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Abstract

While Large Language Models (LLMs) ex-
hibit remarkable capabilities in zero-shot and
few-shot scenarios, they often require computa-
tionally prohibitive sizes. Conversely, smaller
Masked Language Models (MLMs) like BERT
and RoBERTa achieve state-of-the-art results
through fine-tuning but struggle with extending
to few-shot and zero-shot settings due to their
architectural constraints. Hence, we propose
Statement-Tuning, a technique that models dis-
criminative tasks as a set of finite statements
and trains an encoder model to discriminate
between the potential statements to determine
the label. We do Statement-Tuning on multiple
tasks to enable cross-task generalization. Ex-
perimental results demonstrate that Statement-
Tuning achieves competitive performance com-
pared to state-of-the-art LLMs with signifi-
cantly fewer parameters. Furthermore, we com-
pare with previous encoder-based methodology
and show that our method is more accurate and
more robust to spurious patterns. Moreover,
the study investigates the impact of several de-
sign choices on few-shot and zero-shot gener-
alization, revealing that Statement-Tuning can
achieve strong performance with modest train-
ing data and benefits from task and statement
diversity for unseen task generalizability. We
release all the code used to generate statement
data, train and evaluate our Statement-Tuned
models.1

1 Introduction

Large Language Models (LLMs) have shown great
capabilities in zero-shot and few-shot settings (Rad-
ford et al., 2019; Brown et al., 2020; Artetxe et al.,
2022). However, such capabilities are more diffi-
cult to observe in encoder-only models like BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) due to their architectural design. These mod-
els are typically pre-trained in an unsupervised

1https://github.com/afz225/
statement-tuning

manner on a large corpus with a Masked Language
Modeling (Devlin et al., 2019) or Discriminative
(Clark et al., 2020) objective and fine-tuned by
adding task-specific layers to enable their usage on
a particular task, such as binary/multi-label clas-
sification, token/sequence classification, multiple
choice, etc. These task-specific layers, thus, can not
be extended effectively to new tasks in a few-shot
or zero-shot manner.

In this work, we explore the feasibility of utiliz-
ing encoder models that are usually specialized for
a certain task to take on various, unseen Natural
Language Understanding (NLU) tasks, akin to zero-
shot prompting in decoder models. One benefit of
using encoder models is that they are generally
more compact. Yet, encoder models have achieved
state-of-the-art results on many NLU tasks through
task-specific fine-tuning. So it would be interest-
ing if LLM-level zero-shot prompting could be
achieved by encoder models to leverage their pow-
erful NLU capabilities at more computationally
feasible sizes.

To achieve this, some techniques try to reformu-
late various downstream tasks with a unified for-
mat resembling the pre-training objective, enabling
few-shot transfer for encoder models (Schick and
Schütze, 2021a,b; Xia et al., 2022). Without few-
shot examples, the zero-shot generalization of these
models relies mainly on the language modeling
ability learned in the pre-training phase, not ben-
efiting from further multitask training on diverse
reformulated tasks. In this work, we take inspira-
tion from multitask instruction tuning methods for
decoder models (Wei et al., 2022; Sanh et al., 2022)
and unified format fine-tuning methods for encoder
models (Yin et al., 2019; Xu et al., 2023) to propose
Statement-Tuning, a novel intuitive approach for
encoder-only models to generalize to zero-shot and
few-shot unseen tasks through universal multitask
fine-tuning with data formatted as statements. Our
approach thus has the generalization ability similar
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Statement-Tuned 
Encoder

Statement_0: The item was packaged in bubble 
wrap, because it was fragile.
Statement_1: The item was packaged in bubble 
wrap, because it was small.

Balanced Copa

0P(True | Statement_0) = 0.62 ✓
P(True | Statement_1) = 0.53 x

Statement: “What can one do after MBBS?” is a 
duplicate of “What do i do after my MBBS?”

QQP

Statement: John moved the couch from the garage 
to the backyard to create space because The couch 
is small.

Winogrande

False

True

Multi-task Finetuning 
Zero-shot generalization

Training Label

Statement: Goal: how do you flood a room? 
Solution: fill it with water.

PIQA

True

Predicted
class

Inference probability

Statement_0: The sentiment in "Amazing! This 
soundtrack is..." is negative.
Statement_1: The sentiment in "Amazing! This 
soundtrack is..." is positive.

Amazon Polarity

1P(True | Statement_0) = 0.24 x
P(True | Statement_1) = 0.87 ✓

Figure 1: Overview of Statement-Tuning. We train an encoder to discriminate the truth value of statements from
multiple tasks, then we apply it in the zero-shot setting by creating a statement for each possible target label and
choosing the most likely one according to the encoder discriminator.

to decoder models with a fraction of the parameters
and training data.

As seen in Figure 1, we verbalize a diverse set
of NLU tasks into natural language statements, and
then fine-tune an encoder-only MLM, RoBERTa,
on a universal binary sequence classification task,
which we call Statement-Tuning, to assign a truth
value (True or False) to any given statement. By
fine-tuning encoder models across diverse tasks and
statements, we show zero-shot generalization capa-
bilities to unseen tasks by similarly transforming
them into statements. Moreover, we show few-shot
capabilities by continually fine-tuning this model
with a small amount of downstream data, also for-
matted into statements. Statement-Tuning is ca-
pable of matching or even outperforming (32-shot
and) zero-shot performance of many state-of-the-
art LLMs with a fraction of the parameters.

Our ablation study shows that depending on the
task, we can achieve substantial few-shot and zero-
shot generalizability with as few as 1,000 state-
ments per training dataset or approximately 16,000
training statements in total, which correspond to
even fewer original task examples since one exam-
ple can be turned into multiple statements through
different templates. Furthermore, we find that the
statement and task diversity tend to have a benefi-
cial effect on the performance and generalizability
of Statement-Tuning. In summary, our primary
contributions are:

1. To the best of our knowledge, we are the first
to propose a combination of elaborate state-
ment formulation and Masked Language Mod-

els as a simple and effective data/resource-
efficient alternative for LLMs for zero-shot
NLU task generalization.

2. Through extensive experimentation and com-
parison, we demonstrate that Statement-
Tuning performs on par with and in many
instances exceeds the performance of state-of-
the-art supervised fine-tuned LLMs with 200
times fewer parameters. Moreover, we show
that Statement-Tuning outperforms previous
approaches on encoders and less reliant on
superficial lexical clues.

3. We explore a large number of design choices
to study how Statement-Tuning benefits from
the number of statement examples, the state-
ment template diversity and task diversity in
multitask Statement-Tuning, and demonstrate
the data/resource-efficiency of Statement-
Tuning.

2 Related Work

Zero-Shot and Few-Shot Approaches Utilizing
Label Semantics Various approaches have been
proposed to reformulate zero-shot classification
to leverage label semantics instead of indices, en-
abling the more generalized use of encoder models.
In the reformulated task, textual labels are com-
bined with the original input text, and the model
should predict whether the label matches the text.
TARS (Halder et al., 2020) utilizes the simple con-
catenation of input text and label text, with no ex-
plicit connection through natural language. Simi-
larly, Xu et al. (2023) reformulate discriminative
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tasks with minimal prompts, which are mostly sim-
ple concatenations of elements in the raw input.
They find it effective for zero-shot generalization
for ELECTRA-style encoder models but do not
test other encoder-only models with normal MLM
training.

Yin et al. (2019) propose an entailment-based
approach where the input is a pair of texts: the orig-
inal input text is the premise and label is converted
into a hypothesis. However, the approach is limited
by the fact that not every discriminative task can
be formulated as an entailment task (in the form of
a premise and a hypothesis). The entailment for-
mulation also limits the training tasks to entailment
datasets (MNLI, RTE, and FEVER), which often
causes the model to over-rely on spurious lexical
patterns, hindering generalization (Ma et al., 2021).
Our approach Statement-Tuning serves as a more
universal formulation of any discriminative task
in the form of statements and demonstrates less
reliance on superficial lexical clues.

