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Abstract

Prompt tuning is highly effective in efficiently
extracting knowledge from foundation mod-
els, encompassing both language, vision, and
vision-language models. However, the efficacy
of employing fixed soft prompts with a pre-
determined position for concatenation with in-
puts for all instances, irrespective of their in-
herent disparities, remains uncertain. Variables
such as the position, length, and representations
of prompts across diverse instances and tasks
can substantially influence the performance of
prompt tuning. We first provide a theoretical
analysis, revealing that optimizing the position
of the prompt to encompass the input can cap-
ture additional semantic information that tradi-
tional prefix or postfix prompt tuning methods
fail to capture. Then, we present a holistic para-
metric prompt tuning strategy that dynamically
determines different factors of prompts based
on specific tasks or instances. Experimental re-
sults underscore the significant performance
improvement achieved by dynamic prompt tun-
ing across a wide range of tasks, including NLP,
vision recognition, and vision-language tasks.
Furthermore, we establish the universal applica-
bility of our approach under full-data, few-shot,
and multitask settings.

1 Introduction

Recently, the research community has fervently
dedicated efforts to developing novel methods
aimed at achieving parameter-efficient adaptation.
Three prominent strategies includes prefix-tuning
(PFT) (Li and Liang, 2021), prompt-tuning (PT)
(Lester et al., 2021), and Low-Rank Adaptation
(LoRA) (Hu et al., 2021). These approaches selec-
tively fine-tune a small subset of parameters, dis-
tinct from the original pre-trained model, thereby
circumventing the costly process of fine-tuning the
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entire foundation model. Among those, prompt-
tuning involves a minimal amount of parameters,
particularly in the context of billion-scale PLMs, a
phenomenon commonly referred to as the power of
scale (Lester et al., 2021).

The pre-train, prompt, and predict paradigm,
as elucidated in (Liu et al., 2023), may be clas-
sified into the realms of soft and hard prompts,
thereby enabling the seamless optimization and
resplendent visualization of this groundbreaking
approach. Nonetheless, the majority of previous
research has either maintained a static set of opti-
mized prompts (Ma et al., 2022; Liu et al., 2021)
across all instances in a task or exclusively added
prompts to the beginning of all inputs (Vu et al.,
2022; Guo et al., 2022; Gu et al., 2022). Later, (Wu
et al., 2022b) proposes to generate the instance-
dependent prompts by an Adapter (Houlsby et al.,
2019) module for NLU tasks and show notice-
able performance improvement. Similarly, (Asai
et al., 2022a) dynamically changes the instance-
dependent soft prompts via attentional mixtures of
prompts learned from multi-tasks. However, they
still adopt a fixed position and fixed length for con-
catenating prompts with inputs, which might be the
suboptimal strategy.

To the best of our knowledge, a systematic explo-
ration of the dynamic manipulation of soft prompt
position, length, and prompt pools remains absent
from the literature. Our endeavor encompasses a
comprehensive theoretical analysis that unravels
the potential benefits of optimizing the position for
concatenating prompts with inputs, thereby cap-
turing additional semantics that conventional pre-
fix or postfix prompt tuning methods fail to en-
capsulate. Motivated by our analysis, we propose
a unified strategy for dynamic prompt (DP) tun-
ing, wherein different factors are dynamically de-
termined based on the specific tasks or instances
at hand. An overview of our novel approach is
summarized in Figure 1. Specifically, we employ a
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Figure 1: An overview of our approach. The learning networks first predict the task- or instance-dependent prompt position,
length, and prompt pools. Then the new soft prompt is concatenated with instances to be fed into the frozen language, vision, or
V-L models for prediction. Parameters in the prompts and learning networks are simultaneously updated. Canonical prompt
tuning can be seen as a special case of our dynamic prompting, while the same soft prompt is prepended for all instances. The
ice symbol means it is frozen during tuning, while the fire represents it is tuned.

one-layer feedforward network in conjunction with
the Gumbel-Softmax technique (Jang et al., 2017a)
to learn the categorical distribution of position or
length, facilitating optimization at both the task and
instance levels. This advancement effectively nar-
rows the gap between prompt tuning and traditional
fine-tuning, as illustrated in Figure 2.

Our approach serves as a versatile and potent
component, capable of seamlessly integrating into
a wide array of problem domains to unlock supe-
rior performance. Beyond its application in prompt
tuning and P-tuning v2 for NLP tasks, as estab-
lished in prior research (Liu et al., 2021), we ex-
tend the reach of our approach to encompass other
methodologies. Notably, we successfully apply our
framework to vision prompt tuning (VPT) (Jia et al.,
2022a) and MaPLe (khattak et al., 2023), catering
to the realm of multi-modal prompt learning. The
incorporation of our dynamic prompting technique
yields additional accuracy gains across these di-
verse methodologies. Furthermore, our study show-
cases the effectiveness of dynamic prompting not
only in the single-task setting but also in multi-task
and few-shot learning scenarios. This broader ap-
plicability further amplifies the potential impact
of our work and solidifies its relevance in various
learning paradigms.

The key contributions of this work include the

following:

* We are the first to propose dynamic prompt-
ing with instance-dependent prompt position,
length, and representation.

* Our innovative research has yielded a compre-
hensive framework for elucidating the mecha-
nism underlying the superior performance of
dynamically adjusted soft prompts in compar-
ison to conventional prompt tuning methods.

* We conduct experiments to validate the effi-
cacy of our methods across a wide range of
tasks, including NLP tasks, vision recognition
tasks, and vision-language tasks.

2 Related Work

Prompt Tuning. Prompt tuning was introduced
by (Lester et al., 2021), a simple yet effective
mechanism for learning “soft prompts” to condi-
tion frozen language models to perform specific
downstream tasks as an alternative to prefix-tuning
(Li and Liang, 2021). The parameter-efficient tun-
ing (Liu et al., 2022; Jia et al., 2022b; Chen et al.,
2022a; Liu et al., 2021) has shown powerful ability
while involving a tiny amount of tunable parame-
ters. Furthermore, (Su et al., 2022; Vu et al., 2022)
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investigated the transferability of soft prompt, and
(Wei et al., 2021) theoretically proved that prompt
tuning obtains downstream guarantees with weaker
non-degeneracy conditions. Recently, prompt tun-
ing was also introduced to vision tasks (Jia et al.,
2022a; Chen et al., 2022b; Lian et al., 2022), such
as vision prompt for continual learning (Wang
et al., 2022), and for image inpainting (Bar et al.,
2022). Besides, prompt tuning techniques were also
proposed for addressing multi-modal applications,
such as vision-language applications (khattak et al.,
2023; Radford et al., 2021; Zhou et al., 2022a,b;
Manli et al., 2022; Jin et al., 2022).

Instance-dependent Prompt Tuning. IDPG (Wu
et al., 2022a) proposes an instance-dependent
prompt generation method by an up-and-down
adapter module. Asai et al. (2022a) improves
instance-dependent prompts by an attentional mix-
ture of source multi-task prompts, where the source
prompts are pre-trained in a multi-task way, which
is also adopted in (Sun et al., 2022; Asai et al.,
2022b). Besides, (He et al., 2021) gives a unified
view of various parameter-efficient learning meth-
ods by looking at the attention and feedforward
layers and treating prompt tuning as a simplified
prefix tuning (Lester et al., 2021; Liu et al., 2021).
But dynamically adjusting the soft prompt for each
instance has not been fully explored, and we derive
a unified framework to include various dynamic
prompting methods.

3 Method

In this section, we first derive a unified view of
prompt tuning in Sec. 3.1, then we describe several
dynamic prompting strategies: dynamic position
for concatenation with inputs, dynamic length, and
dynamic representation in Sec. 3.2, as depicted in
Figure 1.

3.1 A Unified View

Unlike canonical prompt tuning (Lester et al.,
2021), where soft prompts are prepended to in-
puts, we split the prompts into two parts: prefix

and postfix. Formally, for a sequence x € R™*9,
the query matrix is Q = zW? € R™*9, the
key and value matrix are K = a2W¥k ¢ Rm™*4,

and V. = 2WV € R™%%, respectively. The
soft prompt P with length [ is split into two

parts, P = [Pj;Py], where P, € RU1*? and
P, € R!2%? The resulting new input becomes
@' = [Pr; x; Py) € RUtmti2)xd and the new key
and value become K/ = /WK e R(itmtiz)xd

and V' = 2/WV e Ritm+l2)xdv Here, [;] de-
notes the concatenation operation. By matrix de-
composition, we have:

Q1 K i
Q=|Q|,K=|K|,V=|V], )
Q2 K2 V2

where Q1, K1 € Rl*4 Qy, Ky € R2Xdand V; €
]Rll de’ Vs € ngxdv‘

For the new query =’ = [Py; x; P,], the attention
head module becomes:

With the definition above, we can derive a uni-
fied view of prompt tuning as shown in the follow-
ing formula. The detailed derivation is included in
Appendix B.

