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Abstract

Large Vision-Language Models (VLMs) have
achieved unprecedented success in several ob-
jective multimodal reasoning tasks. However,
to further enhance their capabilities of empa-
thetic and effective communication with hu-
mans, improving how VLMs process and un-
derstand emotions is crucial. Despite signifi-
cant research attention on improving affective
understanding, there is a lack of detailed evalua-
tions of VLMs for emotion-related tasks, which
can potentially help inform downstream fine-
tuning efforts. In this work, we present the
first comprehensive evaluation of VLMs for
recognizing evoked emotions from images. We
create a benchmark for the task of evoked emo-
tion recognition and study the performance of
VLMs for this task, from perspectives of cor-
rectness and robustness. Through several exper-
iments, we demonstrate important factors that
emotion recognition performance depends on,
and also characterize the various errors made
by VLMs in the process. Finally, we pinpoint
potential causes for errors through a human
evaluation study. We use our experimental re-
sults to inform recommendations for the future
of emotion research in the context of VLMs.

1 Introduction

Equipping Artificial Intelligence (AI) systems with
the capability to understand emotions is important
for sensitive and effective interaction with human
users in diverse applications (Kołakowska et al.,
2014; Zhao et al., 2018; Yang et al., 2021; Wang
et al., 2023a). This has been approached in the past
through development of deep architectures, includ-
ing multimodal and context-aware methods suited
for specific downstream applications (Lee et al.,
2019; Mittal et al., 2020; Hoang et al., 2021). The
advent of Large Language Models (LLMs), how-
ever, has brought about a significant shift in focus.
LLMs are now adapted or tuned to achieve what
task-specific deep learning models were employed

for. As a first step in understanding the inherent
capabilities of popular large general-purpose mod-
els, before adapting them for specific tasks, LLMs
have been evaluated through multi-faceted bench-
marking experiments. This ranges from evaluating
LLMs in objective (Hendrycks et al., 2021; Lu
et al., 2022) and subjective task settings (Ziems
et al., 2022; Khandelwal et al., 2024; Fung et al.,
2024).

Studies exploring emotions in the context of
LLMs span both benchmarking and tuning efforts
(Xie et al., 2024; Xenos et al., 2024; Etesam et al.,
2024). Several works focus on evaluating text-only
language models for emotional capabilities (Liu
et al., 2024c; Wang et al., 2023b) or the use of emo-
tional stimuli to enhance the performance of LLMs
in other tasks (Li et al., 2023; LI et al., 2024). A
few recent works also venture beyond the single
modality of text, to approximate the human process
of emotion perception more closely. Such works fo-
cus primarily on tuning large Vision-language mod-
els (VLMs) (Xie et al., 2024; Xenos et al., 2024;
Etesam et al., 2024). However, most of the recent
explorations concentrate either on specific datasets
and models or directly target resource-intensive in-
struction tuning without highlighting the specific
need to do so. While they present impressive results
on overall quantitative metrics, there remains a no-
table lack of comprehensive and critical evaluation
studies to illuminate the precise capabilities, weak-
nesses, and vulnerabilities of large models when
performing emotion recognition in a multimodal
setting.

To address this gap, in this paper, we present
an extensive evaluation of popular VLMs for emo-
tion recognition. We analyze their performance
from lenses of accuracy and robustness, while also
characterizing the causes for errors made by them.
We investigate the specific task of evoked emotion
recognition, because of (a) its widespread practical
relevance in domains such as social interactions
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(Wieser et al., 2012; Jyoti and Rao, 2016; Awal
et al., 2021), online e-commerce (Sánchez-Núñez
et al., 2020), artistic content creation and recom-
mendation (Wang et al., 2023a), etc., and, (b) the
non-trivial nature of the task, involving simulta-
neous multimodal and affective understanding to
use implicit affective cues to predict exact, detailed
emotions (Wang et al., 2023a), which is different
from application-oriented tasks where the emotion
information is atleast partially present with the
model (Deng et al., 2023; Li et al., 2024). In eval-
uating VLMs for evoked emotion recognition, we
specifically ask the following research questions:

• RQ1: How well do VLMs recognize evoked
emotions given images and a textual prompt?

• RQ2: How robust are the models to minor and
major variations in the prompts?

• RQ3: What are the types of errors seen in the
VLM responses and why do they occur?

We first compile existing image-based emotion
datasets to create an Evoked Emotion benchmark
of challenging difficulty, EVE. Using EVE, we
evaluate 7 popular VLMs on the task of evoked
emotion recognition. Beyond presenting metrics
of correctness, in our analysis, we delve deep into
additional aspects such as preference exhibited by
models towards certain sentiments. We design 8
different settings to study the robustness of models
to perturbations in prompts. These include shuf-
fling the order of emotion labels in prompts, open-
vocabulary classification, adopting emotional per-
spectives, and using self-reasoning mechanisms.
Finally, we create a formal framework to analyze
mistakes made by VLMs and conduct a human
study to localize the causes of such mistakes.

Our key findings show that at the current state,
VLMs are inept at predicting emotions evoked by
images. We show that VLMs are significantly sensi-
tive to the order in which class labels are presented
in the prompts, and perform poorly when no labels
are presented. We find that prompting VLMs to
adopt an emotional persona has a drastic negative
impact on their performance. We also observe that
self-reasoning mechanisms help in the case of cer-
tain models. This is especially applicable for mech-
anisms that involve breaking the emotion recogni-
tion task down into more tractable sub-components
(eg., captioning + reasoning). Finally, through our
human study, we elucidate that factors leading to

the poor VLM performance pertain not only to the
model capabilities but also depend on the data used
and task difficulty. We use our findings to further
discuss important considerations to improve the
emotion perception capability of VLMs. 1.

2 Related Work

Methods studying emotions using LLMs have in-
cluded using theories grounded in psychology to
develop evaluation metrics (Wang et al., 2023b;
Regan et al., 2024), generating explanations given
suitable image-emotion pairs (Deng et al., 2023).
Efforts have also been made in the direction of fine-
tuning LLMs like LLaMA (Touvron et al., 2023),
BLOOM (Workshop et al., 2022) to create experts
on emotional understanding, through instruction
tuning (Liu et al., 2024c). Training-free enhance-
ment methods have been approached to create emo-
tionally conditioned generations for downstream
tasks like image captioning or generating a news
headline (Li et al., 2024).

Few recent works also study emotions with mul-
timodal language models. A recent method pro-
poses visual instruction tuning to improve the per-
formance of open models in evoked emotion predic-
tion (Xie et al., 2024), using a resource-intensive
method of generating synthetic data and fine-tuning
models. Another recent effort evaluates Vision-
Language Models (VLMs) for expressed emotion
recognition, but includes only a single dataset, and
depends on auxiliary models to complete interme-
diate tasks for the VLMs being evaluated (Etesam
et al., 2024). Vision-language models have also
been employed to generate additional contextual
information which is used subsequently for train-
ing a Q-Former-based module for expressed emo-
tion prediction (Xenos et al., 2024). Despite these
promising recent research efforts in the area of
emotional understanding with VLMs, to the best of
our knowledge, the capabilities of advanced Vision-
Language Models in evoked emotion recognition
have thus far not been comprehensively analyzed.