Few-shot approaches utilizing cloze-style tem-
plates have also been proposed. PET (Schick and
Schütze, 2021a) requires an ensemble of encoder
models and iterative training, relies on additional
unlabeled data; Improved PET variants (Schick
and Schütze, 2021b; Tam et al., 2021) use com-
plex losses to compute the probability of each
token in multi-token labels. To automate verbal-
izer construction, Zhao et al. (2023) retrieve label
words from the PLM’s embedding space, but their
prompt with a single masked token for label word
prediction primarily supports simple classification
tasks. Our method keeps the normal sequence clas-
sification training paradigm, while in the mean-
time effectively leverages the label semantics, en-
abling straightforward zero-shot generalization to
a broader range of tasks.

Zero-Shot Prompting and Multitask Tuning
LLMs excel at unseen-task/zero-shot generaliza-
tion (Brown et al., 2020). Building on this, re-
cent work explores multitask training with diverse
prompts for improved zero-shot performance (Sanh
et al., 2022; Wei et al., 2022; Chung et al., 2024).
These methods fine-tune large models on con-
structed datasets with various task prompts, achiev-
ing strong zero-shot results on unseen tasks. How-
ever, effective instruction-tuning often requires bil-
lions of parameters (Zhang et al., 2024), limiting
their application to smaller models. Ye et al. (2022)
aim to distill this zero-shot ability in a smaller

Task: MNLI
Premise: Conceptually cream skimming has two basic dimensions - product and 
geography.

Hypothesis: Product and geography are what make cream skimming work.

Options: [“entailment”, “neutral”, “contradiction”]

Statement Conversion:

S1: “Conceptually cream skimming has two basic dimensions - product and 
geography” entails “Product and geography are what make cream skimming work”.
S2: “Conceptually cream skimming has two basic dimensions - product and 
geography” is neutral with regards to “Product and geography are what make cream 
skimming work”.
S3: “Conceptually cream skimming has two basic dimensions - product and 
geography” contradicts “Product and geography are what make cream skimming 
work”.

Figure 2: Example conversion of the MNLI task to
natural language statements.

model like an LSTM through synthetic data cre-
ation using an LLM, but they create task-specific
models rather than a single smaller model that is
capable of generalizing. Our work demonstrates
similar or superior generalization than LLMs using
a single smaller MLM with less training data.

3 Method: Statement-Tuning

In this section, we outline the steps involved in
Statement-Tuning. First, tasks are verbalized into
natural language statements. Then they are used
to train the statement discriminator and derive the
target label.

Task Verbalization Any discriminative task with
a finite set of targets can be verbalized into a finite
set of natural language statements. Figure 2 shows
the example of converting the MNLI task into state-
ments. Similar to prompting, each task has its own
statement templates, based on each possible label.
The truth label for training purposes on each state-
ment depends on whether the statement contains
the correct target label or not.

Statement Fine-Tuning To create the training
data for multitask statement fine-tuning, we ex-
haustively generate statements across 16 diverse
NLP datasets (categorized into 9 tasks, see Ap-
pendix E) using many varied statement templates
(see Appendix A) per dataset: QQP (Sharma et al.,
2019), Winogrande (Sakaguchi et al., 2020), PiQA
(Bisk et al., 2020), MNLI (Williams et al., 2018),
SNLI (Bowman et al., 2015), Mintaka (Sen et al.,
2022), Yelp Polarity (Zhang et al., 2015), WikiLin-
gua (Ladhak et al., 2020), SQuAD (Rajpurkar et al.,
2016), TweetEval’s Offensive task (Zampieri et al.,
2019), Massive (FitzGerald et al., 2023; Bastianelli
et al., 2020), Definite Pronoun Resolution (Rah-
man and Ng, 2012), QASC (Khot et al., 2020),
SciQ (Welbl et al., 2017), RACE (Lai et al., 2017),
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and SAMSum (Gliwa et al., 2019). We fine-tune
RoBERTa (Liu et al., 2019) with a binary sequence
classification head to predict the truth value of the
statements. By fine-tuning the model across diverse
tasks, templates, and domains, the model should
be able to generalize across unseen templates and
tasks, as long as it can be phrased as a true/false
statement.

Zero-Shot and Few-Shot Inference To perform
inference on statement-finetuned RoBERTa, we
also need to transform the input into statements.
We randomly choose a statement template for each
dataset at inference time. In our experiments, we
show that our statement-tuning is robust to different
templates. We exhaustively generate a statement
for each possible label, as shown in Figure 1. Then,
for each statement corresponding to each label, we
predict the probability of such a statement being
true. The final label is the statement with the high-
est true probability. Zero-shot inference is done by
directly performing the aforementioned inference
regime on the statement-finetuned RoBERTa, while
K-shot inference is done after continual fine-tuning
on K examples of task-specific statements.

4 Experimental Setup

4.1 Evaluation Datasets

We measure our model’s generalizability using an-
other set of 7 diverse datasets representing a vari-
ety of unseen tasks or unseen domains: Balanced
COPA (BCOPA; Kavumba et al., 2019; Roem-
mele et al., 2011), MRPC (Dolan and Brockett,
2005), Emotion (Saravia et al., 2018), Amazon Po-
larity (McAuley and Leskovec, 2013; Zhang et al.,
2015), FigQA (Liu et al., 2022), StoryCloze (2016)
(Mostafazadeh et al., 2017), and Yahoo Answers
Topics (Zhang et al., 2015). Among the evaluation
data, MRPC (paraphrase identification) and Ama-
zon Polarity (sentiment analysis) represent tasks
seen during training but in different domains and
demonstrate cross-domain generalizability. The
rest are unseen tasks and hence examine the cross-
task generalizability.

4.2 Statement Finetuning Configurations

We statement-finetune both RoBERTa-base and
RoBERTa-large across diverse NLP tasks outlined
in Section 3. However, as statement fine-tuning
expands the dataset with various templates over all
possible labels, it is arguably unwise to fine-tune on

all possible generated statements. Moreover, each
task has a different data size, leading to unbalanced
fine-tuning data. Therefore, we sample statements
randomly for each task, uniformly across true and
false statements. In true/false statements, we also
balance original classes. We explore sample size
from 1,000 statements to 50,000 statements per
dataset. We encourage the invariance to phrasing
in diverse statements by designing multiple state-
ment templates per dataset (a list of all statement
templates is shown in Appendix A). Furthermore,
we run the training five times to account for ran-
domness in training data creation. In the evaluation,
we randomly pick a template for each dataset in
a single evaluation run and also repeat the eval-
uation five times. We thus report the mean and
standard deviation of 5 × 5 runs to show the gen-
eral task accuracy and the (in)variance to phrasing.
We also explore the effect of statement diversity
during training in Section 5.6.

After multitask statement tuning is completed,
we can further continue fine-tuning the model on
the target downstream dataset. Specifically, we
explore various n-shot configurations: Full/3,000-
shot, 1,000-shot, 500-shot, 200-shot, and 32-
shot, where we use limited data from the training
sets of the corresponding dataset to fine-tune our
statement-tuned models. For the Full/3,000-shot
case, we cap the training set at 3,000 examples,
otherwise, we use the entire set (this is the case for
Amazon Polarity only). For StoryCloze, there is
no training set, so we just carry out 32-shot (using
32 samples from the test set for fine-tuning and
evaluating on the rest) and zero-shot experiments.
As for Yahoo Answers Topic and Emotion, due to
them being multi-class classification tasks, we cap
the n-shot analysis at 200-shot due to the larger
number of choices per example (and hence a larger
number of statements per example).

