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Abstract

Many applications of large language models
(LLMs) require long-context understanding,
but models continue to struggle with such tasks.
We hypothesize that conventional next-token
prediction training could contribute to this, be-
cause each token is assigned equal weight. Yet,
intuitively, the amount of context needed to
predict the next token accurately varies greatly
across different data. To reflect this, we pro-
pose various novel token-weighting schemes
that assign different weights to each training
token in the loss, thereby generalizing existing
works. For this, we categorize token-weighting
methods using a two-step framework which
compares the confidences of a long-context and
short-context model to score tokens. We evalu-
ate all methods on multiple long-context under-
standing tasks and show that non-uniform loss
weights are helpful to improve the long-context
abilities of LLMs. Different short-context mod-
els can be used effectively for token scoring,
including models that are much smaller than
the long-context model that is trained. All in all,
this work contributes to a better understanding
of the trade-offs long-context language mod-
eling faces and provides guidelines for model
steering via loss-weighting based on empirical
evidence. The code can be found on Github.

1 Introduction

Many Natural Language Processing applications
require models to reason about large amounts of
contiguous texts, such as legal documents or text-
books in education applications (Wang et al., 2024).
To solve such tasks, recently various Large Lan-
guage Models (LLMs) have been proposed that
can process such large texts in one forward pass
by allowing a large input context (Dubey et al.,
2024). However, while they make use of various
approaches, such as data augmentation or different
positional encodings, it is still unclear how well the

resulting models are actually able to use their con-
text (Liu et al., 2024) and what exactly contributes
to making LL.Ms understand long contexts better.
Broadly speaking, related works on training
long-range LLMs tend to focus on two aspects,
namely the training data and model architecture.
Since long-range dependencies can be scarce, also
because the number of possible strings explodes
with sequence length and only a small share might
be captured in common training data, model-based
dataset filtering (Chen et al., 2024) and data aug-
mentation with synthetic long-range dependencies
(Wu et al., 2024) is often used to up-weigh long-
range data. In terms of model architecture, there
is a focus on computational efficiency, as the com-
plexity of dot-product attention-based Transform-
ers scales quadratically with the input length. For
example, sub-quadratic attention mechanisms (Tay
et al., 2022, inter alia) and Transformers with
a memory mechanism, in which previous (com-
pressed) context is stored, have been proposed (Wu
et al., 2022; Bulatov et al., 2022). Finally, various
positional encodings like RoPE (Su et al., 2024a)
and ALiBi (Press et al., 2022) are often used to fa-
cilitate long-context understanding. However, little
attention has been paid to the link between model
and data: the loss function and training criterion.
We hypothesize that the lack of long context
capabilities could also come from a training cri-
terion that weighs the contribution of each token
equally. Intuitively, a weighting that emphasizes
long-range dependencies (LRDs) by weighing data
that exhibits such dependencies higher should be
beneficial for model performance on these tasks.
While there are existing approaches which use non-
uniform loss weights (Lin et al., 2024; Ren et al.,
2018), they rather focus on efficiency and the spe-
cific choices that are made in them are not well
understood. In this work we generalize these meth-
ods in a comprehensive framework and thoroughly
evaluate how token weightings should be chosen
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Table 1: Schematic example of our token scoring method. Sequences are processed with either long and short

context. [Green : weight bigger than one due to high absolute loss difference.

: weight smaller than one due to

low absolute loss difference. The example sequence is taken from chapter 6 of "One Hundred Years of Solitude"
(Mérquez, 2000), where character Melguiades reappears after having not been mentioned for 10k tokens before that
passage. A model with 8k context sees this name for the first time and is uncertain. A 32k model can look back far
enough to achieve a lower loss. Based on this, our method assigns a high weight to the "Mel" token, indicating a
long-range dependency. Also, tokens which are learnable for the long-context model ("inspired") are upweighted,
whereas trivial ("ades") and inherently hard ("one") tokens are downweighted.

for better long-context performance in LLMs.

Our framework divides token weighting into
two subsequent stages: scoring and postprocess-
ing. Token scoring contrasts the confidences of
a short- and a long-context model and sets them
to dense or sparse weights. We compare these
two types of postprocessing in detail. Furthermore,
we compare using a frozen pretrained model for
the short-context model (which can also be much
smaller than the long-context model) against using
the same long-context model with artificially short-
ened input context as a short-context model. We
pose the following two research questions:

1. What are the effects of sparse and dense
weightings (i.e. of postprocessing)?

2. What is the effect of the token scoring?

Our experiments focus on extending the context
of an existing language model (Dubey et al., 2024;
Stallone et al., 2024). In particular, we extend the
context of Llama-3 8B and Phi-2 2.7B from 8k
resp. 2k to 32k input tokens and compare different
token weighting methods on RULER (Hsieh et al.,
2024) and Longbench (Bai et al., 2024b), while
contrasting how well they retain performance on
short contexts as measured on MMLU (Hendrycks
et al., 2021) and BBH (Suzgun et al., 2023). Our
results show that non-uniform token weights can
improve the long-context performance of LLMs ef-
fectively and are better than using uniform weights.
This holds across various short-context models,
namely, a frozen version of the long-context model,
a weight-shared model with artificially shortened
context, and a much smaller (8x) model, similar to
weak-to-strong generalization (Burns et al., 2024).
Still, improving long-context capabilities can form

a trade-off with retaining original performance as
shown in extensive ablations with different sparsity
levels and interpolation strengths.

2 Background

In this section, we first introduce LLM training
as next-token prediction with per-token weights
(Sec. 2.1). Then, we re-interpret it in terms of the
training data, which allows token weighting to be
understood as data curation (Sec. 2.2). Finally, we
provide an overview of related works that use (non-
uniform) token weights (Sec. 2.3).

