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Abstract

Spoken language understanding research to
date has generally carried a heavy text perspec-
tive. Most datasets are derived from text, which
is then subsequently synthesized into speech,
and most models typically rely on automatic
transcriptions of speech. This is to the detri-
ment of prosody—additional information carried
by the speech signal beyond the phonetics of
the words themselves and difficult to recover
from text alone. In this work, we investigate the
role of prosody in Spoken Question Answering.
By isolating prosodic and lexical information
on the SLUE-SQA-5 dataset, which consists
of natural speech, we demonstrate that models
trained on prosodic information alone can per-
form reasonably well by utilizing prosodic cues.
However, we find that when lexical information
is available, models tend to predominantly rely
on it. Our findings suggest that while prosodic
cues provide valuable supplementary informa-
tion, more effective integration methods are
required to ensure prosody contributes more
significantly alongside lexical features.

1 Introduction

Prosody, which is characterized by elements of
speech beyond orthographic words, such as pitch,
stress and rhythm, plays a critical role in both
speech production and perception. It has been
shown to impact how people perceive speech, with
difficulties often arising when the natural variabil-
ity in prosodic structure is limited, as is the case
with synthetic speech (Winters and Pisoni, 2004;
Wester et al., 2016). In human listening compre-
hension, prosodic cues are essential in guiding
listeners through the process of interpreting spo-
ken language (Buck, 2001; Keskin et al., 2019).
The incorrectly-stressed elements in speech can
also cause listeners to make incorrect inferences
(Field, 2005). Motivated by these linguistic find-
ings, researchers have explored how prosody can be
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Figure 1: Illustration of the SQA format

leveraged in speech-related tasks computationally.
One of the primary tasks in this area is Spoken
Language Understanding (SLU), which focuses
on extracting meaningful information from spoken
language input. Unlike Natural Language Under-
standing (NLU), which primarily deals with text-
based information, SLU incorporates the added
complexity of processing signal made of prosodic
features such as intonation, stress, and pauses. In
this work, we use the term /exical information to
refer to information that is also present in the text
in its orthographic form. That is, info that encom-
passes phonetic information from the speech signal.
Therefore, in our work, we categorize anything that
is not lexical as prosodic information.

Recent advances in NLU research have signifi-
cantly impacted SLU through the use of a cascade
approach. This approach consists of two key com-
ponents: an Automatic Speech Recognition (ASR)
model that transcribes speech into text, followed
by an NLU model that is fine-tuned for specific
downstream tasks. Spoken Question Answering
(SQA) is one of the challenging SLU tasks, and
takes the form of listening comprehension. In SQA,
the input consists of a spoken passage accompanied
by a question about that passage, and the model is
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required to provide the correct answer. This answer
can take the form of timestamps in the passage, as
used in this paper and previous works (Lee et al.,
2018; Lin et al., 2022) , or it can be a textual output
(Shon et al., 2024). Figure 1 illustrates the typical
input-output structure of an SQA task. The evolu-
tion of SQA research has gradually shifted from
synthetic speech datasets to those based on natu-
ral speech. In early studies, researchers utilized
Text-To-Speech (TTS) systems to convert existing
Textual Question Answering (TQA) datasets into
large-scale SQA corpora (Lee et al., 2018; Lin et al.,
2022; Unlii Menevse et al., 2022). However, since
SQA means prosodic information is available in
the input, the prosodic characteristics of synthetic
speech may not accurately represent those found
in natural speech (Wester et al., 2016; Clark et al.,
2019; Chan and Kuang, 2024). This has led to
concerns about the effectiveness of using synthetic
speech for tasks where prosody plays a crucial role.
To address these limitations, recent efforts have
focused on integrating more natural speech into
SQA datasets. Some studies have developed small
test sets read by human speakers (Lin et al., 2022),
while others have explored hybrid datasets where
the questions are recorded by humans, but the pas-
sages are synthetically generated (Wu et al., 2024).
Additionally, there has been work on creating train-
ing sets by sourcing spoken documents relevant to
each question from external natural speech corpora
(Shon et al., 2023).