3 Evaluation Data

We leverage popular, existing, evoked emotion
recognition datasets to create EVE, an Evoked
Emotion benchmark for our analysis. This in-
cludes EmoSet (Yang et al., 2023), FI (You et al.,

1We make all code and data available at: https://github.
com/sreebhattacharyya/Eve_Benchmark
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2016), Abstract, ArtPhoto (Machajdik and Han-
bury, 2010) and Emotion6 (Peng et al., 2015). The
selection of the datasets ensures a diverse range
of image types in the benchmark, ranging from
images of humans, nature, objects in natural or ar-
tistically photographed settings, to images of paint-
ings without any recognizable objects (eg., in Ab-
stract). Emotion6 uses 7 discrete emotion classes,
while all other datasets follow Mikel’s 8-class emo-
tion model (Mikels et al., 2005). The total number
of samples in Abstract, ArtPhoto, and Emotion6
are under 2000, and we include the entire datasets
for the evaluation. For the larger EmoSet and FI
datasets, which contain 118000 and 23184 samples
respectively, we downsample them each to contain
about 2900 samples, retaining only the most chal-
lenging samples, as described below. This is done
primarily to limit the time and resource consump-
tion when evaluating closed-source models like
GPT. Besides, the large size of these datasets is cru-
cial only when training data-hungry deep learning
architectures, and not when evaluating models.

To obtain the downsampled sets, a pre-trained
ViT model (Dosovitskiy et al., 2020) is first fine-
tuned using the entire EmoSet and FI datasets. This
achieves weighted F1 scores of 0.91 and 0.53 re-
spectively. For all predictions by the ViT model,
the prediction probability is then obtained. This
is used to choose moderate to difficult samples,
to create initial candidates for the final evaluation
sets. The initial candidates for EmoSet and FI are
denoted as Ce and Cf respectively. The samples
incorrectly classified by the fine-tuned model (most
difficult) are automatically included in Ce and Cf .
Then, we consider correctly predicted instances,
where the probability of prediction is lower than a
certain threshold. This probability threshold is cho-
sen empirically to be 0.8, based on the prediction
probability distribution over each dataset. Thus,
the candidate sets Ce and Cf contain incorrectly
classified samples, and samples predicted correctly
with probability values less than 0.8. Intuitively,
the former group of images represents the most
difficult category, while the latter group consists of
instances that are of intermediate difficulty. Finally,
we subsample randomly from these candidate sets
to create EmoSet-Hard and FI-Hard, retaining the
original emotion class distributions. We include
a more detailed account of the subsampling pro-
cess in the Appendix (A.1), including a manual
analysis of the higher difficulty level of samples in
EmoSet-Hard and FI-Hard.

4 Experimental Setup

We evaluate open-source models LLaVA (7B, 13B)
(Liu et al., 2024b), LLaVA-Next (Vicuna 7B, 13B,
Mistral 7B) (Liu et al., 2024a), and Qwen-VL (Bai
et al., 2023) along with GPT4-omni (Achiam et al.,
2023), in a zero-shot manner on the created bench-
mark. The task precisely requires the models to
predict what emotion might be elicited from an in-
dividual when they are exposed to the visual stimuli
of each image sample in the datasets. We catego-
rize our main experiments into two primary set-
tings: (a) simple multimodal classification, where
each model is prompted to generate a single-word
emotion prediction, and (b) experiments studying
model robustness, where several minor and major
perturbations in the prompts are introduced to study
differences in model performances.

Preliminaries for the task. For a single iteration
of the evaluation process, the inputs are an image I ,
a prompt P describing emotion labels (words) for
k discrete emotion classes, C = {c0, c1, ..., ck},
where C represents the set of all emotion labels.
Model M , with parameters θM , performs the classi-
fication operation M(·) on these inputs, generating
a response containing the predicted evoked emo-
tion. The responses are parsed and string-matched
with the ground truth class labels, and weighted F1
scores are calculated.

Emotion Properties Analyzed. We leverage
properties of the fine-grained emotion classes in
the data to provide a formal framework for our anal-
ysis. The fine-grained emotion class labels can be
more broadly classified to belong to either positive
or negative sentiment categories (Refer B.2). We
define "Sentiment Bias" using this categorization
to help reveal insightful trends in the model perfor-
mances. We define a model’s positive sentiment
bias as its exhibited preference towards predict-
ing a true negative sentiment sample to a positive
sentiment class, and vice versa. Formally, given
model M , for a single image sample, given the
ground truth label class l and model predicted class
c, and the sets of positive and negative emotions
SP and SN respectively, we define the positive and
negative sentiment bias as:

pp = p (c ∈ SP | l ∈ SN ). (1)

pn = p (c ∈ SN | l ∈ SP ). (2)

Using this framework for analysis, we now de-
scribe our experiments and key results.

1800



Model Emotion6 Abstract ArtPhoto FI-Hard EmoSet-Hard

Qwen-VL 0.461 0.21 0.36 0.32 0.42

LLaVA (7B) 0.372 0.27 0.22 0.42 0.13
LLaVA (13B) 0.577 0.21 0.373 0.385 0.367

LLaVA-NEXT (Vicuna 7B) 0.541 0.234 0.308 0.449 0.26
LLaVA-NEXT (Mistral 7B) 0.601 0.079 0.364 0.374 0.401
LLaVA-NEXT (Vicuna 13B) 0.593 0.162 0.350 0.368 0.341

GPT4-o 0.635 0.196 0.45 0.42 0.503

Table 1: F1 scores for Simple Multimodal Classification on EVE. The best and worst-performing models on each
dataset are highlighted in green and red colors respectively.

Model Family Positive Emotions Negative Emotions

Qwen-VL 0.33 0.35
LLaVA 0.30 0.29

LLaVA-Next 0.34 0.32
GPT4-o 0.38 0.48

Table 2: Average F1 scores for samples belonging to the
broader positive and negative sentiment categories.
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Figure 1: Positive and Negative Bias demonstrated by
the models in simple multimodal classification. Results
are averaged across datasets and model sizes.

5 Simple Classification: How well do
VLMs perform emotion recognition?
[RQ1]

Our first and simplest evaluation scheme, Mc(·),
denoting simple classification, involves prompting
the models to choose a single emotion word from
the list of labels provided in the prompt. Formally,
each model generates:

Oc = Mc (I, Pc, C; θM ) = cj (3)

where j ∈ {0, ..., k}.
From the results described in Table 1, we note

that the performance is determined not only by the
model used but also by the content of the dataset on
which it is evaluated. GPT4-o consistently outper-
forms most open models and even rivals the perfor-
mance of fine-tuned models on certain datasets (Xie
et al., 2024; Xu et al., 2022) like Emotion6. De-

spite that, along with all other models, it falls short
on the Abstract dataset, which contains images
of abstract paintings without any human figures
or objects. Further, open-source models LLaVA
and LLaVA-Next outperform GPT4-o specifically
on the FI dataset. Although some models per-
form comparably to fine-tuned or trained archi-
tectures on some datasets, overall, the zero-shot
performance of VLMs in emotion recognition still
largely lags behind models created specifically for
this task.

We also look at the broader sentiment categories
that the data samples belong to 2. In Table 2, we re-
port the average F1 scores achieved by each model
on each overarching sentiment category. For all
models other than GPT4-o, the difference in per-
formance on positive and negative sentiments is
marginal. Models from the the LLaVA family per-
form slightly better on positive emotions, while
Qwen-VL and GPT4-o are better on negative emo-
tions. GPT4-o, despite showing the largest differ-
ent between the two sentiment categories, has the
highest individual F1 score for both sentiments.

Diving deeper, we calculate the sentiment bias
exhibited by the models (Fig. 1). We observe that
models prefer positive sentiments over negative
sentiments with a higher probability. This shows
that when not fine-tuned specifically for emotion-
related tasks, and provided with emotion class la-
bels, all of the models naturally exhibit a higher
tendency to generate predictions of positive senti-
ments.

