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Abstract 

Thispaper presents our work on Cause-
Effect information extraction specifically 
in the financial domain. Cause and effect 
information is very much needed for 
expert decision making. Particularly, in the 
financial domain, the fund managers, 
financial analysts, etc. need to have the he 
information on cause-effects for their 
works. Natural Language Processing 
(NLP)techniques help in the automatic 
extraction of cause and effect from a given 
text.  In this work, we buildvarious cause-
effect text span detection models using 
pre-trained transformer-based language 
models and fine tune these models using 
the data provided by FinCausal 2025 task 
organizers. We have only usedFinCausal 
2025data sets to train our models. No other 
external data is used. Our ensemble of 
sequence tagging models based on 
theFine-tunedRoBERTa-Large language 
model achieves SAS score of 0.9604 and 
Exact match score of 0.7214 for English. 
Similarly for Spanish we obtain SAS score 
of 0.9607 and Exact match score of 
0.7166. This is our first time participation 
in the FinCausal 2025 Task. 

1 Introduction 

Domain-specific causal information is very 
important for an informed decision making, 
particularly in expert decision-making processes. 
For example, financial organizations collect 
historical data of stock price movements and their 
causes to develop effective trading strategies. 

Financial institutes collect and store causality 
information in English and other languages to 
understand early stock price fluctuation. The 
required information is published in different 
forms in different languages and magazines. All 
these information needs to be processed in real 
time for it to be useful for any decision making. 

Therefore, there is a need to develop automatic 
cause-effect information extraction systems.  

The FinCausal2025 shared task at the Financial 
Narrative Processing Workshop (FNP) addresses 
this step by providing annotated data in English 
and Spanish. This paper further describes our 
work on the participation in this FinCausal 2025 
shared task where we have developed span based 
models by fine tuning pre-trained large language 
models for our purpose.  

2 Related work  

The goal of the Fin Causal 2025 shared work 
(Moreno et al., 2025) was to identify causation in 
financial records. It was headed by Antonio 
Moreno Sandoval, Blanca Carbajo Coronado, 
JordiPortaZamorano, Yanco Amor TorteroloOrta, 
and DoaaSamy. This version analyzed datasets 
selected from English and Spanish annual reports, 
signaling a move away from extractive 
approaches and toward question-answering (QA)-
focused strategies. Semantic Answer Similarity 
(SAS) and Exact Match (EM), two assessment 
measures, were highlighted in the challenge, along 
with abstractive question design. Advanced 
transformer-based models were utilized by the 
participants, and performance was improved by 
strategies such multilingual datasets and LoRA 
fine-tuning. 
Dominique Mariko, Mahmoud El-Haj, and his 
team lead the Fin Causal 2023 shared task, which 
provided improved English and Spanish datasets 
with complex causal structures, including multi-
effect causes and multi-cause effects. Robust 
system assessment was achieved by using 
evaluation criteria such as token-level F1 scores 
and Exact Match. Innovative techniques including 
retrieval-augmented generation and chain-of-
thought prompting, together with state-of-the-art 
models like RoBERTa, Span BERT, and GPT-4-
based architectures, were used by teams to push 
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the limits of causality identification in 
multilingual environments. 
Building on previous iterations, the Fin Causal 
2022 joint effort, headed by Dominique Mariko, 
Kim Trottier, and Mahmoud El-Haj, concentrated 
solely on causality detection. Financial news from 
2019 and excerpts from SEC filings were added to 
the dataset. With the goal of identifying causes 
and effects in financial texts, participants made 
significant progress in detecting causality. Team 
SPOCK outperformed the other contestants in the 
use of ensemble sequence tagging models with 
RoBERTa-Large and the BIO scheme. Other 
noteworthy contributions were iLab's graph-based 
embeddings and Expert Neurons' clever pre-
processing algorithms, which demonstrated a 
variety of approaches to successfully address 
causality extraction. 
By supplementing the dataset with more instances 
from financial news, the Fin Causal 2021 shared 
task—which was managed by Dominique Mariko, 
Hanna Abi-Akl, Estelle Labidurie, 
StephaneDurfort, Hugues de Mazancourt, and 
Mahmoud El-Haj—further improved causality 
extraction. NUS-IDS, the victorious team, used a 
BERT-CRF in conjunction with a Viterbi decoder, 
using dependency graphs for token categorization. 
To get high accuracy in identifying causal 
sequences, other groups tried ensemble learning, 
sequence labeling, and graph neural networks. 
Even with improvements, there were still several 
difficulties, such as forecasting intricate causal 
networks, which highlights the need for more 
research. 
The topic of causality identification in financial 
narratives has grown as a result of these common 
objectives, showing how methods have developed 
from straightforward extraction to complex, 
context-aware generative models and multi-
layered analytical frameworks. 

