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Abstract
This paper presents BBN-U.Oregon’s sys-
tem, ALERT, submitted to the Shared Task
3: Cross-Domain Machine-Generated Text De-
tection. Our approach uses robust authorship-
style representations to distinguish between
human-authored and machine-generated text
(MGT) across various domains. We employ
an ensemble-based authorship attribution (AA)
system that integrates stylistic embeddings
from two complementary subsystems: one that
focuses on cross-genre robustness with hard-
positive and negative mining strategies and an-
other that captures nuanced semantic-lexical-
authorship contrasts. This combination en-
hances cross-domain generalization, even un-
der domain shifts and adversarial attacks. Eval-
uated on the RAID benchmark, our system
demonstrates strong performance across gen-
res and decoding strategies, with resilience
against adversarial manipulation, achieving
91.8% TPR at FPR=5% on standard test sets
and 82.6% on adversarial sets.

1 Introduction

The rapid advancement of large language models
(LLMs) has transformed numerous fields, from nat-
ural language processing to automated content gen-
eration, enabling machines to generate text that is
often indistinguishable from human writing. Mod-
els are now capable of producing fluent, coherent,
and contextually relevant text, sparking widespread
adoption across industries for tasks ranging from
content creation to customer service. However,
alongside these advancements, the potential for
misuse has grown, particularly in areas like disin-
formation, academic plagiarism, automated phish-
ing attacks, and social media manipulation. New
challenges arise in distinguishing between human-
authored and machine-generated content.

To address these challenges, we developed the
ALERT (Authorship through Learnable and Ex-
plainable Rich Transformations) system, which

was submitted to the Shared Task on Cross-Domain
Machine-Generated Text Detection within the
COLING Workshop on Detecting AI Generated
Content. The focus of this shared task (Dugan
et al., 2025) is on evaluating the cross-domain ro-
bustness of MGT detectors across diverse domains,
generative models, and decoding strategies. This
challenge addresses the critical need for detectors
that maintain high accuracy and low false positive
rates when applied to MGT in varied real-world
contexts.

Traditional approaches for detecting MGT typi-
cally rely on supervised learning, where detectors
are trained on labeled corpora of human-written
and machine-generated documents. However, these
methods often struggle with generalization, partic-
ularly as new, more sophisticated LLMs emerge
(Zellers et al., 2019). Furthermore, these models
are highly sensitive to distribution shifts, meaning
that performance degrades when applied to LLMs
or domains not seen during training (Mitchell et al.,
2023). As LLMs become more prevalent and di-
versified, such approaches become increasingly im-
practical.

To address these challenges, recent research has
focused on learning authorship style representa-
tions (Soto et al., 2024). Style, a fundamental
characteristic of human authorship, varies across
individuals and tasks but tends to be more consis-
tent within a specific LLM. By capturing stylistic
nuances, detectors can more effectively identify
MGT, even in the face of emerging LLMs or pre-
viously unseen content domains. This paper ex-
pands on the work of (Rivera-Soto et al., 2021)
by proposing an improved Authorship Attribution
(AA) system for MGT using authorship style rep-
resentations. Our models, which generate these
representations, are trained using advanced tech-
niques such as GradCache (Gao et al., 2021), vari-
ous hard-negative mining (Robinson et al., 2021)
(Fincke and Boschee, 2024) and hard-positive filter-
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ing strategies, and their embeddings are combined
by a fusion module to improve performance. These
techniques improve the models’ ability to distin-
guish between the writing styles of humans and
MGT, across LLMs and domains. The rest of the
paper is organized as follows: Section 2 reviews
related work in MGT detection, Section 3 describes
our methodology and ensemble-based AA system,
Section 4 outlines the experimental setup and re-
sults, and Section 5 concludes the paper with future
directions.