Given the availability of the natural SQA train-
ing datasets, we aim to explore whether models
can utilize prosody when comprehending speech,
as humans do. The cascade approach, however, is
not well-suited for this task, as prosodic informa-
tion is typically lost after the transcription stage,
and recovering prosody from text has been shown
to be difficult (Talman et al., 2019). Although
some research has attempted to explicitly incor-
porate word-level prosodic features into NLU mod-
els (Tran et al., 2018, 2019), the errors from ASR
and alignments tend to propagate, resulting in ill-
formed inputs and significantly impacting perfor-
mance. Recent developments, particularly in Self-
Supervised Learning (SSL) representations, have
enabled researchers to bypass explicit transcription
through end-to-end models (Chuang et al., 2020)
or by using discrete units as pseudo-text (Lin et al.,
2022), which latter is the framework adopted in
this paper.

In this work we are motivated to gain a compre-

hensive understanding of how prosodic informa-
tion, distinct from the lexical information used in
NLU tasks, contributes to the SQA task. Specifi-
cally, two key research questions are investigated:
1) Is prosodic information sufficient for SQA tasks?
as intonation, pitch, and pauses, signal important
structural and emphatic aspects of speech, and 2)
Do SQA models utilize prosodic information when
lexical information is also present?

To address these questions, we carefully de-
sign two experimental conditions of our dataset:
one that approximates prosodic information only,
and another that approximates lexical information
only. Directly disentangling prosodic and lexi-
cal content in speech is a complex challenge that
remains unsolved (Quamer and Gutierrez-Osuna,
2024; Skerry-Ryan et al., 2018). Among the vari-
ous approaches proposed to achieve delexicaliza-
tion and isolate the contribution of prosody, ap-
plying a low-pass filter has been one of the most
widely used techniques, in psycholinguistics but
also in modelling (Goldman et al., 2014; Niebuhr
et al., 2020; Audibert et al., 2023); it can preserve
an approximation of the prosodic features while
removing most of the discriminating information
that phonetically delineates orthographic words
(Mehler et al., 1988).

Hence, for the prosodic condition, we apply a
low-pass filter to remove information above a cer-
tain cutoff frequency, ensuring that most lexical
information is excluded from the speech signal. In
contrast, for the lexical condition, we flatten both
pitch and intensity to eliminate most prosodic vari-
ation. While prosodic and lexical information are
not completely disentangled, our experiments show
that the reduction of these elements is sufficient
to prevent significant interference of one variable
over the other in the results.

Through controlled experiments, we demon-
strate that prosodic information alone can, to some
extent, guide models to answer questions in SQA
tasks. However, while prosody offers meaning-
ful complementary cues, we find that models pre-
dominantly rely on lexical information when it is
available. By providing a deeper understanding of
prosody’s role in SQA, we hope to pave the way
for future work on developing more robust mod-
els capable of leveraging both lexical and prosodic
information effectively, particularly in situations
where lexical information is limited or degraded.
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2 Related work

To date, SLU research has mostly involved first
identifying word sequences. As such, there has
been a focus on integrating prosodic information
into ASR models. Previous research has used
prosody by conditioning the acoustic and pronun-
ciation modelling on prosodic features (Shriberg
and Stolcke, 2004; Chen et al., 2006), simultane-
ously predicting prosodic events (Chen et al., 2003;
Hasegawa-Johnson et al., 2005), or incorporating
prosodic information in N-best rescoring in hybrid
ASR systems (Ananthakrishnan and Narayanan,
2007, 2009; Huang et al., 2010). However, current
state-of-the-art ASR models do not model prosody
explicitly.