In our subsequent experiments, we aim to under-
stand whether the model performance, along with
the exhibited biases, is dependent on the specific

2For all fine-grained emotion class-related analysis, we
include only the data subsets following the 8-class emotion
model, for uniformity and ease of classification into broader
sentiment and arousal categories.
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format of prompts and responses.

6 Robustness: How robust are VLMs to
changes in emotion-related prompts?
[RQ2]

We experiment with four types of changes to study
the sensitivity of models: (a) shuffling the order of
class labels in the prompts, (b) providing no class
labels, (c) adopting an optimistic or a pessimistic
persona, and (d) using three different self-reasoning
mechanisms. This is mainly to understand whether
the models get easily affected by the order or ab-
sence of class labels, gauge whether assuming a
differing perspective improves or deteriorates the
model performance and understand the effect of
reasoning strategies which have been shown to be
helpful in wide-ranging tasks (Wei et al., 2022; Li
et al., 2024).

6.1 Variation 1: Shuffled Emotion Order

The experiments in the previous section present
the emotion class labels in alphabetical order in
the prompts. In this section, we explore whether
listing any one category of emotions (positive or
negative) first, within the prompt, has an impact on
the emotion recognition capability of the models.
For example, with Mikel’s 8-class model (Mikels
et al., 2005), presenting positive emotions first in
the prompt would mean adhering to the follow-
ing order: amusement, awe, contentment, excite-
ment and anger, disgust, fear, sadness.

Fig. 2(a) reports the weighted F1 scores for all
models, averaged across datasets and model sizes.
For all models, including the negative emotion la-
bels first leads to lower performance. For LLaVA
and LLaVA-Next, prompts that have positive emo-
tion labels first show a slight performance improve-
ment. Listing negative emotions first, on the other
hand, leads to lower performance for all models,
other than GPT4-o, which remains unaffected. We
further unveil the precise impact of the shuffled or-
der of emotion labels on sentiment bias. As shown
in Fig. 2(b), for all models other than GPT4-o, pos-
itive sentiment bias generally increases when either
emotion class is presented first. Conversely, neg-
ative bias generally decreases with both kinds of
shuffled order of emotions, except for LLaVA-Next.
Thus, overall, most open-source models deteriorate
when negative emotions are presented first, while
their positive bias is increased when emotions are
grouped according to sentiment categories.

6.2 Variation 2: Providing No Target Labels
For experiments in this section, we provide no ex-
plicit emotion class labels in the prompt to choose
from. The models are free to respond using a sin-
gle emotion word that does not necessarily belong
to the datasets’ label set. We use semantic sim-
ilarity scores generated using SBERT (Reimers
and Gurevych, 2019) to assign the predictions to
the class with the most semantically similar la-
bel. As our task involves fine-grained emotion
recognition, we further consider whether the free-
form predictions by the models are specific enough.
Using the original class labels from the datasets,
C = {c1, c2, ...., ck}, we calculate:

simmax = max
i,j

(sim (ci, cj)), i ̸= j (4)

Intuitively, it denotes the maximum possible simi-
larity between two distinct, fine-grained emotion
classes. Thus, for each free-form prediction to be
sufficiently specific, its similarity to the correctly
assigned label class should be greater than the maxi-
mum similarity between two distinct classes. Given
the set of all open-vocabulary model predictions O,
and the ground truth labels L, we calculate the fre-
quency with which each model makes adequately
fine-grained predictions as follows:

p (sim(oi, li) > simmax |E) ∀ oi ∈ O, li ∈ L
(5)

where E denotes the event of oi being assigned to
class li.

Fig. 3 shows the F1 scores for each model,
across datasets, with the frequency of fine-grained
predictions depicted through the numbers above the
bars. All models fare significantly better when pro-
vided with labels in the prompts than when open-
vocabulary prediction is required. Note that this is
true even when the final classification is done us-
ing only maximum semantic similarity, which is a
more relaxed criteria than requiring an exact string
match with the provided labels. Further, LLaVA on
average makes fine-grained predictions more often
than all other models. GPT4-o uses specific emo-
tion words the least often, implying that to make it
suitable for use in fine-grained emotion prediction
tasks, the inclusion of target labels is indispens-
able. Additionally, we compute the sentiment bias
scores (Fig. 4), and find that the earlier trend is
reversed for all models other than GPT4-o, when
compared to classification with explicit target la-
bels in the prompts (Fig. 1). This also shows, that
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Figure 2: (a): The weighted F1 score for each model, averaged across datasets. The different bars represent the
orders in which emotion class labels are included in the prompt. (b): The positive and negative sentiment bias, for
each model, with different shuffled orders of emotion classes in the prompts.
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Figure 3: The weighted F1 score with and without
precise target labels in the prompts. The numbers in
brown represent the percentage of fine-grained predic-
tions made.
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Figure 4: Sentiment bias for responses generated with-
out explicit target labels in the prompts.

when the predictions are not anchored using prede-
fined class labels in the prompts, most models have
a naturally higher likelihood of choosing negative
emotion words over positive emotions.

6.3 Variation 3: Adding a Persona
Approaching robustness from another angle, we
explore whether urging the models to adopt a
sentiment-related perspective (positive or negative)
holds any influence. Specifically, we study whether
adding an optimistic persona biases the model to
choosing positive emotions more frequently, and
vice versa, besides affecting the overall perfor-

mance. We plot the average F1 score for each
model, under different assumed personas in Fig.
5(a).

All models perform poorly when adopting either
a positive or negative persona. The degradation in
performance is the most stark for Qwen-VL, and
the least for GPT-4o. Across all the models and
datasets, the performance drop when adopting a
negative persona is significantly more than when
adopting a positive persona. We show changes
in the sentiment bias to be a primary reason for
the poorer performance, as demonstrated through
Fig. 5(b) and Fig. 5(c). It can be noted from
Fig. 5(b), that adopting a positive persona sharply
increases the positive bias, which, on the other
hand, is diminished by using a negative persona.

Similarly, as seen in Fig. 5(c), negative bias in-
creases sharply when adopting a negative persona,
leading to models classifying nearly all samples
to negative emotion classes (most frequently "sad-
ness"). In contrast to the change in positive bias,
negative bias is only marginally reduced when us-
ing a positive persona. Thus, all models show ex-
treme vulnerability to the inclusion of a sentimental
perspective. This could potentially make models
susceptible to exploitation, for inducing severe bias
in emotion-related tasks.

6.4 Variation 4: Reasoning-based Prompting
Mechanisms

Adapting prompting methods like Chain-of-
Thought (Wei et al., 2022), we explore whether
prompting the models to self-reason with their gen-
eration impacts the performance. Specifically, we
use three different evaluation mechanisms. In the
first mechanism, the model generates an explana-
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Figure 5: Fig. (a): Weighted F1 score for each model, averaged across all datasets considered. The score drops
sharply when the models assume any sentimental persona. Fig. (b): Change in Positive Bias when assuming any
persona. Positive Bias is increased and decreased significantly by Positive or Negative Persona. Fig. (c): Change in
Negative Bias when assuming any persona. Negative Bias is sharply increased when assuming a negative persona
but reduced only marginally by positive persona.
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Figure 6: Weighted F1 scores, averaged across all
datasets considered, for different prompting mecha-
nisms explored.

tion for its emotion prediction simultaneously. The
second mechanism uses three steps of contextual
reasoning prior to prediction. The first two steps in-
volve attending to the foreground and background
objects in the images to predict emotions evoked
by them individually. The third step requires rea-
soning about whether these two emotions are com-
patible, to decide the final prediction. Our last
mechanism involves captioning the provided im-
age, followed by reasoning using the caption to
predict evoked emotion.