Head = Attn ([[Pl;x;Pg]WQ, 2)
[Py s P W™, [Pyya; P2 ] WY ]) 3)
’ 1"
= softmax (Q T/g ) v’

omitting v/d for brevity

= [softmax(Pl WKWW', softmax(aW e K'T)V/;

softmax(P2WQK’T)v’] . @

Head = Attn(2’, K', V') =

|:/\1 * Attn(Q1, K1, V1) +X2 * Attn(Q1, K2, Va)
prompt tuning postfix
+ (1= X1 — A2) x Attn(Q1, K, V);
N e/
prompt tuning

B1 % Attn(Q, K1, Vi) +B2 * Attn(Q, K2, Va)

prompt tuning postfix

+ (1 — B — BQ) * Attn(Q, K, V);
N —

standard

1 * Attn(Q2, K1, V1) +72 * Attn(Q2, K2, Va)

postfix posfix

+(1 = —72) * Attn(Q2, K, V) | . ©
———

postfix

In such a unified formulation, {\;, 5, vi }i=1,2
are normalized weights to control how attention
is distributed among the (prefix) prompt tuning,
postfix, and standard attention. When P> does not
exist, postfix weights are equal to 0, so the result
is equivalent to standard prompt tuning. By intro-
ducing P», the overall Head is more flexible to
accommodate different query = and potentially pro-
vides additional semantics that P} can not capture.
The theoretical analysis reveals that optimizing the
position of the prompt to encompass the input can
capture additional semantic information that tra-
ditional prefix or postfix prompt tuning methods
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fail to capture. Our dynamic prompting is inspired
by such a formulation that diversified prompts are
expected for coupling with different queries.

3.2 Dynamic Prompting

In this section, we introduce how we use dynamic
prompting (DP) to accommodate tuning with re-
spect to the task- or instance-aware insertion posi-
tion, length, and representation of soft prompt.

Following the ancestral prompt tuning (Lester
et al., 2021), given a sequence x of n tokens, x =
{z1,22,...,2,}, a pre-trained foundation model,
such as the language model T5 (Raffel et al., 2020),
generates embedding of the tokens X € R™*¢
where d is the dimension of the encoded represen-
tation. For vision prompt tuning, x is a sequence
of visual hidden features (Jia et al., 2022a). The
prompt tuning introduces a soft prompt P € R!*¢
where [ is the length of the soft prompt. The next
step is to prepend the prompt P with actual inputs
X into a matrix X’ = [P; X], then X' is fed into
the model LM for optimization, where only param-
eters in P is optimized while the backbone LM is
frozen.

Dynamic Position for Concatenation with In-
puts. As noticed above, the concatenation of soft
prompt and inputs is simply a prefix of P into
X. However, we assume this kind of concatena-
tion might not be the optimal strategy. Intuitively,
the prefix P provides extra information for the in-
put sequence and offers an optimized alternative,
but it might not be sufficient. Thus, we propose
dynamic position to fill the gap: integer dpos is
a parameter to be learned for different tasks or
instances, then the original P can be split into
two parts P = [Pbeforea Pafter]’ where Pbefore =
[Pla P, ..., Pdpos] and Pafter = [Pdpos—‘rla e Pl]
Thus, the new input to LM becomes

X' = [Pbefore;X§Pafter]a (6)

where dpos € [0,] is an integer to be learned
and the ancestral prompt tuning is a special case
when dpos=I. Since dpos is categorical, we use a
one-layer network PO .Sy and the Gumbel-Softmax
(Jang et al., 2017a) to optimize it. Specifically,
given the output of POSy, a € R, we need
to estimate a binary vector of the same size. A
simple way to implement the binarization function
is to select the position with a maximum value
of {ag, a1, - - ,aq}, however, this approach is non-
differentiable. There are several ways that allow us

to propagate gradients through the discrete nodes
(Bengio et al., 2013). In this work, we adopt the
Gumbel-Softmax sampling approach (Jang et al.,
2017b; Maddison et al., 2017). Thereby, we have

logit = Gumbel-Softmax(POSy(x),7), (7)

where 7 is the annealing temperature adjusted by
the total training steps as detailed in Sec. E.1. The
logit is an (I+1)-dimensional binary vector where
only one element is equal to one and all other el-
ements are zero. A detailed derivation of using
Gumbel-Softmax to get the insertion position is
included in Appendix C.

Previous research (Lester et al., 2021) has shown
that prompt length is crucial for specific models
and tasks, while going beyond 20 soft tokens gives
marginal gains. We thus adopt [=20 for most ex-
periments. In this way, the parameters of the soft
prompt are the same as PT when [ is fixed, making
the comparison fair. The only additional parameters
are brought by the small network of POSy with
one linear layer, which is with size dx(I+1). We
denote this instance-dependant position selection
method as Adaptive position on instance-level, ab-
breviated as adap_ ins_pos. Notice that for our ex-
periments on learning an optimal position for all in-
stances in a task, we only use a vector v € R+ to
learn a global best position for all instances within
that task. We refer to this method as the Adaptive
Position on Task-Level (abbreviated as adap_ pos).
Then the number of additional parameters is [41.

Dynamic Length. Previous research has shown
that prompt length plays a vital role in prompt tun-
ing (Lester et al., 2021), and larger LMs usually
require a shorter prompt length. But the effect of
prompt length on tasks or instances level has been
underexplored. We propose that the prompt length
can also be dynamically learned:

Pe Rl*x‘l,
* = argnl}nloss(LA{([ﬁ’i;X] | Py € {Py,---, P}, @®)
i

P ERi’Xd)).

Similarly, [* € [0,!] is also categorical and can
be optimized by a one-layer network LE Ny and
Gumbel-Softmax. Here, [ represents the maximum
permissible length for the selection process. Also,
the number of additional parameters will be (41
and dx(l+1) for task and instance-level, respec-
tively. Nevertheless, implementing such a mecha-
nism poses a practical challenge since models typi-
cally necessitate fixed input matrix dimensions. In
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light of this, we employ a surrogate strategy, which
is elaborated upon in Appendix D.

Dynamic Vector. Extensive evidence (Wu et al.,
2022a; Asai et al., 2022a) supports the advantage
of utilizing instance-dependent prompts in down-
stream tasks. The prompt can either be generated di-
rectly through an adapter module, as demonstrated
in the study conducted by (Wu et al., 2022b), or by
employing attentional mixtures during multi-task
training, as illustrated in the research conducted by
(Asai et al., 2022a). We propose a novel and stream-
lined method for generating dynamic prompts us-
ing prompt pools. This approach simplifies the pro-
cess and allows for the seamless generation of dy-
namic prompts. Specifically, suppose there are a set
of prompt pools Pool = {P(M), ..., P(M)}, where k
is the size of the pool. Then given any input x, we
learn a small network Poy to get the attention score
of every prompt P (k) with respect to z, finally the
new soft prompt become:

k
Pew = Z B * P(i),ﬁ = softmax(Pog(x)).
i=1
&)

In practice, k controls the size of the prompt pool
and increased parameters. Since the P, depends
on a specific input instance, we denote this setting
as Adaptive vector on instance-level.

Combination. Notice that the previously men-
tioned methods can be combined to unleash the
power of dynamic prompting further. For exam-
ple, we can simultaneously update dynamic posi-
tion and prompt pool together, which we denote
as Adaptive instance-vector-position, shortened as
adap_ins_vec_pos. Alternatively, we first use dy-
namic position to learn the best task-level position
and update the instance-level prompt pool, denoted
as Adaptive position-instance-vector, shortened as
adap_pos_ins_vec. We leave more combinations
for future work.

4 [Experiments

Models. For language tasks, we use the Open-
Prompt (Ding et al., 2022) framework for imple-
menting our experiments, which is built on Huggin-
caface! and Pytorch 2. We use the T5-adaptive-
LM? version for its superiority for prompt tun-

"https://huggingface.co/

“https://pytorch.org/

3https://github.com/google-research/text-to-text-transfer-
transformer/blob/main/released_checkpoints.md

-

®
S

>
-
—
-
-
i //
-
R
R
7
>
i
g/‘ —¥- Fine tuning
£
' \/ o

Prompt tuning
—— adap_pos
T5-Small T5-Base Ts-Large TSXL
Model Scales

SuperGLUE Score
<
&

<
=)

adap_ins_pos
—+— adap_ins_vec_pos
—=— adap_pos_ins_vec

(a) Average acc. across different pre-trained
model sizes

Prompt tuning
«— adap_pos

adap_ins_pos
~— adap_ins_vec_pos
=— adap_pos_ins_vec

(b) Performance comparison across differ-
ent SuperGLUE datasets on T5-Large

Figure 2: Standard prompt tuning achieves subopti-
mal scores on SuperGLUE. Our dynamic prompting
(adap_¥*) consistently yields superior results. Fine-
tuning results on T5-XL are reported in (Aribandi et al.).

ing. In all our experiments, we freeze the back-
bone LMs and only optimize the soft prompts
and learning networks for acquiring dynamic in-
formation. We choose the initial learning rate
Ir from [0.1,0.2,0.3], weight decay to be le—5,
and Adafactor (Shazeer and Stern, 2018) as the
optimizer. Besides, we use the default settings
for prompt templates and verbalizers from Open-
Prompt*. Unless otherwise stated, we keep the soft
tokens to 20 for all experiments. We evaluate the
validation set every 500 steps. For all fine-tuning ex-
periments, we keep the same setting as our prompt
tuning, except for initializing the /r to 1e—>5, remov-
ing the added soft prompts, and tuning the whole
LMs.