Researchers have also explored using prosody
to help other tasks. Assuming known time align-
ments, incorporating word-level prosodic features
has yielded improvements in constituent parsing
of conversational speech (Tran et al., 2018, 2019).
Prosody has also been shown helpful in topic track-
ing (Guinaudeau and Hirschberg, 2011), dialogue
act classification (Wei et al., 2022) speech to in-
tent (Rajaa, 2023), and emotion recognition (Lu-
engo et al., 2005; Naderi and Nasersharif, 2023).
These studies modeled prosodic patterns either at
the word or utterance level by averaging frame-
level features such as pitch and intensity, or by
using other hand-selected prosodic features. With
the rise in popularity of neural networks, prosodic
patterns can now be more effectively captured and
modeled directly through CNNs, allowing for a
more comprehensive representation of the prosodic
features without the need for manual selection.

However, with the emergence of SSL models
(Baevski et al., 2020; Hsu et al., 2021; Chen et al.,
2022), prosody is usually not explicitly modeled
as a separate feature. Instead, it has been shown
that these models capture prosodic information im-
plicitly within their learned representations, along-
side other linguistic features. SSL models are
pre-trained on large amounts of unlabeled audio
data, learning representations by predicting miss-
ing portions of the input signal or clustered la-
tent speech units. There has been extensive re-
search exploring the utility of SSL representations
in prosody-related tasks, and it has been concluded
that these representations encode prosodic infor-
mation such as gender and speaker identity (de
Seyssel et al., 2022; Liu et al., 2023; Mohamed
et al., 2024). These representations have also been

successfully applied to tasks such as emotion recog-
nition, speaker identification, and intonation analy-
sis (Lin et al., 2023). To leverage the capabilities of
advanced language models, k-means clustering or
other quantization approaches are typically used in
conjunction with SSL representations to reduce the
length of the input sequences. It has been observed
that even within these discrete units, prosodic infor-
mation is preserved, resulting in relatively low error
rates for speaker and gender classification, particu-
larly when more clusters are used (de Seyssel et al.,
2022). This suggests that these discrete units re-
tain key prosodic cues, which we use to represent
speech in our study, allowing us to investigate the
role of prosody in SQA tasks more effectively.

3 Methods

To investigate the role of prosody in SQA, in ad-
dition to the original datasets which combine both
lexical and prosodic information (i.e., the dataset in
its natural condition), we also designed a set of ex-
periments that systematically examine the effects of
prosodic information and lexical information indi-
vidually. Our approach involves three main stages:
data preparation, model training, and evaluation.

3.1 Data preparation

SLUE-SQA-5 dataset

We use the SLUE-SQA-5 dataset (Shon et al., 2023)
for this work. Unlike earlier datasets, which often
rely on synthetic speech generated from TTS sys-
tems, it features naturally occurring spoken data,
allowing for the study of prosody in a more realis-
tic context. The corpus is derived from five exist-
ing TQA datasets and the questions are collected
from crowd-source workers. The documents are
collected by retrieving relevant documents to each
question from the Spoken Wikipedia dataset (Kohn
et al., 2016). All audios are from natural speech,
which in this paper, we refer to as the natural con-
dition (as opposed to the lexical or prosodic con-
ditions that we define shortly). Table 1 illustrates
the statistics of the corpus. In addition to train, test,
and dev sets, the dataset includes a verified test set
consisting of hand-picked question-document pairs
from the test set, in which the document provides
sufficient clues to answer the question.

Dataset modification

We modify the audio in two different ways with
Parselmouth (Jadoul et al., 2018; Boersma and
Weenink, 2021), and examples of spectrograms
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dataset questions | documents | duration (hrs)
train 46186 15148 244
dev 1939 1624 21.2
test 2382 1969 25.8
verified test 408 322 4.2

Table 1: Statistics over the SLUE-SQA-5 dataset.

! for a same audio under different conditions are
shown in Figure 2.

(b) Lexical condition

Me— T TN
(c) Prosodic condition

Figure 2: Spectrogram of the example speech under
different conditions. In each sub-figure, the top plot is
the waveform, the second plot is the spectrogram, the
third plot is the intensity, and the bottom plot is the FO.