2.1 Next-Token Prediction

Current-day large language models (LLMs) are usu-
ally trained on large collections of text using a self-
supervised next-token prediction objective (Rad-
ford et al., 2019; Touvron et al., 2023). Correspond-
ing to that, LLMs usually define a distribution over
tokens in a sequence y = (y1,...,Yn) € YN
with variable but bounded length N that is con-
structed from a predetermined vocabulary V), for
example, of Byte-Pair-Encoding tokens (Sennrich
et al., 2016). Then, the probability of a sequence
y is determined autoregressively from a locally-
normalized model as:

N
po(y) =[] polyi | y<i)- (1
i=1

Here, @ are the learned parameters of the LLM.
Learning the LLM is then usually done by min-
imizing the negative log-likelihood on a training
corpus. Denoting this training data as a multiset'

!'Oftentimes it is a proper set due to data deduplica-
tion (Tirumala et al., 2024, inter alia).
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where w;(y) > 0 are weights that are given to
each token?. This training criterion is also referred
to as cross-entropy loss because it minimizes the
(weighted) cross-entropy between the model and
the empirical data distribution.

Perplexity The cross-entropy criterion is directly
related to the perplexity of a model on a given cor-
pus D, which is defined as the exponential of the
average loss over the data with weights w; = 1. Ac-
cordingly, perplexity is often used for assessing the
goodness of fit of the model. In contrast, surprisal
theory from psycholinguistics shows that humans
process words highly non-uniformly (Hale, 2001).
For LLMs, the average perplexity per token posi-
tion already decreases with increasing token po-
sition (Gao et al., 2020; Reid et al., 2024) and
perplexity can even be negatively correlated with
long-range reasoning abilities (Levy et al., 2024).
This naturally leads to the question if perplexity
is the correct measure to evaluate long-context un-
derstanding, which is also discussed in Hu et al.
(2024). On the other hand, (Chen et al., 2024) sug-
gest that the root of the problem may be not so
much with perplexity itself but rather that the data
does not exhibit enough long-range dependencies
(LRDs). In this work, we focus on evaluating on
data that has been specifically collected for long-
range dependency modeling to overcome this.

2.2 Dataset Curation

In most cases, the weights w; in Eq. 2 are chosen
to be uniformly 1 such that each token in the se-
quence receives the same importance. In the limit
of infinite data, uniform weights are preferred be-
cause then the true data-generating distribution is
the optimum of the training criterion. However, in
practice, training data is finite and accordingly a
lot of the gains of modern LLMs can be attributed
to better choices of the training set D. For exam-
ple, it has become standard to also train on code to
improve the model’s reasoning abilities (Ma et al.,
2024) or use clean LLM-generated text as train-
ing data (Gunasekar et al., 2023, inter alia). For

>We will drop the dependency on y in the following for
notational convenience.

long-context understanding specifically, synthetic
long-range dependencies have been added to the
training data (Wu et al., 2024). This is directly
connected to using non-uniform weights w;: to-
kens with weight w; = 0 are ignored, tokens with
w; € (0,1) downsampled, and tokens with w; > 1
upsampled.

Reinforcement Learning By applying Jensen’s
inequality to Eq. (2) we obtain

M

L(0;D) > —log Z sz

yeDl 1
~ —logEy(W)

Y)pe(yi | Y<i)

with weighting function W (y;,y.;) = wi(y).
Now W can be interpreted as the reward function
of a reinforcement learning problem with action
space V and state space Ui]\;O V' where our goal
is to maximize the expected return. In this way,
we can see our generalized cross-entropy loss from
Eq. (2) as a form of reward-weighted regression
(RWR; Peters and Schaal, 2007). RWR was re-
cently applied as a model-based dataset curation
technique to pretrain LLMs with document-level
(Wettig et al., 2024) and segment-level (Korbak
et al., 2023) weights. We discuss concrete weight-
ing functions in the following and propose new
methods in Sec. 3.

2.3 Token Weighting

Different weighted cross-entropy criteria have been
proposed in the literature. For example, focal loss
weighs each class by its confidence, i.e. the pre-
dicted class probability (Lin et al., 2017). Related
to this, MiLe (Su et al., 2024b) weighs tokens in
language modeling according to one minus the en-
tropy of the token-level model distribution. As en-
tropy is a measurement of uncertainty, this weighs
uncertain tokens higher, but in doing so runs the
risk of excessively favoring tokens that are simply
hard to learn or ambiguous, for example, due to
plausible variation (Baan et al., 2024, inter alia).
Empirically, it is also observed that such tokens
remain challenging throughout training and Lin
et al. (2024) propose p which promises to tackle
this by using sparse w;. In particular, p builds
on Mindermann et al. (2022), who propose a func-
tion that can be used to select data that is learnable
but not yet learned. For this, p relies on training
a model checkpoint O on a clean dataset D. For
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Model Confidence Example
Long-ctxt. Short-ctxt. | Token Score Tab.1
T T Easy 3 "ades"

T 13 LRD T "Mel"

U T Learnable T "inspired"

[k U Hard U "one"

Table 2: We obtain token weights by contrasting short
and long-context models. Here, tokens exhibit different
properties: they are either easy, hard, learnable’or a
long-range dependency (LRD).

training the target model 6 on noisy D, the check-
point O is then used to filter out tokens whose
weights w; are set to 0. Formally, the weights are
determined by

W) = —logpe(i) — (—logpe,(i))  (3)

g <1;‘9((Z)>> , @)

where we will use the shorthand pg(i) =
po(y;ly ;) for notational simplicity from now on.
We call this stage token scoring. It can be shown
theoretically that this form of token scoring ap-
proximately selects optimal examples for reduc-
ing test loss (Mindermann et al., 2022). Note that
this requires training a second model which can
be prohibitively expensive. A final stage is then
postprocessing which is applied after token scor-
ing. In p, weights are set to 0 or 1/« according to
whether they score low or high such that a quantile
1 -k € (0,1] is set to 0, where « is the sparsity ra-
tio. This quantile-based postprocessing is naturally
robust to outliers produced by the scoring function.
Yet, sparsification can also have drawbacks, since
part of the signal is ignored. Furthermore, it is not
clear whether the choice of s will be robust across
datasets and even sequences in the same dataset,
which might exhibit different signal-to-noise ra-
tios. In the following, we will explore such token-
weighting methods thoroughly with the focus of
long-context understanding and propose new ones
that could overcome the mentioned issues.