To assess the efficacy of dynamically learning
the optimal position of prompts to comprehen-
sively cover the input, as discussed in Sec. 3.1,
we have incorporated our dynamic optimization
method into various methodologies, namely P-
tuning v2(Liu et al., 2021), vision prompt tuning

*https://github.com/thunlp/OpenPrompt/blob/main/tutorial/
1.4_soft_template.py
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(VPT)(Jia et al., 2022a), and MaPLe (khattak et al.,
2023) for multi-modal prompt learning. Notably,
since OpenPrompt solely supports prompt addition
at the input layer, we extended our experimenta-
tion beyond T5-series pretrained models to include
BERT-Large and Roberta-Large models using the
P-tuning v2 approach. Moreover, we have verified
the effectiveness of our approach in the domain
of visual recognition tasks, employing the vision
prompt tuning (VPT) framework (Jia et al., 2022a)
with ViT-B backbone(“sup_vitb16_imagenet21k”),
as well as in the context of multi-modal prompt
learning for the novel class generalization task,
utilizing MaPLe (khattak et al., 2023) as the un-
derlying backbone. For vision-language model val-
idation, we conduct the generalization from the
Base-to-Novel classes task. Specifically, we evalu-
ate the generalizability of MaPLe with our dynamic
prompt insertion technique and follow a zero-shot
setting where the datasets are split into base and
novel classes. The model is trained only on the base
classes in a few-shot setting and evaluated on base
and novel categories. The backbone model is the
ViT-B/16 CLIP. For further details on experimental
configurations, please refer to Appendix E.

Datasets. Following previous work (Ding et al.,
2022), we evaluate our approach on five Super-
GLUE (Wang et al., 2019) datasets to test the lan-
guage understanding ability, namely BoolQ (Clark
et al., 2019), MultiRC (Khashabi et al., 2018), CB
(De Marneffe et al., 2019), RTE (Giampiccolo
et al., 2007), and WiC (Pilehvar and Camacho-
Collados, 2019). We use the default train/dev split
and report the default metric on the validation
set since the test set is not directly available. For
comparison with P-tuning v2, we use eight Su-
perGLUE datasets. For the vision prompt tuning
setting, we follow (Jia et al., 2022a) and use the
well-known FGVC datasets consisting of 5 bench-
marked datasets. For the vision-language setting,
we follow MaPLe (khattak et al., 2023) and use
11 different datasets. Details on the datasets are
included in Appendix E.6.

5 Results

To demonstrate the efficiency of our method, in this
section, we show that our proposed simple yet pow-
erful approach leads to substantial accuracy gains
across various methodologies, including Prompt
tuning, P-tuning v2 (Liu et al., 2021), vision prompt
tuning (VPT) (Jia et al., 2022a), and MaPLe (khat-

tak et al., 2023) for multi-modal prompt learning,
across a wide range of tasks, such as NLP tasks,
vision recognition tasks, and vision-language tasks.
More experiments, such as the case and ablation
study (F), parameter sensitivity analysis (G.6), and
additional results (G) are included in the Appendix.

Adaptive Position. As presented in Table 1,
we compare two variations of adaptive position:
adap_pos represents the dynamically learned po-
sition for all instances in a single task, while
adap_ins_pos indicates that an optimal position
is expected to exist for each instance. The experi-
ments are conducted using the T5-LM-Adapt ver-
sion (Small, Base, Large, and XL), and we report
the best results in the table. We can see a general
trend that adap_ins_pos > adap_pos > fixed_pos

on almost all five datasets’. On average, T5-Large
demonstrates substantial improvements of approxi-
mately 5 and 7 points compared to the fixed posi-
tion PT. These improvements are less pronounced
for smaller LMs, aligning with the findings of
(Lester et al., 2021) that larger models are bet-
ter suited for prompt tuning. Considering that the
number of additional parameters for adap_pos is
merely 20, while several thousand are required for
adap_ins_pos, we can conclude that the fixed posi-
tion is suboptimal for prompt tuning, and adaptive
position consistently provides gains.

Adaptive Length. As mentioned in Sec. 3.2, we
only use a surrogate strategy for length adjustment.
Table 3 shows the adaptive length results. For sim-
plicity, we only test adap_length on T5-base and
adap_ins_length on T5-large. Overall, adjusting
length on task or instance-level helps, compared
with fixed prompt length. However, compared with
the adaptive position strategy in Table 1, the per-
formance gain is lower, which might be caused by
the difficulty of tuning. Thus, we recommend this
strategy for quickly locating the proper length for
different models instead of a greedy search.

Adaptive Prompt. By adaptively adjusting the syn-
thesized prompt from the prompt pool, the soft
prompts are expected to more efficiently utilize the
frozen LMs. The results are reported in Table 2, and
we also give the histogram comparison in Figure 3.
In general, compared with adaptive position only,
adding an adaptive prompt vector increases the per-
formance. But when both position and prompts are

>The T5-Base sometimes demonstrate suboptimal results,
as also reported in (Asai et al., 2022a)
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Table 1: Three strategies for the dynamic position of soft prompts. Fixed Position is the default prompt tuning.
Adaptive Position means the position is learned for every task but fixed for all instances within a task, while Adaptive
ins_position learns a dynamic position for each instance.

T5-LM-Small T5-LM-Base T5-LM-Large T5-LM-XL
Dataset | Fixed Adaptive Adaptive Fixed Adaptive Adaptive Fixed Adaptive Adaptive Fixed Adaptive Adaptive
Position Position Ins_Position | Position Position Ins_Position | Position Position Ins_Position | Position Position Ins_Position
Boolq 67.31 67.55 67.61 62.35 69.88 69.17 | 81.20 84.60 85.35 | 89.02 88.89 89.16
MultiRC| 68.68 68.89 69.29 | 57.42 70.19 71.08 |58.00% 72.77 80.20 | 84.49 84.31 84.41
WwiC 62.69 66.14 68.34 | 53.61 64.42 64.89 69.30 71.20 71.20 | 72,57 71.22 70.91
CB 83.93 83.93 83.93 | 78.57 87.50 87.50 | 87.50 89.29 91.07 | 94.64 98.21 96.43
RTE 65.34  66.79 65.70 | 67.51 70.75 71.93 82.60 85.71 85.71 88.21 90.94 90.58
Avg. 69.59 70.66 7097 | 63.89 72.55 7291 75.72  80.71 82.71 85.79 86.72 86.30
Table 2: Compared with only adjusting position in Ta-
r

ble 1, combining together with the adaptive vector can
further close the gap between fine-tuning.

T5-LM-Small TS-LM-Base TS-LM-Large

Dataset | Adaptive ~ Adaptive  Fine | Adaptive  Adaptive  Fine | Adaptive  Adaptive  Fine

Ins_vec_pos Pos_ins_vec tuning |Ins_vec_pos Pos_ins_vec Tuning|Ins_vec_pos Pos_ins_vec Tuning
Boolq 67.40 68.04 71.02| 6251 62.39 81.33| 84.07 84.98 87.25
MultiRC| 68.92 69.12  69.58| 57.96 57.65 77.91| 78.96 82.03 85.85
WiC 66.30 66.61 65.25| 60.97 64.29 69.18| 70.69 72.57 73.82
CB 82.14 8571 92.86| 80.36 75.00 94.62| 94.64 94.64  94.64
RTE 66.42 67.15 68.84| 61.01 61.73 78.62| 86.64 86.64  86.59
Avg. 70.24 71.33  73.51| 64.56 64.21 80.33| 83.00 84.17 85.63

Table 3: Fixed length PT Taple 4: Few-shot results on

v.s. adaptive length. T5-LM-Large.
T5-LM-Base| T5-LM-Large T5-LM-Large
Dataset | Fixed Adaptive| Fixed Adaptive Dataset | Fixed Adaptive Adaptive Adaptive  Adaptive
Length Length [Length Ins_Length Position Position Ins_vec Ins_vec_pos Pos_ins_vec
Boolq [62.35 67.28 [31.20 83.46 6024 60.18 6107 _ 60.64
MultiRC|57.41 57.34 [58.00 66.30 9 55.26 5452 5613 5679
WiC  [53.61 60.50 |69.30 71.47  53.20 55.33 5533
CB 78.57 80.36 [87.50 84.32 79 7857 7321 8036  87.50
RTE  |67.51 68.32(82.60 79.78 55.96 5443 5487 5740
Avg. 6389 66.76 |75.72 71.07 60.66 _59.05 61.55  63.53

optimized for each instance, we see slightly lower
results in most cases, which might be caused by
the increasing difficulty of optimization. We leave
the work of better optimization methods for future
work. Additional results are in Appendix G.1.

Few-Shot. We illustrate the few-shot results in
Table 4 on T5-Large. As we can see from all
datasets, our dynamic prompting consistently im-
proves the results given only 32-shot training exam-
ples, demonstrating the broad generalization ability
under the low-resource regime.