In the first setting, we remove the variations in
both pitch and intensity, which we refer to as the
lexical condition. This modification ensures that
primarily lexical information remains, while that
two of the main prosodic features, intonation and
stress are considerably reduced. This results in a
non-expressive, almost robotic-like quality to the
sound. Specifically, we flatten both the fundamen-

!The corresponding audio files are provided in the supple-
mentary materials.

tal frequency and intensity to the average value of
each utterance. This approach helps us examine
how models respond when only lexical informa-
tion is present, with minimal prosodic variation. In
Figure 2b, we can observe that the FO and intensity
contour is nearly flat. It should be noted that it is
hard not to introduce the artifacts when flattening
the intensity, for example, breath can become very
loud and the gain inside smaller segments of si-
lence is prominent (Ekstedt and Skantze, 2022). It
should still be noted that rhythm (i.e duration) is
not modified here.

In the second setting which we refer to as the
prosodic condition, we apply a low-pass filter to the
audio, removing high-frequency components, as
shown in Figure 2¢ where the spectrogram shows a
clear cut-off above the threshold. Filtering audio by
frequency inevitably affects prosodic information
as well, since prosody is embedded in various fre-
quency bands. To mitigate this, we set the cut-off
frequency to 300Hz, aiming to preserve as much
prosodic information as possible while reducing
high-frequency lexical cues. The choice of 300Hz
is based on the distribution of speech energy: vowel
sounds generally lie in the range of 250 to 2000Hz,
voiced consonants between 250 and 4000Hz, and
unvoiced or voiceless consonants primarily occupy
the 2000 to 8000Hz range (Colatosti et al., 2024).
By targeting the lower frequencies, we attempt to
retain certain prosodic elements like pitch contour
and rhythm, while removing higher-frequency lexi-
cal content. Section 4.1 explores the effects of ap-
plying different cut-off frequencies, allowing us to
investigate how varying amounts of high-frequency
information influence model performance.

It is important to note that we do not aim to fully
disentangle prosodic and lexical information as this
would be an extremely complex task given their in-
tertwined nature in natural speech. Instead, our
objective is to generate modified versions of the
dataset that either keep lexical information by sup-
pressing prosody or reduce lexical content while
retaining some prosodic cues. We are not claiming
that the remaining prosodic or lexical information
is identical to its representation in natural speech,
rather this research is carried out under the aware-
ness of this is a limitation. These manipulations
serve as controlled approximations, allowing us to
systematically investigate the role of prosody and
lexical information in SQA tasks.
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3.2 Model training

We use the Discrete Spoken Unit Adaptive Learn-
ing (DUAL) framework (Lin et al., 2022), which
consists of two main components: a Speech Con-
tent Encoder (SCE) and a Pre-trained Language
Model (PLM). Unlike conventional cascade mod-
els, DUAL bypasses the reliance on ASR tran-
scripts, and thus also the associated ASR error
propagation. The SCE leverages WavLM, a self-
supervised pre-trained model known for strong per-
formance in prosody-related tasks (Lin et al., 2023),
to encode representations directly from raw audio
waveforms. These representations are then pro-
cessed using k-means clustering, converting them
into discrete units that are deduplicated before be-
ing fed into the PLM.

Although deduplication could potentially discard
duration information, which is an important aspect
of prosody, the impact in our case is minimal. Us-
ing 1000 clusters, we observe very few repetitions,
with only 8% of units showing more than three con-
secutive repetitions in the verified testset, which are
likely due to silence. Furthermore, higher cluster
counts have been shown to retain more prosodic
information, as demonstrated by performance im-
provements in tasks like gender and speaker classi-
fication (Sicherman and Adi, 2023).

For our SCE, we use a pretrained SpeechBrain
model (Ravanelli et al., 2021)?, which is a WavLM
Large model pretrained on the Librispeech 960-
hour corpus. The representations from this model
remain frozen for all our experiments. The PLM is
responsible for predicting the answer span within
the context passage by identifying the start and end
positions, similar to a typical TQA model. Consis-
tent with the DUAL paper, we use the Longformer-
base model® as the PLM, a BERT-like model for
long documents, pretrained on unlabeled long text
documents (Beltagy et al., 2020).