The aggregated F1 scores are presented in Fig.
6. Contextual reasoning helps only GPT4-o among
all models, highlighting the inability of most other
models to capture relevant background context
from images accurately. By analyzing specific re-
sponses, we also observe that LLaVA and LLaVA-
Next struggle with the multi-step response format
required for contextual reasoning. Captioning-
based reasoning shows relatively higher gains with
LLaVA and LLaVA-Next. This further underscores
that these models underperform when reasoning

over multiple modalities (image and text) simul-
taneously, compared to when reasoning only over
text (captions of images). Overall, the models re-
main relatively robust to variations in the prompt-
ing mechanism, and only show slight improve-
ments in some cases.

From the results of our robustness experiments,
it can be concluded that most models show signifi-
cant variance with respect to prompt perturbations.
However, the extent of such variance is largely de-
termined by the type of perturbation. Designing
models that are robust to such variations is thus an
important area for further inquiry.

7 Analyzing Mistakes by Models [RQ3]

To characterize errors made by each model, we
define three types of errors, proceeding from broad
(or blatant) to fine-grained (subtle) mistakes:

• Error Category (EC) I - Incorrect Sentiment:
The case where the ground truth and predicted
label belong to different sentiment categories
(eg., "sadness" and "amusement").

• Error Category (EC) II - Correct Sentiment,
Incorrect Arousal: The case where the ground
truth and predicted label belong to the same
sentiment but the different arousal or inten-
sity category (eg., "sadness" and "anger").
Arousal, in the dimensional Valence-Arousal-
Dominance (VAD) model of emotions, refers
to the agitation level of a person, or the inten-
sity of the emotion felt.

• Error Category (EC) III - Correct Senti-
ment, Correct Arousal, Incorrect Prediction:
The case where the ground truth and pre-
dicted label belong to the same sentiment

1804



I II III

Figure 7: Human agreement with model predictions (blue), ground truth from dataset (orange), both labels (green),
and neither label (red) for different models and error categories (from Left to Right: Error Category I, II, III).

and arousal/intensity category, but are not
the same fine-grained class (eg., "fear" and
"anger").

We hypothesize that blatant errors in EC I can be
attributed to the model’s inability to reason about
affect. However, the more nuanced errors (II and
III) could be caused by subjective interpretation
of closely related, distinct emotions. We conduct
a manual evaluation study to explore this further,
annotating about 500 error samples. Each annota-
tion denotes whether a human rater agrees more
with the model-predicted emotion label, with the
original ground truth label from the dataset, with
both emotion labels, or with neither.

We plot the human agreement percentage in Fig.
7. The plot for EC I shows that errors in this cate-
gory are indeed genuine errors by the models, as
human annotations consistently agree more often
with dataset ground truth.

For EC II, although agreement with ground truth
still dominates, there is a significant increase in
agreement with both model predictions and ground
truth, proving that some of the errors in this more
fine-grained category can be attributed to the sub-
jectivity of emotion perception.

Finally, for EC III, most of the model predic-
tions, that do not match with dataset labels at a
fine-grained level, may not be entirely incorrect,
since they are preferred more often than the dataset
ground truth. We also observe specific examples
where the dataset ground truth incorrectly reflects
the expressed emotion, while the model predictions
accurately capture the evoked emotion. The so-
called errors in EC III can thus be attributed to
noisy ground truth from the datasets, rather than

the capability of VLMs. This unveils the issue of
unreliable ground truth labels in existing emotion
datasets. It can also be noted that for all the error
categories, the proportion of human annotations
agreeing with neither the ground truth nor model
prediction (labeled as "Neither") remains relatively
small and constant. This reflects that either of the
two emotion labels (ground truth or model pre-
dicted) or both were found to be plausible in most
cases, showing that human preference of either cat-
egory (as measured by agreement of annotations)
is clear and trustworthy. We additionally show in
the Appendix (B.4.4), that the Abstract data subset,
on which models perform most poorly, is the most
reliable dataset in terms of human agreement.

8 Discussion and Conclusion

We arrive at answers to our initial research ques-
tions through all of our experiments:

• RQ1: VLMs are not adept at zero-shot multi-
modal emotion recognition, and often exhibit
significant biases towards certain emotions.

• RQ2: VLMs are sensitive to prompt changes.
The performance depends largely on the way
target labels are presented, the format of
prompting and response, and whether VLMs
adopt a sentimental perspective.

• RQ3: VLMs make a combination of broad and
fine-grained errors. Many deviations from a
dataset’s ground truth can also be attributed
to ambiguous or unreliable original labels.
This is especially applicable for the most fine-
grained errors.
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The need for improvement in model capabilities
could be approached through a deeper investigation
of the internal model representations, the meth-
ods used for aligning models to the tuning data,
etc. However, such interventions would require
for the instruction-tuning or fine-tuning data to be
noise-free. To make the datasets reliable, while ac-
commodating the inherent subjectivity of the task,
datasets could be created with explanations for an-
notations, emotion distributions or multiple labels
instead of discrete single class labels. Further, the
research community could benefit from availing
detailed information on datasets, such as, the test-
retest reliability data (Kim et al., 2018), duration of
exposure to emotion stimuli for each subject (Lu
et al., 2017), etc. Further, there remains a strong
need to distinguish between evoked and expressed
emotions. Many current datasets are curated by
querying images online using emotional keywords
(Yang et al., 2023), which is susceptible to collect-
ing images merely related to the keyword, and not
necessarily evoking that exact emotion.

Through our experiments, human study and anal-
ysis, we hope to have highlighted that all aspects
of VLMs’ emotion recognition pipeline, specifi-
cally the data used and modeling, are in need of
critical analysis and measures for improvements.
Through this work, we also hope to inspire broader
evaluation and benchmarking efforts to improve
emotional reasoning in VLMs, extending to com-
plementary areas of emotion understanding and
generation, to help achieve the broader goal of mak-
ing AI systems more empathetic, safe and useful.

9 Limitations

Although the current state of the study aims to be
the first comprehensive evaluation of VLMs for
evoked emotion recognition, there remains scope
to include more models. With greater resources,
there opens up the possibility of evaluating entire
datasets and comparing the same with the model
performances on the harder subsets included in our
benchmark.

The current evaluation also includes only few-
shot performances of the models, while the op-
portunity to fine-tune smaller models on the same
datasets, particularly the difficult data subsets, re-
mains open.

Further, the datasets currently included are
shown to have ambiguous instances, which stem
both from innate subjectivity of emotions and noise.

Although we discuss useful measures to reduce
make datasets more reliable, the possibility of am-
biguous interpretations of emotions is a major chal-
lenge in affective computing. It continues to be an
active area of research.

As most of the images are sourced from the inter-
net, we also acknowledge the possibility of some
of the images being included in the training data of
the models evaluated. However, for a closed model
like GPT4-o, it is not possible to verify the same.

The current benchmark and evaluation also ad-
dress the specific task of evoked emotion recogni-
tion and could be extended to include other tasks in
emotion recognition, as well as generation, to con-
stitute a comprehensive benchmark for emotional
understanding.

10 Ethical Considerations

We depend on existing emotion datasets to create
our benchmark. We acknowledge that the possibil-
ity of offensive images being present in the datasets
cannot be ruled out. Although we manually ana-
lyze several instances from the datasets, we do not
manually check the precise visual content in all of
the images. Besides, though the datasets used do
not contain any private identifiable information, a
large number of images include humans, revealing
their faces and gestures. We implore against the
misuse of that information and will ensure dissemi-
nation of the dataset only for verifiably legitimate
and valid purposes of research. As some of the
datasets were also created many years ago, it is
possible that they may not satisfy the required bar
of ethical review in place at present. Ensuring
that they do comply with the required standards of
reproducibility and reliability can in itself be an im-
portant area of research. Finally, we only evaluate
how well the models mimic trends it has learned
through the multimodal data used for training, and
do not claim that they possess any real, human-like,
"understanding" of emotions.