Multi-Task. To furthermore demonstrate that
multi-task tuning could benefit across tasks for
learning a better shared prompt pool, we also show
multi-task results in Table 6. Here we randomly
sample 10% or 30% samples from all five datasets
and report the average performance. The results
confirm that sharing a prompt pool across multiple
tasks brings universal benefits.

P-tuning V2. In the pursuit of pushing the bound-
aries of prompt tuning, (Liu et al., 2021) delved
deeper into the inner workings of language models
(LMs) by attaching a prompt to each transformer
layer, transcending the conventional practice of
simply affixing a soft prompt to the original in-
put sequence. Remarkably, their efforts yielded
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Figure 4: Performance comparison of PT-2 and PT-2
with adaptive position (ours) on SuperGLUE with dif-
ferent PLMs.

comparable results to fine-tuning, highlighting the
remarkable potential of prompt tuning. We thus
embarked on our investigation to explore the full
potential of dynamic prompting. We sought to as-
certain the extent to which our dynamic manipula-
tion of soft prompts, reaching deeper into the LM,
could enhance accuracy. To ensure a fair compar-
ison, we adopted the identical setup employed by
(Liu et al., 2021), employing the backbone models
BERT-Large(Devlin et al., 2018) and RoBERTa-
Large(Liu et al., 2019) on the SuperGlue datasets.
The results, as depicted in Figure 4, demonstrate the
efficacy of our adaptive prompt position approach.
Across most datasets, we observe performance im-
provements. Our technique achieves an impressive
absolute average gain of 1.74% on BERT-Large
and 1.34% on the RoBERTa-Large over P-tuning
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Table 5: Comparison between basic VPT model and
VPT with the adaptive position.

Dataset CUB | NABirds | Flowers | Dogs | Cars | Avg.
prompt length 100 50 100 100 | 100
VPT 85.42| 75.11 98.29 |90.42{54.60 | 80.77
VPT-Shallow| VPT+adap_pos 86.26| 7556 | 98.44 |91.27|57.02|81.71

86.31| 76.63 | 98.52 |91.39|58.13|82.20

VPT+adap_ins_pos | 39| 1150 | +023 |+0.97|+3.53|+143

prompt length 10 50 5 5 100
VPT 87.81| 81.43 | 98.91 |90.57|82.99|88.34
VPT-Deep VPT+adap_pos 88.06| 82.98 | 98.99 |91.27|83.26|88.91

88.15| 83.02 | 99.01 |91.32|83.4288.98

VPT+adap_ins_pos | 34| (150 | +0.10 |+0.75|+043 | +0.64

Table 6: Multi-task results comparing prompt tuning
(PT) and adap_ins_vec on T5-Large under few-shot
setting.

k=8
Methods |60 ot 30%-shot
PT 67.15 69.79
adap_ins_vec| 68.59 72.56

Table 7: Comparison of MaPLe with and without dy-
namic prompt position averaged over 11 datasets.

Method Base Acc. Novel Acc. (Basef-li-l\lillovel)
MaPLle 83.74 73.64 77.08

MaPLe+adap_pos  83.96 75.68 79.25
(Ours)

V2. Theoretically, as expounded upon in Sec. 3.1,
our technique enables soft prompts to encompass
the input, capturing additional semantic informa-
tion that traditional prefix or postfix prompt tuning
methods fail to capture. The effectiveness of our
adaptive position becomes increasingly apparent
as we manipulate prompts across more transformer
layers. More results are included in Appendix G.3.

Vision Prompt Tuning (VPT). In the realm of
adapting large pre-trained Transformers for down-
stream vision tasks, a remarkable piece of work
known as VPT (Jia et al., 2022a) has emerged. VPT
integrated additional parameters into the input se-
quence of each Transformer layer, simultaneously
learned alongside a linear head during the fine-
tuning process. Our methodology takes a step fur-
ther by embedding our approach within the model,
allowing for adaptive optimization of the prompt
position. When applying VPT in a deep setting,
we maintain the prompt position of the deep trans-
former layers consistent with that of the input layer.
The results, as depicted in Table 5, demonstrate
the performance gains achieved by intelligently op-
timizing the prompt position. The instance-aware
prompt position selection further improves accu-
racy. Remarkably, these benefits manifest across
both shallow and deep settings of VPT, underscor-
ing the robustness and efficacy of our approach.
More results are included in Appendix G.4.

Table 8: Study on the learned parameters on different
tasks.

T5-LM-Small T5-LM-Large
CB RTE Boolq WiC MultiRC|CB RTE Boolq WiC MultiRC
Learned position| 4 2 3 4 9 2 3 3 6 4

Methods

Vision-Language Model. The Vision-language (V-
L) model, such as the remarkable CLIP (Radford
et al., 2021), has garnered widespread acclaim for
its exceptional ability to align language and vi-
sion modalities. The pioneering work of MaPLe
(khattak et al., 2023) introduced a coupling func-
tion to effectively condition vision prompts based
on their language counterparts, bridging the gap
between the two modalities. Inspired by these ad-
vancements, we incorporate our adaptive prompt
position approach into the text input layer, lever-
aging the power of dynamic prompt manipulation.
We outline the detailed experimental settings in the
Appendix. The compelling results, as summarized
in Table 7, substantiate the potency of our approach.
Remarkably, by incorporating adaptive prompt po-
sition into MaPLe, we achieve an impressive ab-
solute average gain of 2.04% on novel classes and
2.17% on the harmonic mean, surpassing the state-
of-the-art method MaPLe (khattak et al., 2023).
This performance improvement serves as a com-
pelling testament to the effectiveness of our dy-
namic prompting methodology, firmly establishing
its efficacy in the realm of V-L models. More de-
tailed results are included in Appendix G.S5.

Case Study on the Learned Position. to evaluate
the efficacy of the learned positions and lengths
in our method across various tasks. The learned
parameters are applied universally across all input
instances within a given dataset. The findings in
Table 8 reveal that the optimal length or position is
uniquely influenced by the specific input task. Ad-
ditionally, the model size proves to be a significant
factor affecting the results. Consequently, there are
no universally applicable strategies for selecting
these parameters; each dataset needs to align with
the characteristics of the specific model employed.
In Appendix F, we also show a case study of learn-
ing input-specific information. These results sub-
stantiate the effectiveness of our proposed strategy.

6 Conclusion

In this work, we first derive a unified view of
prompt tuning and then present a novel dynamic
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prompting approach that can significantly improve
the performance of prompt tuning while adding
only a few additional parameters. The key con-
tributions of this work include exploring the ef-
fectiveness of the dynamic position, length, and
prompt representation in improving traditional
prompt tuning and systematically exploring dy-
namic prompting under the combination of differ-
ent dynamic methodologies in various scenarios.
Comprehensive experiments on a broad spectrum
of datasets validate that dynamic prompting con-
sistently achieves superior results across a diverse
range of tasks, including language understanding,
vision recognition, and vision-language tasks, with
varying model sizes. We also demonstrate that dy-
namic prompting is effective in multi-task and few-
shot settings. Overall, our work can further unleash
the power of prompt tuning across various modali-
ties to close the gap between fine-tuning.

Limitations

One potential limitation of our method is that it
inevitably increases the complexity, compared with
original prompt tuning. However, we argue that
our work focuses on exploring the ultimate power
of prompt tuning. And to make our work repro-
ducible, we also upload our codes together with
our submission.

Ethics Statement

We believe our work is conformant to the ACL
Code of Ethics. All models and datasets used in
our experiments are open-sourced. We did not see
any obvious ethical impact of this work.
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Appendix
A Broader Impacts and Limitations

Due to the extensive workload of experiments, we only test our methods for classification tasks from the
SuperGLUE benchmark. Additional text generation tasks could be exploited in future work. Also, our
conclusions are drawn from the encoder-decoder architecture such as TS5, BERT and RoBERTa models,
vision pre-trained model ViT-B and a pre-trained ViT-B/16 CLIP model. And it is worth investigating
whether dynamic prompting still holds for decoder-only GPT. Besides, our approach introduces addi-
tional parameters like anneal temperature or learning network, which could increase the difficulty of
optimization.