4.3 Other Baselines

To assess the feasibility of our approach, we com-
pare Statement-Tuned RoBERTa base/large mod-
els with 125 million parameters and 355 million
parameters respectively with a range of compet-
itive multitask fine-tuned encoder-decoder mod-
els and decoder-only LLMs spanning a parameter
range from 60 million parameters to 70 billion pa-
rameters. We include the following open-source
models: Meta-Llama-3-70B-Instruct (AI@Meta,
2024), Llama-2-13B-chat, Llama-2-7B-chat (Tou-
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#Parameters BCOPA MRPC FigQA Amazon Polarity StoryCloze YA Topic Emotion Avg

Meta-Llama-3-70B-Instruct 70B 89.0 71.3 42.0 94.7 82.7 61.9 51.8 70.5
Llama-2-13b-chat-hf 13B 89.6 60.8 40.9 93.7 82.4 53.2 51.6 67.5
Llama-2-7b-chat 7B 86.6 54.4 40.1 90.5 78.5 47.8 50.0 64.0
Mistral-7B-Instruct-v0.2 7B 89.4 73.0 41.4 88.9 82.3 57.7 55.3 69.7
Qwen1.5-7B-Chat 7B 87.0 75.5 42.1 95.3 79.7 59.1 57.8 70.9
Pythia-6.9B 6.9B 82.2 62.0 41.7 83.3 71.2 32.2 25.1 56.8
Pythia-2.8B 2.8B 79.6 68.4 41.2 77.7 69.7 12.1 35.4 54.9
Phi-2 2.7B 87.2 67.9 41.8 86.6 77.7 38.7 53.1 64.7
FlanT5-Large 770M 67.6 81.1 40.1 96.0 63.0 51.0 59.9 65.5
Qwen1.5-0.5B-Chat 500M 69.2 32.6 38.7 69.7 68.9 21.9 6.6 43.9
BART-large-mnli 406M 50.4 35.8 46.9 49.4 47.3 6.5 11.7 35.4
FlanT5-Small 60M 52.8 31.9 42.0 88.8 51.5 24.5 21.7 44.7
Other encoder-only Approaches:
NPPrompt (RoBERTa-large) (Zhao et al., 2023) 355M - 46.0 - 80.4 - 46.0 36.0 -
NLI (Yin et al., 2019) 355M 61.8 60.8 65.3 91.5 76.0 45.0 48.5 64.1
Our Approach:
RoBERTa-base (Best) 125M 75.3(0.5) 72.3(1.5) 61.4(0.6) 92.9(1.3) 79.1(1.1) 40.2(3.8) 48.5(5.1) 67.1
RoBERTa-base (4k) 125M 72.4(0.5) 69.6(1.1) 60.7(0.9) 92.3(0.8) 78.5(2.7) 37.9(2.7) 46.6(4.3) 65.4
RoBERTa-large (Best) 355M 85.1(0.7) 71.8(0.8) 74.2(1.4) 95.4(0.4) 92.1(0.7) 49.9(2.1) 50.7(1.4) 75.3
RoBERTa-large (10k) 355M 85.1(0.7) 71.5(0.8) 73.0(2.4) 95.4(0.4) 91.1(0.8) 48.4(0.7) 49.1(3.2) 73.4

Full/3000-shot:
RoBERTa-base (FT) 125M 74.2 87.0 88.1 94.3 - 71.0 82.2 -
RoBERTa-large (FT) 355M 86.0 87.6 92.0 96.5 - 68.5 78.2 -

Table 1: Comparison of our approach against many pre-trained open-source encoder-decoder and decoder-only Large
Language Models as well as two other encoder-only models on 7 Natural Language Understanding tasks in zero-shot
conditions. FT stands for Full Fine-tuning and is included as upper bounds for reference. For Statement-Tuning,
we report the average across 5 training runs and 5 evaluation runs and include the average standard deviation in
parenthesis. We highlight all scores in gray where our approach with RoBERTa-base (best) exceeds or is equal to
the score given by the model.

vron et al., 2023), Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), QWEN1.5-7B-chat and QWEN1.5-
0.5B-chat (Bai et al., 2023), Pythia-6.9B and
Pythia-2.8B (Biderman et al., 2023), Phi-2 (Li et al.,
2023), FlanT5-Large and FlanT5-Small (Chung
et al., 2024), and BART-large-mnli (Lewis et al.,
2020).

We use the chat/instruction-tuned version of the
models to allow for better instruction following.
We try to select models that have not seen the eval-
uation data to the best of our knowledge, however,
the training data of many of these models is not
fully outlined and there can always be the possibil-
ity of contamination (Li and Flanigan, 2024). Al-
though these models have already been trained on
a large number of instruction fine-tuning datasets,
to guarantee a fair comparison as much as possi-
ble, we additionally instruction-tune a subset of the
models using LoRA (Hu et al., 2022) on the same
training datasets used for Statement-Tuning.2 De-
tails regarding data formatting, hyper-parameters,
and results are reported in Appendix H.

We train and evaluate all the models on a config-
uration of 5 AMD EPYC Rome CPU cores and at
most 4 Nvidia Tesla A100 40GB GPUs (we only

2Due to limited computational resources, we are only able
to perform this extended training and analysis on a subset of
the models ranging from 500M to 13B parameters.

use 4 GPUs for inference of the largest LLMs, and
1 GPU for Statement-Tuning). The prompts and
evaluation are derived from the Language Model
Evaluation Harness library (Gao et al., 2024).

To compare with other zero-shot encoder-only
methods, we evaluated against the NLI-based ap-
proach from Yin et al. (2019) and NPPrompt (Zhao
et al., 2023). For the NLI method, we used a
RoBERTa-large model fine-tuned on SNLI (Bow-
man et al., 2015), MNLI (Williams et al., 2018),
FEVER-NLI (Thorne et al., 2018), and ANLI (R1,
R2, R3) by Nie et al. (2020), with templates de-
tailed in Appendix I. For NPPrompt, we used the
authors’ original code, evaluating only classifica-
tion tasks due to adaptation challenges for other
task types.

5 Results and Analysis

In this section, we dive deep into the results of
our experimentation to derive insights about our
approach.

5.1 Overall Result

Table 1 shows zero-shot performance of statement-
tuned RoBERTa and baselines. Recall that we ex-
plore various statement-tuning sizes, hence here we
report the best performance across all training sizes
and performance for the 4,000 and 10,000 sample
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Model Shuffled BCOPA MRPC FigQA Amazon Polarity StoryCloze Yahoo Topic Emotion

NLI No 61.8 60.8 65.3 91.5 76 45 48.5
Yes 58.4 63.1 61.4 72.2 67.8 35 37.8

Ours (10k) No 85.1 71.5 73.0 95.4 91.1 48.4 49.1
Yes 72.6 61.7 62.0 84.0 72.0 42.5 44.0

NLI % Drop from Shuffling: 5.5 -3.8 6.0 21.1 10.8 22.2 22.1
Ours (10k) % Drop from Shuffling: 14.7 13.7 15.1 11.9 21.0 12.2 10.4

Table 2: Comparison of our method with Yin et al. (2019) on all the tasks. We also rerun our analysis with shuffled
words in the input and compare the percentage drop in performance after shuffling.

sizes per dataset for the base and large models, re-
spectively. The effect of statement tuning sample
size is explored in Section 5.4.

Statement-Tuning Enables Effective Zero-Shot
Generalization on Masked Language Models.
The result shows that the multitask statement-tuned
encoder model can achieve zero-shot generaliza-
tion across unseen tasks and domains. On BCOPA
(unseen task) and Amazon Polarity (unseen do-
main), our zero-shot statement-tuned models even
achieve accuracies on par with models fine-tuned
on the full datasets. We also see that the larger
model (RoBERTa-large) achieved much better gen-
eralization than the base model in general.

