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Abstract

Parameter-efficient fine-tuning techniques like
Low-Rank Adaptation (LoRA) have revolu-
tionized the adaptation of large language mod-
els (LLMs) to diverse tasks. Recent efforts
have explored mixtures of LoRA modules for
multi-task settings. However, our analysis re-
veals redundancy in the down-projection ma-
trices of these architectures. This observation
motivates our proposed method, Mixture of
Dyadic Experts (MoDE), which introduces a
novel design for efficient multi-task adaptation.
This is done by sharing the down-projection
matrix across tasks and employing atomic
rank-one adapters, coupled with routers that
allow more sophisticated task-level specializa-
tion. Our design allows for more fine-grained
mixing, thereby increasing the model’s abil-
ity to jointly handle multiple tasks. We eval-
uate MoDE on the Supernatural Instructions
(SNI) benchmark consisting of a diverse set of
700+ tasks and demonstrate that it outperforms
state-of-the-art multi-task parameter-efficient
fine-tuning (PEFT) methods, without introduc-
ing additional parameters. Our findings con-
tribute to a deeper understanding of parameter
efficiency in multi-task LLM adaptation and
provide a practical solution for deploying high-
performing, lightweight models.

1 Introduction

Large language models (LLLMs) have demonstrated
remarkable capabilities across various natural lan-
guage processing tasks, ranging from text genera-
tion and translation to question-answering and sum-
marization (Brown et al., 2020; Team et al., 2023;
GemmaTeam et al., 2024; OpenAl and et al., 2024).
Tailoring these models for optimal performance on
diverse tasks is crucial for real-world applications,
where LLMs must handle various user requests
and instructions. However, effectively adapting
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Figure 1: Mixture of Dyadic Experts with 3 experts and
a rank of 4, with each slice corresponding to a rank di-
mension. Our architecture allows independent routing
at each rank. When number of mixtures is 1, our archi-
tecture is equivalent to traditional LoRA.

these large models to multiple tasks presents sig-
nificant challenges. Fine-tuning separate models
for each task is computationally expensive and re-
quires a vast amount of storage due to the large
model sizes. Moreover, independently trained mod-
els hinder knowledge transfer between tasks, po-
tentially limiting models’ performance and their
generalization capability.

Multi-task learning (MTL) (Caruana, 1997,
Ruder, 2017; Frohmann et al., 2024) offers a
promising solution to these challenges. By train-
ing a single model on multiple tasks simultane-
ously, MTL aims to improve parameter efficiency,
enhance generalization, and potentially boost per-
formance on individual tasks through knowledge
transfer. Parameter-efficient fine-tuning (PEFT)
techniques, such as Low-Rank Adaptation (LoRA)
(Hu et al., 2021), have further enhanced efficiency
by introducing only a small number of trainable
parameters. LoRA efficiently represents weight
changes during fine-tuning using two low-rank pro-
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jection matrices: one down-projects input features
to a smaller size, and another up-projects the re-
sulting low-dimensional representation back to the
original output size.

Mixture-of-Experts ~ (MoE)  architectures
(Sukhbaatar et al., 2024; Li et al., 2022; Jiang
et al., 2024; Fedus et al., 2022) have emerged as
a powerful approach to scale model capacity and
expertise, enabling LLMs to handle a wider range
of tasks. Recent studies (Feng et al., 2024; Zhu
et al., 2023; Zadouri et al., 2023; Liu et al., 2023;
Li et al., 2024; Lin et al., 2024b) have explored
integrating LoRA with Mixture-of-Experts
architectures (LoRA-MoE) to extend LLMs’
capabilities to multi-task adaptation. However, our
analysis reveals redundancy in down-projection
matrices of these architectures. This redundancy
leads to an inefficient utilization of parameters,
potentially limiting the effectiveness in capturing
the unique characteristics of each task.

In this work, we propose Mixture of Dyadic
Experts (MoDE) (Figure 1), a novel parameter-
efficient framework for multi-task adaptation.
MoDE leverages a single, shared down-projection
matrix across all experts to reduce parameter re-
dundancy. Furthermore, MoDE introduces atomic
rank-one adapters, enabling fine-grained task spe-
cialization and knowledge sharing. Crucially,
MoDE incorporates a sophisticated routing mech-
anism that allows for more nuanced and flexible
combinations of these rank-one adapters, further
enhancing the model’s expressive power while
maintaining parameter efficiency.