B Derivation of the Unified View of Prompt Tuning

For the new query o’ = [P; x; P»], the attention head module becomes:

Head = Attn ([Py; 25 P]WO, [Pyya; PJW [P 2 P)WY) (10)
/ K/T
= softmax <Q * > %4 (11D
Vd

omitting \/d for brevity

= [softmax(PyW?K'")V'; softmax(z W K'T)V'; softmax(PBWCK'T)V'] | (12)

where
softmax(P,W@ KTV’
Vi
= softmax (P1WQ[Kf; KT, K2T]) Vv (13)
Va
= A * softmax(Q1 K1 )Vi + Ay * softmax(Q1 KT )V + (1 — A\; — \2) * softmax(Q K1)V (14)
= A1 * Attn(Ql, Ky, Vl) + Ag * Attn(Ql, Ko, ‘/2) + (1 — A - /\2) * Attn(Ql,K7 V), (15)

where A1 and Ay are normalized weights:

A = > eap(Q1KY )i Ny = > eap(Q1K3 )i .
Yo ieap(@K] )i+ 3, exp(@QuKT): S s eap(QuK )i + 3, eap(QuKT);
softmax (WO KTV’
W
= softmax (eW@[KT; KT, KT]) |V (16)
Va
= By * softmax(QK{ )Vi + B * softmax(QKI)Va + (1 — By — fB2) * softmax(QKT)V  (17)
= [ * Attn(Q, K1, V1) + B2 x Attn(Q, K2, V2) + (1 — 1 — B2) x Attn(Q, K, V), (18)
where 1 and 5 are normalized weights:
8 = >, exp(QKT ) By = > exp(QKT ) .
Z?=1 2 emp(QKJ‘T)i + > exp(QKT); 7 Z?=1 > emp(QKJT)i + > exp(QKT);

8527



softmax(p, W@ KTV’

%1
= softmax (ngQ[KlT; KT K1) |V (19)
Va
= 71 * softmax(Qa K7 )V + 72 * softmax(QoKJ )Va + (1 — 41 — 42) * softmax(Q2 K1)V (20)
=7 x Altn(Q2, K1, V1) + 72 * Attn(Q2, K2, V2) + (1 — 11 — 72) * Atin(Q2, K, V), 21

where v, and - are normalized weights:

_ >, exp(Qa KT ) o = > exp(Q2K3 )i
Y1 i eap(Q2K] )i + 3, eap(Q2KT); S s eap(QeK] )i + 3, eap(Q2KT):

Finally, we can write them together:

71

Head = Attn(z', K', V')

= | A1 % Attn(Ql, K, ‘/1) + Ao * Attn(Ql, Ko, ‘/2) + (1 — A1 — )\2) * Attn(Ql,K, V);
—_— ——

prompt tuning postfix prompt tuning
b1 *x Atin(Q, K1, Vi) + 62 * Attn(Q, K2, V2) +(1 — 1 — B2) * Atin(Q, K, V);
————
prompt tuning postfix standard
y1 % Attn(Q2, K1, V1) +72 * Attn(Q2, K2, V2) +(1 — 41 — y2) * Attn(Q2, K, V)| . (22)
~—_——— ~—_— ~— —
postfix postfix postfix

C Dynamic Insertion Position with Gumbel-Softmax

We use the Gumbel-Max trick (Maddison et al., 2017) to dynamically decide insertion position for soft
prompts. Specifically, to decide dpos, we have (I + 1) positions to choose. Let {ay, - - -, } represent the
log probabilities {log(po),: - -, log(p;)} of different insertion positions. c is the output logit of the network
POSy. Thus, we can draw samples in the following way: we first draw i.i.d samples {go, - - -, g;} from a
Gumbel distribution, i.e., g = — log(—log(z)) ~ Gumbel, where z ~ Uniform(0, 1). Then we produce
the discrete sample by adding g to introduce stochasticity:

dpos = arg max[a; + g],i € {0,--- [} (23)
l
pi = exp (@i + g:)/7)/ (Y exp ((a; + g;) /7)), i € {0, -+, 1} (24)
i=0

The arg max operation is non-differentiable, but we can use the softmax as a continuously differentiable
approximation to it (Eq. (24)). 7 is the temperature to control the discreteness. Thus, we use the arg max
to make the discrete selection on the forward pass, while approximating it with softmax on the backward
pass, which is called the straight-through estimator (Jang et al., 2017b).

D Dynamic Length

The huggingface transformers ® implemented the attention mask mechanism by giving infinite minus
value to padded tokens so that the calculated attention score will reach zero.
T

*
Vi

Attention = softmax(

L M)V, (25)

®https://huggingface.co/
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where

0, mask=1
M = (26)
—oo0, mask=0.

It seems natural to just treat truncated prompts as padding tokens with mask = 0. However, when the
prompt length /; is dynamically updated in input instance x;, the logits returned by Gumbel-Softmax can
not be directly applied to the attention mask matrix M since M can not provide gradients. Therefore, we
adopt a surrogate strategy by

Pnew = [O * Pbefore§ Pafter]y (27)

where Pyefore € RU-l)xd gnd P, fter € R4 Tn this way, although the attention score after softmax is
#(?*h) rather than 0, the corresponding value in V' is 0. Such implementation is not optimal, but we
stick to it for simplicity.

E Experimental Settings

E.1 Implementation details

We find the initialization of prompts could have influential effects on the final performance. Initializing
from the vocabulary of LMs almost always gives better results. We thus follow the default setting in
OpenPrompt using the list of embeddings in front of the token vocabulary as the initialization of soft
prompt vectors. Setting warm-up steps to 500 yields consistent gains for the small, base, and large models.
However, for T5-XL, a warm-up step of 500 does not lead to convergence, and we reduce it to 10 steps.
Also, we only run limited experiments with T5-XL due to the computational resource constraint.

We empirically find the annealing temperature is very important for Gumbel-Softmax (Jang et al.,
2017a) to behave well. We follow (Jang et al., 2017b), and adjust the annealing temperature by

% z'terations)’ 0.5), 28)

T = max (T * exp(— ;
step

where initial 7 is set to 1.0 and the annealing rate v € {3e~",3¢~?,3e73} and the step is picked
from [0.1, 1, 10, 30, 100, 200, 600]. In practice, the Gumbel-Softmax simulates more closely to the true
categorical distribution when 7 is reaching 0.5.

Hardware. We use NVIDIA A40 48 GB for T5-XL and RTX 6000 24 GB for all other models.

E.2 Model hyperparameters for experiments on T5-series models

For all one-layer networks for learning instance-dependent dynamic position, length, or representation
information, we adopt a single linear layer followed by ReL.U activation. The input embedding dimension
dis 512,768, 1024, 2048 for T5-small, base, large, and XL, respectively. We illustrate the details of our
additional parameters in Table 9. The batch size is 32 and 16 for dynamic prompting and finetuning. All
inputs are truncated to a maximum of 480 tokens. For each method, we tune the learning temperature via
grid search in the range {107,107, 10715, 1072,10725, 1073} to obtain the best performances. k is
set to 8 for all settings. In all settings except for comparison on varying length [, we set [=20.

Table 9: Tuned parameters in our Dynamic Prompting methods. PTs are soft prompts and O is the learning
network. d is the input vocabulary embedding size of LMs. [ is the prompt length. & is the number of prompts in the
prompt pool.

Number of parameters
Methods | Fixed  Adaptive Adaptive Adaptive
Position pos ins_pos ins_vec
PTs I*d I*d Ixd (I4+1)xdxk
OnN 0 [+1 d*(l+1) dxk
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Table 10: Parameter setting for P-tuning V2 related evaluation.

Dataset BERT-Large RoBERTa-Large
batch_size Ir dropout | prompt length |#epoch | batch_size Ir dropout | prompt length |#epoch

BoolQ 32 5.00E-03| 0.1 40 100 16 7.00E-03| 0.1 8 100
MultiRC (F1a) 16 5.00E-03| 0.1 40 100 16 7.00E-03| 0.1 8 100
WiC 16 1.00E-04| 0.1 20 80 32 1.00E-02| 0.1 8 50
CB 32 5.00E-03| 0.1 40 100 16 7.00E-03| 0.1 8 100
RTE 16 1.00E-02| 0.1 20 60 32 5.00E-03| 0.1 128 100
COPA 16 1.00E-02| 0.1 16 80 8 9.00E-03| 0.1 8 120
WSC 16 5.00E-03| 0.1 20 80 16 1.00E-02| 0.1 8 10
ReCoRD (F1) 20 5.00E-03| 0.1 40 100 16 7.00E-03| 0.1 8 100

E.3 Model hyperparameters for experiments on P-tuning V2(Liu et al., 2021)

Since we intend to test if our approach can lead to accuracy gains when our dynamic insertion position, as
discussed in Sec. 3.1, is embedded in different prompt learning frameworks, we use the default setting in
the GitHub repo’ of P-tuning V2(Liu et al., 2021). In the repo, the scripts for datasets cb, multirc, and
record are missing. The detailed setting is summarized in Table 10.

E.4 Model hyperparameters for experiments on VPT(Jia et al., 2022a)

For all datasets, we use the default setting in the repo®. The pre-trained backbone we used is ViT-B
(“sup_vitb16_imagenet21k”). SGD with momentum 0.9, base learning rate 0.25 and weight_decay 0.001
is used as the optimizer. The batch size is set to 32. The random seed is 0.

E.5 Model hyperparameters for experiments on MaPLe(khattak et al., 2023)

We follow the setting in (khattak et al., 2023) repo’ and use a few-shot training strategy in all experiments
at 16 shots which are randomly sampled for each class. For each dataset, we run three times using seed
values 1, 2, and 3, and report the average accuracy. We apply prompt tuning on a pretrained ViT-B/16
CLIP model. We set prompt depth J to 9 and the language and vision prompt lengths to 4. All models are
trained for 12 epochs with a batch size of 4 and a learning rate of 0.0035 via SGD optimizer. We initialize
the language prompts of the first layer with the pretrained CLIP word embeddings of the template category
“for sure This is a photo of <category>". This is different from the original setting in MaPLe which use
only prompt length 2 with initialization using “a photo of a <category>", as we need to leave room for
our algorithm to select a good insertion position. The setting for the MaPLe baseline also follows the
same setting for a fair comparison. Since the task depends on the calculation of similarity between text
and image embeddings, and there is no instance-dependent information, we only validate the adap_pos
setting.

