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Abstract

Detecting synthetic tabular data is essential
to prevent the distribution of false or manip-
ulated datasets that could compromise data-
driven decision-making. This study explores
whether synthetic tabular data can be reliably
identified "in the wild"—meaning across dif-
ferent generators, domains, and table formats.
This challenge is unique to tabular data, where
structures (such as number of columns, data
types, and formats) can vary widely from one
table to another. We propose three cross-table
baseline detectors and four distinct evaluation
protocols, each corresponding to a different
level of "wildness". Our very preliminary re-
sults confirm that cross-table adaptation is a
challenging task.

1 Introduction and Related Works

Most studies on synthetic data detection focus on
image (Chai et al., 2020; Corvi et al., 2023; Marra
et al., 2019; Bammey, 2024), text (Lavergne et al.,
2011; Lahby et al., 2022; Hu et al., 2023; Wang
et al., 2024; Mitchell et al., 2023), audio (Lopez-
Paz and Oquab, 2016), video (face-swap) (Pu et al.,
2021), or their combination (Singhal et al., 2020).

Nevertheless, a growing number of generative
models for tabular data generation has emerged
recently; some are general-purpose (Zhang et al.,
2024; Kotelnikov et al., 2023), while others are
tailored to specific domains like finance (Sattarov
et al., 2023) or healthcare (Hyun et al., 2020). With
these advances it will be easier to generate realis-
tically manipulated datasets to fake scientific re-
sults or to hide fraud and accouting loopholes. It
is therefore essential to focus research efforts on
the detection of synthetic tabular data, and to de-
velop detection techniques that are on par with the
impressive generative models’ capabilities.

Detecting syntetic content issued from a known
generative model on a restricted domain is a fairly

tractable task. The performance of such a pre-
dictor is indeed commonly used for adversarial
training (Goodfellow et al., 2020) and as a metric
to assess generation performance (Lopez-Paz and
Oquab, 2016; Zein and Urvoy, 2022).

However, the challenge intensifies when attempt-
ing to detect synthetic data "in the wild" (Stadel-
mann et al., 2018), namely, when the deployed
system has to face modalities and content gener-
ators it has never seen during its training phase.
Is is known that, even for homogeneous formats
like image or text, synthetic content detection sys-
tems are not robust to such cross-generator and
cross-domain distribution shifts (Kuznetsov et al.,
2024).

When dealing with tabular data, we have to face
a stronger form of domain-shift that we call cross-
table shift. Indeed, for a synthetic table detection
system to be useful, is has to cope with different
table formats with varying numbers of columns,
varying types and varying distributions shapes. Al-
though, the litterature on domain adaptation across
the same table structure is vast (see Gardner et al.,
2024, for a survey), only a few recent articles pro-
pose classifiers that are able to generalize across
different tables (Wang and Sun, 2022; Spinaci et al.,
2024). To the best of our knowledge, no study on
cross-table synthetic data detection has been pub-
lished yet.

We present a preliminary work with three base-
lines for synthetic tabular data detection "in the
wild." We focus on cross-table robustness among
different real-world evaluation scenarios represent-
ing various degrees of "wildness", for instance:
(i) No shift: the model is trained and tested on
samples from the same pool of datasets and genera-
tors; (ii) Cross-generator shift: the model is tested
on the same datasets but the test synthetic data is
produced by unknown generators; (iii) Cross-table
shift: the model is tested on holdout datasets and
table structures but with synthetic data produced
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by known generators; (iv) Full shift: the model is
tested on generators and datasets it has never seen
before.

We address here the cross-table adaptation by
considering two text-based baselines where the ta-
ble rows are first linearized as strings, and a table-
based transformer with a simple column-wise table-
agnostic encoding.

2 Real and Synthetic Data

Real Data: We use 14 common public tabular
datasets from the UCI1 with different sizes, dimen-
sions and domains. These datasets are described in
Table 1.

Name Size #Num #Cat
Abalone2 4177 7 2

Adult2 48842 6 9
Bank Marketing2 45211 7 10

Black Friday2 166821 6 4
Bike Sharing2 17379 9 4

Cardio3 70000 11 1
Churn Modelling3 4999 8 4

Diamonds2 26970 7 3
HELOC3 5229 23 1
Higgs2 98050 28 1

House 16H2 22784 17 0
Insurance3 1338 4 3

King3 21613 19 1
MiniBooNE2 130064 50 1

Table 1: Description of the datasets. "#Num" refers
to the number of numerical attributes and "#Cat" the
number of categorical ones.