3 Methodology

Our goal is to provide an in-depth comparison of
existing and novel token-weighting methods for
training language models for long-context under-
standing. For this, we present a two-step frame-

3The postulate of learnable tokens might seem problematic
in cases where the extended context should make the model

more uncertain (e.g. by contradicting the previous context),
but it has to hold on average. See App. A for a proof.

work to determine these weights, which allows
deriving existing approaches as well as finding new
ones. The framework consists of the steps token
scoring and postprocessing. This naturally gen-
eralizes the weight calculation and normalization
steps from (Ren et al., 2018). In the following,
we discuss different choices for both steps but first
look at the general setting.

We assume to have a language model 8 that
was pre-trained on a dataset D.,, consisting of se-
quences of length at most n and therefore has con-
text size n. Next, we extend the context size of
6 to handle sequences of length N >> n. For
example, we can interpolate positions (Chen et al.,
2023) or increase the base of RoPE embeddings
(Xiong et al., 2024). The resulting new model 0 is
then subsequently trained on D. .

Our goal now is to introduce methods that will
make the training on D. y effective for long-range
dependencies. For this, it is plausible to not restrict
weights to sparse Os and 1s but rather to allow any
(non-negative) real number as token weight.

3.1 Token Scoring

A meaningful token scoring method for context ex-
tension should exhibit four desiderata correspond-
ing to four different cases. We outline these in Ta-
ble 2. All token scoring methods use two models: a
long-context and short-context model. The latter is
oftentimes 6 if context extension is used and the
long-context one is a finetuning @ of it. The goal is
to score such tokens highly, where the long-context
model is certain and the short-context model is un-
certain and vice versa, because those either exhibit
a long-range dependency (e.g. "Mel" in Tab. 1)
or are tokens the long-context model has not yet
learned but can learn (e.g. "inspired"). Tokens that
are inherently hard to predict (e.g. "one") or trivial
(e.g. "ades"), however, should get a low weight.
Importantly, these properties change during train-
ing, since the long-context model will improve and
the weighting of a single token is highly context de-
pendent. In principle, any model 8’ can be used for
the short-context model, not just 8, for example, a
smaller language model for more efficient scoring.

In accordance with these requirements, we
choose the following scoring function:

(n);
ou [ P2 (2)>
g<p9%@

= [log(p) () ~ 10§ ()] ©)

&)

;| =
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Dataset— MMLU Longbench RULER Average
Weighting]  Subset— full full <8k  >8k | combined 8k 16k 24k 32k | long  full
8k 65.39 | 35.62 - - - 91.18 - - - - -
No-train 32k 62.25 | 3822 39.04 37.20 77.87 88.56 8191 7440 66.60 | 58.04 59.45
- LCDE 63.68 | 37.43 39.57 35.34 88.80 91.79 90.83 87.81 84.77 | 63.12 63.30
- Uniform | 63.44 | 4437 4591 41.07 89.87 91.82 9141 88.87 87.38 | 67.12 65.89
Sparse 60.24 | 46.48 46.67 43.69 90.42 9193 91.68 89.40 88.69 | 68.45 65.71
Unfrozen Dense 6292 | 45.09 47.02 43.19 90.07 91.40 9138 89.74 87.74 | 67.57 66.02
Sparse 63.73 | 45.09 4635 41.87 90.37 91.65 91.50 89.50 88.84 | 67.73 66.40
Frozen Dense 63.08 | 43.89 46.54 41.58 90.34 91.58 91.63 89.90 88.23 | 67.11 65.77

Table 3: Main results for Llama-3 8B on MMLU, Longbench and RULER (higher is better). The largest value of
each column is bolded (values in italic are not considered). While Unfrozen Sparse dominates the 8-16k context,
Frozen Sparse has the best performance overall. BBH results are in Table A.10 but highly correlated with MMLU.

Here, the superscript indicates how many past to-
kens the model can use to predict the current token.
By comparing to Tab. 1 again, it is easy to see
that this fulfills our desiderata: If the numerator
is large and the denominator small, we will get a
high weight. If both are roughly equal, the weight
is close to 0. If the denominator is large and the
numerator small, the weight is again large due to
the absolute value.

This absolute value also distinguishes our
method from the scoring used in p shown in Eq. 4.
Without it, tokens where the short-context model
is less certain than the long-context model would
get a negative score. This makes sense when both
models have the same context size. However, when
doing context extension, it would violate the second
requirement which pushes the model to learn long-
range dependencies by upweighing them. Note
that no backpropagation is done through the token
weights. Rather, they are treated as constants.

The ratio w; is the negative conditional point-
wise mutual information (CPMI) between the cur-
rent token and the faraway context*. This CPMI
value is an indicator of long-range dependency be-
cause it measures the influence of the faraway con-
text on the current token. Therefore it is a natural
choice to realize requirement two.

Note that there are many scoring methods fulfill-
ing the desiderata but ours is arguably one of the
simplest and thus should be preferred according to
Occam’s razor. Empirically, we ablate the impor-
tance of the absolute value in Section 5.3. Next,
we discuss different choices of the base model 6’
which we use to determine the score.

Choice of base model There are various intuitive
choices of the base model. The first is to set ' =

*A proof can be found in App. A.

0y and freeze the short-context model which is
used to initialize the long-context model. This is
similar to the approach of p. However, it either
requires scoring the full dataset before training,
which is time-consuming, or keeping two models
during training in order to perform token scoring
which doubles GPU memory consumption.

Intuitively, this could be overcome by sharing the
weights of long-context and short-context model,
i.e. setting @’ = 0, and artificially shortening the
context of the model to be trained. This way the
GPU memory consumption is the same and im-
provements in the short-context setting might be
beneficial for long-context training. We provide a
detailed comparison of both approaches in Sec. 5.2.