5.2 Comparison Against Larger Zero-Shot
Models

Our approach is also competitive against other pre-
trained open-source encoder-decoder and decoder-
only Large Language Models under zero-shot
prompting. Despite having significantly fewer pa-
rameters than all the models reported (except for
FlanT5-small), our approach matches or exceeds
many of them on the tasks reported. In average, our
best Statement-Tuned RoBERTa-large model with
only 355M parameters outperforms the best per-
forming LLM (Qwen1.5-7B-Chat) by 4.4 and the
largest LLM (Meta-Llama-3-70B-Instruct, with ap-
proximately 200 times the number of parameters)
by 4.8. It is worth noting that our RoBERTa-base
models with only 125M parameters almost com-
pletely outperforms all models under or equal to
6.9B parameters (except for FlanT5-Large) on all
tasks (except for BCOPA). Our models are dom-
inant on FigQA and StoryCloze, both of which
are unrepresented in the training data, with the
best performing RoBERTa-large model scoring an
additional 32.2 and 9.4 points over Llama3-70B-
Instruct on the accuracy respectively.

We observe similar results in the 32-shot setting
(see Appendix C) and when the LLMs are addi-
tionally instruction-tuned on the same data (see

Appendix H). These results demonstrate the capa-
bilities of much smaller encoder models as being
accurate and light alternatives (in terms of param-
eters; for speed comparison see Appendix G) to
LLM zero-shot (and few-shot) prompting in natu-
ral language understanding.

5.3 Comparison with other Encoder Methods

Our approach consistently outperforms the NLI
baseline proposed by Yin et al. (2019) across tasks
when using RoBERTa-large and across most tasks
when using RoBERTa-base (except FigQA and
Yahoo Topic). The performance gap is more ev-
ident in multiple-choice tasks (BCOPA, FigQA,
StoryCloze) than in simpler sentence classification
tasks, suggesting NLI training is less effective for
multiple-choice scenarios. Compared to NPPrompt
(Zhao et al., 2023), our method significantly out-
performs on all tasks with RoBERTa-large. Even
when comparing Statement-Tuned RoBERTa-base
to NPPrompt RoBERTa-large, we perform better
on all tasks except Yahoo Topic. Despite requiring
multitask fine-tuning, the performance gains, the
versatility and the modest training set sizes justify
our approach.

Robustness to Spurious Patterns. Regarding the
concerns raised by Ma et al. (2021), we evaluated
our method’s reliance on shallow lexical patterns
by measuring accuracy drops after randomly per-
muting input tokens (Table 2). Our multi-task
Statement-Tuning model, trained on diverse tasks,
exhibited a greater accuracy drop compared to the
NLI baseline, indicating less reliance on spurious
patterns. Notably, the NLI model’s accuracy on
MRPC improved by 3.8% post-perturbation, con-
firming its reliance on lexical clues.

The only tasks where our method did not show
a larger accuracy drop than NLI were Sentiment
Analysis, Topic Classification, and Emotion Classi-
fication, which are tasks typically less dependent
on word order and reasoning. This lower drop may
reflect enhanced robustness rather than reliance on
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Statement
Sample

Average accuracy

RoB-base RoB-large

1,000 63.0 71.1
2,000 62.7 71.0
3,000 63.1 73.3
4,000 65.4 72.9
5,000 64.7 72.2
10,000 64.3 73.4
20,000 64.9 68.6
40,000 64.1 72.0
50,000 58.5 68.2

Table 3: Average accuracy over all evaluation tasks
when trained with different statement sample size per
dataset.

Dataset
Size BCOPA MRPC FIGQA AP S-Cloze Yahoo Topic Emotion AVG

80k 72.6(1.3) 66.1(5.9) 60.9(1.2) 92.3(0.6) 73.0(5.7) 39.4(2.9) 46.6(3.4) 64.4
70k 71.3(0.9) 63.5(7.4) 60.3(1.0) 89.9(2.4) 74.3(6.6) 28.6(2.3) 46.3(4.2) 62.0
65k 71.7(1.4) 66.8(4.2) 58.8(2.1) 92.3(0.4) 75.1(4.4) 33.0(1.5) 45.9(2.7) 63.4
60k 71.1(0.6) 69.5(3.0) 59.2(2.3) 92.6(0.5) 67.9(8.3) 29.2(2.8) 44.3(4.7) 62.0
55k 71.1(1.4) 69.0(2.1) 59.0(1.5) 91.6(0.6) 72.1(6.7) 25.8(3.0) 45.6(5.9) 62.0
50k 64.9(1.8) 69.4(2.8) 55.6(3.3) 58.2(6.6) 55.5(6.4) 24.4(2.0) 38.6(6.6) 52.4
25k 52.3(1.9) 61.1(1.1) 49.2(2.5) 50.5(6.4) 53.0(3.9) 18.3(1.9) 20.7(6.4) 43.6

Table 4: Effect of increasing both task diversity and
dataset size on Statement-Tuned RoBERTa-base. AP
denotes Amazon Polarity. The data size of each training
task is fixed at 5000 and task diversity is increased the
same way as in Section 5.7.

lexical patterns.

5.4 Statement Finetuning Sample Size

Recall that we only perform statement fine-tuning
on a sample of all possible statements from the
training dataset. Here, we explore the effect of
sample size per dataset in the multitask statement
fine-tuning on both zero-shot and few-shot perfor-
mance.

Zero-Shot. As shown in Table 3, with only 1k
samples per datasets, we can already reach 96%
of the best performance, which is obtained with
4k samples on RoBERTa-base and 10k samples on
RoBERTa-large, showing the sample-efficiency of
statement-tuning. For RoBERTa-base, introducing
more data after 4,000 samples does not further im-
prove the accuracy on downstream tasks and even
causes a decrease. RoBERTa-large benefits from
a larger fine-tuning data size with the best average
performance observed when the statement number
per training set increases to 10,000, more than dou-
bling the optimal sample size of RoBERTa-base.
We hypothesize that this is due to a larger capac-
ity to understand and discriminate between natural
language statements which allows RoBERTa-large
to benefit from more training data as opposed to
RoBERTa-base, which has a more limited capac-
ity to develop a general semantic understanding
of the truthfulness of statements. Nonetheless, we

also observe a decrease in RoBERTa-large’s per-
formance after 10k samples. The existence of a
point of diminishing returns in both models when
it comes to Statement-Tuning training data sizes
indicates that too many samples may lead to over-
fitting to the training tasks, which affects the gener-
alizability to unseen tasks. To address overfitting
concerns, we increased both dataset size and task
diversity, observing consistent performance gains
(Table 4). This suggests prior issues were indeed
likely due to overfitting. Hence, we recommend a
fixed dataset size of 5,000 per training task and ex-
panding training data by adding more tasks rather
than increasing data size of individual tasks.

Few-Shot. While the statement-tuned model shows
zero-shot generalization, we can further fine-tune
the model on the target downstream task. As seen
in Figure 3, we investigate the effect of both the
multitask statement-tuning sample size and the
number of shots from the target tasks on the n-shot
performance on the 7 evaluation datasets.

When increasing the multitask statement-tuning
sample size, we observe a trend in n-shot perfor-
mance similar to the general zero-shot performance
shown in Table 3. For example, the optimal data
size is achieved at around 4k~5k on COPA, Emo-
tion and Yahoo, and there is an apparent drop in
accuracy across different shot numbers and tasks
when increasing the sample size from 40k to 50k.
There turns out to be a high degree of correlation
among all n-shot and 0-shot performance (see Fig-
ure 6), indicating that observed trends in the 0-shot
scenario can be informative for the few-shot cases.

However, the results seem to indicate a general
trend of diminishing returns past using 200-shot
fine-tuning. Nevertheless, it seems that a great
deal of the potential performance is achieved with
the zero-shot application of the approach, hence
further supporting the utility of our approach when
task-specific data is scarce.