Synthetic Data: Our data generators are heavily
tuned versions of TabDDPM (Kotelnikov et al.,
2023), TabSyn (Zhang et al., 2024), TVAE, and
CTGAN (Xu et al., 2019) provided by (Kindji et al.,
2024). We trained the models on the entire real
datasets before sampling new synthetic rows. Each
model is used to create a synthetic version of each
dataset.

3 Detection Models

In order to be useful "in the wild", a detection
model must be "table-agnostic", which means that
it must accept inputs form different table formats.
We trained three baselines for synthetic content
detection from scratch: a logistic regression and
two transformer-based classifiers. For the logis-
tic regression and the first transformer the table
is first linearized into text (Section 3.1). For the

1https://archive.ics.uci.edu/
2https://www.openml.org
3https://www.kaggle.com/datasets

second transformer-based classifier we use a rough
columns level encoding of tables (Section 3.2).

The transformer-based classifiers have three
main components: (i) a feature embedding block,
(ii) a transformer encoder block, and (iii) a clas-
sification head. As in BERT, the classifier relies
on a CLS embedding that is added to the input and
retrieved in the output of the transformer blocks.
The CLS representation is fed to the classification
head to predict the binary target class (real or syn-
thetic data). The models (both text-based and table-
based) are trained using a binary cross entropy loss.

3.1 Text-Based Encodings

A natural solution to build a table-agnostic model
is to consider the tables as raw text. This approach
is used in pretrained models such as TaBERT (Yin
et al., 2020), TAPAS (Herzig et al., 2020), or
TAPEX (Liu et al., 2022). These models are are
designed to encode small tables like the ones found
on Wikipedia. They are derived from BERT and
rely on a text encoding of the whole table.

In order to work with larger tables we opted,
as in (Borisov et al., 2023), to work at the row
level. We converted each table row into a shuffled
sequence of <column>:<value> patterns.

For instance the first row of Ta-
ble 1 can be encoded as the string
"Name:Abalone,Size:4177,#Num:7,#Cat:2"
or any of its column permutations. This random
columns’ permuation is intended to increase gener-
alization across different tables. Then two options
are considered: (i) For the logistic regression, the
string is simply split into a bag of character-level
trigrams like "Nam", "e:A", ":41" or ,"t:2";
(ii) For the text-transformer baseline the string is
tokenized into a sequence of characters that are
mapped, as usual for transformers, into a sequence
of embedding vectors that are combined with a
positional embedding.

3.2 Table-Based Encodings

All datasets are encoded following the same pro-
cedure: numerical features are normalized through
QuantileTransformer, and categorical features are
encoded with the OrdinalEncoder, both from scikit-
learn4. Importantly, each dataset is processed sepa-
rately. This means that the methods used to encode
numerical and categorical features are applied to
each dataset individually, rather than collectively.

4https://scikit-learn.org/stable/

https://archive.ics.uci.edu/
https://www.openml.org
https://www.kaggle.com/datasets
https://scikit-learn.org/stable/
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The feature embedding module employs a shared
feed-forward layer for numerical features and a
shared embedding layer for categorical features.
This baseline is of course simplistic, more sophis-
ticated strategies are proposed in (Wang and Sun,
2022) and (Spinaci et al., 2024).

4 Experimental Setup

All dataset rows are mixed together in a list with
two additional labels: the dataset name and the
origin that can be "real" or the name of its gen-
erator if the row is synthetic. We use these two
additonal labels to design cross-validation splits
with increasingly challenging constraints:

Generator:
{

Single
Multiple,Cross-generator

Table:
{

Single
Multiple,Cross-table

For instance, the Classifier Two-Samples Test
(C2ST) metric as described in (Lopez-Paz and
Oquab, 2016; Zein and Urvoy, 2022) correspond
to the simplest Single Generator vs Real, Single
Table setting. It does not require a "table-agnostic"
model. The cross-generator shift constraint guar-
antees that a generator used for trainning cannot be
used in test. The cross-table constraint guarantees
that a table used for trainning cannot be used in
test. These single-criterion shift settings can be
coded using Scikit-Learn GroupKFold. However,
as shown in Table 2, cross-validating a Full shift
with both cross-table and cross-generator robust-
ness is a bit trickier.