2 Related Work

Detecting MGT has become an increasingly crit-
ical task with the rapid growth of large language
models (LLMs) like GPT-3 and -4, LLaMA-2 and
-3, which can produce highly fluent and human-like
text. Early approaches focused on supervised meth-
ods, where models were trained on labeled datasets
of humans and MGT. For instance, OpenAI’s AI
Detector was designed to distinguish between text
written by GPT-2 and human authors, but its perfor-
mance declined with the release of more advanced
models like GPT-3 and ChatGPT (Solaiman et al.,
2019). These supervised detectors, while effective
in their specific settings, often fail to generalize
to unseen LLMs due to the constant evolution of
model architectures and training paradigms (Zellers
et al., 2019). Soto et al. (2024) propose a method
based on authorship style representations (Rivera-
Soto et al., 2021), which leverages the stylistic
features of human-written text to detect machine-
generated content in a few-shot scenario, without
relying on large amounts of training data from the
target LLMs. This method addresses the limita-
tions of supervised learning by focusing on invari-
ant features of writing style. Hans et al. (2024)
introduce a zero-shot detection method, “Binocu-
lars”, which contrasts the outputs of two closely
related LLMs to identify MGT with high accuracy.
Recent advances also include adversarial learning
approaches like RADAR (Hu et al., 2023), which
improve robustness by training detection models to
identify adversarially crafted MGT. These methods
offer improved performance in challenging scenar-
ios where LLMs are specifically designed to bypass
detection systems.

3 Methodology

The core of our detection framework is based on
the hypothesis that MGT exhibits consistent stylis-

tic patterns that differ from those of human au-
thors. To capture these stylistic cues effectively, we
implement an ensemble-based AA system, com-
bining two complementary subsystems optimized
with advanced training techniques for robustness
and cross-domain generalization.

Our methodology builds upon the contrastive
learning approach used by (Rivera-Soto et al.,
2021), with key improvements. The AA system
ensemble is designed using a Siamese neural archi-
tecture, which captures nuanced stylistic signatures
through embeddings that serve as distinctive au-
thorship signatures. The ensemble integrates cues
from multiple linguistic and stylistic features, en-
abling a cohesive detection framework with broad
generalization capabilities. While Rivera-Soto et al.
(2021) introduced authorship attribution with con-
trastive learning, our approach extends it by incor-
porating advanced hard-positive and hard-negative
mining strategies (BM25-based and cluster-based),
GradCache for larger batch sizes, and fusing em-
beddings from multiple systems.

The core components of our framework, AA
System I and AA System II, each employ unique
training strategies. Below, we provide training
strategies employed by each system and its spe-
cific optimizations.

3.1 AA system I: Cross-Genre Robustness
with Hard-Positive and Negative Mining

AA System I employs a training methodology that
emphasizes cross-genre robustness through special-
ized hard-positive filtering and hard-negative min-
ing strategies adopted from (Fincke and Boschee,
2024). For hard-positive examples, the system uses
the two most topically distant documents available
per author, promoting the learning of stylistic con-
sistency rather than topical similarity. To refine this
process, authors with insufficiently dissimilar docu-
ment pairs are excluded from training, resulting in
fewer but more challenging examples that improve
performance in both genre-specific and cross-genre
contexts. For hard-negatives, the system gener-
ates batches containing clusters of authors where
each author contributes two documents: one near
the cluster center for similarity and the other in
the outer reaches for dissimilarity, ensuring stylis-
tic contrast. K-means clustering determines initial
centroids, with each centroid representing one au-
thor, and documents closest to each centroid are
selected to populate clusters. FAISS-based similar-
ity search (Douze et al., 2024)maintains clustering
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efficiency by capping retrieval to the nearest 2,024
entries. Once clusters are formed, centroids are
grouped to fill each batch with a set number of
authors, creating more coherent batches and en-
suring that each batch offers challenging stylistic
contrasts. Further details on these methods, includ-
ing clustering and selection criteria, are available in
Fincke and Boschee (2024). In summary, AA Sys-
tem I focuses on cross-genre robustness by apply-
ing hard-positive filtering and a clustering-driven
hard-negative mining strategy that relies on topi-
cally distant documents. This approach encourages
the model to learn stylistic consistency that is not
conflated with topic similarity.