In a larger perspective, our research aims to help
create emotionally sensitive VLMs. We acknowl-
edge that depending on the deployment of VLMs,
emotional information could potentially be used
for manipulating human behavior, such as using
positive emotions to advertise products. Although
the end result of such deployment is largely deter-
mined by the executive forces controlling the use of
large models, we advocate strongly responsible us-
age of our research, and similar research endeavors.
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We emphasize the need for a thorough risk analysis
prior to practically applying emotionally-equipped
large language or vision-language models.
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Table 3: The final number of images in each of datasets
used in our benchmark and evaluation experiments.

A Sampling for Benchmark

In this section, we present additional details about
the process adopted for creating the FI-Hard and
EmoSet-Hard data subsets. This includes details
of implementation, followed by examples of the
varying difficulty levels targeted to be included
through the benchmark generation process.

A.1 Subsampling Data based on Fine-tuning

We first present specific implementation details of
the fine-tuning process. We use the base size of ViT
(Dosovitskiy et al., 2020), pretrained on ImageNet-
21K (Ridnik et al., 2021) and fine-tuned on Ima-
geNet 2012 (Russakovsky et al., 2015). For fine-
tuning on EmoSet, we add 3 linear layers, each fol-
lowed by dropout layers (p=0.2) and a non-linearity
of ReLU (Nair and Hinton, 2010). Training is car-
ried out for 30 epochs, creating an 80:20 split into
training and holdout sets. As the number of sam-
ples in FI is significantly smaller, we use the model
pre-trained on EmoSet as the starting point for fine-
tuning on FI. Making the final classification layer
trainable, we update the weights of the pretrained
model, based on the FI dataset. The training for FI
follows a similar 80:20 split of training and unseen
validation data, and is carried out for 30 epochs. In
both cases, the models are optimized with Stochas-
tic Gradient Descent, using an initial learning rate
of 0.05, momentum of 0.9, and weight decay set
to 0.00005. Along with SGD, Cosine Annealing
scheduler is used. The objective is simply mini-
mizing the multi-class Cross-Entropy Loss. The
models are fine-tuned on single A40 GPUs with 4
cores. The total time taken for fine-tuning EmoSet
and FI was around 5 hours and 3 hours respectively.

Once the model is fine-tuned on the entire
EmoSet and FI datasets, as described in the main
body, the prediction probabilities are used to fur-
ther filter out the most obvious or easy samples.
The probability values for the correctly classified
samples in EmoSet are in the range [0.31, 1.0], and
for FI are within in [0.32, 1.0], with most probabil-
ity values lying above 0.9. We choose the thresh-
old of 0.8 for both EmoSet and FI, keeping the
value close to the average of the range, but slightly
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Figure 8: The distribution of different emotion classes in the final evaluation sets considered. The numbers of
samples in different emotion classes, in EmoSet-Hard and FI-Hard are proportional to the original class distribution
in the candidate sets they are obtained from by subsampling.

Figure 9: The distribution of different emotion classes in the final evaluation sets considered, grouped according to
the broader Sentiment and Arousal categories. The grouping is shown only for the datasets considered in fine-grained
class-specific analysis.

higher, to account for the higher frequency of prob-
ability values greater than 0.9. Thus, the final data
subsets contain samples that are either incorrectly
predicted by the fine-tuned model, or are predicted
correctly with probability less than 0.8. Intuitively,
it includes examples that are harder to classify, con-
tain less obvious expressions of emotion, or can
potentially belong to multiple emotion classes. The
final numbers of samples in each data subset is
described in Table 3. In the final subsamples, we
also retain the original emotion class distribution
of each dataset, as represented through Fig. 8. As
we do not train or fine-tune any models, the varied
class distribution is not detrimental to our analy-
sis. Further, to account for the unequal class dis-
tribution, we report the weighted F1 scores for all
analysis.

A.2 Manual Analysis of Difficulty of Images
We present examples from EmoSet-Hard and FI-
Hard to demonstrate the qualitative difference in
difficulty in predicting evoked emotions. Note that
the examples may contain images that evoke strong
negative emotions in the viewer. As seen in Fig. 10
and Fig. 11, for each emotion category, the first
3 samples from the left are included in the final
datasets, as they are either predicted correctly with
a probability below 0.8 or are predicted incorrectly
by the fine-tuned ViT models.

Consider the examples from EmoSet-Hard de-
scribed in Fig. 10. From the examples for Amuse-
ment, the image with children is classified with

the highest probability of belonging to this emo-
tion class, followed by the image showing toys.
The image of the squirrel, although predicted to
belong to the Amusement class, is done so with
a significantly lower probability. This hints at the
bias within the dataset that leads models to asso-
ciate certain elements in the image (children, toys,
amusement parks, etc.) to the emotion class of
Amusement. Thus, images with relatively uncom-
mon elements, which may or may not be commonly
associated with the Amusement emotion class, are
included in the EmoSet-Hard set. Another example
of this can be seen in the images shown for Anger,
Disgust and Fear classes, where images that are
more colorful or show toys or small children are
classified into the Amusement category, disregard-
ing the deeper context within the images. Further,
as seen in the incorrectly classified example from
the category of Awe, the facial expressions of the
children in the image lead the image to be misclas-
sified to belong to Sadness. Thus, instances with
relatively more uncommon elements are included
in the EmoSet-Hard set based on our strategy.

The examples from FI-Hard, as shown in Fig.
11 also testify to more difficult samples being cho-
sen. The set includes images containing visual
elements that can easily be correlated with certain
emotion classes, but originally belong to different
emotion categories. For instance, the misclassified
images shown under Disgust and Fear categories
contain toys, or colorfully dressed people. They
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Prediction: Amusement
Probability: 0.75

Prediction: Amusement
Probability: 0.38

Prediction: Sadness Prediction: Amusement
Probability > 0.8

Prediction: Anger
Probability: 0.76

Prediction: Anger
Probability: 0.41

Prediction: Amusement Prediction: Anger
Probability > 0.8

Prediction: Awe
Probability: 0.75

Prediction: Awe
Probability: 0.36

Prediction: Sadness Prediction: Awe
Probability > 0.8

Amusement

Anger

Awe

Prediction: Sadness
Probability: 0.75

Prediction: Sadness
Probability: 0.34

Prediction: Anger Prediction: Sadness
Probability > 0.8

Prediction: Disgust
Probability: 0.74

Prediction: Disgust
Probability: 0.36

Prediction: Amusement Prediction: Disgust
Probability > 0.8

Prediction: Fear
Probability: 0.75

Prediction: Fear
Probability: 0.36

Prediction: Amusement Prediction: Fear
Probability > 0.8

Disgust

Fear

Sadness

Prediction: Sadness Prediction: Contentment
Probability > 0.8

Prediction: Fear Prediction: Excitement
Probability > 0.8

Contentment Excitement

Figure 10: Examples from the created EmoSet-Hard dataset. For Contentment and Excitement, no instances are
found that are predicted correctly with a probability less than 0.8. For all other categories, the two leftmost examples
describe instances that are correctly predicted, but with a probability less than 0.8. The next example shows an
image predicted incorrectly. Finally, the rightmost example for all categories show the correctly predicted samples,
which have probability of prediction higher than 0.8.
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Prediction: Amusement
Probability: 0.77