We rigorously evaluate MoDE on the multi-task
Supernatural Instructions benchmark (Wang et al.,
2022b). Our results demonstrate that MoDE consis-
tently outperforms state-of-the-art multi-task PEFT
methods, including those based on LoRA-MoE,
while utilizing comparable number of additional
parameters. This underscores MoDE’s efficacy in
achieving both strong performance and parame-
ter efficiency, making it a promising approach for
deploying multi-task LLMs in real-world applica-
tions.

Our key contributions are as follows:

* Identify and address the redundancy in down-
projection matrices in existing LoRA-based
MOoE architectures.

* Propose MoDE, a novel architecture lever-
aging a shared down-projection matrix and
atomic rank-one adapters, coupled with a so-

phisticated routing mechanism for efficient
and expressive performance.

* Demonstrate the superior performance of
MoDE compared to state-of-the-art multi-task
LoRA-based MoE methods on the Supernatu-
ral Instructions benchmark, while maintaining
parameter efficiency.

2 Related Work

Mixture-of-Experts and LoRA Parameter-
efficient fine-tuning (PEFT) methods like LoRA
(Low-Rank Adaptation) (Hu et al., 2021) enable
effective adaptation of LLMs to downstream tasks
with reduced trainable parameters compared to
full fine-tuning. Recent research has explored
combining LoRA with Mixture-of-Experts (MoE)
architectures for multi-task learning. Some ap-
proaches, such as Mixture-of-LoRAs (MoA) (Feng
et al., 2024) and MOELoRA (Liu et al., 2023),
use domain-specific LoORA modules and explicit
routing strategies to adapt to diverse tasks. Others,
like SiRA (Zhu et al., 2023) and MixLoRA (Li
et al., 2024), introduce sparse MoE mechanisms
with specialized routing and/or load-balancing
techniques to enhance efficiency while maintaining
performance. MoLORA (Zadouri et al., 2023)
combines MoE with lightweight LoRA experts
to achieve extreme parameter efficiency. AdaMix
(Wang et al., 2022a) tunes a mixture of adapta-
tion modules within each Transformer layer to
capture multiple views of a single task. It also
demonstrates the benefits of sharing up-projection
matrices in low-data scenarios. In contrast, our
multi-task approach, MoDE, leverages shared
project-down matrices across LoRA modules,
motivated by their observed similarity across tasks.

Multi-task PEFT Other work has explored ex-
tending PEFT to multi-task settings, where a single
model needs to adapt to diverse tasks. LoraHub
(Huang et al., 2023) investigates LoORA compos-
ability for cross-task generalization by dynami-
cally assembling LoRA modules trained on dif-
ferent tasks to adapt to unseen tasks. ZipLoRA
(Shah et al., 2023) tackles the challenge of com-
bining independently trained style and subject Lo-
RAs for controllable joint generation. FLix (Lin
et al., 2024a) focuses on multi-task multilingual
model adaptation by associating each dataset fea-
ture with its own low-rank weight update param-
eters for improved generalization across diverse
datasets. MoLE (Wu et al., 2024) implements a
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Figure 2: Illustration of a basic LoORA module.

hierarchical weight control approach with learn-
able gating functions for the optimal composition
of trained LoRA layers, treating each layer as a
distinct expert. Different from composing over all
LoRA adaptors, Ostapenko et al. (2024) explores
building a library of trained LoRA adapters and
using a zero-shot routing mechanism (Arrow) to
select relevant adapters for new tasks dynamically.

3 Method

The Mixture of Dyadic Experts (MoDE) archi-
tecture presents a novel approach for multi-task
learning, building upon and extending the tradi-
tional Low-Rank Adaptation (LoRA) and mixture-
of-experts (MoE) design.