Another approach is to use a smaller model than
the long-context model as a short-context model.
The small model is then used as a “teacher” simi-
lar to weak-to-strong generalization (Burns et al.,
2024). For example, current open-source LLMs
often come in various sizes with the same base ar-
chitecture and can be easily used as long as they
share the same vocabulary (Dubey et al., 2024;
Gemma-Team et al., 2024).

3.2 Postprocessing

One option that is used in p is to set the weights for
the smallest (1 — )% scores to zero. The others
are all set to 1/k such that they sum to N. This
is robust to outliers but might ignore the signal of
meaningful tokens with zero weight. Further, due
to inherent constraints in autoregressive language
modeling with transformer decoders, no speed-up
of the backward pass is possible, even if only a
fraction of tokens contribute to the loss. Thus, we
employ a dense weighting scheme by using the
scores |w;| directly which provides a dense weight-
ing. As the scores are unbounded, it is important
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Figure 1: We compare different \ for the dense unfrozen
setting with Llama-3 8B (Eq. 8). A = 1 coincides with
the baseline (dotted). While short-context benefits from
large A, for long-context A = 0.25 is best.

to normalize them such that they sum to NV, i.e.

norm(|w;|) = N 7
This ensures that the same learning rate can be used
as with standard training (Ren et al., 2018). Based
on initial experiments we also interpolate them
with the standard uniform weighting scheme

w; = A+ (1 = A) - norm(|w;|). (8)

Here, A € [0, 1] is a hyperparameter that allows
to control how close the weights are to uniform,
similar to introducing a temperature parameter. For
A = 1 we recover the standard uniform weighting
with zero standard deviation, whereas A = 0 uses
the normalized scores directly, which maximizes
temperature. Note that interpolation does not affect
the normalization and the wj still sum up to V.

4 Experiments

Here we describe the experimental details. We first
describe the used models, then the datasets which
we use for evaluation and finally the used metrics.

Models We conduct our experiments on the open-
source Llama-3 8B model (Dubey et al., 2024).
Llama-3 8B was trained with a context of 8192
tokens using RoPE embeddings (Su et al., 2024a).
To extend the context size to 32768 tokens, we
increase the base of RoPE from 500k to 15.3M,
following Gradient AI. In initial experiments, this

5https://huggingface.co/gradientai/
Llama-3-8B-Instruct-Gradient-1048k

T
-0O- MMLU
-O- RULER |
=0~ Longbench

Difference to Baseline

| |
0.4 0.6
Sparsification x

0.8

Figure 2: We compare sparsity values « for the sparse
unfrozen setting with Llama-3 8B (Sec. 2.3). kK = 1 co-
incides with the baseline (dotted). Increasing « benefits
short-context tasks but hurts long-context capabilities.

yielded better long-context performance than using
3.5M as the base of RoPE, which is the value pre-
dicted by NTK-theory (Peng et al., 2024). More
detailed information regarding the exact experimen-
tal setup, including all technical hyperparameters
and runtime comparisons, can be found in App. B.

Weighting variants We use four different
weighting variants. The Uniform baseline uses
standard cross-entropy loss with weights 1. The
frozen model uses Llama-3 8B out-of-the-box with
8k context as token scorer, i.e. 8’ = 0y. Unfrozen
models are their own scorers, i.e. ' = 0. A dense
model uses the normalized scores directly, inter-
polated with uniform loss. Sparse models use a
threshold to set some token weights to zero. We
train all four combinations Sparse Frozen, Sparse
Unfrozen, Dense Frozen, Dense Unfrozen in the
exact same setup and report results in Table 3. Un-
less otherwise noted, dense models use A = 0.75
and sparse models use x = 0.2 resp. 0.4 for the
unfrozen resp. frozen variant. Ablations for these
choices can be found in Fig. 1 and Fig. 2.

Generalizability To show generalizability, we
use the same hyperparameters to extend the con-
text of Phi-2 (Javaheripi et al., 2023) from 2k to
32k by increasing the base of RoPE from 10k to
500k following (Chen et al., 2023) and report re-
sults in Table 7 in the Appendix. Again, the NTK-
predicted value of 1.3M performed subpar in initial
experiments. Finally, we conduct a weak-to-strong
experiment by using scores obtained from smaller
models of the Llama family to extend Llama-3 8B
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in the frozen setting, see Table 5 for results.

Datasets We use the book corpus PG-19 (Rae
et al., 2020) for continual pretraining and tokenize
each document separately by splitting it into chunks
of size 32k. We remove the last chunk if it is
smaller than 32k tokens. PG19 was chosen be-
cause we can obtain 70k continuous sequences of
text from it, each of length 32k (2B tokens in total).
As an ablation, we also apply Long-Context Data
Engineering (LCDE) (Fu et al., 2024) to perform
per-source length upsampling of sequences longer
than 8k tokens from SlimPajama (Soboleva et al.,
2023) and packing them together randomly. An ad-
ditional ablation with rare 32k sequences (less than
0.1%) from the recent FineWeb dataset (Penedo
et al., 2024) can be found in Table A.11.

To calculate the loss with a context of 8k, we
unfold the 32k sequence with an overlap of 2k
tokens to avoid a loss spike. For the frozen variant,
we perform two forward passes with doubled batch
size using Llama 3 8B without context extension.
For the unfrozen variant, we get the logits for the
first 8k tokens from the forward pass with the long
context model. The four remaining chunks can be
combined and computed with two forward passes.