Tables
A B C

Real Data
X
YGenerators
Z

Table 2: Example of a full shift split. The blue cells
indicate the training elements, while the green cells
represent the test sets. The gray cells indicate examples
that must be dropped because they would violate one of
the Tables or Generator separation constraints.

4.1 Detection Without Distribution Shift

We first train models to detect synthetic data gener-
ated only by TVAE (Xu et al., 2019). Despite our
interest in "model agnostic" detection, this proce-
dure provides an upper-bound reference to compare
with. This setup is referred as TVAE vs Real, All-
Tables, No Shift. We then add an additional setup
where synthetic datasets from all models are mixed

to be detected against the real datasets. We refer
to this setup as All Models vs Real, All-Tables, No
Shift.

4.2 Detection Under Distribution Shifts

Tables
A B C

Real Data
X
YGenerators
Z

Table 3: Example of a cross-table shift split. The blue
cells indicate the training elements, while the green cells
represent the test set.

We have tested our baselines only under the
cross-table shift constraint, which proves to be al-
ready quite challenging. As illustrated in Table 3,
in this scenario the detection model is first trained
on real and synthetic datasets produced by some
generators and then deployed on unseen datasets.

5 Results

In this section, we present our baselines’ results on
different setups, without and with cross-table shift.
These results are summarized in Table 4 with the
standard ROC-AUC and Accuracy metrics.

Setup Model Metrics
AUC Accuracy

TVAE vs Real,
All Tables,

No shift

3grm-LReg. 0.71 0.65
Text-Transf. 0.76 0.68
Table-Transf. 0.91 0.82

All Models vs Real,
All Tables,

No shift

3grm-LReg. 0.67 0.62
Text-Transf. 0.78 0.72
Table-Transf. 0.77 0.69

All Models vs Real,
All Tables,

Cross-table shift

3grm-LReg. 0.58 0.55
Text-Transf. 0.56 0.52
Table-Transf. 0.51 0.50

Table 4: Evaluation of synthetic tabular data detection
on various setups. "3grm-LReg." stands for "Trigrams
Logistic Regression" and "Transf." stands for "Trans-
former"

5.1 Without Distribution Shift
The transformer-based models (both text-based and
table-based) demonstrate good performance across
various metrics, under both setups TVAE vs Real
and All models vs Real. We notice an AUC over
0.76 for all setups suggesting a good generalization
capabilities of these table-agnostic models. De-
spite its rather naive design, the AUC for detect-
ing TVAE-generated rows of our table-agnositc
tranformer baseline reachs 0.91. It is worth com-
paring this result with the ones obtained in single
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dataset settings: in (Kindji et al., 2024) the XG-
Boost TVAE vs Real median AUC for detecting
TVAE is 0.81.

The task difficulty increases under the All models
vs Real setup, but the overall performance remains
stable for all models. The table-based transformer
outperforms the text-based version in TVAE vs Real,
however, it underperforms in All Models vs Real.
Note that the only difference between the two ap-
proaches lies in the preprocessing and the way the
feature embedding module works (as detailed in
Sections 3.2 and 3.1). This suggests that the textual
representation offers a more general view across
all models and datasets. As a side result, we notice
that there is still significant room for improvement
in achieving realism in tabular data generation. The
synthetic tabular data generators seems to exhibit
patterns that a naive table-agnostic classifier is able
to detect.

5.2 Cross-table Shift
The cross-table shift results (Table 4) show that
this setup is particularly challenging, as all models
struggle to achieve good performance. The table-
based approach drops significantly its performance
(AUC= 0.51). The model fails to identify mean-
ingful patterns and cannot generalize to unseen
datasets, essentially making random guesses on the
test set.