3.1 Background

Low-Rank Adaption (LoRA) LoRA (Huetal.,
2021) efficiently adapts LLMs to downstream tasks
(Shah et al., 2023) by freezing pre-trained model
weights and injecting trainable rank decomposition
matrices into each layer. Given a feed-forward
layer with input x € R'*¥ and weight matrix
Wy € RPX? LoRA introduces a down-projection
matrix A € RP*" and an up-projection matrix
B € R9*7 (Figure 2). The output of the layer is

y = xWp + xAB7.
During training, only A and B are updated.

Dyadic Product Representation A dyadic prod-
uct (or outer product) is a matrix multiplication
between two vectors. Given vectors u € RP*! and
v € R?*! their dyadic product u ® v is a matrix
of size p x q. The LoRA update AW = ABT
can be expressed as a sum of dyadic products by
decomposing A and B into their column vectors
(Liu et al., 2024):

AW = [al,ag,

= Z(ai ® b;)
i=1

7a7'] * [bl,bQ, ...,br]T

q_6_down

q_12_down q_12_up

(@) (b)

Figure 3: Scatter plots showing the three most promi-
nent principal components of all constituent vectors
in the LoRA projection matrices for 15 indepen-
dently trained single task model with shared initializa-
tion. Plots q_6_down and q_12_down (q_6_up and
q_12_up) illustrate the down (up) projections of query
matrices at layers 6 and 12, respectively. Each point
represents a vector of a LoRA matrix, and different
colors indicate different positions along the rank di-
mension in a matrix. The clear clustering of down-
projection vectors suggests that the down-projection
matrices are task-agnostic, motivating the design of the
MoDE architecture.

where a; and b; are column vectors of A and B,
respectively. This can be plugged into the output
equation to get:

y =xWy +XZ(al‘ &® bZ>
=1

LoRA-MoE Mixture-of-Experts (MoE) utilizes
a combination of sub-models (experts), each spe-
cializing in different aspects of the underlying tasks,
along with a gating mechanism to dynamically
route inputs to the most suitable experts (Shazeer
et al., 2017). Figure 4)(a) illustrates a traditional
LoRA-MoE approach (Zadouri et al., 2023), where
m LoRA experts (E! = AiBiT, ie{l,...,m})
are added to each layer. A router R, parameterized
by Wx € RPX™ determines which expert to use,
yielding the output:

m
y=xWo+ Y R'(x)(xA'B")
i=1
where R?(x) is the routing probability for E*.
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Figure 4: Illustration of (a) traditional LoORA Mixture-of-Experts, (b) traditional LoORA Mixture-of-Experts with

shared down-projection matrix.

3.2 Motivating Observation

To motivate our proposed MoDE architecture, we
first present an empirical analysis of projection
matrices of LORA modules that are independently
trained on a set of tasks from the same initialization
(B; to 0 and A; from a random normal distribution
with a standard deviation of 0.01 and mean 0). We
selected 15 diverse tasks from the Supernatural
Instructions benchmark (see Section 4.1 for de-
tails) and trained 15 LoRA modules for this study.
We visualized the learned LoRA parameters using
Principal Component Analysis (PCA), focusing on
the distribution of vectors obtained by slicing the
up-projection and down-projection matrices along
their rank dimension, i.e., the vectors featuring in
the dyadic product representation in Section 3.1.

Figure 3 shows the resulting scatter plots. No-
tably, we observe that down-projection matrix vec-
tors from different LoORA modules tend to cluster
into distinct groups, with vectors corresponding to
the same position along the rank dimension form-
ing tight clusters. In contrast, up-projection ma-
trices exhibit no such clustering. This suggests
down-projection matrices are task-agnostic, while
up-projection matrices are more task-specific.

This empirical finding motivates the MoDE
architecture, which leverages a shared down-
projection matrix to reduce parameter redundancy.
We further improve this design by leveraging the
dyadic formulation to introduce a more sophisti-
cated routing strategy which enables a more fine-
grained task-specific adaptation. Note that vectors
from the up-projection matrix of each task (Figure
3(b)) are very different from each other. There-

fore, we don’t consider sharing an up-projection
matrix in our design. Subsequent sections will
detail MoDE’s architecture and demonstrate its ef-
fectiveness in achieving both parameter efficiency
and strong multi-task performance.