Evaluation As mentioned in Sec. 2.1, evaluating
models on their long-context understanding capa-
bility is challenging. Since both using perplexity
and needle-in-a-haystack tasks can be inconclu-
sive (Hsieh et al., 2024; Hu et al., 2024), we instead
evaluate on the RULER benchmark (Hsieh et al.,
2024).” RULER is a synthetic dataset and consists
of the task categories retrieval, multi-hop tracing,
aggregation and question answering. We calculate
the RULER score according to Hsieh et al. (2024)8.
In order to obtain the score, the recall over each of
the 13 tasks is calculated. Then, all task-specific re-
calls are averaged such that each value reflects 6500
sequences of a given length. The combined score
is the average over sequence length results 8k, 16k,
24k, 32k for Llama-3 resp. 2k, 4k, 8k, 16k, 32k
for Phi-2. A detailed description of RULER can be
found in App. C. As a non-synthetic benchmark we
choose the English part of Longbench (Bai et al.,
2024b) which consists of 16 tasks over the six cate-
gories. Following (Lu et al., 2024) we further split

We also tried using sliding window attention but did not
find this strategy to work well, potentially due to the attention
sink problem (Xiao et al., 2024).

"For perplexity evaluation see Table 9 (Appendix).

8https://github.com/hsiehjackson/RULER.

Model MMLU Longbench RULER  Avg.
PPMI 59.27 43.79 8526 62.77
NPMI 64.06 40.29 77.71  60.69
sPPMI 62.68 45.79 90.29 66.25
sNPMI 63.45 44.36 89.47 65.76
abs(PMI) 63.73 45.09 90.37 66.40

Table 4: Ablation over different PMI variants as scoring
functions. Bolded values are highest, italic values lowest
per column.

KDE estimate of PMI distribution

. PPMI
NPMI
B PPMI+abs
774 NPMI4abs
EEE PPMI-+abs+sPPMI
[ZZ1 NPMI+abs+sNPMI

<- learnable long-range ->

T T
-0.25 0.00 0.25 0.50 0.75 1.00
PMI

T T
-1.00 -0.75 -0.50

Figure 3: A kernel density estimate of the PMI distri-
bution of all tokens in PG19-eval, measured with the
uniform 32k model at the end of training.

each task into sequences of length < 8% and > 8k
and report the macro-average over tasks. If docu-
ments exceed the sequence length of the evaluated
model, we truncate in the middle’. To measure
whether long-context models lose performance on
short-context, we do 5-shot evaluation on MMLU
(Hendrycks et al., 2021)'°. MMLU is well suited
as 99% of its questions are shorter than 500 tokens
and the longest one is around 1000 tokens. The
whole 5-shot prompt mostly consists of less than 3k
tokens. To diversify the short-context evaluations,
we test the models on BigBench-hard in a 5-shot
Chain-of-Thought setting (Suzgun et al., 2023) (see
Table 10 in the Appendix). We average RULER-
combined and Longbench-full to Long-Average.

5 Results

In this section, we detail our results from continu-
ously pretraining models with different loss weight-
ing schemes for long-context understanding. We
first discuss the main results which compare dense

thtps://github.com/Leooyii/LCEG/
OWe wuse the code from https://github.com/
EleutherAl/lm-evaluation-harness
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and sparse self-weighting models in Sec. 5.1. Then,
we discuss the influence of whether the model that
is used for weighting tokens is frozen or trained
along with the long-context model in Sec. 5.2. Fi-
nally, we discuss ablations in Sec. 5.3.

5.1 Dense vs. Sparse Weights

In Table 3 we present results for Llama-3 8B ex-
tended to a context of 32k tokens. Sparse unfrozen
dominates the 8-16k contexts and is the best model
for long context. It should be noted that sequences
longer than 16k tokens are not common in Long-
bench. This performance is remarkable because
the sparsity omits 80% of the tokens from the train-
ing. In this way, the model focuses strongly on
LRDs which benefits retrieval-heavy tasks. This is
further exemplified by Table 8, where Longbench
scores are broken down by task. There, the sparse
model excels in the QA and synthetic categories.
But we also see that this model performs worst on
MMLU and BBH. The underlying problem is that
the unfrozen method cannot score the original 8k
tokens in a meaningful way. As there is no context
difference, all scores will be zero. Thus, the sparse
unfrozen method never considers the first 8k tokens
for training. For the dense method, interpolating
with standard cross-entropy ensures that all tokens
get non-zero weight. Accordingly, the performance
of the dense unfrozen model is not as skewed. Al-
though not performing best on any dataset it ranks
second on the overall average. To answer RQ1:
What are the effects of sparse and dense weight-
ing?, we can say that a sparse weighting pushes
the model to perform well on LRDs and special-
izes it mostly on retrieval-heavy QA tasks. This
is because retrieval is a sparse extraction task and
the sparse weighting teaches the model to ignore
irrelevant information and focus import pieces of
information. By choosing a dense weighting on the
other hand, the model remains more general and
retains much of its short-context ability.

5.2 Frozen vs. Unfrozen Weighting Model

Table 3 shows that sparse frozen is the best overall
model. It combines the ability of the sparse method
to focus on LRDs but can also assign meaningful
weights to the first 8k tokens. This is because it uses
the frozen Llama 3 8B model as the scorer. Dense
frozen is on the level of the uniform weighting for
long context and subpar overall. Table A.7 shows
results for Phi-2 2.7B for further insights. First, we
see that, immediately after context extension, Phi-2

Weighting Scoring | MMLU Longbench  RULER
Baseline 63.44 44.37 89.87
Sparse 3.2 1B | 63.08 065 44.36 (-0.73) 90.47 [&EH0)
3.23B | 63.39 034 44.78 031 90.47 [&655)
3.18B | 63.31 042 44.09 (-1.00) 89.88 (-0.49)
Dense 3.21B | 63.47 &%) 44.85 [@56)] 90.521E008)
3.23B | 63.52 @@ 4430 [@0EN  90.4 80
3.1 8B | 63.10 [0l 44.71 [&@% 90.24 0.10)

Table 5: Results for weak-to-strong generalization.
Scoring means the frozen scoring model of the Llama-
3.x family. The colours indicate the difference to using
the model to be trained (i.e. Llama 3 8B) as frozen
scorer. Underlined entries improve over the baseline.
Dense models benefit from different scoring models,
sparse ones not.

is very bad on all contexts. Interestingly, this does
not harm the unfrozen performance. Apparently,
we do not need a good long-context model to start
with for the unfrozen approach to work. On the
other hand, we see the frozen models falling short
here. This might be because here we extend the
context by a factor of 16 and not four as for Llama-
3. Thus, the model and its frozen scorer might
move too far away from each other. This hypothesis
is supported by the results in Table 5, where we use
Llama 3.2 1B with 8k context as the frozen scoring
model. Here, the results are reasonable with sparse
frozen dropping to baseline level and dense frozen
even gaining performance. To answer RQ2: What
is the effect of the token scoring? we can say
that, somewhat surprisingly, the unfrozen approach
can recover from the model initially being bad on
long-context. Additionally, the frozen approach
has a hard time coping with differences in context
lengths between scorer and model. On the other
hand, the size of the scorer does not matter much.