E.6 Details of datasets

Following previous work (Ding et al., 2022), we evaluate our approach on five SuperGlue (Wang et al.,
2019) datasets to test the natural language understanding ability, namely BoolQ (Clark et al., 2019),
MultiRC (Khashabi et al., 2018), CB (De Marneffe et al., 2019), RTE (Giampiccolo et al., 2007), and
WiC (Pilehvar and Camacho-Collados, 2019). We use the default train/dev/test split and report the default
metric on the validation set since the test set is not directly available. For comparison with P-tuning V2, we
also use SuperGlue datasets. For the vision prompt tuning setting, we follow (Jia et al., 2022a) and use the
well-known FGVC benchmark datasets consisting of 5 benchmarked Fine-Grained Visual Classification
tasks including CUB-200-2011, NABirds, Oxford Flowers, Stanford Dogs, and Stanford Cars. For the
vision-language setting, we follow MaPLe (khattak et al., 2023) and use 11 datasets including Caltech101,
OxfordPets, StanfordCars, Flowers102, Food101, FGVCAircraft, SUN397, UCF101, DTD, EuroSAT,
and ImageNet-R.

"https://github.com/THUDM/P-tuning-v2
8https://github.com/KMnP/vpt
*https://github.com/muzairkhattak/multimodal-prompt-learning
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Figure 5: Comparison of learned best position on 5 datasets under 4 random seeds.

Table 11: Ablation study on the effects of sentence representation.

T5-LM-Small | T5-LM-Large
CB RTE CB RTE

T5-LMs 83.93 66.79 | 89.29 85.71

Vocabulary | 83.39 66.53 | 88.91 85.29

Methods

F Case and Ablation Study

In this section, we conduct a case study to explore how the learned position differs from each other and an
ablation study to investigate the influence of original prompt length and instance representation.

Adaptive Position. We first look at how the learned dynamic position differs from each other across five
datasets. We run three experiments on T5-small and record the final optimal position on each task, where
the initial prompt length is fixed at 20. Figure 5 shows that the most suitable position varies across tasks
and individual runs. This suggests that the optimal position depends on the specific tasks and prompt
representations. There is no one-for-all solution.

Influence of Input Representation. Since our instance-dependent dynamic prompting requires generating
the sentence representation, where we run a forward of the LMs to get LM (X). In IDPG (Wu et al.,
2022a), the authors use the Glove (Pennington et al., 2014) embedding as the sentence representation and
obtain close prompt tuning performance. And they also suggest caching for applications in downstream
tasks. But we believe those methods add additional complexity for deployment. To overcome the drawback
of feeding one instance twice into the LMs, we try an alternative method: use the initial vocabulary
representation from T3 of the input sentence as the input for the learning networks to generate dynamically
learned prompts. We perform adap_ins_pos experiments on RTE and CB datasets in T5-small and
T5-large. The results are shown in Table 11. As we can see, the performance is almost maintained for
all cases. Our operation does not introduce additional models or complexity, thus suitable for various
downstream tasks.

Influence of Prompt Length. We conduct an ablation study to investigate whether our dynamic position
approach still works when the total prompt length varies. As shown in Table 12 and Appendix G.2, we first
perform a greedy search over L = [2,4, 8, 16, 20, 32] to find the optimal prompt length. Then based on the
searched best length, we run different dynamic position experiments. The results show that our adaptive
position consistently increases the performance when L is set to 32. Besides, combining a prompt pool
(adaptive vector) can further improve the results. In particular, when the L is set to only 4 for T5-Large,
our adaptive position can still maintain superiority on most datasets. These results show that our dynamic
position can universally improve dynamic prompting for varying prompt lengths, even if L is extremely
small. Recall the unified view in Sec. 3.1, and these results validate the hypothesis that prepended prompts
are not enough, and a slight change leads to significant improvements.

Case Study of Learning Input-specific Information. We also conduct a case study on two different
examples from MultiRC with adapt_ins_pos_vec, using T5-large-LM. We set the number of prompt
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pools to be 4. We illustrate the learned scores of each prompt in the prompt pool by P_i score, i €
{1,2,3,4}. We also report the learned position for each prompt. For those two different inputs, as shown
in Figure 6, we can clearly see that the model learnt input-specific information.

Prompt pool: [ P2 | (I
Dynamic Position + Dynamic Vector: P11 oo P12 Dynamic Position + Dynamic Vector: Pl | gp P2

P12 Illecor=lto  Resitcn B P11 P12 1 score: 034, Position: §
_ - P2 score: 0.07, Position: 5 - _ 2 score: 0.15, Position: 3
_ - P3 score: 0.14, Position: 9 - - 3 score: 0.25, Position: 5
P41 | ‘ P4 score: 0.26, Position: 4

P42 P4 score: 0.22, Position: 8 P41 P42 |

Figure 6: A case study on two different examples from MultiRC with adaptive_instance_position_vector, using
T5-large-LM.

G Additional Results

G.1 Additional comparison of adaptive vector

Here we show the additional results for T5-Small in Figure 7, and T5-Base in Figure 8. We observe a
similar trend as T5-Large in Sec. 5, but T5-Base demonstrates worse results.

#777 PT  ##H adap_pos &% adap_ins_pos === adap_ins_vec_pos XN\N adap_pos_ins.vec %% PT  HEH adap_pos &% adap_ins_pos === adap_ins_vec_pos N\N adap_pos_ins_vec
Boolq MultiRC WiC CB RTE Boolq MultiRC wiC RTE
0.85 0.85 085 0.85 y oss
N 0.85 0.85 0.85 0.85
N
0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
075 0.75 075 0.75
50.75 5-0.75 50.75 50.75 5-0.75 5 a a 5 5
© © © © © © © © © ©
e o e e o I e g e e
=1 =1 > =1 =1 50.70 5 0.70 5 0.70 =1 5 0.70
I~ v I~ I~ o (v} [v] % o =
O L o O U O o o O O
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0.70 0.70 0.70 0.70 0.70
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N
N
0.65 S 0.65 0.65 0.60 0.60 0.60 0.60
N
N
% 055 055 055 0.55
0.6042 N 0.60 N 060
Figure 7: Results on SuperGLUE with T5-Small. Figure 8: Results on SuperGLUE with T5-Base.

G.2 Additional influence of prompt length

In this section, we present the comprehensive results obtained from T5-Small (Table 12), T5-Base
(Table 13), and T5-Large (Table 14) models, respectively. To ensure a thorough analysis, we conducted
experiments using different prompt lengths, namely 2, 4, 8, 16, 20, and 32. Our aim was to identify the
optimal prompt length for each model size across the five SuperGlue datasets and validate the effectiveness
of our technique over the best run of baseline prompt tuning. For T5-Small, we discovered that a prompt
length of 32 consistently yielded the highest average accuracy across the SuperGlue datasets. Consequently,
for this particular model size, we proceeded to employ our approaches, adapting the prompt position
and representation in an adaptive manner. The prompt lengths of 8 and 4 were adopted for T5-Base and
T5-Large models respectively.

An in-depth analysis of the results reveals a remarkable trend across all TS models. Our dynamic
prompting techniques consistently outperformed the best run achieved by traditional prompt tuning with
a fixed length. This compelling observation unequivocally illustrates the effectiveness and prowess of
our approach. Furthermore, as the model size increased from T5-Small to T5-Base and T5-Large, we
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Table 12: The left column shows the results of prompt tuning under different lengths, and L=32 performs the best.
The right column shows different dynamic position strategies by using the L=32.

T5-LM-Small T5-LM-Small

Dataset | Fixed Fixed Fixed Fixed Fixed Fixed | Adaptive Adaptive Adaptive Adaptive
L=2 L=4 L=8 L=16 L=20 L=32 | Position Ins_pos Ins_vec_pos Pos_ins_vec
Boolq 62.20 62.96 65.23 67.25 67.31 67.61| 67.00 68.35 67.83 67.95

MultiRC | 66.17 67.57 68.42 68.30 68.69 68.67| 68.83 68.38 69.27 69.41

WiC 61.29 61.76 63.95 63.48 62.69 64.11| 65.20 66.14 65.83 68.85

CB 75.00 83.93 82.14 83.93 83.93 87.50| 91.07 85.71 91.07 89.29

RTE 61.37 64.98 66.79 68.95 65.34 68.23| 67.15 67.87 66.79 66.43

Avg. 65.21 68.24 69.31 70.38 69.59 71.22| 71.85 71.29 72.16 72.39

Table 13: The left column shows the results of prompt tuning under different lengths, and L=8 performs the best.
The right column shows different dynamic position strategies by using the L=8.

