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Abstract

Large Language Models (LLMs) are capable
of producing highly fluent and convincing text;
however, they can sometimes include factual er-
rors and misleading information. Consequently,
LLMs have emerged as tools for the rapid and
cost-effective generation of financial misinfor-
mation, enabling bad actors to harm individual
investors and attempt to manipulate markets. In
this study, we instruction-tune Generative Pre-
trained Transformers (GPT-40-mini) to detect
financial misinformation and produce concise
explanations for why a given claim or state-
ment is classified as misinformation, leverag-
ing the contextual information provided. Our
model achieved fourth place in Financial Mis-
information Detection (FMD) shared task with
a micro F'1 score of 0.788 and a ROUGE-1
score of 0.743 on the private test set of FACT-
checking within the FINancial domain (FIN-
FACT) dataset provided by the shared task or-
ganizers.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in understand-
ing and generating human language, particularly
through the application of in-context learning (ICL)
across a range of tasks and model sizes (Dong et al.,
2024; Agarwal et al., 2024; Bertsch et al., 2024).
With the widespread availability of LLMs, users
can tackle diverse tasks simply by providing in-
structions, with or without examples, allowing the
LLM to generate the required output.

However, while LLMs enable users to solve
tasks without needing technical expertise, they also
present significant risks. Malicious actors can mis-
use these models to generate misleading or harmful
content (Andriushchenko et al., 2024b), with mis-
information produced by LLLMs often being more
challenging to detect than that authored by humans
(Chen and Shu, 2024). As research advances in

aligning language models to user intentions and
preventing misuse, efforts to bypass these safe-
guards, known as jail-breaking, have also inten-
sified (Chao et al., 2024). Despite the implemen-
tation of guardrails, certain strategies can circum-
vent the safety measures of state-of-the-art (SOTA)
LLMs (Andriushchenko et al., 2024a). Addition-
ally, numerous fine-tuned LLMs may lack accept-
able safeguards, making them vulnerable to harm-
ful instructions (Chan et al., 2023; Qi et al., 2023;
Henderson et al., 2024).

One of the concerning forms of harmful con-
tent is misinformation (or false or misleading in-
formation), with (Thibault et al., 2024) identifying
at least 75 distinct types covering health, politics,
celebrities, rumors, and deepfakes. In the financial
domain, misinformation is particularly harmful, as
it has the potential to disrupt markets and nega-
tively impact investors by spreading false informa-
tion about financial products or companies (Ranga-
pur et al., 2023b). Given the rapid, cost-effective
production of misinformation, coupled with the
time-intensive process of manual verification, there
is an urgent need to automate the detection and flag-
ging of misinformation. Such automation should
not only correctly identify false information but
also provide clear explanations of the factors that
make the content misleading.

Misinformation detection approaches include
rule-based methods with keyword analysis and
heuristic rules (Papageorgiou et al., 2024), tradi-
tional deep learning methods and pre-trained mod-
els (Kamal et al., 2023; Chung et al., 2023; Ran-
gapur et al., 2024), and LLMs or Vision Language
Models (VLMs) (Alghamdi et al., 2024). However,
as observed by (Liu et al., 2024), the pre-trained
models exhibit poor performance in detecting fi-
nancial misinformation, likely due to their smaller
parameter sizes limiting their ability to comprehend
long, complex texts and subtle forms of misinfor-
mation. The two most actively researched frame-

313

Proceedings of the Joint Workshop of the 9th FinNLP, the 6th FNP, and the 1st LLMFinLegal, pages 313-320
January 19-20, 2025. ©2025 Association for Computational Linguistics



works for misinformation detection are LLM-based
frameworks (Whitehouse et al., 2022; Wan et al.,
2024; Hu et al., 2024; Wu et al., 2024) and mul-
timodal frameworks, often including VLMs (Ab-
delnabi et al., 2022; Wang et al., 2024; Qi et al.,
2024).