Prediction: Amusement
Probability: 0.38

Prediction: Excitement Prediction: Amusement
Probability > 0.8

Amusement

Prediction: Anger
Probability: 0.78

Prediction: Anger
Probability: 0.49

Prediction: Sadness Prediction: Anger
Probability > 0.8

Anger

Prediction: Awe
Probability: 0.78

Prediction: Awe
Probability: 0.41

Prediction: Sadness Prediction: Awe
Probability > 0.8

Awe

Prediction: Disgust
Probability: 0.69

Prediction: Disgust
Probability: 0.44

Prediction: Amusement Prediction: Disgust
Probability > 0.8

Disgust

Prediction: Excitement
Probability: 0.73

Prediction: Excitement
Probability: 0.53

Prediction: Fear Prediction: Excitement
Probability > 0.8

Excitement

Prediction: Fear
Probability: 0.67

Prediction: Fear
Probability: 0.49

Prediction: Amusement Prediction: Fear
Probability > 0.8

Fear

Prediction: Sadness Prediction: Contentment
Probability > 0.8

Prediction: Amusement Prediction: Sadness
Probability > 0.8

Contentment Sadness

Figure 11: Examples from the created FI-Hard dataset. Similar to EmoSet-Hard, for Contentment and Sadness, no
instances are found that are predicted correctly with a probability less than 0.8. For all other categories, the two
leftmost examples describe instances that are correctly predicted, but with a probability less than 0.8. The next
example shows an image predicted incorrectly. Finally, the rightmost example for all categories show the correctly
predicted samples, which have probability of prediction higher than 0.8.
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Arousal/Sentiment Positive Negative

High Arousal Amusement, Excitement, Fear, Anger,
Awe Disgust

Low Arousal Contentment Sadness

Table 4: Categorization of fine-grained emotion classes
based on the broader Sentiment class and Arousal levels.

are included in the FI-Hard dataset as potentially
difficult instances to predict.

B Main Experiments

In this section, we provide additional details for all
of our experiments. This includes details of imple-
mentation such as the resources, time or specific
prompts used, and supplemental results.

B.1 Implementation Details
To evaluate all of the open models, we use Hug-
gingface 3. GPT4-o is evaluated using the OpenAI
API 4. The open models are loaded in their full
sizes, and run using GPUs (A40 with four cores).
The maximum number of tokens to be generated is
capped at 160, and is sufficient for all experiments.
The time taken for the evaluation is influenced by
the evaluation format, with the format of contex-
tual reasoning (Section 6.4) taking the longest time,
owing to the higher number of tokens required to
be generated as output. The results reported are ob-
tained through single runs of each type of prompt,
owing to the significant computational and mone-
tary resources required for using the models.

B.2 Emotion Properties Analyzed
We provide a categorization of the fine-grained
emotion classes into broader positive and negative
sentiment categories in Table 4. Note that we do
this only for the emotion categories belonging to
the popular 8-class emotion model (Mikels et al.,
2005), as we consider only the constituent datasets
adhering to this model of classification for the fine-
grained analysis.

B.3 Prompts Used
We include the exact prompts included in this sec-
tion, in the Figures 12 13, 14, 15, 16, 17, 18, 19,
and 20.

We use a specific template format in the prompts,
with the first line of each prompt being the follow-
ing: "Imagine you are like a human, capable of

3https://huggingface.co/models
4https://openai.com/index/openai-api/

feeling emotions, and an image is shown to you.".
We include this specifically to bypass content mod-
eration policies in some models, that were other-
wise leading the models to abstain from responding
for some image samples. Although there was no
overtly offensive or obscene content in the datasets
we rely on, a large number of samples depict ex-
treme (negative) emotions. We observed by experi-
menting with and without this specific starting line,
that providing this warning helped in obtaining re-
sponses for most of the image samples.

Also, in the current stage of our study, we in-
clude only zero-shot prompting strategies for evalu-
ation. At the time of conducting experiments, some
of the models included in the evaluation framework
were incapable of reasoning over multiple visual
inputs. Thus, providing other models with visual
few-shot examples would give them an unfair edge.
However, we do experiment with few-shot exam-
ples in textual form (results not included in this
paper) for a small subset of the data. Precisely, we
provide a caption-like description of images, along
with the corresponding emotion evoked. We ob-
serve that this leads to further confused responses
for models like LLaVA, and thus avoid using any
few-shot examples for our large-scale evaluation
experiments.

B.4 Additional Results

B.4.1 Fine-Grained Class-Wise Performance

We present some additional results concerning the
fine-grained performance of models. Table 5 shows
the average F1 scores achieved by each model fam-
ily on the fine-grained emotion classes. The results
are calculated by averaging scores on the EmoSet-
Hard, FI-Hard, Abstract and ArtPhoto subsets of
our benchmark, as they follow the 8-class classi-
fication of emotions. Interestingly, all model fam-
ilies, apart from Qwen-VL, consistently achieve
the highest individual F1 score on the fine-grained
category of disgust. Further, all models other than
GPT4-o show the worst performance on the cat-
egory of Anger. This is also in line with results
presented in Section 5, where GPT4-o is seen to
perform significantly better on negative emotion
categories. In Table 6, we also present an aggre-
gate of the F1 scores, by grouping emotions based
on the sentiment (positive or negative) and arousal
(high or low) categories.

We also show the class-wise Precision and Re-
call in Table 7 and 8. It is worth noting that the
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Imagine you are like a human, capable of feeling emotions, and an
image is shown to you. This image may evoke positive or negative
emotions. Your task is to answer what emotion is evoked in you when
viewing the given image, choosing from the list: [emotion
categories]. Answer in a JSON format, without any deviation, with a
single key of "prediction". The exact format should be:
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this JSON format. 

Figure 12: The prompt Simple Multimodal Classification

Imagine you are like a human, capable of feeling
emotions, and an image is shown to you. This image
may evoke positive or negative emotions. Your task is
to answer what emotion is evoked in you when viewing
the given image, choosing from the list: [positive
emotion categories, negative emotion categories].
Answer in a JSON format, without any deviation, with
a single key of "prediction". The exact format should
be:
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this 
JSON format. 

Figure 13: The prompt for shuffled order of emotions with positive emotions first.

Imagine you are like a human, capable of feeling
emotions, and an image is shown to you. This image
may evoke positive or negative emotions. Your task is
to answer what emotion is evoked in you when viewing
the given image, choosing from the list: [negative
emotion categories, positive emotion categories].
Answer in a JSON format, without any deviation, with
a single key of "prediction". The exact format should
be:
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this 
JSON format. 

Figure 14: The prompt for shuffled order of emotions with negative emotions first.
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Imagine you are a human, capable of feeling emotions. 
Consider that an image is shown to you, which may 
evoke positive or negative emotions. Your task is to 
answer what emotion is evoked in you when viewing the 
given image, using a single word that expresses that 
emotion. Answer in a JSON format, without any 
deviation, with a single key of "prediction". The 
exact format should be: 
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this 
JSON format. 

Figure 15: The prompt for open-vocabulary emotion prediction.

Imagine you are a human, capable of feeling emotions. 
You are also an optimistic person, and today you feel 
especially happy. Consider that an image is shown to 
you, which may evoke positive or negative emotions. 
Your task is to answer what emotion is evoked in you 
when viewing the given image, choosing from the list: 
[emotion categories]. Answer in a JSON format, 
without any deviation, with a single key of 
"prediction". The exact format should be: 
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this 
JSON format. 

Figure 16: The prompt for adopting positive persona.