T5-LM-Base T5-LM-Base

Dataset | Fixed Fixed Fixed Fixed Fixed Fixed | Adaptive  Adaptive Adaptive Adaptive
L=2 L=4 L=8 L=16 L=20 L=32 | Position Ins_position Ins_vec_pos Pos_ins_vec
Boolq 62.32 65.02 62.20 70.18 62.35 62.26| 67.95 68.04 68.41 66.18

MultiRC | 58.07 57.49 56.93 57.88 57.43 57.32| 69.25 68.13 65.08 69.35

WiC 61.12 60.50 60.19 63.64 53.61 52.66| 65.20 66.14 65.36 63.32

CB 85.71 78.57 94.64 80.36 78.57 82.14| 87.50 87.50 92.86 89.29

RTE 59.57 57.04 68.23 67.15 67.51 55.60| 68.59 68.59 60.29 67.51

Avg. 65.36 63.72 68.44 67.84 63.89 62.00| 71.70 71.68 70.40 71.13

Table 14: The left column shows the results of prompt tuning under different lengths, and L = 4 performs the best.
The right column shows different dynamic position strategies by using the L = 4.

TS-LM-Large TS5-LM-Large

Dataset | Fixed Fixed Fixed Fixed Fixed Fixed | Adaptive Adaptive Adaptive Adaptive
L=2 L=4 L=8 L=16 L=20 L=32 | Position Ins_position Ins_vec_pos Pos_ins_vec
Boolq 79.08 81.87 82.57 75.11 81.20 84.80| 81.83 80.15 81.50 81.87
MultiRC | 67.66 76.13 75.64 79.19 58.00 68.52| 79.08 70.15 75.39 73.64
WiC 57.84 67.87 65.05 70.22 69.30 69.75| 67.87 67.40 71.47 69.75
CB 96.43 89.29 80.36 82.14 87.50 82.14| 87.50 87.50 98.21 96.43
RTE 74.73 77.62 82.31 84.48 82.60 82.67| 80.86 77.26 84.12 81.23
Avg. 75.15 78.55 77.18 78.23 75.72 T77.58| 79.43 76.49 82.14 80.58

observed a corresponding increase in the accuracy gain facilitated by our dynamic prompting techniques.
This empirical evidence reaffirms the potency of our methodology as model complexity grows.

The findings presented here provide substantial evidence of the superiority of our dynamic prompting
techniques over traditional fixed-length prompt tuning. This knowledge empowers researchers and prac-
titioners alike to leverage the full potential of dynamic prompts, unlocking new avenues for improved
performance in various natural language processing tasks.

G.3 Additional results on P-tuning V2

To ensure a fair comparison, we adopted the identical setup employed by Tang et al. (Liu et al., 2021),
employing the backbone models BERT-Large(Devlin et al., 2018) and RoBERTa-Large(Liu et al., 2019)
on the SuperGlue datasets. The detailed results of the two models on the SuperGlue dataset are depicted
in Table 15. The obtained results serve as a testament to the efficacy of our adaptive insertion position
approach. Remarkably, significant performance improvements are observed across the majority of datasets.
The underlying theoretical foundation, as elaborated in Sec. 3.1, sheds light on the essence of our
technique. By enabling soft prompts to encompass the input, we are able to capture supplementary
semantic information that conventional prefix or postfix prompt tuning methods fail to capture.

As we delve deeper into the manipulation of prompts across multiple transformer layers, the effec-
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Table 15: Comparison of PT-2 with Adaptive Position and original PT-2 on SuperGLUE datasets.

BERT-Large RoBERTa-Large

PT-2 | PT-2+adap_pos (Ours) | PT-2 | PT-2+adap_pos (Ours)
BoolQ 73.46 74.62 84.07 84.46
MultiRC (F1a) | 66.05 66.05 70.72 71.76
WiC 69.59 74.61 70.69 72.73
CB 83.93 83.93 94.64 96.43
RTE 76.90 76.90 86.64 88.81
COPA 74.00 76.00 86.00 88.00
WSC 63.46 69.23 63.46 63.46
ReCoRD(F1) | 66.02 66.05 70.72 72.01
Avg. 71.68 73.42 78.37 79.71
+1.74 +1.34

tiveness of our dynamic insertion position approach becomes increasingly apparent. This observation
highlights the inherent power and adaptability of our methodology, as it successfully exploits the in-
tricacies and hierarchies within the transformer architecture to enhance performance. By dynamically
optimizing the insertion position of prompts, we can tap into additional layers of contextual understanding,
enabling our approach to surpass traditional methods.

Overall, the results demonstrate that our dynamic insertion position approach is a promising avenue
for enhancing the performance of downstream tasks. It offers a novel perspective on prompt adaptation,
leveraging the strengths of pre-trained transformers to capture a more comprehensive representation of the
input data.

G.4 Additional results on vision prompt tuning (VPT)

In the realm of adapting large pre-trained Transformers for downstream vision tasks, a remarkable piece
of work known as Vision Prompt Tuning (VPT) has emerged. We thus further include our methods in the
VPT framework. We follow the same setting as in (Jia et al., 2022a) and optimize insertion position on
both shallow and deep settings. The results are depicted in Figure 9, which demonstrates the performance
gains achieved by dynamically optimizing the insertion position for prompts. Remarkably, these benefits
manifest across both shallow and deep settings of VPT, underscoring the robustness and efficacy of our
approach.

NABirds.
NABirds

Oxford Flopfers

Stanford Degs

- VPT(shallow) e VPT(deep)
VPT(shallow)-+adap_pos (Ours) Stanford Cars VPT(deep)+adap_pos (Ours) Stanford Cars
—e— VPT(shallow)+adap_ins_pos (Ours) o VPT(deep)+adap_ins_pos (Ours)

(a) VPT-shallow (b) VPT-deep

Figure 9: Comparison of basic VPT model and VPT with adaptive position (ours) on different datasets.

G.5 Additional results on vision language modeling.

Vision-language (V-L) models, such as the remarkable CLIP, have drawn significant attention recently.
As the pioneering work of MaPLe (khattak et al., 2023) introduced a coupling function to effectively
condition vision prompts based on their language counterparts, it bridges the gap between the vision and
text modalities. Here, we also incorporate our adaptive insertion position approach into the text input layer,
leveraging the power of dynamic prompt manipulation. We summarize our results in detail in Table 16 and
Table 17, which substantiates the potency of our approach. By incorporating adaptive insertion position
into MaPLe, we achieve an impressive absolute average gain of 2.04% on novel classes’ average accuracy
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Table 16: Comparison of vision language model prompt tuning results between basic MaPLe model and MaPLe

with adaptive position (ours) average over 11 datasets.

MaPLe MaPLe + adap_pos (Ours)
Dataset Base Novel HM Base Novel HM
Acc. | Macro_F1 | Acc. | Macro_F1 | (base+novel Acc.) | Acc. | Macro_F1 | Acc. | Macro_F1 | (base+novel Acc.)

stanford_cars |76.43| 75.70 |71.70| 69.97 73.99 7650 75.87 [72.83| 7137 74.62
caltech101 98.37| 96.77 |93.57| 93.43 95.91 98.40| 96.83 [94.00| 93.63 96.15
oxford_pets |9523| 9523 [97.17| 97.17 96.19 95.47| 9547 [97.43| 97.43 96.44
oxford_flowers | 97.53 | 97.37 |71.00| 65.50 82.17 97.07| 9690 |7253| 6747 83.02
food-101 89.87| 89.83 ]90.50| 90.50 90.18 90.03 90.03 |90.83| 90.80 90.43
fgve-aircraft | 39.83 37.53 [2447| 21.13 21.54 40.17| 37.70 |33.40| 28.70 36.34
SUN397 81.50 | 81.27 |[76.83| 76.03 79.09 81.57| 81.37 |[77.13| 76.30 79.29
DTD 7997 79.77 |52.10] 50.87 62.94 81.07| 81.00 |[5543| 53.53 65.71
eurosat 91.40| 9140 [69.27| 65.33 78.76 9227 9227 [73.50] 71.30 81.63
UCF101 8420 83.17 |[7837| 76.20 81.12 84.27| 8320 |[78.67| 76.53 81.35
imagenet-r | 86.80 | 85.03 85.10| 85.03 85.94 86.73 85.03 86.73 85.03 86.73
Avg. 83.74| 83.01 73.64| 7192 77.08 83.96| 8324 |75.68| 73.83 79.25

Table 17: Comparison with MaPLe on base-to-novel generalization. The adaptive position of the prompt on MaPLe
will improve generalization performance over existing methods on 11 recognition datasets. Absolute gains over
basic MaPLe are indicated in blue.