The exploration of LLM-based methods for de-
tecting financial misinformation has become a
prominent area of research. To boost this fur-
ther, Financial Misinformation Detection (FMD)
organizers' introduced a task aimed at detect-
ing financial misinformation with concise expla-
nations. In this work, we instruction-tuned (IT)
GPT-40-mini (referred as GPT-40-mini-IT in rest
of the paper) to classify news headlines in the
FACT-checking within the FINancial domain (FIN-
FACT) dataset (Rangapur et al., 2023a), providing
labels (True, False, Not Enough Information) and
explanations justifying the classification of claims.
Our experiments show that our instruction-tuned
model outperforms several baselines using well
established evaluation metrics.

2 FIN-FACT Dataset

FIN-FACT dataset (Rangapur et al., 2023a) is a
multimodal benchmark dataset to evaluate financial
fact-checking of claims. It contains claims from
diverse financial sectors such as Income, Finance,
Economy, Budget, Taxes, and Debt, and with labels
assigned as ‘True’, ‘False’, and ‘NEI’ (Not Enough
Information) according to the provided justifica-
tion. The dataset is carefully designed to reflect the
complexity of financial narratives by including con-
textual information, supporting evidence links, and
visual elements such as image links and captions
for each claim. A notable feature of this dataset is
the availability of explanations justifying the clas-
sification of each claim. This feature significantly
enhances its value for training language models to
not only detect misinformation but also generate
well-reasoned explanations for their evaluations.
The dataset contains the following columns:

e claim: core assertion
* posted date: temporal information
¢ sci-digest: claim summaries

* justification or context: offers insights to
further contextualize claim

* image link: visual information

Label Number of train- Number of valida-

ing samples tion samples
True 642 75
False 809 83
NEI 306 38
Total 1757 196

Table 1: FIN-FACT dataset statistics

* issues: claim complexities
* label: "True’ or 'False’ or "NEI’
* evidence: ground truth explanations

To enable analysis of the claims, we introduced
an updated_claim column by concatenating the
‘claim’ and ‘sci-digest’ fields. The claim column
often contained only a few words, while the ‘sci-
digest’ column provided detailed information. This
combination ensures the model receives more spe-
cific details for fact-checking. If the ‘sci-digest*
contained NaN values, we bypassed the concatena-
tion and used the claim data as it was.

Upon manual inspection, we identified that many
image URLs were broken, numerous claims miss-
ing associated images, and the available images
often contained irrelevant information. As a re-
sult, we decided to exclude the image link col-
umn entirely. In our study, in addition to the ‘up-
dated_claim’ column we created, we considered
‘context’, ‘label’, and ‘evidence’ columns from the
FIN-FACT dataset.

Table 1 shows the distribution of samples in the
training and validation sets. A subset of training
samples are used to instruction-tune the GPT-4o-
mini model. The shared task organizers evaluated
the performance of the submissions on a test set of
1304 samples. This test set is further split into pri-
vate and public subsets. The distribution of samples
for each subset is not disclosed to the participants
during the result submission phase. Additional de-
tails about the task and dataset are available at !.

3 GPT-40-mini-IT as a Misinformation
Detector

While LLMs have been widely applied to vari-
ous Natural Language Generation (NLG) tasks,
their use in detecting misinformation with ro-
bust reasoning remains underexplored. We chose
GPT-40-mini for its SOTA zero-shot classification

"https://coling2025fmd.thefin.ai/home
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Figure 1: Our end-to-end instruction-tuning and inference pipeline

abilities and lower fine-tuning costs compared to
GPT-40 (OpenAl, 2024b; Rahaman et al., 2024).
Figure 1 presents our end-to-end instruction-tuning
and inference pipeline.

Our instruction-tuning pipeline enhances
GPT-40-mini’s ability to detect misinformation in
the financial domain and provide clear evidence.
Taking advantage of its generalization capabilities,
the model efficiently applies learned patterns to
new claims with minimal instruction-training on
only 918 samples (consisting of 306 NEI samples
and an equal number for the True and False labels
to create a balanced set). The model is instruction-
tuned to perform a dual task: determining the
truthfulness of the claim and generating a succinct
explanation for the classification.