3.3 Mixture of Dyadic Experts (MoDE)

Inspired by the observations in Section 3.2, we
introduce Mixture of Dyadic Experts (MoDE), a
novel framework for efficient multi-task adaptation
that incorporates two key innovations: (i) shared
down-projection matrices for more efficient param-
eter utilization, and (ii) a sophisticated routing strat-
egy to promote better task-level specialization.

3.3.1 Shared Down-Projection Matrix

Before introducing MoDE, we first present a simple
modification of the traditional LORA-MoE, termed
LoRA-MoE-SD (Figure 4(b)), where all experts
share a single down-projection matrix A. The out-
put of a layer with LoORA-MoE-SD is:

m
y=xWo+ Y R'(x)(xAB')
i=1
where A is the shared down-projection matrix, and
B’ is the up-projection matrix for expert F;.

Parameter Efficiency By sharing a single down-
projection matrix A across all experts, LORA-MoE-
SD reduces the number of trainable parameters for
these matrices fromm - P -rto P - r.

3.3.2 Fine-Grained Routing

LoRA-MoE-SD, albeit with smaller parameters,
offers only m choices for up projection. This is be-
cause the router inherently introduces a constraint
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that all the r dimensions of each expert must route
together. In other words, the dyadic representation
of LoRA-MoE update contains m X r terms, but the
router only provides m weights. MoDE addresses
this by introducing atomic rank-one adapters. This
design choice allows MoDE to leverage the dyadic
product representation of LoRA, where each rank-
one update captures a specific direction of change
in the original weight matrix.

MoDE employs m rank-one experts for each col-
umn vector b; in B (Figure 1), resulting in m x r
experts. Each expert £ (where i € {1,...,m} and
j € {1,...r}) specializes in a specific component
of the up-projection, represented as a dyadic prod-
ucta; ® b;T, where a; is the j-th column vector
of the shared down-projection matrix A and bé- is
the vector representing the i-th rank-one expert for
the j-th component of B.

‘Let R; (x) is the routing probability for expert
E7 given input x, the MoDE module outputs:

m T
y=xWo+ > > Ri(x)(x(a; @ bi)).
i=1 j=1

Model Expressivity The router in MoDE inde-
pendently selects the expert used for each vector b;.
This fine-grained control allows for flexible com-
bination of these dyadic product experts, enabling
MOoDE to dynamically compose a specialized up-
projection matrix tailored to the input and task. For
example, if B has rank 4, the router might select
Ej for by, E3 for by, E3 for bz, and E} for by.

With m rank-one experts per vector b; of a rank-
r up-projection matrix, MoDE can model m” dif-
ferent expert compositions, allowing for a wide
range of task-specific adaptations compared to the
m experts in a traditional LoRA-MoE, given a sim-
ilar number of parameters. This increased expres-
sivity, derived from the flexible combination of
dyadic products, allows MoDE to better capture
the nuances of individual tasks while maintaining
scalability for a large number of tasks.

MoDE Routing MoDE utilizes a token-level soft
routing strategy, where the router R assigns a
weight to each rank-one expert for a given input
token. The weighted sum of experts’ outputs de-
termines the final output. This approach enables
dynamic utilization of the most relevant experts for
each input, facilitating nuanced and context-aware
adaptation.

The router network is denoted as Wg €
R™*FPXm where Wg,; € RPX™ represents the

network for vector b; in the up-projection matrix.
For an input x, the routing weights R; € R*™
for the experts corresponding to b; are

R;(x) = softmax(x - Wrg.;).
This mechanism allows MoDE to adaptively com-

bine the expertise of multiple rank-one adapters,
leading to improved multi-task performance.

3.4 Generalization

The rank-1 adapters in MoDE can be generalized
to rank-p, where the router selects a composition
of rank-p adapters for each input. This requires the
LoRA rank r to be divisible by adapter rank p. The
generalized output calculation becomes:

m T/p
y=xWo+ > Y Ri(x) xABj
i=1 k=1
where
ABy = Z(ajer(k—l) ® bl k1) )-
j=1

We denoted this generalized module as MoDE
mxrxp. Note that MoDE 1xrxr is functionally
equivalent to a LoORA module of rank r, and MoDE
mXxrxr is functionally equivalent to LoORA-MoE-
SD with rank 7 and m experts.