5.5 Comparison with Standard Fine-Tuning

To observe the improvement over regular fine-
tuning of RoBERTa-base, we also include Figure 4,
where the y-axis, Delta, represents the improve-
ment over regular fine-tuning for the particular n-
shot. For zero-shot, we take random choice as the
baseline. Generally, continually fine-tuning our
model is better than fine-tuning vanilla RoBERTa
under an extremely low N-shot setting. However,
in some instances such as BCOPA and (to a certain
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Figure 3: N-shot accuracy of Statement-Tuned RoBERTa-base models across training datasets of different sizes.
The x-axis denotes the number of statements per Statement-Tuning training dataset, with the number of training
datasets fixed.
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Figure 4: N-shot improvement of Statement-Tuned RoBERTa-base with varying training set sizes over standard
fine-tuning. The y-axis, Delta, is the difference between the accuracy of the Statement-Tuned model and the
accuracy achieved by regular fine-tuning of RoBERTa-base on the task. A positive Delta indicates improvement
over the baseline approach.

SPC BCOPA MRPC FigQA AP S-Cloze YA Topic Emotion AVG
1 91.0(1.7) 74.8(2.2) 49.8(4.8) 59.1(0.5) 58.4(17.1) 78.0(3.4) 41.2(2.1) 62.6(6.9)

2 91.3(1.0) 70.2(1.4) 49.2(3.1) 61.6 (1.1) 56.9(8.3) 79.9(2.2) 33.5(1.4) 60.5(3.6)

3 93.0(0.3) 73.2(0.7) 43.2(1.0) 60.5(1.1) 64.3(6.7) 74.2(3.0) 31.3(2.4) 59.5(3.0)
4 92.1(0.3) 70.9(1.6) 49.4(1.0) 59.9(0.4) 68.1(6.4) 68.0(7.5) 38.8(2.1) 61.9(3.9)

5 92.4(0.5) 69.6(1.0) 46.2(3.5) 60.5(1.1) 66.8(6.7) 78.5(2.1) 35.9(3.0) 61.6(3.2)

Table 5: The Zero-shot performance of the base model
using various degrees of SPC, where a larger SPC value
indicates greater statement diversity during training. We
report the average as the geometric mean of the task
performance to account for the differing accuracy ranges
of each task. Each value is a mean over 5 evaluation runs
and we include the standard deviation in the parentheses.

extent) FigQA, we tend to observe a benefit against
regular fine-tuning even for a higher number of
few-shot examples.

Our approach is recommended in extreme few-
shot and zero-shot scenarios. When more data is
available, directly fine-tuning RoBERTa-base is
better. Our method’s good performance with lim-
ited data can be attributed to improved generaliz-
ability from multitask statement tuning and data
augmentation effect of statements generated from
few-shot examples, which enhances data efficiency.

5.6 Effect of Statement Diversity

As part of our investigation of Statement-Tuning,
we would like to explore the effect of template di-
versity during Statement-Tuning. We hypothesize
that randomly applying a larger number of different
statement templates per training corpus will allow
for improved performance on unseen tasks, as it
will make the model more robust to the phrasing of
statement templates and prevent it from relying on
superficial cues in certain templates.

In our main experiments, each dataset employs
several templates (see Appendix A). In this ex-
periment, we limit each corpus to only use the
maximum of N different templates, which we call
Statements per Category (SPC). We statement-tune
RoBERTa base models with a fixed training set
size of 4,000 statements per training corpus with a
varying level of SPC.

Table 5 shows that though BCOPA and Sto-
ryCloze benefits from a larger SPC, increasing SPC
doesn’t always boost average task performance,
with the highest being 62.6 at SPC 1. However,
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Statement-Tuning Training Evaluation
PD CR NLI QnA SA WSD IC OLI SU BCOPA MRPC FIGQA AMAZON P. StoryCloze YA Topic Emotion AVG

x x x x x x x x x 71.0(0.9) 65.7(3.1) 59.8(1.0) 90.7(1.3) 75.1(3.8) 36.8(2.7) 46.2(3.8) 61.2(2.7)
x x x x x x x x 69.8(2.6) 65.9(6.1) 60.4(0.4) 91.2(0.7) 79.8(1.7) 29.4(3.7) 47.1(0.4) 60.0(3.0)
x x x x x x x 70.0(0.3) 64.2(7.9) 59.3(0.2) 92.0(0.3) 70.5(6.4) 31.2(2.3) 49.4(3.0) 59.6(4.1)
x x x x x x 68.7(2.1) 64.6(6.8) 58.8(0.7) 91.3(0.5) 77.3(7.0) 18.7(3.0) 53.4(4.9) 56.5(4.4)
x x x x x 70.2(0.5) 67.0(4.6) 59.4(0.8) 91.8(0.1) 73.4(6.7) 20.5(3.4) 52.2(3.0) 57.2(3.5)
x x x x 70.0(1.2) 67.4(2.5) 59.2(0.3) 78.0(12.0) 75.3(10.1) 36.6(3.3) 40.3(2.2) 58.8(6.2)
x x x 50.2(1.7) 40.6(8.5) 50.9(1.7) 55.9(5.5) 50.2(6.6) 3.8(1.8) 7.2(2.8) 26.0(4.8)

Table 6: Comparison of the effect of reducing task diversity in the training of Statement-Tuning models on zero-shot
accuracy on unseen datasets. The last column is the average using the geometric mean to account for the different
accuracy ranges of the different evaluation sets. The total training set size remains constant at approximately
100,000 statements across all configurations.

average standard deviation drops significantly from
6.9% to 3.6% when SPC increases from 1 to 2,
reaching a low of 3.0% at SPC 3. This suggests
that more template diversity improves stability and
consistency. Therefore, using at least 2 different
templates is recommended for better robustness.

5.7 Effect of Task Diversity

We examine the importance of task variety in
Statement-Tuning. Our Statement-Tuning datasets
can be grouped into 9 task categories: Summa-
rization (SU), Sentiment Analysis (SA), Ques-
tion Answering (QA), Natural Language Infer-
ence (NLI), Commonsense Reasoning (CR), Para-
phrase Detection (PD), Word Sense Disambigua-
tion (WSD), Intent Classification (IC), and Of-
fensive Language Identification (OLI). See Ap-
pendix E for the dataset breakdown. We perform
statement tuning on RoBERTa-base with various
task subsets, dynamically sampling data to main-
tain 100k total statements.

Table 6 shows the zero-shot performance of the
statement tuning approach with a fixed training set
size but varying task types. Average performance
increases from 26.0 to 61.2 as the number of tasks
is increased from the minimum of 3 to the maxi-
mum of 9. Robustness also improves, shown by a
decrease in average standard deviation from 4.8%
to 2.7%. This demonstrates that increasing train-
ing task diversity can boost performance and re-
duce variance. Unsurprisingly, the inclusion of the
Sentiment Analysis task substantially improves the
performance on Amazon Polarity from the same
task category. Another related task, Emotion, also
shows a large increase after adding the SA task.
Although the inclusion of SA and WSD hurts the
performance on a dissimilar task, Yahoo Answer
Topic, the accuracy is recovered after adding the
more related Intent Classification task, and reaches

the highest 36.8 when training with all tasks. How-
ever, the enhancement of downstream tasks does
not always come from similar training tasks. More
interestingly, adding the QA task leads to a sig-
nificant jump in the performance of all evaluation
tasks. Though Paraphrase Identification is always
included in the training, MRPC still benefits from
the QA task, reflected by a great improvement of
26.8. Both related and unrelated training tasks
can have a positive effect on the downstream tasks,
highlighting the value of task diversity in multitask
statement-tuning. Sometimes adding an unrelated
task causes a performance drop on certain datasets,
e.g. StoryCloze after adding IC, but including more
tasks alleviates the problem, again confirming the
advantage of task diversity.