5.3 Ablations

Here we discuss several important design choices.
First we present a dataset comparison and then
ablate over interpolation scale and sparsity ratio.

Dataset comparison As can be seen in the top
rows of Table 3, all our models outperform the
LCDE method of (Fu et al., 2024), especially on
16k+ context. This makes sense as although their
upsampling method creates 32k sequences, man-
ual inspection yields that they mostly consist of
two random documents, thus limiting the contained
LRDs to 16k on average. We again see the problem
of "long context is not long at all" exemplified here
(Chen et al., 2024). On the other hand, training on
32k sequences from FineWeb (Penedo et al., 2024)
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yields comparable results to training on PG19 (see
Tab. A.11).

Influence of interpolation scale Fig. 1 shows
various interpolation parameters A when using a
dense weighting and unfrozen Llama 3 model. For
long-context data we see the best performance at
A = 0.25. For MMLU there is a clear trend: as the
interpolation value equals the weight of the first 8k
tokens, increasing it benefits this task. These gains
lead to the maximum average score at A = 0.75.
Thus, we chose A = 0.75 for our main experiment
(Tab. 3). The ablation for dense frozen is more
robust and can be found in Figure A.4.

Influence of sparsity ratio When training with
sparse weights the hyperparameter x determines
how many weights are kept (i.e. (1 — )% are set
to zero) which we refer to as sparsity ratio. We
show an ablation over different x in Fig. 2 for
Llama-3. We see a similar picture as for \ but
more extreme: the more tokens we use the bet-
ter for MMLU, but at the same time the focus on
LRDs gets blurred. Interestingly, the best average
performance is achieved for x = 0.2. The ablation
for sparse frozen is much more robust and can be
found in Figure 5.

Influence of scoring function Recall from Sec-
tion 3 that our scoring function can be seen as
abs(PMI) where abs is the absolute value and
PMI the (conditional) pointwise mutual informa-
tion. We argued that the absolute value is nec-
essary to fulfill our desiderata. Here, we ablate
this choice by comparing to well-known PMI vari-
ants. These are PPMI := max(PMI, 0), NPMI :=
max(—PMI, 0), sSPPMI := max(PMI — In(k),0)
and SNPMI := max(—PMI — In(k)). Shifted
PPMI with integer shift & > 2 was introduced
by (Levy and Goldberg, 2014). We train our best-
performing model, sparse frozen with k = 0.4,
with these alternative scoring functions and set
k = 2. The results are in Table 4. We see that
PPMI is bad on short context and does also not
perform well on long context. If we look at Fig-
ure 3, we see that PPMI only selects tokens with
high PMI. Some of them are valuable long-range
dependencies (high PMI), but we also select a lot
of tokens with PMI slightly bigger than zero. As
loss decreases naturally with sequence length (Gao
et al., 2020; Reid et al., 2024), these tokens are not
informative and dilute the training set, leading to
suboptimal long context performance. On the other

hand, no learnable tokens are selected at all, violat-
ing desiderata 3, which leads to bad short-context
performance. NPMI, which violates desiderata 2,
shows opposite behavior, excelling in short-context
but failing to learn long-context. It selects tokens
which are learnable but not long-range in Fig. 3.
For the shifted variants, roughly 85-95% of tokens
have a score of zero. Thus we randomly sample
until we reach k = 40%. Both variants exhibit
the same tendencies as their unshifted counterparts,
but the random sampling balances out the extremes.
Thus, both of them give good overall performance.
Fig. 3 also shows the superiority of the absolute
value, which selects learnable and long-range to-
kens and avoids uninformative and hard ones. This
leads to good overall performance.

6 Conclusion

In this work, we show that the weights assigned
to tokens in the training objective of LLMs influ-
ence their long-context understanding capabilities.
While standard cross-entropy assigns equal weights
to each token, the methods proposed in this work
weigh them according to different notions of impor-
tance. This importance is determined by comparing
the confidences of a long- and short-context model.
We compare setting weights densely against having
sparse weights and compare using a frozen model
for weighting against using a self-weighting ap-
proach, where a model assigns its own weights via
a forward pass with less context.

Overall, we find that using dense weights im-
proves performance across long-context tasks.
Sparse weights mainly improve performance on
retrieval-heavy QA tasks, at the cost of short con-
text understanding. By changing a single hyper-
parameter we can smoothly trade off long-context
and short-context abilities in both approaches. The
frozen weighting scheme is only meaningful if the
context is not extended too much but provides a
powerful alternative in this setting, by allowing pre-
computation and caching of the scores and even
using a much smaller model for scoring.