For reproducibility, all configurations are de-
tailed here. We utilize eight A100-80 GPUs with
a total batch size of 128, training the models for
up to 18 epochs. Following the original DUAL
framework, the learning rate is warmed up over the

>We use the pre-trained WavLM representations avail-
able at https://huggingface.co/speechbrain/SSL_
Quantization/tree/main/LibriSpeech960/wavlm/
LibriSpeech_wavlm_k1000_L23.pt for our experiments.
While it is possible to select representations from different
layers, a thorough layer-wise analysis falls beyond the scope
of this work.

3https ://huggingface.co/allenai/
longformer-base-4096

h Ground Truth Span
'}

Overlapping Span ‘ "

Predicated Span

Figure 3: Illustration of ground truth span, predicted
span and overlapping span for evaluation.

first 500 steps. We conduct a learning rate search
within the range of [5e — 6, le — 5, 5e — 5, le — 4],
starting with the natural condition. Once the op-
timal learning rate is identified, we evaluate the
performance on other conditions to ensure that the
selected rate is not biased toward the natural condi-
tion. Ultimately, the learning rate is fixed at 1e — 5
for all experiments. The model needs 160 GPU
hrs when tracking all evaluations in Section 4.2.
To account for variability, all models are trained
using three different random seeds, and we report
the mean and standard deviation across all results.

3.3 Evaluation

To evaluate the performance of our models, we em-
ploy two key metrics: Frame-level F1 (FF1) score
(Chuang et al., 2020) and Audio Overlapping Score
(AOS) (Lee et al., 2018), both of which are com-
monly used in SQA tasks to assess model accuracy
with respect to time-based predictions.

FF1 score is an adaptation of the standard F1
score used in text-based question answering (TQA)
tasks. While in TQA, the F1 score is calculated
based on token-level matches between predicted
and ground-truth answers, in SQA, the answers are
temporal segments of audio rather than discrete
tokens. Therefore, FF1 measures the precision and
recall of frame-level matches between the predicted
and actual answer spans, as shown in Figure 3. The
equation is as follows

. Overlapping Span
Precision = -
Predicted Span
Overlapping Span
Recall =
Ground Truth Span
FEL— 2 X Precision x Recall

Precision + Recall

AOS on the other hand, provides an additional
evaluation by measuring the overlap between the
predicted and ground-truth answer spans using
the intersection-over-union ratio at the frame level.
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Natural Lexical Prosodic
Test Verified-Test Test Verified-Test Test Verified-Test
FF1
Natural | 33.27 £1.20 | 36.01 +0.86 | 26.12+0.59 | 30.01 £1.23 | 10.04 £0.47 | 10.57 +£0.87
Lexical | 26.72+0.41 | 29.31 +0.71 | 32.37+£0.12 | 33.42%+0.55 | 8.94+0.61 8.19 £ 0.66
Prosodic | 8.33 +0.51 9.90 +2.19 6.96 = 1.25 9.01 +1.07 | 18.49 +0.67 | 18.29 +1.14
AOS
Natural | 29.67 +1.24 | 31.80+0.78 | 22.47 £0.68 | 26.04 +0.97 | 6.36+0.41 6.75 £ 0.82
Lexical | 23.13+0.26 | 26.04 £0.97 | 28.63 +£0.02 | 29.30 +0.68 | 5.95+0.46 5.57£0.32
Prosodic | 5.39 +0.39 6.79 £ 1.65 4.37+£0.94 5.99+094 | 13.97+0.73 | 13.86 + 0.98

Table 2: Results for different training and testing conditions (natural, lexical, and prosodic) on the test and verified
test set. Bold diagonal cells indicate results when training and tesing conditions are the same.

The equation can be written as follows

Overlapping Span

AOS =
Predicted Span U Ground Truth Span

4 Experiments and results

To explore the role of prosodic information in SQA
tasks, we design two stages of experiments to an-
swer the research questions stated in Section 1.