6 Conclusion

As part of their emergent abilities, LLMs general-
ize to many unseen tasks/domains through few-shot
and zero-shot prompting, but are prohibitively com-
putationally expensive and difficult to adapt. To
address this issue, we introduce Statement-Tuning,
a novel technique for few-shot and zero-shot task
generalization for encoder models. We find that this
approach can match or outperform few-shot and
zero-shot prompting of many much larger decoder-
only or encoder-decoder models on many tasks
at a fraction of the parameters. Additionally, our
approach offers both performance and robustness
gains over previous encoder-only approaches. Ex-
perimentation shows that the approach can be lever-
aged by training on as few as 16,000 statements.
We find training task and statement template diver-
sity to be generally helpful. We speculate that the
benefits of this approach could extend beyond task
generalization and could prove useful for cross-
lingual task transfer, and would like to explore this
in future work.

8325



Limitations

While our approach offers advantages in computa-
tional efficiency compared to LLMs, the cost scales
with the number of possible targets due to the re-
quirement of one forward pass per label. That be-
ing said, it is still possible to apply our method
in extreme multi-class classification because we
do not have to use all possible statements with all
possible labels for training, as our model is trained
exactly to generalize to unseen labels by learning
the relation of label semantics and the input text.
Additionally, task-specific full fine-tuning can still
achieve better performance in the presence of more
training data. Therefore, we recommend the use
of our approach in the low-resource/no-resource
scenario. Furthermore, our method can be sensi-
tive to the Statement-Tuning training set size and
other hyperparameters, hence some exploration of
ideal hyperparameters may be required before em-
ploying Statement-Tuned models. In addition, we
limit our analysis only to English, it would be in-
teresting to observe whether the technique enables
cross-lingual transfer but we leave this to future
work. Finally, our reliance on encoder-based mod-
els restricts its application to Natural Language Un-
derstanding tasks, excluding tasks like translation
or abstractive summarization.

Ethics Statement

We affirm our commitment to more accessible
and climate-aware NLP, and hope this work in-
spires more computationally efficient approaches
to NLP. All data and models we use are publicly
available. Furthermore, the success of Statement-
Tuning relies on fine-tuning pretrained encoder
models, which are pretrained on large datasets, and
hence, Statement-Tuning is susceptible to inherit-
ing and enforcing any harmful biases existing in
the pretraining data.
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A Statement Templates

A.1 QQP Templates

Task Statement Template

QQP

"{{text1}}" is a duplicate of "{{text2}}"
"{{text1}}" duplicates {{text2}}
"{{text1}}" is not a duplicate of "{{text2}}"
"{{text1}}" does not duplicate "{{text2}}"

A.2 Winogrande Templates
Task Statement Template

Winogrande

In "{{sentence}}", _ is: {{option1/option2}}
Q: "{{sentence}}", A: {{option1/option2}}
The missing word in: "{{sentence}}" is {{option1/option2}}
_ in: "{{sentence}}" is {{option1/option2}}
"{{sentence}}", _ is: {{option1/option2}}

A.3 PiQA Templates

Task Statement Template

PiQA

{{goal}} {{sol1/sol2}}
Goal: {{goal}}, Solution: {{sol1/sol2}}
If the goal is: {{goal}}, then the solution is: {{sol1/sol2}}
Problem: {{goal}}, Solution: {{sol1/sol2}}

A.4 MNLI and SNLI Templates
Task Statement Template

MNLI

"{{text1}}" entails "{{text2}}"
{{text1}}? yes, {{text2}}
Premise: {{text1}}, Hypothesis: {{text2}}, label: Entailment
"{{text1}}" is neutral with regards to "{{text2}}"
{{text1}}? maybe, {{text2}}
Premise: {{text1}}, Hypothesis: {{text}}, label: Neutral
"{{text1}}" contradicts "{{text2}}"
{{text1}}? no, {{text2}}
Premise: {{text1}}, Hypothesis: {{text}}, label: Contradiction

A.5 Mintaka Templates

Task Statement Template

Mintaka

Q: {{question}}, A: {{answerText}}
{{question}} {{answerText}}
Question: {{question}}, Answer: {{answerText}}
The answer of {{question}} is {{answerText}}

A.6 Yelp Polarity Templates
Task Statement Template

Yelp Polarity

"Title: {{title}}, Content: {{content}}" has negative sentiment
{{title}} {{content}} has negative sentiment
"Title: {{title}}, Content: {{content}}", Sentiment: Negative
{{title}} {{content}} It was terrible
The sentiment in "{{title}} {{content}}" is negative
"Title: {{title}}, Content: {{content}}" has positive sentiment
{{title}} {{content}} has positive sentiment
"Title: {{title}}, Content: {{content}}", Sentiment: Positive
{{title}} {{content}} It was great
The sentiment in "{{title}} {{content}}" is positive

A.7 WikiLingua Templates
Task Statement Template

WikiLingua

Passage: {{source}}, Summary: {{target}}
The summary of "{{source}}" is {{target}}
Context: {{source}}, Summary: {{target}}
Q: Summarize the following: {{source}}, A: {{target}}
The answer of "Summarize the following {{source}}" is {{target}}

A.8 SQuAD Templates
Task Statement Template

SQuAD

Context: {{context}}\n Question: {{question}}\n Answer: {{answers/random_span}}
{{context}}\n According to the passage above, the answer of {{question}} is {{answers/random_span}}
"Passage: {{context}}\n Question: {{question}}\n Answer: {{answers/random_span}}
{{context}}\n Q: {{question}}\n A:{{answers/random_span}}

A.9 BCOPA Templates

Task Statement Template

BCOPA

The cause of {{premise}} is that {{choice1/choice2}}
{{premise}} because {{choice1/choice2}}
{{premise}} due to {{choice1/choice2}}
The effect of {{premise}} is that {{choice1/choice2}}
{{premise}} therefore {{choice1/choice2}}
{{premise}}, so {{choice1/choice2}}

A.10 MRPC Templates

Task Statement Template

MRPC

"{{text1}}" is a paraphrase of "{{text2}}"
"{{text1}}"\n In other words: "{{text2}}"
{{text1}}? yes, {{text2}}
"{{text1}}" can be stated as "{{text2}}"
{{text1}}" is the same as saying "{{text2}}"

A.11 Amazon Polarity Templates
Task Statement Template

Amazon Polarity

"Title: {{title}}, Content: {{content}}" has negative sentiment
{{title}} {{content}} has negative sentiment
"Title: {{title}}, Content: {{content}}", Sentiment: Negative
{{title}} {{content}} It was terrible
The sentiment in "{{title}} {{content}}" is negative
The emotions conveyed in "{{title}} {{content}}" are negative
"Title: {{title}}, Content: {{content}}" has positive sentiment
{{title}} {{content}} has positive sentiment
"Title: {{title}}, Content: {{content}}", Sentiment: Positive
{{title}} {{content}} It was great
The sentiment in "{{title}} {{content}}" is positive
The emotions conveyed in "{{title}} {{content}}" are positive

A.12 FigQA Templates

Task Statement Template

FigQA

{{startphrase}} {{ending1/ending2}}
{{startphrase}} therefore {{ending1/ending2}}
startphrase: {{startphrase}}, ending: {{ending1/ending2}}
if {{startphrase}} then {{ending1/ending2}}
{{startphrase}} means {{ending1/ending2}}

A.13 StoryCloze Templates

Task Statement Template

StoryCloze
{{input_sentence_1}} {{input_sentence_2}}
{{input_sentence_3}} {{input_sentence_4}}
{{sentence_quiz1/sentence_quiz2}}

A.14 Yahoo Topics Answers Templates

Task Statement Template

YA Topic {{question_title}} {{question_content}} the topic is {{topic}}

A.15 Emotion Templates

Task Statement Template

Emotion {{question_title}} {{question_content}} the topic is {{topic}}
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A.16 Offensive Templates

Task Statement Template

Offensive

"{{text}}". The tweet is {{label}}.
This tweet "{{text}}" is considered {{label}}.
Tweet: "{{text}}". Label: {{label}}.
"{{text}}". This text is {{label}}.
The text "{{text}}" is {{label}}.