3.2 AA System II: Semantic, Lexical,
Clustering based Contrastive Learning

System II is designed to capture nuanced stylistic
differences across authors through hard-positive
filtering and a dual-strategy hard-negative mining
approach. The same hard-positive mining strat-
egy from System I Sec 3.1 is used in this system
for dataset filtering. This subsystem, while shar-
ing foundational techniques with AA System I, in-
corporates distinct selection criteria for training
examples to improve the model’s ability to distin-
guish stylistic similarities across diverse topics. For
mining hard-negative examples, in the first stage,
BM25 (Robertson et al., 2009) is applied to retrieve
top-k collections, where each “collection” refers
to the set of documents written by a single author.
By selecting collections that are lexically similar
to the anchor documents yet originate from dif-
ferent authors, the model is encouraged to focus
on subtle stylistic patterns rather than topical sim-
ilarities. This process enables the model to focus
on subtle stylistic patterns, reducing the influence
of the topic. Subsequently, a two-level clustering
approach using K-means is adopted, to capture
more nuanced semantic content. The first level
performs document-level clustering, grouping doc-
uments based on their semantic content, primarily
capturing topical similarities. The second level im-
plements author-level clustering, organizing author
collections based on aggregated embeddings that
reveal patterns in authorship style. Within each
author-level cluster, collections from different au-
thors are selected as Hard-negative examples, fur-
ther refined by retaining only documents that fall
within the same document-level clusters as the an-
chor documents. Hard-negative mining (Robinson
et al., 2021) is performed on the complete dataset,

not limited to training subsets, to ensure a broader
range of potential hard-negatives. Document-level
and author-level clusters are set to 512, with a bal-
anced distribution of 50% BM25-mined and 50%
cluster-mined negative examples. This compre-
hensive approach supports a variety of negative
examples, challenging training instances, and ro-
bust model performance. By combining semantic,
lexical, and clustering-based approaches, the afore-
mentioned process makes the model focus on the
most important features for authorship style dis-
criminability.

Additionally, the GradCache (Gao et al., 2021)
technique allows for larger batch sizes, storing in-
termediate gradients to reduce memory load. This
enables the model to handle a higher volume of ex-
amples per batch, improving generalization across
diverse domains and effectively distinguishing sub-
tle stylistic differences in authorship.

Overall, AA System II builds upon similar con-
cepts but differs notably in its hard-negative mining
strategy. While System I relies on clustering and
topically distant pairs, System II adopts a dual-
strategy method: first, BM25-based retrieval identi-
fies lexically similar yet differently authored doc-
uments; second, a two-level clustering approach
(document-level and author-level) further refines
these candidates. This combination enables Sys-
tem II to pinpoint subtler stylistic discrepancies that
persist even among topically and lexically similar
texts.

3.3 Machine Style Detection

The MGT Style Detection system uses learned
authorship style representations to accurately dis-
tinguish between humans and MGT. In the final
classification stage, a fully connected layer pro-
cesses these stylistic embeddings, followed by a
binary classification layer specifically trained to de-
tect MGT. The AA (sub-)system produces domain-
invariant style representations, thus making the
MGT detection system domain/genre-invariant as
well. Furthermore, an ensemble system enhances
detection capability by combining style embed-
dings from both AA systems, achieving a robust
and comprehensive understanding of stylistic nu-
ances for greater accuracy across diverse domains.
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Model Development Set (20% RAID Train) Evaluation Set
(RAID Test)Abstracts Books News Average

AA System I (Sec: 3.1) 0.790 0.838 0.927 0.852 -
AA System II (Sec: 3.2) 0.975 0.939 0.982 0.965 0.893
Ensemble System 0.966 0.971 0.982 0.973 0.918

Table 1: Performance of Cross-Domain MGT Detection on RAID Dataset (Subtask-A: No Adversarial Attacks)

Model Development Set (20% RAID Train) Evaluation Set
(RAID Test)Abstracts Books News Average

AA System I (Sec: 3.1) 0.612 0.650 0.912 0.794 -
AA System II (Sec: 3.2) 0.887 0.866 0.937 0.897 0.788
Ensemble System 0.876 0.934 0.978 0.930 0.826

Table 2: Performance of Cross-Domain MGT Detection on RAID Dataset (Subtask-B: with Adversarial Attacks)

4 Experiments and Results

4.1 Data

Both authorship systems are trained on various
datasets (see Appendix Table 5) with authorship la-
bels, employing various author contrastive learning
objectives—with a focus on authors who have pro-
duced at least 100 documents. To increase sample
diversity, longer documents are split into shorter
segments, augmenting the training pool. The Cross-
domain MGT Detection task (Dugan et al., 2025)
uses the RAID benchmark (Dugan et al., 2024)
which consists of over 10 million documents span-
ning 11 LLMs, 11 genres, 4 decoding strategies,
and 12 adversarial attacks. To evaluate our models,
we utilized the training set from RAID. We divided
the RAID dataset into 60% train, 20% validation,
and 20% development sets, ensuring an equal repre-
sentation of genres, LLMs, and adversarial attacks.
Document source information was used to prevent
overlap between training and test sets.