4.1 Is prosodic information sufficient for SQA
tasks?

First, we train the model separately over our three
different data conditions: natural, lexical and
prosodic and test on the corresponding conditions.
The results are shown in Table 2. We also establish
a chance-level baseline by generating white noise
speech using a normal distribution with the same
duration as the documents in the verified-test set in
order to simulate the model’s performance in the
absence of all meaningful information. Evaluat-
ing all models across different seeds for generating
the white noise speech, the best FF1 and AOS are
6.03 £ 0.16 and 3.29 +£ 0.09, respectively. This
serves as the default result when random predic-
tions are made, providing a baseline for comparison
with the model’s performance on actual data.

As expected, when the training and testing con-
ditions are the same, the model performs best under
the natural condition, followed by the lexical con-
dition. But interestingly, the prosodic condition
also performs reasonably well, far better than the
chance level baseline .

“The DUAL baseline, using wav2vec as the encoder,
achieved an FF1 score of 23.1 on the same natural condi-
tion for verified-test set, as reported in (Shon et al., 2023). We
include their result here not for direct comparison of the mod-

els, but to highlight that the results obtained using prosodic
information in our experiments are very close to a functional

The model performs the worst when trained and
tested on some combination of lexical and prosodic
conditions, as this combination has the least infor-
mation overlap among all the tested configurations.
Although the results for natural and lexical condi-
tions are not identical, the relatively close perfor-
mance suggests that the model relies heavily on
lexical information, as both conditions include it.
When trained on either natural or lexical condition,
the model performs well on the other condition,
indicating that the model can generalize effectively
between natural and lexical information. However,
when tested on the prosodic condition, performance
drops significantly. This pattern is mirrored when
the model is trained on prosodic information and
tested on natural or lexical conditions. These re-
sults highlight that, although prosody alone pro-
vides meaningful information for SQA from the
results, it cannot fully compensate for the absence
of lexical content. This ability to generalize only
occurs despite a domain mismatch in prosody be-
tween lexical and natural conditions, suggesting
that the model prioritizes lexical cues over prosodic
variations when both are available.

Can the prosodic condition scores stem from
leftover lexical information? One possible con-
cern is whether the performance observed in the
prosodic condition could be purely influenced by
residual lexical information. To address this, we
select a cut-off frequency of 300Hz, which theoret-
ically removes the majority of energy associated
with both vowels and consonants, given that vowel
sounds typically lie in the range of 250-2000Hz,
and consonants span from 250Hz to as high as
8000Hz. To further investigate, we conduct ad-

baseline using both prosodic and lexical information, signifi-
cantly better than random performance.
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ditional experiments using different cut-off fre-
quencies (from 50 to 3000Hz) to assess the im-
pact of filtering on model performance. The re-
sult is presented in Figure 4. We observe there
is no significant performance drop when the cut-
off frequency is above 1800Hz and between the
200Hz and 400Hz. This suggests that frequencies
above 1800Hz are primarily associated with high-
frequency sounds such as fricatives and certain con-
sonants, which are less critical for understanding
the core content of speech. However, the model’s
performance gradually decreases as the cut-off fre-
quency is lowered from 1800Hz to 400Hz, indicat-
ing that most lexical information is included within
this range as it contains many formant frequencies
of vowels and essential cues for consonants. The
sharp performance drop below 200Hz can be at-
tributed to the loss of crucial prosodic information,
especially FO, which plays a key role in intonation,
and stress patterns. Therefore, a cut-off frequency
between 200Hz and 400Hz offers a good compro-
mise, retaining enough prosodic information while
effectively removing most lexical content.