Let uc; and co; represent the inputs for the up-
dated_claim and context respectively, while the
ground truth label /; and evidence e; serve as
the outputs. We perform instruction-tuning on
GPT-40-mini by concatenating the prompt (p), in-
puts (uc;, co;), and outputs (l;, e;) into a single
input sequence as shown in the following message,
obtaining the GPT-4o0-mini-IT model.

message_i: [

{"role": "system", "content": "p"},
{"role": "user",

"content": "claim: {uc;}, context: {co;}"},
{"role": "assistant",

"content": "label: {l;}, evidence: {e;}"}

During inference, we provide the prompt, up-
dated_claim, and context as a single input sequence
to GPT-4o0-mini-IT to generate the output (0;),
where 0; = (l;,¢e;). The output o; is then post-
processed to extract the label and evidence, where
l; € {True, False, NEI} and e; represents the ex-
planation justifying the classification.

3.1 Choice of Prompt and Experimental
Settings

During the development of the system prompt, we
performed detailed prompt engineering to deter-
mine the suitable prompt. The final prompt (p)
details are available in Appendix Section A.

To decrease variance in output, we set the tem-
perature parameter to 0. We operated with a batch
size of 3 and conduct 3 training epochs to allow for
stability and reliability in model performance.

4 Experiments

We reported model’s performance using well es-
tablished metrics, namely the micro F1 score
(F_micro) for ternary misinformation classifica-
tion, and the ROUGE-(1,2, and L) scores (Lin,
2004) which are used to assess the quality of rea-
soning and evidence generated by the model. The
average of F_micro and ROUGE-1 is taken as the
final ranking metric (Overall) in the challenge. We
therefore used the same metric to provide a fair
comparison.

4.1 Baselines

To establish a strong baseline, we explored both
open-source and proprietary LLMs. We applied
zero-shot prompting using the same prompt (as
mentioned in Appendix Section A) on the fol-
lowing LLMs: Vicuna-7b-v1.55 (Chiang et al.,
2023), Mistral-7b-Instruct (Jiang et al., 2023)
LLaMA2-chat-7b (Touvron et al., 2023),
and LLaMA3.1-8b-Instruct (Dubey et al., 2024),
ChatGPT (OpenAl, 2023) and GPT-40-mini (Ope-
nAl, 2024a).

4.2 Results

Table 2 shows the performance of the instruction-
tuned GPT-40-mini-IT model compared to other
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Model Overall F_micro ROUGE-1 ROUGE-2 ROUGE-L
Vicuna-7b 0.309 0.469 0.148 0.067 0.108
Mistral-7b-Instruct 0.491 0.658 0.324 0.153 0.208
LLaMAZ2-chat-7b 0.494 0.653 0.336 0.157 0.204
LLaMA3-8b-Instruct 0.492 0.648 0.335 0.159 0.211
ChatGPT (gpt-3.5-turbo) 0.496 0.668 0.324 0.159 0.212
GPT-40-mini 0.492 0.665 0.319 0.108 0.173
Our model (GPT-4o-mini-IT) 0.751 0.776 0.726 0.684 0.700

Table 2: Results on validation set with various LLMs in a zero-shot setting and our model

Model Overall F_micro ROUGE-1 ROUGE-2 ROUGE-L
FMDLlama (Liu et al., 2024) 0.609 0.761 0.456 0.354 0.382
ChatGPT (gpt-3.5-turbo) 0.515 0.763 0.267 0.102 0.166
Our model (GPT-40-mini-IT) 0.788 0.828 0.748 0.708 0.723
Table 3: Results on public test set with baselines and our model
Model Overall F_micro ROUGE-1 ROUGE-2 ROUGE-L
FMDLlama (Liu et al., 2024) 0.584 0.718 0.450 0.346 0.374
ChatGPT (gpt-3.5-turbo) 0.481 0.701 0.261 0.099 0.163
Our model (GPT-40-mini-IT) 0.765 0.788 0.743 0.698 0.714

Table 4: Results on private test set with baselines and our model

LLMs operating in a zero-shot setting on the val-
idation dataset. Additionally, we also performed
instruction-tuning on open-source LL.Ms; however
the results were suboptimal, and therefore, we omit-
ted them from this report.