3 System Description 

Our model makes use of the XLM-RoBERTa 
architecture, which is ideal for multilingual 
question-answering tasks since it uses self-
attention methods to record contextual 
dependencies. The fundamental concept behind 
improving the model is to apply it directly to the 
span-based answer prediction problem, which 
entails guessing the beginning and ending 
locations of a response in the context. In order to 
comprehend and interpret the context effectively, 

this transformer network-based model framework 
functions inside a strong self-attention mechanism 
(Conneau et al., 2020). 

 
L(θ) = - ∑ log P(yi|xi, θ)(1) 
 

whereyi represents the correct answer span, xi is 
the context, and P(yi∣xi,θ) is the predicted 
probability for the answer span (Devlin et al., 
2018). 

In addition to this, the model's training involves 
minimizing the span loss, which is designed to 
optimize both the start and end positions of the 
answer span. The span loss can be represented as: 

 
Lspan(θ) = α .Lstart (θ) + β.Lend(θ)(2) 
whereLstart (θ) is the loss for the predicted start 

position, Lend(θ) is the loss for the predicted end 
position, and α (alpha) and β (beta) are weighting 
factors to balance the start and end position 
contributions.  

The model’s performance is evaluated using 
two main metrics: the Span Answering Score 
(SAS) and Exact Match (EM). SAS evaluates 
the semantic correctness of the predicted answer 
span in relation to the true answer, considering 
not just the overlap but also the meaning 
captured in the span.These metrics provide a 
comprehensive evaluation of both the relevance 
(SAS) and precision (EM) of the model's 
predictions. 

3.1 Models 

We used four models in our study, all of which 
were built on the XLM-RoBERTa architecture, 
which works well for multilingual question-
answering tasks. Adapted to the Squad format for 
span-based answer prediction, these models 
comprise the conventional pre-trained XLM-
RoBERTa base model (Conneau et al., 2020) and 
refined versions of the XLM-RoBERTa base and 
big models. We employed the following models: 

a) Standard XLM-RoBERTa Base (Squad): 
This is the pre-trained, standard XLM-
RoBERTa base model that has been 
optimized for question-answering tasks using 
the Squad dataset. 

b) Fine-Tuned XLM-RoBERTa Base 
(Squad): This version improves on the 
previously trained base model by adding 
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optimized hyperparameters and fine-tuning it 
using our unique training data. 

c) Normal XLM-RoBERTa Large (Squad): 
This large form of XLM-RoBERTa is pre-
trained on Squad and provides a greater 
capacity for learning from data. 

d) Fine-Tuned XLM-RoBERTa Large 
(Squad): This model combines changes to 
the learning rate, batch size, and epochs, and 
is based on the large version of XLM-
RoBERTa that has been adjusted using our 
data. 
 
We did not change the model architecture or 

add any additional parameters for fine-tuning. To 
enhance performance for the question-answering 
task, we instead changed the training parameters, 
including the learning rate, batch size, and 
number of epochs. The model's pre-existing 
parameters were refined throughout this fine-
tuning procedure, which improved the model's fit 
to our particular dataset. Using the training code, 
which analyzes the input data (questions and 
situations) and modifies the start and finish 
locations of responses according to the tokenized 
outputs, the models were improved. 

The table below contains the parameters for 
each model that was utilized. These provide 
information on the training parameters, model 
size, and particular fine-tuning techniques used. 

 
Model Name  Pre-Trained 

Parameters 

XLM-Roberta-Base-
Squad2 

279M 

XLM-Roberta-Large-
Squad2 

550M 

Table 1. Parameters of Models used 

4 Training Process 

4.1 Dataset 

The financial text data in the dataset we got was 
organized in a CSV format and included the 
following columns: ID, Text, Question, and 
Answer. We updated the Answer column to 
incorporate the specific data required for span-
based predictions in order to modify the data for 
optimizing our question-answering model. To be 
more precise, we transformed the response field 
into a JSON-like format that included the 
response text and the context's start and end 
indices. This made it possible for the model to 

pinpoint the precise place of the response within 
the given context. 
For example, consider the following 
modification from the dataset 
Original: 
 

 Context: "Nationwide is in robust 
financial health, having achieved profits 
of over Â£1 billion for the third 
consecutive year. As a mutual, profits are 
not the only barometer of our success, but 
they are important becausethey allow us 
to maintain our financial strength, to 
invest with confidence, and to return 
value to you, our members, through 
pricing and service." 