To bring further support to our observations,
we present the WER results for the WavLM-CTC
model, which was trained on 960 hours of Lib-
rispeech data and evaluated on both the SLUE-
SQA-5 test and verified test datasets. As shown
in Table 3, the prosodic conditions in Librispeech
and the test sets were matched by applying the
same cutoff-frequency low-pass filter to all data,
ensuring consistency. Similarly we find when fre-
quencies drop below 200 Hz, the audio becomes
completely unintelligible, even when the model
is trained on data processed under the same con-
dition. In contrast, when the cutoff frequency is
above 200 Hz, the WER quickly decreases to ap-
proximately 50%. This result is not unexpected,
as speech recognition may not be the ideal task
for evaluating residual lexical information; rather,
recognition reflects the process by which these lex-
ical and prosodic properties are perceived, not a
direct measure of the information present. Previous
work has demonstrated that prosodic cues can be
beneficial for the task (Vicsi and Szaszak, 2010;
Bhardwaj et al., 2024), and there is notable redun-
dancy between lexical and prosodic channels that
further impacts performance (Wolf et al., 2023).
Nevertheless, while the exploration of prosody’s
impact on ASR falls outside the scope of this study,
our cutoff frequency analysis confirms that SQA
performance is not solely due to residual lexical
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Figure 4: Performance on the test set with different cut-
off frequencies

content.

Cut-off (Hz) ‘ Test ‘ Verified-Test

50 133.1 147.3
100 144.5 133.5
200 80.3 72.3
300 57.5 44.5
400 49.2 36.8
500 45.6 33.9

Table 3: WER results for the WavLM-CTC model (960h
Librispeech) evaluated on SLUE-SQA-5 test and veri-
fied datasets. Consistent prosodic condition was ensured
for training and evaluation.

Is the question relevant in the prosodic condi-
tion? In the context of SQA, prosodic informa-
tion, such as intonation, pitch, and pauses, sig-
nals important structural and emphatic aspects of
speech. These cues can highlight portions of the
context that are more likely to contain relevant in-
formation. For example, changes in intonation may
signal the introduction of key points, while pauses
and shifts in pitch can emphasize certain phrases
or concepts. As a result, prosodic information can
help narrow down the likely locations of the answer
within the context, even when lexical information
is absent or reduced. However, one concern is
whether prosodic information alone can meaning-
fully contribute to SQA if it can disregard the actual
question. If prosody merely highlights key parts of
the context without connecting them to the ques-
tion, contribution of the question might be limited.
To explore this, we conduct an experiment in which
questions and contexts for the verified test set were
randomly paired. In this setup, the model’s perfor-
mance dropped significantly, reaching levels simi-
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lar to those observed when lexical information was
present but not prosodic information. This drop in
performance indicates that prosodic cues alone are
insufficient to fully answer the question, as they do
not directly convey the question’s relationship to
the relevant parts of the context.

FF1 AOS
Natural | 17.09 +£0.96 | 14.79 = 0.89
Lexical | 17.26 £0.33 | 14.74 £0.25
Prosodic | 9.77 £ 0.54 7.05 +0.57

Table 4: Results for the same training and testing condi-
tions on the random-paired verified test set.

Nevertheless, it is important to note that the
model still performed better than random chance,
suggesting that prosodic cues provide some util-
ity even in the absence of a meaningful connec-
tion between the question and context. These cues
likely highlight segments of the passage that are
perceived as more important or emphasized, help-
ing the model identify areas where relevant infor-
mation might be located. This explains why the
model outperforms a chance-level baseline even
when the question-context alignment is disrupted.
In summary, while prosody alone cannot entirely
guide the model to the correct answer, it serves as a
helpful supplementary signal that directs attention
to key parts of the passage.

4.2 Do SQA models utilize prosodic
information when lexical information is
also present?

From the results presented in Table 2, we observe
that the model tends to prioritize lexical informa-
tion from the similar performance on both the natu-
ral and lexical sets across different configurations.
To better understand this behavior, we conduct ex-
periments for the prosodic condition when combin-
ing training with portions of 0%, 5%, and 100% of
the training sets from other two conditions. We
then track the evaluation loss on all conditions
throughout the training process. As shown in Fig-
ure 5, the evaluation loss trends clearly demonstrate
that the model predominantly relies on lexical in-
formation. When this lexical information is ab-
sent during training, the model learns to utilize
prosodic information as indicated by the decrease
in prosodic evaluation loss. However, even when
only 10% of the training data contains lexical in-
formation and the overwhelming majority consists