A.17 Massive Templates
Task Statement Template

Massive

The utterance "{{utt}}" is under the {{scenario}} scenario.
Utterance: "{{utt}}" Scenario: {{scenario}}
User: "{{utt}}". The best scenario for the user query is {{scenario}}.
The scenario of user’s utterance "{{utt}}" is {{scenario}}.

A.18 Definite Pronoun Resolution Templates
Task Statement Template

DPR

{{sentence_with_pronoun_replaced}}
{{sentence}}. Based on the sentence, {{pronoun}} refers to {{candidates}}.
The pronoun {{pronoun}} in "{{sentence}}" is referring to {{candidates}}.
{{sentence}}. ’{{pronoun}}’ refers to {{candidates}}.

A.19 QASC Templates
Task Statement Template

QASC

{{formatted_question}}. Answer: {{answer_key}}
Q: "{{formatted_question}}." A: {{answer_key}}
Question: "{{formatted_question}}." Answer: {{choices[answer_key]}}
Context: {{combined_facts}} Question: {{question}} Answer: {{choices[answer_key]}}
{{question}} Based on the passage "{{combined_facts}}", the answer if the question is "{{choices[answer_key]}}".
{{combined_facts}} {{question}} {{choices[answer_key]}}
Context: {{combined_facts}} Question: {{formatted_question}}. Answer: {{answer_key}}
{{formatted_question}}. The answer is {{answer_key}}

A.20 SciQ Templates
Task Statement Template

SciQ

{{question}} {{correct_answer}}
Question: {{question}} Answer: {{correct_answer}}
{{support}} Question: {{question}} Answer: {{correct_answer}}
{{support}} According to the information, {{question}}. Answer: {{correct_answer}}.
The answer to the question {{question}}, according to "{{support}}" is {{correct_answer}}.

A.21 RACE Templates

Task Statement Template

RACE {{article}} {{question_replaced_with_answer}}
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B Fine-Tuning Setup

To fine-tune RoBERTa-base/RoBERTa-large on
Statement-Tuning, we train for 15 epochs using
an initial learning rate of 1e-06 and a weight decay
of 0.01. We use a warm-up ratio of 0.1. We use
10% of the training data for validation. We use a
training batch size of 16 for RoBERTa-base and a
training batch size of 8 for RoBERTa-large.

C 32-shot Generalization

Table 7 shows the results of 32-shot fine-tuning on
7 target downstream datasets of our models and
baselines. We observe similar trends to zero-shot
setting as discussed in Section 5.2.

D Regular Classification of
Statement-Tuned Models

In figure 5, we visualize the relative improvement
of our Statement-Tuned RoBERTa-base models
regularly fine-tuned on N-shot downstream data
over the regularly fine-tuned RoBERTa-base. The
results are not as good as fine-tuning using state-
ments.

E Task Categories Breakdown

For the statement tuning task diversity, we group
datasets based on task categories as follows (evalu-
ation datasets are underlined):

1. Summarization (SU): WikiLingua, SAMSum

2. Sentiment Analysis (SA): Yelp Polarity,
Amazon Polarity

3. Question Answering (QA): Mintaka, SQuAD,
QASC, SciQ, RACE

4. Natural Language Inference (NLI): MNLI,
SNLI

5. Commonsense Reasoning (CR): Winogrande,
PiQA

6. Paraphrase Detection (PD): QQP, MRPC

7. Word Sense Disambiguation (WSD): Definite
Pronoun Resolution

8. Intent Classification (IC): Massive

9. Offensive Language Identification (OLI):
Tweet Eval’s Offensive

10. Sentence Completion: BCOPA, StoryCloze

11. Emotion Recognition: Emotion

12. Topic Classification: Yahoo Answer Topic

13. Nonliteral Reasoning: FigQA

F N-Shot Correlation

Figure 6 shows the correlation of accuracies
achieved in different N-shot settings with various
shot numbers.

G Inference Speed Comparison

We report the average examples/sec processed for
each of the datasets in Table 8. It is important to
note that all models are run on a single GPU, except
for Meta-Llama-3-70B-Instruct and Llama-2-13B-
chat which were run on 4 and 2 GPUs, respectively.

H Further Training of Instruction-Tuned
Decoders on Statement-Tuning Data

As seen in Table 10, we report the comparison
of our approach with several decoders that were
instruct-tuned using an instruction-tuning dataset
created using the same training corpora used
for Statement-Tuning. Training details are outlined
in Table 9. Furthermore, the templates used to form
instructions are based on those used for Flan (Wei
et al., 2022) (we make the dataset available here:
https://huggingface.co/datasets/
ashabrawy/st_instruction_data).

The models tested are a subset of the ones re-
ported in Table 1 due to the time and computa-
tional expense of instruction-tuning and hardware
limitations. However, even when the LLM mod-
els are instruction-tuned on the same data as the
Statement-Tuned RoBERTa models, we observe
similar trends where performance of the RoBERTa-
base model tends to match the performance of
all models up to 6.9B parameters on all tasks ex-
cept for BCOPA. Furthermore, the RoBERTa-large
model approaches or exceeds performance on all
tasks for models with 7B+ parameters. The same
trend of dominating performance on FigQA and
StoryCloze is observed.

I NLI Prompt Templates

We outline the NLI-style templates used for the
tasks in Table 11.
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#Parameters BCOPA MRPC FigQA Amazon Polarity StoryCloze Yahoo Answers Topic Emotion Avg
Meta-Llama-3-70B-Instruct 70B 95.2 78.9 46.1 96.6 86.5 66.4 58.8 75.5
Llama-2-13b-chat-hf 13B 93.2 71.6 44.3 95.7 84.9 61.1 56.6 72.5
Llama-2-7b-chat 7B 91.0 67.9 42.8 95.2 82.1 61.9 54.3 70.7
Mistral-7B-Instruct-v0.2 7B 93.8 78.2 44.8 96.2 87.0 65.0 57.0 74.6
Qwen1.5-7B-Chat 7B 91.4 79.4 43.8 95.1 82.4 63.9 58.0 73.4
Pythia-6.7B 6.7B 84.6 66.9 39.2 91.6 74.0 38.3 52.0 63.8
Pythia-2.7B 2.7B 80.8 63.5 41.5 90.8 71.7 35.5 47.5 61.6
Phi-2 2.7B 90.8 74.0 44.7 93.8 81.6 58.4 58.4 71.7
FlanT5-Large 770M 66.2 78.7 39.7 75.3 59.9 38.0 34.6 56.1
Qwen1.5-0.5B-Chat 500M 73.4 56.1 38.5 84.2 68.8 36.1 31.4 55.5
BART-large-mnli 406M 52.2 32.4 42.0 50.6 51.1 7.1 10.0 35.0
FlanT5-Small 60M 52.0 32.6 41.4 75.8 50.0 9.1 9.8 38.7
Our Approach: RoBERTa-base (Best) 125M 75.0(0.5) 70.0(15.2) 61.1(0.4) 92.8(1.0) 79.7(1.5) 39.2(4.4) 48.1(3.9) 66.6
Our Approach: RoBERTa-base (4k) 125M 75.0(0.6) 70.0(1.9) 60.3(1.0) 92.4(0.8) 79.7(3.5) 38.2(2.5) 45.4(3.2) 65.9
Our Approach: RoBERTa-large (Best) 355M 85.1(0.8) 71.5(1.9) 74.7(1.8) 95.3(0.8) 91.9(0.2) 50.2(2.2) 49.8(1.4) 74.1
Our Approach: RoBERTa-large (10k) 355M 85.1(0.8) 71.5(0.8) 72.6(1.8) 95.3(0.3) 91.0(1.0) 48.2(0.8) 48.4(3.6) 73.1
Full-shot:
RoBERTa-base (FT) 125M 74.2 87.0 88.1 94.3 - 71.0 82.2 -
RoBERTa-large (FT) 355M 86.0 87.6 92.0 96.5 - 68.5 78.2 -