4 Experiments

We comprehensively evaluate MoDE’s perfor-
mance and analyze its design choices through three
sets of experiments on the Supernatural Instruc-
tions (SNI) benchmark (Wang et al., 2022b): (1)
multi-task evaluation on the full dataset, (2) an
ablation study on generalized MoDE architecture
(Section 3.4) on the full dataset , and (3) a case
study with a fixed number of tasks and parame-
ter budgets. This section details the experimental
setup and presents the results.

4.1 Datasets and Metrics

We leverage the Supernatural Instructions (SNI)
dataset (with 1,616 diverse instruction-following
tasks covering 76 distinct task types) for our ex-
periments, focusing on the 756 English-only tasks
from the default train split for both training and
evaluation. For each task, we split the examples
into a 90% training set and 10% evaluation set. For
multi-task experiments, we create mixed training
and evaluation datasets by combining examples
from all 756 tasks.

We also curate a diverse subset of 15 individual
tasks from the 756 tasks for the fixed parameter
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Category (Task ID) Instruct  Input Output Model \ LoRA MoLORA MoLORA-SD
QuestionAnswering(24) 104 87/90.9 8/8.8 LoRA \ \ \
WrongCandidateGeneration(25) 127 100/104.1 8/8.8 MoLORA 69% \ \
QuestionGeneration(74) 97 143/155 12/12.5 MoLORA-SD 69% 60% \
GrammarErrorDetection(89) 89 10/10.6 6/6 MoDE 78% 73% 68%
LinguisticProbing(114) 66 25/25.7 1/1

PosTagging(155) 19 23/23.7 171 . _ : . :
Explanation(192) 3 231314 30337 Table 3: Task-level win rate against baseline models.
StoryComposition(269) 184 82/82.2 34/4.7

StereotypeDetection(279) 89 15/15.5 2/2 .

CommonsenseClassification(291) 54 17/17.8 1/1 4.3 Multi-task performance

ProgramE; ion(622 62 94/93.6 99/98.5

F:ﬁf;?;g:;&g;; : 24 13/3.2 1 We assess model performance on the full dataset
PoemGeneration(1711) 83 3/3.6 44/59 comprising 756 tasks. We compare MoDE with
DialogueGeneration(1729) 58 155/156.9 13/12.7

Table 1: Sequence lengths of instruction, input (me-
dian/mean) and output (median/mean) in the selected
SNI datasets for the fixed parameter budget case study.

budgets case study. These tasks are selected from
15 different categories to ensure a comprehensive
evaluation across different domains. Each selected
task has over 5k training instances and 500-650
evaluation instances. See Table 1 for details.

Evaluation Metric We report ROUGE-L, the de-
fault metric for SNI dataset, for all experiments.

| Eval  Add. Params.
LoRA 64 56.11 6.31%
MoLORA 16x4 57.77 7.62%
MoLORA-SD 16x4 | 58.28 2.71%
MoDE 16 x4 60.00 6.64%

Table 2: Multitask performance comparison between
LoRA, MoLORA, MoLORA-SD and MoDE. The eval-
uation metric used is ROUGE-L. The last column rep-
resents the total number of adapter parameters as a per-
centage of the total number of non-embedding parame-
ters in Gemma-2B.

4.2 Implementation Details

Model The Gemma 2B language model (Gem-
maTeam et al., 2024) serves as the foundational
LLM for all experiments due to its state-of-the-
art performance on a variety of natural language
processing tasks and its efficient size.

Fine-tuning Setup For all experiments, we fine-
tune the parameter-efficient adaptors using Adafac-
tor optimizer(Shazeer and Stern, 2018) with learn-
ing rate 1e-3, total sequence length 1024, and batch
size 128 for 20,000 steps. We reported the averaged
result of 5 runs for each experiments.

vanilla LoRA and MoLORA (Zadouri et al., 2023),
a strong baseline approach of LoRA-MoE for multi-
task adaptation. To better understand the benefit
of removing redundancy in down-projection ma-
trices, we also apply down-projection sharing to
MOoLORA, referred to as MoLORA-SD.