 Question: "What is the effect of 
achieving profits of over £1 billion for 
the third consecutive year?" 

 Answers: {"text": ["Nationwide is in 
robust financial health"], "answer_start": 
[0], "answer end": [40]} 

 
Effective training and precise question-

answering on financial data were made possible 
by the transformation we carried out, which 
guaranteed the model could read the precise 
answer span inside the surrounding text. 

4.2 Hyperparameter Fine Tuning 

In our approach for fine-tuning XLM-
RoBERTawe follow on the work of (Moraites et 
al., 2021, Wolf et al, 2019), who offered a 
thorough framework for training subject 
classification models with Hugging Face's 
Transformers library. Although their 
configuration provided a strong basis for training 
the model, we modified it to better fit the 
particulars of our financial dataset. Increasing the 
number of epochs from the initial setting to 
seven was a crucial change that enabled the 
model to go through more thorough training and 
better absorb the subtleties of the financial data. 
In order to achieve effective gradient descent 
during training and maximize the trade-off 
between stability and quick convergence, we also 
changed the learning rate to 5e-5. Refining the 
batch sizes was another important modification. 
We set the evaluation batch size at 64 and the 
per-device training batch size at 16. These 
modifications were designed to ensure adequate 
data flow for model learning while managing 
memory limitations on our hardware. In order to 
avoid over fitting, we also adjusted regularization 
parameters like the weight decay (set at 0.01) and 
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added warmup steps (500) to progressively raise 
the learning rate during the first training phases. 
The model's efficiency and generalization to the 
financial question-answering tasks were 
enhanced by these adjusted parameters in 
conjunction with meticulous monitoring of 
training and evaluation performance. 

5 Results and Discussion 

Table 2 and 3presents a summary of our 
trials, comparing the performance of XLM-
RoBERTa Base and Large models across 
Practice and Development datasets with and 
without fine-tuning. Exact Match (EM), which 
assesses exact token-level matches, and Semantic 
Answer Similarity (SAS), which measures 
semantic alignment between predictions and 
ground truth, are important assessment metrics. 
These tests are conducted for both Spanish and 
English datasets, demonstrating the models' 
multilingualism. 

Using their respective Development datasets, 
the English and Spanish datasets underwent 
independent fine-tuning procedures. By taking 
use of the unique traits and subtleties of the 
English and Spanish environments, this 
guarantees that the models were tuned separately 
for each language. 

The outcomes repeatedly show that model 
performance is much improved by fine-tuning. In 
every measure and language, fine-tuned models 
perform better than their non-fine-tuned 
counterparts for the Practice and Development 
datasets. Interestingly, EM scores demonstrate 
significant increases, especially in Spanish 
datasets, with gains of more than 50 percentage 
points in certain cases, while SAS scores for 
fine-tuned models routinely above 0.90 in the 
majority of setups. 

Fine-tuned XLM-RoBERTa-Large 
demonstrates its outstanding ability to 
comprehend semantics by achieving the highest 
SAS score of 0.96 on the Practice dataset in 
English datasets. The Large model consistently 
demonstrates its capacity to generalize between 
phases on the Development dataset, attaining an 
EM score of 0.61 and an SAS score of 0.91. The 
Base model receives comparable scores, with an 
EM of 0.70 and an SAS of 0.94 on the 
Development dataset, although trailing the large 
model by a little margin in SAS. While the Base 
model offers a compromise between semantic 
comprehension and accuracy in some contexts, 

our results highlight the large model's superiority 
in managing semantic complexity. 

Spanish datasets show that fine-tuning has a 
major effect, especially on Exact Match scores. 
After fine-tuning, for example, the EM of the 
Base model on the Practice dataset increases 
from 0.13 to 0.73. With the EM score increasing 
from 0.17 to 0.71 on the Development dataset, 
the refined Base model displays a comparable 
pattern. The fine-tuned large model achieved a 
peak SAS of 0.96 on the Practice dataset, and 
similarly, the fine-tuned models' SAS scores 
above 0.95 on both datasets. These findings show 
that the models can successfully adjust to 
multilingual data, particularly in Spanish and 
highlight the significance of fine-tuning in 
improving performance across both SAS and EM 
measures. 