Our work contributes to a better understanding of
token-weighting methods for language models and
shows that non-uniform weights can improve long-
context abilities. We hope this can spark further
investigations into scoring methods, for example,
to incorporate uncertainty in other ways.
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7 Limitations

An important limitation of this work is that we
did not combine it with other context extension ap-
proaches. As we are the first to investigate dense
weighting schemes for loss functions, our work
is orthogonal to all changes of model architecture
and it would be interesting to see with which of
the methods it works well together. Another lim-
itation is that all our model-based scoring meth-
ods need a good language model as a scorer, so
our method is not suitable for the early phases of
training from scratch. Additionally, we did not
instruction-tune our context extended models to
keep possible confounders minimal, especially as
long-context instruction-tuning is a new area of re-
search in itself (Bai et al., 2024a; Wu et al., 2024).
Studying the interplay of context extension and
instruction-tuning with respect to general perfor-
mance (Gao et al., 2024) and safety is an exciting
direction of future work. Finally, it remains un-
clear how our method will scale to modern context
lengths of 128k or more. We implemented the se-
quence parallelism approach of (Gao et al., 2024)
but saw that a single run with 5B tokens takes more
than 60 hours on 32 A100 80GB GPUs. This com-
pute demand exceeds our resources, so we will
leave scaling questions to future work.

8 Ethics Statement

The models presented here are not meant to be de-
ployed directly, because they are not optimized for
safety or deployment. Hence, it can not be guaran-
teed that no harmful content would be generated by
these models. Apart from that, another ethical con-
sideration is the use of PG19 as a training dataset.
Because of copyright issues it only contains novels
published before 1919. The societies and values
depicted in these books do not hold up to modern
standards, which leads the model to inherit these
biases.
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A  Proofs

The following proposition shows the connection
between the pointwise mutual information (Fano
and Hawkins, 1961) and our token scoring function
w; from equation (6). The pointwise mutual in-
formation measures co-occurrence, i.e. how much
more likely it is for two random variables to occur
together than we would expect by chance.

Proposition Let (y1,...,y;) be a prefix se-

quence for y € Dy. Split it into the recent con-

text 7, = (Yi—n,---,¥i—1) and the older context
= (Y1, +» Yi—(n+1))- Then we have

o ( pagl)
pmi () = — o (e )

p™ (i)
= log <p(N> (i))

Proof. We calculate

- Pml yla an, |7"n)

-1 < yzv an|rn >
= —log
P(yilrn)p(an|rn)

— —10g( p yuan??ﬂn (’F )2 >
p p(an, )

(T yu Tn
_ log <p(y1 ; An, 7ﬁn Tn))
p(yu Tn any Tn)
— log (p(yz!an,rn >
yz‘rn
— g (p(y ily<i) )
(Yilrn)

) (3)
= log (;;N) (z))

The following Lemma investigates whether it is
beneficial for the long-context model to be more
certain than the short-context model. It shows that
we need a model to be on average more certain on
the data to fit its underlying distribution better. In
particular, while desideratum 3 cannot be fulfilled
all the time, we need it to be true on average.

O]

Lemma Let 7,p and ¢ be discrete probability
distributions. Then we have

p(x) > q(x) for all x € supp()

=E,(log(p(X))) > Ex(log(q(X)))
<= KL(m,p) < KL(m,q)

Proof. 1t holds that

Er(log(p(X))) = —CE(m, p)
= —KL(m,p) — H(r)

and analogously for q. Applying this to both sides

shows the claim. O

B Experimental Details

All models are trained on 8 A100-80GB GPUs us-
ing Deepspeed Level 3 (Rajbhandari et al., 2020).
Following (Touvron et al., 2023; Chen et al., 2023),
we use a learning rate of 2 x 10~° with 20 lin-
ear warmup steps. We train for 240 steps with a
batch size of 8 and gradient accumulation of 16
for an effective batch size of 128 (i.e. 4M tokens
as in (Lu et al., 2024)). We use the AdamW op-
timizer (Loshchilov and Hutter, 2019) with 81 =
0.9, B2 = 0.95, ¢ = le — 08 and weight decay
0.01.

B.1 Runtime Analysis

We always used 8 A100 80GB GPUs during train-
ing. Preprocessing the whole PG-19 dataset with
forward passes for frozen model variants took
around 17 hours for Llama 3 8B, 7.5 hours for Phi-2
2.7B and 9.3h for Llama 3.2 1B. Training the base-
line or a frozen model for 240 steps took around 30
hours for Llama 3 8B and 15 hours for Phi-2 2.7B .
Training the unfrozen model took around 38 hours
resp. 17 hours. For a relative runtime comparison
see Table 6. We see that from a runtime perspective,
using a frozen or unfrozen scoring model makes
almost no difference. Scored sequences can be
cached and reused in the frozen setting, though.

C RULER Description

For any sufficiently large context length, RULER
(Hsieh et al., 2024) creates 500 examples in 13
categories each, so 6500 examples in total. The cat-
egories cover four different areas: retrieval, multi-
hop tracing, aggregation, and question answering.
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Model Loss Time factor
Llama 3 8B | Uniform 1.00
Unfrozen 1.27
Frozen 1.24
Frozen W2S 1.13
Phi22.7B | Uniform 1.00
Unfrozen 1.13
Frozen 1.21

Table 6: Relative model runtimes in comparison to the
uniform loss weighting. W28 stands for weak-to-strong
generalization.

Retrieval In its most general form, we can de-
scribe the retrieval task as follows: There are m
key-value pairs hidden in a haystack h. At the end
we ask for ¢ keys and expect r answers.

* NIAH: A key-value pair is hidden in a
haystack h. At the end we ask for the key
k and want the value v as the answer.

- m = 1, k-type = word, v-type = number,
h = 5 short sentences repeated, ¢ = 1,
r = 1. This is passkey-retrieval (Mo-
htashami and Jaggi, 2023).

- m = 1, k-type = word, v-type = number,
h =essays, ¢ = 1, r = 1. This is vanilla
NIAH (Kamradt, 2023).

- m = 1, k-type = word, v-type = uuid, h
=essays,g=1,r=1

* NIAH multikey: m key-value pairs are hidden
in a haystack h. At the end we ask for a single
key k and want its value v as the answer. m =
max means that there is no haystack, only
key-value pairs.

— m = 4, k-type = word, v-type = number,
h=essays,g=1,7r=1

— m = max, k-type = word, v-type = num-
ber, h=None,qg=1,r=1

- m = max, k-type = uuid, v-type = uuid,
h=None,g=1,r=1

* NIAH multivalue: A single key with m values
is hidden in a haystack. At the end we ask for
all m values of that key.