of prosodic data, the model quickly learns from the
lexical data. This is reflected by the rapid decrease
in evaluation loss for both the lexical and natural
sets, which soon approach the same level as the
prosodic loss. When equal amounts of data from
each condition are provided, we observe a more
rapid decrease in loss for both the natural and lex-
ical sets, whereas the prosodic set exhibits higher
loss than the other two training conditions with
less lexical information, as indicated by the refer-
ence line. This suggests that, when given access to
both lexical and prosodic features, the model pri-
marily uses lexical information, possibly because
lexical features offer a more straightforward path
to understanding and answering questions based
on the content of the speech. In contrast, prosodic
cues, though helpful, do not seem to be the model’s
primary source of information in these settings.

5 Conclusion

Through a series of controlled experiments, we
explore the role of prosody in SQA tasks. Our
findings demonstrate that while lexical information
remains the dominant feature in models trained on
both prosodic and lexical data, prosody still pro-
vides meaningful complementary cues. In experi-
ments where prosodic information was isolated, the
model performed reasonably well, indicating that
prosody alone can guide the model toward identi-
fying relevant segments in the context. This under-
scores the independent value of prosodic features
such as intonation, stress, and pauses in guiding
the model’s understanding of spoken language.

However, when both prosodic and lexical infor-
mation were available, the model predominantly
rely on lexical cues, as they offer a more direct
path to understanding the meaning of the speech.
Even when the amount of lexical information in the
training data was reduced to just 10%, the model
continued to prioritize and learn from these fea-
tures over prosodic cues. This suggests that while
prosody is useful, it is often overshadowed by lexi-
cal content in tasks where both types of information
are present.

Additionally, our analysis of random question-
context pairings reveal that prosodic cues alone
cannot fully guide the model to the correct answer
without considering the relationship between the
question and the relevant context. Nevertheless,
the model still performed above random chance,
suggesting that prosodic information highlights im-
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portant parts of the context, even when it cannot
provide the complete answer.

In conclusion, while prosodic information plays
a valuable role in SQA, its contribution is sec-
ondary to lexical content when both are present.
Future work should focus on developing models
that can better integrate prosodic and lexical in-
formation to fully leverage the richness of spoken
language, especially in scenarios where lexical in-
formation is degraded or limited.

6 Limitations

We have ensured full reproducibility of our results
by using both an open-source model and original
dataset, and providing detailed instructions (includ-
ing hyperparameters) for replicating our experi-
mental conditions and results. We acknowledge
limitations in our work, with the primary challenge
being the difficulty in making the prosodic and lex-
ical information fully independent when designing
our conditions. Indeed, in the prosodic condition,
while we tried to minimize lexical information,
there remains the possibility of some residual lexi-
cal cues contributing to the model’s performance.
Moreover, by applying a low-pass filter, we also
degrade the quality of the prosodic information,
potentially artifically lowering the scores related
to prosodic only information. Future work could
explore more sophisticated methods of explicitly
modelling prosodic features separately from lexical
ones.

Another limitation relies in the choice of layer

used to extract the representations. While we used
one of the deeper layers of the model to extract
our discrete units, as it has been suggested that is
where semantic information is the strongest (Pasad
et al., 2021), it is possible that prosodic information
is more heavily encoded in earlier layers. Further
exploration of the different representations could
bring more light on the role of prosody on SQA.
Furthermore, our study used SLUE-PHASE?2, an
extractive SQA dataset where answers are specific
spans of audio within a passage. This approach lim-
ited our investigation to tasks requiring literal com-
prehension, such as identifying places, names, or
dates. While this provides insight into how prosody
helps in locating specific information, it would be
valuable to extend this research to open-ended SQA
tasks, where prosodic information may play a more
significant role in guiding models to generate nu-
anced and contextually appropriate responses.
Finally, future work should explore how prosody
influences inferential comprehension, where emo-
tions, thoughts, and intentions are inferred from
the speech. In these tasks, prosody could offer
important cues that go beyond the lexical content,
enriching the model’s understanding of more ab-
stract or emotional aspects of the spoken language.
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