Table 7: Comparison of our approach against many pretrained open-source encoder-Decoder and Decoder-only
Pretrained Large Language Models on 7 Natural Language Understanding tasks in 32-shot conditions. We highlight
all scores in gray where our approach with RoBERTa-base (best) exceeds or is equal to the score given by the model.
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Figure 5: N-shot improvement of Statement-Tuned RoBERTa-base models used for regular fine-tuning. The y-axis,
Delta, is the difference between the accuracy of the Statement-Tuned model fine-tuned for the task directly by
discarding the Statement-Tuning classification head and the accuracy achieved by regular fine-tuning of RoBERTa-
base on the task. A positive Delta indicates improvement over the baseline approach.
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Figure 6: N-shot correlation using the average accuracy
across all training set sizes and evaluation sets.

8334



Model BCOPA MRPC FigQA Amazon Polarity StoryCloze YA Topic Emotion Avg

Qwen1.5-0.5B-Chat 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
phi-2 1.4 1.4 1.4 1.4 1.5 1.4 1.4 1.4
Meta-Llama-3-70B-Instruct* 2.9 1.3 3.2 0.9 4.9 1.1 2.1 2.3
flan-t5-large 8.2 13.2 13.2 13.2 13.2 13.2 13.2 12.5
Llama-2-13b-chat-hf* 8.7 5.7 12.8 4.3 15.7 4.4 6.9 8.3
Our Approach (roberta-large) 9.3 14.5 15.0 15.0 14.7 3.1 5.1 11.0
bart-large-mnli 9.7 14.1 14.0 14.2 14.1 13.7 13.8 13.4
pythia-6.9b 12.0 0.6 4.6 0.4 0.6 2.2 0.4 3.0
Llama-2-7b-chat-hf 12.5 0.6 4.6 0.4 0.6 2.3 0.5 3.1
Mistral-7B-Instruct-v0.2 12.8 0.5 2.7 0.3 0.5 1.7 0.4 2.7
pythia-2.8b 13.6 16.7 24.9 15.2 27.2 15.1 20.9 19.1
flan-t5-small 13.9 39.2 39.1 39.3 39.4 39.3 39.3 35.6
Our Approach (roberta-base) 17.9 49.8 50.0 49.8 49.9 10.3 17.0 34.9

Table 8: The average examples per second processed by each model on each task. * indicates that the model required
the use of more than one GPU.

Llama-2-13b Qwen1.5-7B Pythia-6.9B Pythia-2.9B Phi-2 Qwen1.5-0.5B

#Parameters 13B 7B 6.9B 2.9B 2.7B 500M
Quantization 8bit 4bit 4bit 4bit 4bit 4bit

Sequence Length 4096 2048 2048 2048 2048 2048
lora_r 32 32 32 32 32 32

lora_alpha 16 64 64 64 64 64
lora_dropout 0.05 0.05 0.05 0.05 0.05 0.05
adam_beta2 0.999 0.999 0.95 0.95 0.95 0.999

adam_epsilon 1e-8 1e-8 0.00001 0.00001 0.00001 1e-8
max_grad_norm none none 1.0 1.0 1.0 none

optimizer adamw_bnb_8bit adamw_torch adamw_torch adamw_torch adamw_torch adamw_torch
gradient acc. 4 4 4 4 4 4

micro batch size 2 1 1 1 1 1
lr_scheduler cosine cosine cosine cosine cosine cosine
learning_rate 0.0002 0.0002 0.00001 0.00001 0.000003 0.0002

Table 9: Instruction Tuning Hyperparameters
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#Parameters BCOPA MRPC FigQA Amazon Polarity StoryCloze YA Topic Emotion Avg

Llama-2-13b 13B 89.6 60.8 40.9 93.7 82.4 53.2 51.6 67.5
Qwen1.5-7B 7B 87.2 78.9 41.4 94.8 75.7 47.8 56.5 68.9
Pythia-6.9B 6.9B 82.8 68.1 40.0 71.7 71.5 16.4 27.5 54.0
Pythia-2.9B 2.9B 79.6 67.9 40.3 77.2 69.7 21.2 30.6 55.2
Phi-2 2.7B 87.2 68.1 41.7 85.6 77.8 38.4 53.5 64.6
Qwen1.5-0.5B 500M 72.4 68.4 39.4 49.8 67.6 33.2 72.4 57.6
Our Approach: RoBERTa-base (Best) 125M 75.3(0.5) 72.3(1.5) 61.4(0.6) 92.9(1.3) 79.1(1.1) 40.2(3.8) 48.5(5.1) 67.1
Our Approach: RoBERTa-base (4k) 125M 72.4(0.5) 69.6(1.1) 60.7(0.9) 92.3(0.8) 78.5(2.7) 37.9(2.7) 46.6(4.3) 65.4
Our Approach: RoBERTa-large (Best) 355M 85.1(0.7) 71.8(0.8) 74.2(1.4) 95.4(0.4) 92.1(0.7) 49.9(2.1) 50.7(1.4) 75.3
Our Approach: RoBERTa-large (10k) 355M 85.1(0.7) 71.5(0.8) 73.0(2.4) 95.4(0.4) 91.1(0.8) 48.4(0.7) 49.1(3.2) 73.4

Full/3000-shot:
RoBERTa-base (FT) 125M 74.2 87.0 88.1 94.3 - 71.0 82.2 -
RoBERTa-large (FT) 355M 86.0 87.6 92.0 96.5 - 68.5 78.2 -

Table 10: Comparison of our approach against many pretrained open-source encoder-Decoder and Decoder-only
Instruction-tuned Pretrained Large Language Models on 7 Natural Language Understanding tasks in Zero-shot
conditions. FT stands for Full fine-tuning and is included for reference. For Statement-Tuning, we report the average
across 5 training runs and 5 evaluation runs and include the average standard deviation in parenthesis. We highlight
all scores in gray where our approach with RoBERTa-base (best) exceeds or is equal to the score given by the model.

Task Premise Hypotheses
BCOPA {premise} "The {question} is {̈choice1}"̈

"The {question} is {̈choice2}"̈
MRPC {text1} {text2} "The two sentences are not equivalent"

"The two sentences are equivalent"
FigQA {startphrase} {ending1}

{ending2}
Amazon Sentiment {text} "The sentiment of the text is negative"

"The sentiment of the text is positive"
StoryCloze (SC) {input_sentence_1} {in-

put_sentence_2}
{input_sentence_3} {in-
put_sentence_4}

{sentence_quiz1}

{sentence_quiz2}
Yahoo Topic Classification {question_title}

{question_content}
"it is related with society or culture"

"it is related with science or mathematics"
"it is related with health"
"it is related with education or reference"
"it is related with computers or Internet"
"it is related with sports"
"it is related with business or finance"
"it is related with entertainment or music"
"it is related with family or relationships"
"it is related with politics or government"

Emotion Classification {text} "this person feels sad"
"the person feels joyful"
"the person loves that"
"the person feels angry"
"the person is afraid of something"
"the person feels surprised"

Table 11: Task-specific premise and hypotheses templates for converting tasks into NLI format.
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