GPT-40-mini-IT model demonstrates notable im-
provements across the evaluated metrics. This
instruction-tuned model achieves the highest over-
all score of 0.751, outperforming other models like
GPT-40-mini and LLaMA variants. The improve-
ment in the F_micro score 0.776 highlights the
model’s enhanced accuracy in classifying misin-
formation, showcasing the benefits of instruction-
tuning on specialized tasks and its robustness in
addressing complex financial misinformation de-
tection tasks.

Moreover, the improved ROUGE scores
(ROUGE-1: 0.726, ROUGE-2: 0.684, ROUGE-
L: 0.700) indicate that the model generates high-
quality explanations, which are essential for under-
standing and verifying claims. While other LLMs
in a zero-shot setting offer valuable baseline perfor-
mance, the effectiveness of GPT-40-mini-IT high-
lights the benefits of fine-tuning models on specific
datasets.

Table 3 and 4 show the final results on pub-
lic and private test sets respectively. The re-
sults on both test sets consistently highlight the

significant performance of the GPT-4o-mini-IT
model compared to other baseline models, in-
cluding FMDL1ama (an instruction-tuned version
of LLaMA3-8b-Instruct) and GPT-3.5-turbo
which is tested in a zero-shot setting. Our model
achieved overall score of 0.788 on private test set
securing fourth place in FMD competition. The
results on private test set are provided on leader-
board?.

5 Conclusion

In this study, we demonstrated that instruction-
tuning GPT-40-mini on a smaller dataset, signifi-
cantly enhances its capability to detect misinforma-
tion with reasoning in the financial domain. Our
approach outperforms previous solutions and other
open-source LLMs in zero-shot settings, achieving
a top-4 ranking on the FMD shared task leader-
board. As part of future work, we plan to integrate
the VLMs to address the loss of visual information
in our text-only framework. Additionally, we aim
to investigate agent-based methods for financial
misinformation detection and examine the model’s
multilingual capabilities to enhance the generaliz-
ability and robustness of our approach.

Zhttps://coling2025fmd.thefin.ai/leaderboard. our team
name is shown as Drocks in the leaderboard
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A Appendix

Our Financial Misinformation Detection

Prompt

**Role:**
Senior Financial Misinformation Detection
Specialist.

**(bjective: **
Evaluate the truthfulness of financial
claims with precision and substantiate your
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conclusions with compelling evidence.

**Instructions:**

1. **Input Details:**

You will be provided with two integral
components for each analysis task - a Claim
and its corresponding Context

2. **Assessment Process:**

- Begin with a close and thorough reading
of both the Claim and the Context to grasp
the full scope of information.

- Analyze the relationship between the
Claim and the Context by considering the
following categories:

- #*True**: Assign this label under these
conditions:

- The Context contains clear, unambiguous
evidence that directly confirms the Claim.
- Each element within the Context consis-
tently aligns to support the entire Claim
without any need for conjecture.

- ¥*False**: Utilize this label when:

- The Context includes specific information
that clearly refutes any aspect of the Claim.
- Contradictions are apparent and do not
require external analysis or interpretation.
- **Not Enough Information (NEI)**:
Use NEI if:

- The Context lacks the necessary detail or
completeness to unequivocally determine
the Claim’s accuracy or inaccuracy.

- Ambiguities, data gaps, or indirect
references prevent a conclusive decision.

- Any necessity for assumptions or external
context to affirm the Claim extends beyond
the provided details.

3. **Evidence Compilation:**

Upon determining the label, distill and
document explicit and pertinent evidence
from the Context that underpins your con-
clusion. Prioritize evidence that decisively
influences your decision to ensure clarity
and coherence.

**Qutput Requirements:**

- **Predicted Label:** Clearly state your
conclusion with one of the following labels:
"True," "False," or "NEI."

- **Supporting Evidence:** Concisely
summarize and list all significant evidence
from the Context that corroborates your
Predicted Label, ensuring each piece di-
rectly relates to the Claims being evaluated.

**Additional Considerations:**

- Employ a systematic, step-by-step reason-
ing approach to ensure no detail is missed
during evaluation.

- Exercise critical thinking and scrupulously
verify facts before finalizing your judgment.
- Aim for impartiality, accuracy, and clarity
in both your analysis and the presentation
of your supporting evidence.
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