— m = 4, k-type = word, v-type = number,
h=essays,q=1,a =4

* NIAH multiquery: m key-value pairs are hid-
den in a haystack. At the end we ask for all m
keys and expect m values.

— m = 4, k-type = word, v-type = number,
h=essays,q=4,a =4

Multi-hop tracing This task is a proxy for coref-
erence resolution.

* Variable tracking: There are k variable assign-
ments in the haystack, such that they form a
chain,ie. z1=n... 29 =21...0 = Tp_1.
At the end we ask for all variables with value

n.
k = 5, n-type: number, h = 5 short sentences
repeated.

Aggregation This task is a proxy for summariza-
tion. A list of synthetic words is constructed.

* common words extraction: Pick 10 words
from the list which occur 30 times each, which
have to be returned. Generate the haystack by
sampling other words from the list thrice each.

* frequent words extraction: Sampling from the
list follows the zeta distribution. The top 3
most frequent words have to be returned.

Question Answering This task is based on real-
world question answering datasets. One document
is the needle, the haystack consists of other doc-
uments randomly sampled from the same dataset.
At the end we ask the question for the needle docu-
ment.

* SQuAD (Rajpurkar et al., 2016) is used for
single-hop QA.

* HotPotQA (Yang et al., 2018) is used for
multi-hop QA. The needed documents are not
necessarily adjacent.

Prompts For detailed prompts see Appendix D
of (Hsieh et al., 2024).

D Additional Results
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Weighting MMLU Longb. RULER LAvg. Avg.
Uniform 51.48 34.00 53.03 4351 46.17
Sparse 48.88 33.52 54.05 43778 4548
Dense 50.77 33.19 54.92  44.06 46.29
Sparse frozen | 49.53 34.12 52.17  43.78 45.27
Dense frozen | 50.19 34.26 51.81 43.03 45.42
2k no-train 56.51 11.99 - - -

32k no-train 35.24 8.64 1.87 526 1525

Table 7: Results for Phi-2 2.7B show that Dense un-
frozen dominates performs best on average.

2.5
g 15
)
é 0.5
@]
§ —0.5
© —1.5
A -O- MMLU
A —2.5 =O—- RULER ||
=~ Longbench
-3.5 ‘ :
0 0.25 0.5 0.75

Interpolation A

Figure 4: We compare different interpolation values A
for the dense frozen setting with Llama-3 8B (Eq. 8).
A = 1 coincides with the baseline (dotted). While short-
context benefits from large A, for long-context it is not

clear how to choose .
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Figure 5: We compare different sparsity values « for the
sparse frozen setting with Llama 3 8B (Sec. 2.3). k =1

coincides with the baseline (dotted). Performance is

robust to the choice of k.
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Weighting| Subset— full | Single Doc QA | Multi-Doc QA | Summarization | Few-Shot | Synthetic | Code
8k Baseline | 35.62 29.30 27.21 15.63 69.04 4.50 68.69
No-train 32k Baseline | 38.22 31.37 36.50 17.56 68.83 5.78 68.58
- LCDE 37.43 31.32 30.75 25.01 68.92 10.25 55.20
- Uniform 44.37 35.20 38.25 27.08 69.32 28.30 | 71.90
Sparse 46.48 35.50 39.23 26.98 69.15 44.78 | 70.76
Unfrozen Dense 45.07 34.80 39.00 25.94 68.60 36.59 | 71.46
Sparse 45.09 35.08 38.62 27.04 68.97 3453 | 71.62
Frozen Dense 43.89 35.00 38.10 25.34 68.29 30.07 | 70.95

Table 8: Results on Longbench by task (higher is better). The largest value of each column is bolded. Most
interesting is the Synthetic category, where Sparse Unfrozen excels and Uniform falls short.

Context 8192 16384 24576 32768
32k no-train 10.55 10.59 1055 1047
LCDE 9.33 9.24 9.16 9.06
Uniform 8.83 8.75 8.66 8.55
Sparse 10.56 10.18 9.91 9.69
Dense 9.10 9.04 8.97 8.87
Sparse frozen | 9.24 9.16 9.07 8.96
Dense frozen 8.96 8.88 8.80 8.70

Table 9: Perplexity results for Llama-3 8B on the vali-
dation set of PG19. The uniform weighting dominates,
but this is not reflected in downstream task performance
as shown throughout the paper.

Model MMLU BBH
8k 65.39 62.20
32k no train 62.25 53.65
LCDE 63.68 59.24
Uniform 63.44 58.30
Unfrozen Sparse 60.24 52.97
Unfrozen Dense 62.92 55.83
Frozen Sparse 63.73 58.22
Frozen Dense 63.08 56.04

Table 10: Additional results of Llama 3 8B models
on BigBench-hard with 5-shot Chain-of-thought. The
performance on both short context datasets is highly
correlated with Pearson’s p = 0.9289 and Spearman’s
p = 0.9286.

Model MMLU Longbench RULER

Uniform 63.63 G019y 40.02 435 90.54 [¢22%)
Unfrozen Sparse | 59.30 0.94) 43.33 (3150 89.95 [E2E8)
Unfrozen Dense | 63.45 @53 43.32 174y 91.26 [&20)
Frozen Sparse 63.63 0100 41.77 332 91.38 G253
Frozen Dense 63.77 f@7l 43.64 025  91.05 [@6H

Table 11: Additional results of Llama 3 8B models
trained on continuous 32k sequences of general pretrain-
ing corpus Fine Web (Penedo et al., 2024). Sequences
of this length amount to less than 0.1% of the dataset,
so heavy filtering is necessary. Noted in brackets is the
performance difference towards the standard models
trained on PG19 (Rae et al., 2020). With FineWeb, we
get consistent improvements on the synthetic RULER
benchmark, but lose even more performance on Long-
bench, while MMLU performance stays largely con-
stant.
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