = correct then
32: T f inal ← T f inal ∪{(s, p,o)}
33: else
34: f laggedTriples4← f laggedTriples4∪{(s, p,o)}
35: end if
36: end for
37: T ← T \ f laggedTriples4 ▷ Reviewed by ontology maintainer
38: f laggedTriples← f laggedTriples1∪ f laggedTriples2∪ f laggedTriples3∪ f laggedTriples4
39: return T f inal, f laggedTriples ▷ Final set of triples ready for insertion into the Knowledge Graph

Concerning Problem 2, which involved identify-
ing and standardizing duplicate resources, Llama-
3-70B-Instruct achieved the highest results with
an accuracy of 0.96, precision of 0.92, recall of

0.97, and F1-score of 0.94. The mean accuracy of
each model for this problem was 0.71, with a mean
precision of 0.75, recall of 0.73, and F1-score of
0.67.

98

Table 1: Results of the experimental evaluation. The first column lists the four problems described in Section 3; the
second column lists the four LLMs used in the evaluation; the remaining columns show the values of each metric in
each model and problem. Bold values represent the best score for each metric and each problem.

Problem Model Accuracy Precision Recall F1
Bloom-176B 0.55 0.54 0.56 0.50

Mixtral-7B-Instruct 0.64 0.67 0.77 0.61
Gemma2-9B-Instruct 0.42 0.59 0.61 0.42
Llama-3-70B-Instruct 0.84 0.78 0.89 0.80

1 - Class and Properties Violation

Mean 0.61 0.65 0.71 0.58

Bloom-176B 0.44 0.50 0.49 0.41
Mixtral-7B-Instruct 0.52 0.64 0.69 0.51

Gemma2-9B-Instruct 0.90 0.93 0.75 0.80
Llama-3-70B-Instruct 0.96 0.92 0.97 0.94

2 - URI Standardization

Mean 0.71 0.75 0.73 0.67

Bloom-176B 0.29 0.34 0.26 0.26
Mixtral-7B-Instruct 0.56 0.39 0.36 0.37

Gemma2-9B-Instruct 0.81 0.83 0.53 0.50
Llama-3-70B-Instruct 0.92 0.86 0.95 0.89

3 - Semantic Inconsistency

Mean 0.65 0.61 0.53 0.51

Bloom-176B 0.36 0.32 0.23 0.27
Mixtral-7B-Instruct 0.50 0.59 0.63 0.49

Gemma2-9B-Instruct 0.26 0.08 0.37 0.13
Llama-3-70B-Instruct 0.99 0.99 0.97 0.98

4 - Syntactic Inconsistency

Mean 0.53 0.50 0.55 0.47

Problem 3, focused on detecting semantic in-
consistencies, yielded similar trends, with Llama-3-
70B-Instruct showing the highest accuracy (0.92)
and F1-score (0.89). The mean accuracy across all
models for this problem was 0.65, with a precision
of 0.61, recall of 0.53, and F1-score of 0.51.

For Problem 4, which addressed syntactic in-
consistencies in RDF triples, Llama-3-70B-Instruct
delivered the best results with an accuracy of 0.99,
precision of 0.99, recall of 0.97, and F1-score of
0.98. The mean accuracy for this problem across
models was 0.53, with a mean precision of 0.50,
recall of 0.55, and F1-score of 0.47.

Figure 2 presents the mean metric values across
all four problems, highlighting Llama-3-70B-
Instruct as the top-performing model, with a mean
accuracy of 0.93, precision of 0.89, recall of 0.95,
and F1-score of 0.90. Mixtral-7B-Instruct and
Gemma2-9B-Instruct had moderate overall results,
with mean accuracies of 0.55 and 0.59, respectively.
Mixtral-7B-Instruct exhibited a mean precision of

0.57, recall of 0.61, and F1-score of 0.50, while
Gemma2-9B-Instruct achieved a mean precision of
0.60, recall of 0.56, and F1-score of 0.46. Bloom-
176B had the lowest mean with an accuracy of 0.41,
precision of 0.42, recall of 0.38, and F1-score of
0.36 across all problems.

99

Figure 2: Summarization of the results achieved in the experimental evaluation. The x-axis represents the models.
The y-axis represents values in the range [0,1] of each metric. The values shown are the mean values for each metric
(accuracy, precision, recall, and F1) across all four problems. For example, the accuracy for Bloom-176B (0.41) was
calculated by averaging the accuracy results obtained across the four problems, and similarly for the other metrics
and models.

	Introduction
	Related Work
	Problem Formulation
	Validating Generated RDF Triples based on LLMs
	Evaluation
	Setup and Procedures
	Results

	Discussion and Open Research Challenges
	Conclusion
	Appendix - Algorithm
	Appendix - Summary of Results