These findings provide several insights: 
a) Making adjustments to language-specific the 

significance of adapting the models to the 
language and contextual peculiarities of 
English and Spanish is shown in the 
necessity of development datasets for 
optimizing SAS and EM scores. 

b) The Base model's success in EM 
demonstrates its computational economy, 
while the XLM-RoBERTa-Large model's 
superiority in SAS qualifies it for 
semantically rich jobs. 
 
Spanish datasets highlight the difficulty of 

multilingual adaptation by relying more on fine-
tuning for better performance. 

5.1 Performance of Testing Dataset 

Following fine-tuning, both the English 
and Spanish dataset’s performance on the 
Testing dataset exhibits notable gains. Semantic 
Answer Similarity (SAS) for English shows 
significant improvements with refined models, as 
the Base model rises from 0.73 to 0.93 and the 
large model rises from 0.78 to 0.96. Exact Match 
(EM) scores also increase, rising from 0.21 to 
0.68 for the Base model and from 0.28 to 0.72 
for the large model. Likewise, with the Spanish 
dataset, the large model achieves 0.96 for SAS 
and 0.71 for EM, while the Base model's SAS 
and EM improve from 0.76 to 0.96 and 0.16 to 
0.76, respectively. These outcomes highlight the 
effectiveness of fine-tuning. Results from the 
Testing dataset will be incorporated into future 
research to provide a more thorough assessment 
of the models' generalization ability. The Testing 
dataset provides an objective assessment of the 
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models' performance on unknown data, whereas 
the Practice and Development datasets 
concentrate on training and fine-tuning. This 
stage is crucial for evaluating their robustness 
and real-world application, making sure they can 
correctly forecast responses in a variety of 
situations. These assessments will round out the 
conversation and provide more in-depth 
understanding of the model's performance. 

5.2 Comparison to other systems 

Comparing our study to other participating 
systems, we obtained competitive findings. Our 
algorithm performed well on a variety of datasets 
and came in at number four overall. Interestingly, 
our method performed well on some datasets, 
even though the best-performing system often 
produced better results. This demonstrates how 
well our system works in specific situations and 
emphasizes how flexible it is with regard to 
various kinds of data. A more thorough analysis 
of the variables influencing these variations, such 
as model setups, dataset management, and fine-
tuning strategies, may yield insightful 
information for future system improvement and 
comprehension of its advantages and 
disadvantages. 
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Annexure  

 
 

. 
Table 2. Results obtained on the test data for our different models 

 
 
 

 
 

Table 3. Results obtained on the Practice and development data for our different models 
 

 English Dataset  Spanish Dataset 

 XLM-Roberta-
Base-Squad2 

XLM-Roberta-
Large-Squad2 

XLM-Roberta-
Base-Squad2 

XLM-Roberta-
Large-Squad2 

 Without 
Fine 
Tuning 

Fine 
Tuned 

Without 
Fine 
Tuning 

Fine 
Tuned 

Without 
Fine 
Tuning 

Fine 
Tune
d 

Withou
t Fine 
Tuning 

Fine 
Tun
ed 

Semantic 
Answer 
Similarity 
(SAS) 

0.73 0.93 0.78 0.96 0.76 0.96 0.79 0.96 

Exact Match 0.21 0.68 0.28 0.72 0.16 0.76 0.17 0.71 

 Practice Dataset  Development Dataset 

 XLM-Roberta-
Base-Squad2 

XLM-Roberta-
Large-Squad2 

XLM-Roberta-
Base-Squad2 

XLM-Roberta-
Large-Squad2 

 Without 
Fine 
Tuning 

Fine 
Tuned 

Without 
Fine 
Tuning 

Fine 
Tuned 

Without 
Fine 
Tuning 

Fine 
Tuned 

Without 
Fine 
Tuning 

Fine 
Tune
d 

(English)   

Semantic 
Answer 
Similarity 
(SAS) 

0.82 0.92 0.75 0.96 0.80 0.94 0.76 0.91 

Exact Match 0.44 0.62 0.33 0.74 0.34 0.70 0.26 0.61 

(Spanish)   

Semantic 
Answer 
Similarity 
(SAS) 

0.73 0.94 0.66 0.95 0.76 0.95 0.76 0.96 

Exact Match 0.13 0.73 0.17 0.71 0.16 0.82 0.16 0.72 