An interesting observation is that the text-based
transformer appears to provide more generalizable
patterns than the table-based one. This aligns with
the results from the All Models vs Real setup, in
which it also performed better. As there are more
datasets and models to generalize across, this ap-
proach benefits from that diversity. However, the
AUC score is relatively low at 0.56. The train-
ing curves presented in Appendix B confirms that,
with a cross-table shift between all training, valida-
tion, and test sets; the text-based transformer (on
the left-hand side) is more robust than the table-
based transformer (on the right-hand side). The
dataset-agnostic encoding we used in the table-
based method reveals its limitations when evalu-
ated on unseen datasets. Being tied to datasets
particularities, the encoding do not generalize well
to datasets with different characteristics (e.g. the
number of features, range of numerical features,
categories in categorical features, and sample size).
In contrast, the textual representation captures pat-
terns that can be generalized.

As expected, due to its extreme simplicity, the

logistic regression model outperformed the trans-
formers for the cross-table shift setup with an AUC
at 0.58 (versus 0.56 for the text-based transformer).
However, an AUC of 0.58 is not a very impressive
result and, contrary to transformers (Zhou et al.,
2024; Li and McClelland, 2023; Yadlowsky et al.,
2024), its potential for improvement is weak.

These preliminary results suggests further inves-
tigations on transformer-based models with both
text-based and table-based encodings. The poten-
tial for transfer learning from pre-trained models
can also enhance performance, making transformer-
based approaches a valuable asset in the cross-table
shift setup.

6 Conclusion

We study synthetic tabular data detection "in the
wild". We utilized 14 datasets and 4 state-of-the-art,
highly-tuned tabular data generation models. We
evaluated various models using different tabular
data representations as inputs and demonstrated
that it is possible to detect synthetic data with
promising performance. We also introduced vari-
ous levels of "wildness" that correspond to different
degrees of data distribution shift and we focused
on cross-table shift. Our preliminary results are
encouraging but show that cross-table adaptation is
still a challenging problem. In the future, we will
consolidate these results and explore more sophis-
ticated encodings and adaptation strategies such as
including table metadata—like column names—in
the input. We also plan to explore the adaptation
of pretrained encoders like TaBERT to see if they
reach the performance of our baselines on fake
content detection.

7 Limitations

As the results showed, the table-based transformer,
along with its preprocessing and feature embedding
scheme, provides valuable insights when there is
no distribution shift. However, it struggles to gen-
eralize when a cross-table shift is introduced. We
believe this encoding scheme has the merit of its
simplicity, but it needs to be enhanced for distribu-
tion shift scenarios by incorporating general dataset
information, such as column names and category
embeddings as it is done in (Spinaci et al., 2024).
These improvements should help differentiate be-
tween synthetic and real data if synthetic data fails
to accurately replicate these characteristics. On the
other hand, the textual encoding offers the advan-
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tage of being simpler and more general, but it leads
to longer row-encoding sequences and it lacks of a
tabular-specific inductive bias.

We implemented straightforward baselines utiliz-
ing both common NLP techniques and transformer
architecture. For now, we did not conduct abla-
tion studies to examine the impact of input column
permutation and positional encoding. We also did
not consider other table format specificities such as
table size, number of columns, and data types.

The few experiments we did to adapt TaBERT
on larger tables were not conclusive. We suspect,
that BERT-like tokenization and small tables pre-
training is not adapted to our problem, but it re-
quires further investigations that we keep for future
work.
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datasets. The model is then tested with synthetic
data produced by generators it has never seen be-
fore.

Tables
A B C

Real Data
X
YGenerators
Z

Table 5: Example of cross-generator shift split. The
blue cells indicate the training elements, while the green
cells represent the test set. Here, all rows associated
with generators X and Y were selected for the train set.
Note that there are some real datasets in the training set
as well.

A.2 Full Shift
Another critical scenario arises when the model is
trained on a specific set of generators and datasets,
but encounters unseen generators and datasets dur-
ing deployment. Here there is a cross-table shift
and a cross-generator shift. In this scenario, the
model could struggle to generalize learned patterns
to totally unseen data. The schematic representa-
tion is provided in Table 2. Due to the constraints
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the test set.
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Figure 1: Training and validation AUC performance of models trained under cross-table shift setup. Left: text-based
model and right: table-based approach.

B Additional Results

We provide the training and validation curves for
the AUC metric for the cross-table shift setup in
Figure 1.
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