The specific models and configurations are:

o LoRA 64: A base LoRA module with rank 64,
having a comparable number of parameters as
other MoE models.

o MoLORA 16x4: A LoRA-MoE model with 4
experts, each using a rank-4 LoRA module.

o MoLORA-SD 16x4: A LoRA-MoE model
with a shared down-projection matrix and 4
experts with rank-4 up-projection matrices.

o MoDE 16x4: A MoDE model with 4 experts
per vector of a rank-4 up-projection matrix.

Model Comparison Table 6 reveal several key
findings. First, all LoORA-MoE methods outper-
forms a single LoRA, with improvements ranging
from 2.96% (MoLORA 16x4) to 6.93% (MoDE
16x4) in ROUGE-L scores. This demonstrates the
effectiveness of MoE-based architectures in multi-
task settings, allowing the model to leverage spe-
cialized experts for different tasks.

The advantage of parameter sharing is evi-
dent in the comparison between MoLORA 16x4
and MoLORA-SD 16x4. By sharing the down-
projection matrix, MoLORA-SD achieves an
0.88% improvement over MoLORA while using
only 36% of the additional parameters, highlighting
the benefit of reducing parameter redundancy.

Among all the models, MoDE 16x4 achieves
the highest overall performance by leveraging both
shared down-projection and rank-one adapters.
This showcases the effectiveness of MoDE in bal-
ancing parameter efficiency with models’ expres-
sivity and adaptability in multi-task scenarios.
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We further conduct a task-level analysis of all
the 756 evaluation tasks and report the win rate
between each pair of models in Table 3. Each raw
of the table shows the win rate of target model
against models in each column. We find that all
LoRA-MoE methods outperform the single LoRA
baseline in around 70%-80% of tasks. Importantly,
MoDE significantly outperforms all three baselines,
passing the significance test over 50% win rate
at 0.99 confidence, demonstrating its consistent
superiority across a wide range of tasks.

4.4 Generalized MoDE Architecture

To gain a deeper understanding of the impact expert
rank (p) on model performance, we conduct two
sets of experiments with the generalized MoDE
architecture (Section 3.4). Following the notations
m and r, the number of experts becomes m x r/p,
where each expert is a rank p adaptor.

Varying Expert Rank (p) In the first set of ex-
periments, we vary the expert rank p while keeping
m and r fixed on two m and r combinations (4 x
16 and 16 x 4). The results are presented in Table 4.
We observe that, with fixed m and r, increasing
the expert rank generally leads to improved perfor-
mance, as indicated by higher ROUGE-L scores.
This suggests that increasing the expressiveness
of individual experts contributes to better overall
multi-task performance.

Model Config. Eval  Add. Params.
m r P

4 16 16 | 58.51 2.71%

4 16 8 59.15 3.04%

4 16 4 59.56 3.69%

4 16 2 59.76 5.00%

4 16 1 59.93 7.62%

16 4 4 58.97 2.71%

16 4 2 59.30 4.02%

16 4 1 59.91 6.64%

Table 4: Experiments on generalized MoDE architec-
ture. 7: the rank of the LoORA matrices. p: the rank of
each experts. Number of experts: m xr /p. The last col-
umn represents the total number of adapter parameters
as a percentage of the total number of non-embedding
parameters in Gemma-2B.

Iso-parametric Configurations In the second
set of experiments, we explore iso-parametric con-
figurations of MoDE, where the total number of
added parameters remains approximately constant
across different model configurations. We vary the

LoRA rank r (4, 8, or 16) and expert rank p (from
1 to r), adjusting m to maintain a consistent param-
eter budget. Table 5 presents the results of these
experiments, providing insights into the trade-offs
between different hyperparameter choices under a
fixed resource constraint.