Imagine you are a human, capable of feeling emotions. 
You are also a pessimistic person, and today you feel 
especially sad. Consider that an image is shown to 
you, which may evoke positive or negative emotions. 
Your task is to answer what emotion is evoked in you 
when viewing the given image, choosing from the list: 
[emotion categories]. Answer in a JSON format, 
without any deviation, with a single key of 
"prediction". The exact format should be: 
{

"prediction": <your predicted emotion word>
}
Do not repeat the prompt, and respond only in this 
JSON format. 

Figure 17: The prompt for adopting negative persona.
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Imagine you are like a human, capable of feeling emotions, and an
image is shown to you. This image may evoke positive or negative
emotions. Your task is to answer what emotion is evoked in you when
viewing the given image, choosing from the list: [emotion
categories]. Also, include an explanation of why you chose any of
the given emotions. Answer in a JSON format, without any deviation,
with two keys of "prediction" and "explanation". The exact format
should be:
{

"prediction": <your predicted emotion word>,
"explanation": <your explanation of why you chose the

prediction>
}
Respond only in this JSON format, and do not repeat this prompt.

Figure 18: The prompt Explanation-based Reasoning

Imagine you are like a human, capable of feeling emotions, and an
image is shown to you. This image may evoke positive or negative
emotions. Your task is to answer what emotion is evoked in you
when viewing the given image. Consider the guidelines for this
task: Step 1: Is there any main object or person in the image?
What emotion do they evoke? \n Step 2: Now consider the overall
background of the image, and what emotion that evokes. \n Step 3:
Are the emotions in Step 1 and Step 2 similar? Are they both
positive or negative? If they are similar, proceed with the most
obvious choice for emotions. Otherwise reconsider your choice. \n
Step 4: Make your final emotion prediction in a single word,
choosing from the list: [emotion categories].\n Respond in a JSON
format, with response keys "Step 1", "Step 2", "Step 3", and
"Prediction", as:
{

"Step 1": <your reasoning for Step 1>,
"Step 2": <your reasoning for Step 2",
"Step 3": <your reasoning for Step 3>,
"Prediction": <your final chosen emotion word>

}
Respond only in this JSON format, and do not repeat the prompt.

Figure 19: The prompt for Contextual Reasoning

Imagine you are like a human, capable of feeling emotions, and an
image is shown to you. This image may evoke positive or negative
emotions. Your task is to answer what emotion is evoked in you when
viewing the given image. Consider the guidelines for this task:
Step 1: Caption the given image, describing the main objects,
background and the exact scene. \n Step 2: Based on the caption you
generate in Step 1, predict what emotion may be generated when
viewing the image, by answering in a single word, and choosing from
the list: [emotion categories]. \n Your response should in JSON
format, with only two keys "Step 1" and "Prediction", as:
{

"Step 1": <the caption you generate for the image>,
"Prediction": <your chosen emotion word based on the caption>

}
Respond only in this JSON format, and do not repeat the prompt.

Figure 20: The prompt Caption-Based Reasoning
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Model Family Amusement Awe Contentment Excitement Anger Disgust Fear Sadness

GPT 0.35 0.38 0.31 0.49 0.36 0.63 0.54 0.40
LLaVA 0.45 0.15 0.36 0.24 0.09 0.47 0.21 0.37

LLaVA-Next 0.44 0.24 0.31 0.37 0.06 0.50 0.35 0.37
Qwen-VL 0.29 0.27 0.25 0.52 0.22 0.38 0.50 0.28

Table 5: Aggregated class-wise F1 scores for Simple Multimodal Classification. Model families include the F1
scores of each constituent model of different sizes (applicable for LLaVa and LLaVA-Next). The top-most F1 score
achieved by each model family, across all fine-grained emotion classes, is highlighted in green, while the worst
score is highlighted in red.

Model Family Positive-High Arousal Positive-Low Arousal Negative-High Arousal Negative-Low Arousal

GPT 0.41 0.31 0.51 0.40
LLaVA 0.28 0.36 0.26 0.37

LLaVA-Next 0.35 0.31 0.30 0.37
Qwen-VL 0.36 0.25 0.37 0.28

Table 6: F1 scores for each (Sentiment, Arousal) category, averaged across model types, datasets, for the simple
multimodal classification setting. The best and worst overall score for each model is highlighted in green and red
respectively.
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Figure 21: Average Difference between the most similar
emotion class label and the next most similar emotion
class label, given any model prediction, for both correct
and incorrect predictions.

precision scores for Anger are consistently the high-
est, while it is also the category with the worst F1
score for most models. In contrast to that, the recall
scores for Anger are consistently the lowest, show-
ing that a high number of false negatives affects
the overall performance of models on this category
the most. The recall scores are the highest for the
Disgust category (except for Qwen-VL), which is
also the class where models achieve the highest
F1 scores. Overall, a complementary relationship
can be seen for the precision and recall scores for
most categories, and can be investigated deeply for
further analyses and improvements in future work.

B.4.2 Predicting Emotions Without Any
Labels

We study the capability of models to make fine-
grained, distinct emotion predictions in further de-
tail, in addition to the results presented in Section
6.2. Recall that for all open-vocabulary predic-
tion experiments, we calculate the semantic simi-
larity of the model prediction with all emotion label
classes, and assign the prediction to the class with
the highest similarity. We now try to understand
whether the model predicts an emotion that is truly
closest semantically to a single emotion class, or it
predicts a generic emotion word that could be con-
sidered almost as similar to multiple other emotion
classes. In other words, we consider whether the
maximum similarity score is significantly different
from the second-largest similarity score between
a given model prediction and the original emotion
classes. Formally, given a model prediction oi, and
the set of original class labels C, we first calculate
the maximum similarity to assign the prediction to
a particular label class:

smax = max
k

( sim ( oi, ck ))∀ ck ∈ C (6)

Using this, we assign oi to the label class as
follows:

j = argmax
k

( sim ( oi, ck ))∀ ck ∈ C (7)
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Model Family Amusement Awe Contentment Excitement Anger Disgust Fear Sadness

GPT 0.41 0.30 0.22 0.55 0.92 0.63 0.57 0.31
LLaVA 0.42 0.13 0.27 0.31 0.97 0.33 0.57 0.28

LLaVA-Next 0.42 0.33 0.23 0.75 0.95 0.43 0.50 0.28
Qwen-VL 0.54 0.42 0.15 0.41 0.85 0.42 0.58 0.45

Table 7: Aggregated class-wise Precision scores for Simple Multimodal Classification. Model families include the
Precision scores of each constituent model of different sizes (applicable for LLaVa and LLaVA-Next). The top-most
Precision score achieved by each model family, across all fine-grained emotion classes, is highlighted in green,
while the worst score is shown in red.

Model Family Amusement Awe Contentment Excitement Anger Disgust Fear Sadness

GPT 0.30 0.52 0.52 0.44 0.23 0.62 0.51 0.55
LLaVA 0.54 0.18 0.57 0.19 0.05 0.78 0.15 0.60

LLaVA-Next 0.48 0.38 0.50 0.26 0.03 0.64 0.28 0.57
Qwen-VL 0.20 0.20 0.75 0.75 0.12 0.36 0.43 0.20

Table 8: Aggregated class-wise Recall scores for Simple Multimodal Classification. Model families include the
Recall scores of each constituent model of different sizes (applicable for LLaVa and LLaVA-Next). The top-most
Recall score achieved by each model family, across all fine-grained emotion classes, is highlighted in green, while
the worst scores are shown in red.

prediction(oi) = cj (8)

Now, we calculate the second-largest similarity
score as follows:

ssecond_max = max
k

( sim ( oi, ck ))∀ ck ∈ C \ cj
(9)

Then, we calculate the difference between the max-
imum possible similarity and the second maximum
similarity between the model prediction and all the
original label classes using Equations 6 and 9, as:

d = smax − ssecond_max (10)

Intuitively, d represents how different the final as-
signed class label is from the next most likely class
label. We plot the expected values of d for all mod-
els in Fig. 21. LLaVA (particularly LLaVA 13B)
makes the most clearly distinguished predictions
among all other models, as demonstrated by the
highest expected difference between the maximum
and second maximum similarity score for its pre-
dictions. Also, for all models, the difference is
clearer when they make predictions that are eventu-
ally determined to belong to the correct label class.
For incorrect predictions, the difference is much
smaller, meaning that model predictions are unclear
and have a close likelihood to belong to multiple

different classes. GPT4-o makes the least well-
distinguished predictions, which also agrees with
the results presented in Fig. 3 on the percentage of
fine-grained predictions made by each model.