4.2 Experiment Setup

For the AA systems, we use Qwen2 1.5B 1 and E5-
mistral-7b-instruct 2 for text embeddings in Sys-
tems I and II, respectively. Model optimization was
done using the AdamW Optimizer (Loshchilov,
2017), and training was conducted on 4 NVIDIA
RTX A6000 GPUs.

To assess cross-domain generalization, we con-
ducted cross-validation experiments by training on
two of the three genres in RAID (Abstracts, Books,
and News) and testing on the held-out genre. Fi-

1https://huggingface.co/Qwen/Qwen2-1.5B
2https://huggingface.co/Linq-AI-Research/Linq-Embed-

Mistral

nal classification layers are trained using the 60%
of the train set, 20% validation set to select the
classification layer weights and results reported in
Sec 4.3 are on 20% of the development set. While
initial experiments involved domain-specific splits
to guide hyperparameter selection, in the final re-
ported model, the final classification layer is trained
on the full 60% using all available training domains
for maximum coverage.

We use the official evaluation metric, TPR @
FPR=5%, which measures the model’s accuracy in
detecting MGT at a fixed false positive rate of 5%.

4.3 Results

Table 1 and Table 2 show results with our MGT
detection models showing strong cross-domain per-
formance, particularly highlighting the effective-
ness of the ensemble-based approach. The cross-
validation on the development set reveals that the
ensemble system achieves the highest average TPR
at FPR=5%, which is also reflected in the evalua-
tion results. Without adversarial attacks, the ensem-
ble system outperforms individual models by cap-
turing more varied stylistic representations, which
enabled it to generalize well even when facing do-
main shifts. In adversarial settings, the ensemble
maintained robustness, showing less performance
degradation compared to individual systems.

Our results on the Development and Evaluation
sets indicate that while both AA System I and AA
System II contribute to performance, System II pro-
vides a stronger baseline detection accuracy due
to its dual-strategy hard-negative mining, which
integrates both lexical and semantic constraints.
Although System II alone is highly effective, the
ensemble capitalizes on System I’s cross-genre ro-
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bustness and System II’s nuanced stylistic discrim-
ination. As a result, combining them leads to more
stable and improved performance, particularly in
challenging or previously unseen domains.

The results on the Evaluation set further validate
the generalizability of our models. The ensem-
ble model (ALERT v1.1 reported in (Dugan et al.,
2025)) resulted in a TPR at FPR=5% of 0.918 with-
out adversarial attacks and 0.826 with such attacks,
indicating consistent stability across diverse gen-
res and text styles. Although the model was not
specifically fine-tuned for adversarial attacks, these
results suggest that capturing nuanced authorship
styles enhances detection performance across var-
ied content types and adversarial scenarios.

5 Conclusions

We show that our ensemble-based authorship style
representations from two complementary subsys-
tems identify MGT across varied domains and ad-
versarial attacks. By integrating advanced training
techniques such as GradCache, contrastive learn-
ing, and hard-positive/negative mining, the system
demonstrates strong cross-domain generalization,
achieving reliable MGT detection across various
genres, LLMs, and adversarial attacks, thanks to
capturing nuanced authorship-style representations.
Future work could extend the framework to handle
more sophisticated adversarial attacks and support
additional languages and low-resource domains,
making it adaptable to a wider range of real-world
applications. Exploring domain adaptation tech-
niques could improve robustness in detecting MGT
by new or unseen models.
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A Detailed Results on MGT Detection

The detailed performance of individual models on
the development set (20% of RAID Train) is pro-
vided in Table 3, showcasing their performance
across specific domains. Similarly, Table 4 high-
lights the results of each model on the RAID Test
set. While the average performance is shown in
Table 1 and 2, these results underline the contri-
butions and effectiveness in detecting individual
models in various domains.