Model Config. Eval Add. Params.
m T P

42 4 4 59.89 6.58%
27 4 2 60.06 6.55%
16 4 1 59.91 6.64%
27 8 8 60.52 6.48%
20 8 4 60.74 6.61%
12 8 2 60.23 6.19%
7 8 1 59.73 6.18%
15 16 16 | 60.77 6.55%
12 16 8 60.94 6.49%
8 16 4 60.77 6.07%
5 16 2 60.28 5.92%
3 16 1 59.42 6.04%

Table 5: Experiments on generalized MoDE architec-
ture with iso-parametric constraint.

Impact of Expert Rank (p): For a fixed LoORA
rank r, increasing the expert rank p generally im-
prove performance, as seen when comparing con-
figurations with the same LoRA rank but different
expert ranks (e.g., 16 x1 v.s. 16x2 v.s. 16x4 v.s.
16x8). This indicates that enhancing the expres-
siveness of individual experts with higher expert
ranks contributes to better multi-task performance
under the iso-parametric setting. However, gains di-
minish as the expert rank p approaches to the LoRA
rank r, suggesting that using p < r is beneficial.

The best overall performance is achieved by the
12x16x 8 configuration, which balances a moder-
ate number of experts with a reasonably high LoRA
rank and expert rank. This emphasizes finding the
optimal balance between these hyperparameters for
strong multi-task performance.

4.5 Case Study with Fixed Parameter Budget

In real-world scenarios, there are often constraints
on the number of additional parameters that can be
introduced during model adaptation. To assess the
effectiveness of MoDE under such constraints, we
conduct a case study with a fixed parameter budget
determined by the baseline models.

We leverage the diverse subset of 15 individual
tasks from the SNI dataset, each belonging to a
distinct category, as described in Section 4.1. Our
baseline model consists of 15 individual rank-4
LoRA adapters (denoted as LoRA 15x4), one for
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Figure 5: Performance comparison among various model configurations on 15 tasks with a fixed parameter budget.

each task, resulting in approximately 6 million addi-
tional trainable parameters compared to the frozen
LLM backbone. This baseline establishes our pa-
rameter budget for further experimentation. We
also compare the performance with 15 full fine-
tuned models (denoted as Full), each dedicated to
a single task.

To ensure a fair comparison, we identify config-
urations for LoRA (trained on mixture of tasks),
MoDE, MoLORA, and MoLORA-SD that intro-
duce a similar number of parameters (approxi-
mately 6 million). We systematically explore com-
binations of experts (m) and ranks (r) for each
method, aiming to keep the total number of addi-
tional parameters as close as possible to the base-
line budget. Specifically, we experiment with ranks
of 4, 8, 16, and 32, adjusting the number of ex-
perts accordingly to maintain the desired parameter
count. Notation "m X r" indicates a model with m
experts, each using adapters associated with a rank
r LoRA. This leads to the following configurations:

* LoRA 1x60

* MoRA 14x4, 6x8, 3x16

* MoLORA 12x4, 6x8, 3x16

* MoLORA-SD 36 x4, 24x8, 12x16, 5x32

Note that MoLORA-SD, benefiting from its
parameter efficiency due to the shared down-
projection matrix, can support a higher-rank (5x32)
configuration within the budget.

Overall Performance Figure 5 displays the
model performance for each configuration on each
task. The reported performance is the normal-
ized ROUGE-L score, designed to highlight per-
formance differences between models. Let R, be

the average ROUGE-L score of a single model
on a task across different runs and Rr,m be the
mean of R, scores across all models on a task.
The normalized ROUGE-L scroe is calculated as
(R — Ry1m)/ Ry . This metric indicates how a
model performs relative to the average performance
of all models on a given task. A higher normal-
ized ROUGE-L score indicates better performance
(higher R,.).

MOoDE consistently achieves comparable or su-
perior performance to the 15 individual LoRA
adapters baseline, the full finetuned models, and
other MoE approaches (MoLORA and MoLORA-
SD). This demonstrates MoDE’s ability to effec-
tively leverage its shared down-projection matrix
and dyadic experts to achieve strong multi-task per-
formance while maintaining parameter efficiency.
Notably, MoDE substantially improves the average
ROUGE-L score across all tasks compared to all
other models.