(a) stanford_cars

(b) caltech101

HM HM
Method Base Acc. Novel Acc. (Base+Novel) Method Base Acc. Novel Acc. (Base+Novel)
MaPLe 76.43 71.70 73.97 MaPLe 98.37 93.57 95.91
MaPLe+adap_pos  76.50 72.33 74.61 MaPLe+adap_pos  98.40 94.00 96.15
(c) oxford_pets (d) oxford_flowers
HM HM
Method Base Acc. Novel Acc. (Base+Novel) Method Base Acc. Novel Acc. (Base+Novel)
MaPLe 95.23 97.17 96.19 MaPLe 97.53 71.00 82.17
MaPLe+adap_pos ~ 95.46 97.43 96.44 MaPLe+adap_pos  97.07 72.53 83.02
(e) food-101 (f) fgvc_aircraft
HM HM
Method Base Acc. Novel Acc. (Base-+Novel) Method Base Acc. Novel Acc. (Base-+Novel)
MaPLe 89.87 90.50 90.18 MaPLe 39.83 24.47 21.54
MaPLe+adap_pos ~ 90.03 90.83 90.43 MaPLe+adap_pos  40.17 33.40 36.34
(g) SUN397 (h) DTD
HM HM
Method Base Acc. Novel Acc. (Base+Novel) Method Base Acc. Novel Acc. (Base+Novel)
MaPLe 81.50 76.83 79.09 MaPLe 79.97 52.10 62.94
MaPLe+adap_pos ~ 81.57 77.13 79.29 MaPLe+adap_pos  81.07 55.43 65.71
(i) eurosat (j) UCF101
] HM N HM
Method Base Acc. Novel Acc. (Base+Novel) Method Base Acc. Novel Acc. (Base+Novel)
MaPLe 91.40 69.27 78.76 MaPLe 84.20 78.37 81.12
MaPLe+adap_pos ~ 92.27 73.50 81.63 MaPLe+adap_pos  84.27 78.67 81.35
(k) imagenet-r
HM
Method Base Acc. Novel Acc. (Base+Novel)
MaPLe 86.80 85.10 85.94
MaPLe+adap_pos  86.73 86.73 86.73
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Figure 10: Comparison of MaPLe with dynamic prompt position and original MaPLe average over 11 datasets on
the vision-language pretrained model prompt tuning for novel class generalization task. MaPLe with our adaptive
position surpasses the original MaPLe on 11 diverse image recognition datasets for novel class generalization tasks.

and 2.17% on the harmonic mean (HM) averaged over 3 runs (seeds) of both base and novel classes
respectively. This substantial enhancement in performance stands as a compelling testament, providing
evidence of the effectiveness and potency of our dynamic prompting methodology. It firmly establishes our
approach as a powerful ingredient in the realm of Vision-Language (V-L) models, significantly elevating
their capabilities and pushing the boundaries of what can be achieved.

G.6 Parameter Sensitivity Analysis

Acc. varying k (T5-Small)

__________ . —e— boolq

,,,,,,,,,,,, multirc
. —¥- wic

0.80 “. -4 cb

0.75 1

Acc.

0.70 9
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Figure 11: Parameter Sensitivity of k.

We also analyzed the hyperparameters of our approach in this section. Basically, our approach only
has one hyper-parameter, i.e., k for adap_pos_ins_vec and adap_ins_pos_vec. Different choices of the
number of mixture soft-prompts do not significantly impact the model performance. Using T5-Small as
an example, we present the accuracy with respect to & in Figure 11. The figure shows that our algorithm is
not very sensitive to hyperparameter k. In our setting, we thus empirically set k£ = 8 for all experiments.

G.7 Different Optimizers and Learning Rates

We adopt the default setting on learning rate (Ir) and optimizer in openprompt, that is Adafactor with Ir
0.3 for SuperGlue experiments. For PV2, VPT and MaPLe experiments, we follow their original settings
for fair comparison. As an example of the sensitivity of learning rate and optimizer, we use the T5-Large
on Boolq as an example, the results are shown in Table 18 and Table 19.

G.8 Standard Deviation

All the reported results in the paper, including both baseline models and our approaches, represent the
average accuracy over 20 individual runs. In Table 1 and Table 5, to ensure reproducibility, we adhered to
the default settings of openprompt including using a fixed random seed of 144 and initializing prompts
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Ir 0.05 0.1 0.2 0.3
adap pos 82.19 | 83.21 | 84.72 | 84.6
adap Ins_Length | 82.65 | 83.59 | 84.12 | 83.46

Table 18: Adafactor.

Ir 0.05 0.1 0.2 0.3
adap pos 82.89 | 83.98 | 84.12 | 84.52
adap Ins_Length | 82.12 | 82.92 | 83.01 | 83.11

Table 19: AdamW.

with the embeddings of the top indexed tokens in the vocabulary. The Standard Deviation (SD) scores are
very small as shown in Table 20 and 21.

T5-Small T5-Base T5-Large T5-XL
Fixed Pos Adap Pos Adap Ins_Pos | Fixed Pos Adap Pos Adap Ins_Pos | Fixed Pos Adap Pos Adap Ins_Pos | Fixed Pos Adap Pos Adap Ins_Pos
Boolq 0.03 0.02 0.04 0.05 0.12 0.15 0.06 0.08 0.11 0.02 0.01 0.04
MultiRC 0.01 0.02 0.03 0.06 0.11 0.13 0.04 0.07 0.08 0.03 0.02 0.03
WiC 0.03 0.04 0.05 0.06 0.09 0.11 0.03 0.08 0.08 0.02 0.04 0.03
CB 0.01 0.01 0.01 0.08 0.14 0.15 0.06 0.06 0.09 0.03 0.04 0.05
RTE 0.02 0.02 0.03 0.04 0.06 0.09 0.05 0.06 0.07 0.01 0.02 0.02

Table 20: Standard Deviation (SD) Score of Table 1.

Data CUB1 NABirds Flowers Dogs Cars
length 100 50 100 100 100
VPT 0.02 0.02 0.01 0.01 0.02

VPTShallow | \priadap pos | 0.04  0.02 001 0.02 0.04

VPT+adap_ins_pos | 0.05 0.06 0.02  0.03 0.07
length 10 50 5 5 100

VPT 0.01 0.03 0.01  0.01 0.01
VPT-+adap_pos 0.02 0.04 0.01  0.02 0.01
VPT+adap_ins_pos | 0.03 0.04 0.02 0.02 0.02

VPT-Deep

Table 21: Standard Deviation (SD) Score of Table 5.

G.9 Comparison to Adaptor Approaches

Below we demonstrate the comparison with (Houlsby et al., 2019; Wu et al., 2022a) on three datasets
from SuperGLUE. We only use T5-base as a testbed and follow the setting in (Wu et al., 2022a) for
implementations. As we can see from Table 22, ours achieve substantial improvements over (Wu et al.,
2022a). Besides, although the Adapter(Houlsby et al., 2019) outperforms ours, it requires million-level
parameters to be tuned, compared with only several thousand parameters in prompt tuning. So overall, our
novel design shows obvious advantages and can potentially be combined with those methods for further
improvements.

Method MultiRC | WiC | CB | Avg.
Adapter(Houlsby et al., 2019) | 75.9 67.1 | 85.7 | 76.2
IDPG(Wu et al., 2022a) 70.5 644 | 849 | 73.2
Ours 71.1 649 | 87.5 | 74.5

Table 22: Comparison to Adaptor Approaches.

G.10 Comparison to Grid-search and Hyper-parameter Optimization Approaches

Our approach is a holistic framework rooted in theoretical analysis. Specifically, the instance-aware
insertion position and length selection cannot be considered traditional hyperparameters suitable for
Bayesian optimization or grid search. Each instance optimizes its unique insertion position, making
it unsuitable as a hyperparameter. Still, We would like to elaborate on some comparison results with
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Bayesian optimization and grid search approaches treating the insertion position as a hyperparameter
in this section. As an example, we only conduct experiment with T5-Base. Similar observations can
be found in other backbone models. For the traditional grid search, combined with our unique position
selection idea, we keep the length to 20 and adjust the position to be 1, 4, 8, 12, 16, and 19. For Bayesian
optimization, we use Bayesian with Gaussian Process. The comparison results are shown in Table 23.
As evident from the table, our adoption of the Gumbel-softmax approach has demonstrated superior
performance compared to both grid search and Bayesian optimization. However, it is crucial to reiterate
that our primary contribution lies in validating the efficacy of insertion position in various scenarios,
including task-dependent and instance-dependent situations. We aim to showcase the effectiveness of
dynamically manipulating soft prompts, both theoretically and empirically. In essence, we propose a
comprehensive prompt tuning framework. Besides, when the prompt length is very large such as 50 or
100 (like that in VPT experiments), the traditional optimization methods that treat insertion position as an
additional hyper-parameter require significantly more time and resources. On the contrary, our adopted
Gumbel-softmax does not have such a limit.

Table 23: Comparison to Grid-Search and Hyper-parameter Optimization Approaches (T5-Base).

Dataset | baseline(fixed position) | grid search | Bayesian | Ours(adapt_pos)
Boolq 62.35 64.79 68.21 69.88
MultiRC 57.42 66.87 65.74 70.19
WiC 53.61 61.29 63.96 64.42
CB 78.57 85.20 86.02 87.50
RTE 67.51 68.58 68.61 70.75

G.11 Running Time Comparison

We also validate the computational time of the proposed approaches. As illustrated in Table 9 in the
appendix, the number of additional parameters is very small. For example, adap_pos only introduces [
(typically < 20) new parameters compared with the vallina prompt tuning. Therefore, the computational
costs are very similar to vanilla prompt tuning. Taking the experiments on Maple for example, we report the
running time for training and testing in Table 24 (Quadro RTX 6000 with 24576MiB, 1 GPU. #Epoch=12).

Table 24: Running Time (Seconds) Comparison with MaPLe and MaPLe with Adaptive Position.

MaPLe MaPLe+adap_pos
train test train test
caltech101 | 89.23 | 24.45 | 93.11 25.32

food101 214.34 | 79.47 | 220.65 82.12
ucf101 106.54 | 31.11 | 113.29 33.18
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