B.4.3 Reasoning-Based Experiments
We present additional results for the reasoning-
based experiments. In Table 9, we first present
the accuracy scores using the simple classification
format where the corresponding model operation is
Mc(·). The best and worst-performing models are
highlighted using green and red respectively. In Ta-
bles 10, 11 and 12, we present the accuracy scores
of models when prompted with explanation-based,
contextual, and caption-based reasoning strategies
respectively. For all of these tables, we use the
green color to highlight the best-performing model
for each dataset. Further, using orange, we des-
ignate the model that performed the worst for a
particular dataset in the simplest setting (can be
verified from Table 9) and accompany that with
the changes due to the intervention applied. We
show through this that the reasoning-based prompt-
ing strategies lead to improvements for most of the
worst-performing initial combinations.

B.4.4 Error Analysis and Human Evaluation
We provide additional details about the analysis
of model errors and the manual evaluation con-
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Model Emotion6 Abstract ArtPhoto FI EmoSet (Hard)

Qwen-VL 54.2 26.5 35.7 31.3 42.5

LLaVA (7B) 42.1 29.1 41.0 59.2 20.4
LLaVA (13B) 59.6 20.1 42.8 38.8 34.7

LLaVA-NEXT (Vicuna 7B) 57.9 27.3 40.7 56.8 26.2
LLaVA-NEXT (Mistral 7B) 61.0 13.4 43.1 38.2 37.3
LLaVA-NEXT (Vicuna 13B) 58.8 16.1 45.7 44.6 34.7

GPT4-o 66.4 18.8 48.4 45.5 45.6

Table 9: Average Accuracy Scores for Simple Multimodal Classification. The best and worst-performing models on
each dataset are highlighted in green and red colors respectively. The overall best-performing model is shown in a
brighter green color (GPT4-o on Emotion6), whereas the overall worst-performing model is shown in a brighter red
color (LLaVA-NEXT (Mistral 7B) on Abstract)

Model Emotion6 Abstract ArtPhoto FI EmoSet (Hard)

Qwen-VL 53.99 26.7 39.87 (+4.11) 27.94 (-3.4) 45.26

LLaVA (7B) 49.5 (+7.3) 20.9 39.74 52.71 19.6 (-0.8)
LLaVA (13B) 59.40 25.61 42.52 39.48 31.12

LLaVA-NEXT (Vicuna 7B) 59.24 20.45 41.24 55.77 29.61
LLaVA-NEXT (Mistral 7B) 61.45 14.03 (+0.62) 42.74 40.31 35.91
LLaVA-NEXT (Vicuna 13B) 55.73 20.71 45.43 43.68 35.66

GPT4-o 66.11 17.72 48.83 43.98 45.45

Table 10: Accuracy Scores for Classification with Explanations. The changes in accuracy points (%) compared to
simple classification are shown alongside the actual values for the originally worst-performing models. The highest
scores achieved are highlighted in green.

Model Emotion6 Abstract ArtPhoto FI EmoSet (Hard)

Qwen-VL 54.5 25.45 34.2 (-1.6) 44.4 (+13.05) 32.6

LLaVA (7B) 51.0 (+8.84) 18.4 27.9 36.77 23.1 (+2.7)
LLaVA (13B) 56.26 23.53 37.96 29.43 41.4

LLaVA-NEXT (Vicuna 7B) 49.66 19.42 24.8 23.6 22.3
LLaVA-NEXT (Mistral 7B) 59.5 25.5 (+12.07) 36.9 33.0 46.17
LLaVA-NEXT (Vicuna 13B) 57.48 23.21 38.5 39.15 34.6

GPT4-o 64.72 30.35 49.57 41.0 48.34

Table 11: Accuracy Scores for Classification with Contextual Reasoning. The changes in accuracy points (%)
compared to simple classification are shown alongside the actual values for the originally worst-performing models.
The highest scores achieved are highlighted in green.

1819



Model Emotion6 Abstract ArtPhoto FI EmoSet (Hard)

Qwen-VL 56.67 17.51 33.72 (-2.04) 31.56 (+0.2) 38.4

LLaVA (7B) 43.53 (+1.4) 25.9 38.43 44.04 35.6 (+15.15)
LLaVA (13B) 54.4 22.92 36.67 29.3 38.33

LLaVA-NEXT (Vicuna 7B) 50.95 21.33 40.0 34.65 38.0
LLaVA-NEXT (Mistral 7B) 60.58 15.41 (+2.01) 43.71 33.57 47.41
LLaVA-NEXT (Vicuna 13B) 55.5 23.04 39.16 31.67 40.69

GPT4-o 65.82 20.77 48.82 40.65 46.21

Table 12: Accuracy Scores for Classification with Caption-Based Reasoning. The changes in accuracy points (%)
compared to simple classification are shown alongside the actual values for the originally worst-performing models.
The highest scores achieved are highlighted in green.
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Figure 22: The frequency of agreement with model
predicted label (cream/beige), the dataset ground truth
label (green), both labels (yellow), and neither label
(orange), for each dataset, averaged across all models
studied.

ducted. To create the different error categories,
as we characterize specific emotion classes based
on their sentiment and arousal, we focus only on
EmoSet-Hard, FI-Hard, Abstract and ArtPhoto, as
they use the same 8-class labels. Based on the 3
different categories of errors defined in Section 7,
we sample around 10 error examples for each cat-
egory, for each model and dataset. It leads to a
total of around 500 error samples being annotated.
We consider only the smallest variants for LLaVA
(7B) and LLaVA-Next (Vicuna 7B) for the current
stage of the study. Our annotators are primarily
graduate student volunteers from the authors’ team.
We specifically use annotations from people aware
of research in computing for emotions, owing to
several reasons: (a) the current stage of the study
is small-scale, (b) clear knowledge about evoked
emotions and nuanced emotion categories is valu-
able for our study, and (c) to ensure high-quality
annotations, which is usually compromised when
aggregating large numbers of crowd-sourced an-
notations. The annotators are located geographi-
cally within North America. For each annotation

turn, the visual stimuli is displayed for about 3-5
seconds, along with the model prediction and the
dataset ground truth. However, it is not disclosed
which label is model prediction and which one is
the ground truth to eliminate any bias in annotation.

In addition to the results we present in Section
7, we also include an additional analysis of how
human agreement varies with each dataset consid-
ered. We plot the average frequency (across all
models) of human agreement with the model pre-
dictions, ground truth label or both, for each dataset
in Fig. 22. For all datasets, on average, human an-
notations agree with the model predictions more
often. This is not the case only for Abstract, where
human agreement with the dataset ground truth is
significantly higher than with model predictions,
meaning that Abstract provides the most reliable
ground truth labels.
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