B Authorship Attribution Model
Training, Implementation and Datasets
Details

This section provides key implementation details
for our Authorship Attribution (AA) systems and
the final Machine-Generated Text (MGT) detection
classifier.

B.1 Authorship Attribution Models

The architecture leverages pre-trained
transformer models, such as Qwen2-1.5B
andE5-mistral-7b-instruct (Sec 4), to process
input documents into high-dimensional feature
vectors. For longer documents, the text is divided
into smaller segments, like paragraphs, to enhance
the model’s ability to capture local stylistic
nuances effectively. These segment embeddings
are subsequently aggregated using techniques like
self-attention mechanisms and max-pooling to
produce a cohesive representation of the author’s
stylistic signature. The model is optimized with a
contrastive loss function, ensuring that embeddings
of documents by the same author are positioned
closer in the vector space than those of different
authors. For a detailed discussion on model
training, refer to (Rivera-Soto et al., 2021). Dataset
used to train AA System I and System II are shown
in Table 5

Hard-Positive and Hard-Negative Mining: For
positives, we select each author’s two most topi-
cally distant documents to emphasize stylistic over
topical consistency. For negatives, System I fo-
cuses on cluster-based mining, grouping authors
via K-means and selecting documents that are both
cluster-center and periphery examples. System II
integrates BM25 retrieval to find lexically simi-
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Model Subtask-A Subtask-B
ALERT ALERT ALERT ALERT

v1.1 v1.2 v1.1 v1.2
ChatGPT 0.976 0.958 0.882 0.854
GPT-4 0.943 0.917 0.834 0.812
GPT-3 0.917 0.932 0.828 0.805
GPT-2 0.919 0.897 0.826 0.787
Mistral 0.862 0.826 0.778 0.740
Mistral-Chat 0.973 0.943 0.874 0.832
Cohere 0.706 0.725 0.629 0.605
Cohere-Chat 0.848 0.823 0.767 0.707
Llama-Chat 0.988 0.952 0.889 0.852
MPT 0.905 0.873 0.825 0.784
MPT-Chat 0.960 0.922 0.859 0.811
Aggregate 0.918 0.893 0.826 0.788

Table 4: Performance of ALERT Detectors for each
model on Cross-Domain MGT Detection (RAID Test
Dataset) for Subtask-A: no Adversarial Attacks and
Subtask-B: with Adversarial Attacks

Dataset Name # authors # documents
English Reddit Million User Dataset 7.6K 4.7M
English Pushshift Reddit Dataset 28.9K 2.0M
English Twitter 13 1.9K
English Hackernews 12.3K 1.7M
English StackExchange 19.8K 1.4M
Russian stihi 7.9K 1.4M
English Amazon Review 3.6K 827.2K
Russian proza 1.9K 206.6K
English NYT Comment 1.3K 172.5K
English Blog Authorship Corpus 1223 140.3K
Russian Telegram 2.8K 128.9K
English Yelp Review 485 113.9K
Russian KP 313 43.0K
Russian Pushshift Reddit Dataset 247 37.5K
English IMDb1M/IMDb62 253 3.1K
Russian Stackexchange 122 1.1K

Table 5: Datasets for Authorship Attribution Training

lar but differently authored documents and then
refines these candidates via document- and author-
level clustering, ensuring that negative pairs are
semantically and lexically close but differ in style.

Optimization: We use the AdamW optimizer
(Loshchilov, 2017) with a learning rate of 5×10−5.
GradCache (Gao et al., 2021) enables an effective
batch size of 2048. Each AA system is trained
for about 5 epochs, with model selection based on
validation performance.

B.2 MGT Detection Classifier
Once AA models are trained, we apply them to pro-
duce embeddings for each RAID document. We
concatenate embeddings from System I and Sys-
tem II and feed them into a two-layer feed-forward
classifier (hidden size 512, ReLU activation, 0.1
dropout) to predict whether the text is machine-
generated. The classifier is optimized with AdamW
at a 1× 10−4 learning rate for 3–5 epochs, using a
validation set to select the best checkpoint.
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