While the full finetuned models are better than
the LoRA 15x4 or LoRA 1x60 configurations (as
expected), they are potentially susceptible to over-
fitting due to the limited training data available for
each individual task. MoDE’s strong performance
suggests its ability to mitigate this overfitting.

Benefit of down-projection sharing MoLORA-
SD, which shares the down-projection matrix like
MoDE, generally outperforms MoLORA with in-
dependent down-projection matrices. This high-
lights the benefits of reduced parameter redundancy
through a shared down-projection matrix.

Impact of Experts and Rank While individual
task performance varies across different MoDE
configurations, we observe that the overall average

8255



performance across all tasks and examples remains
relatively stable despite changes in the number of
experts (m) and the rank (r). This suggests that
MoDE’s performance is robust to these hyperpa-
rameter choices, and there may not be a single
"best" configuration for all scenarios. The opti-
mal choice of experts and rank depends on specific
task characteristics, resource constraints, or desired
trade-offs between model size and performance.

Benefit of MoDE routing We observed that
MoDE performs better than MoLORA-SD. It sug-
gests that the dyadic experts in MoDE contribute to
its superior expressivity and adaptability compared
to simply down-projection matrix sharing.

These findings demonstrates that MoDE can
effectively leverage a fixed parameter budget to
achieve strong multi-task performance. Its shared
down-projection matrix and mixtures of dyadic ex-
perts enable a balance between parameter efficiency
and expressive power, making it a promising ap-
proach for deploying multi-task LLMs in resource-
constrained environments.

5 Conclusion and Future Work

This paper introduces MoDE (Mixture of Dyadic
Experts), a novel parameter-efficient fine-tuning
method for multi-task LLM adaptation. MoDE
leverages a shared down-projection matrix and
rank-one adapters with a sophisticated routing
mechanism to improve parameter efficiency and
expressive power. Experiments on the Supernatu-
ral Instructions benchmark show that MoDE con-
sistently outperforms state-of-the-art multi-task
PEFT methods, achieving superior performance
with comparable parameter efficiency. This high-
light MoDE’s potential as an efficient and effective
solution for multi-task LLM adaptation, particu-
larly in resource-constrained environments. Future
work will explore more routing strategies, analyze
task-specific patterns, and evaluate MoDE on larger
models and alternative PEFT techniques.

6 Limitations

While our proposed MoDE architecture demon-
strates promising results in multi-task LLM adap-
tation, there are several limitations that warrant
further investigation.

Routing Strategy The current MoDE implemen-
tation utilizes a relatively simple routing mecha-
nism based on a softmax function. While effective

in our experiments, exploring more sophisticated
routing strategies that incorporate task relationships
or input-specific features could potentially further
improve performance.

Hyperparameter Sensitivity The optimal num-
ber of experts and rank of the LoORA matrices can
vary depending on the specific task distribution
and available resources. While our ablation study
provides some insights, a more comprehensive ex-
ploration of hyperparameter sensitivity could help
identify optimal configurations for different scenar-
i0s.

Computational Overhead While MoDE signif-
icantly reduces parameter count compared to tra-
ditional LoRA-MoE, the routing mechanism intro-
duces additional computational overhead during
inference. This overhead could become a bottle-
neck in real-time applications with strict latency
requirements. Investigating ways to optimize the
routing process or reduce its computational cost
would be beneficial.

Evaluation Benchmark Our evaluation primar-
ily focuses on the Supernatural Instructions bench-
mark. While this dataset covers a wide range
of tasks, it may not fully represent the diversity
of real-world applications. Evaluating MoDE on
other multi-task benchmarks or in specific domains
could further validate its effectiveness and general-
izability. Addressing these limitations could lead to
even more efficient and adaptable multi-task LLM
architectures, further expanding the potential of
parameter-efficient fine-tuning for a wider range of
applications.
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A Mutli-task performance - Ablation Study

We conducted an ablation study to investigate the impact of varying the number of experts (m) and the
rank () of the LoORA matrices on MoDE’s performances and present the result in Table 6. The model
configuration MoDE mxr represent MoDE models with different number of experts (m) and ranks (7).
We explore the combinations 8 x4, 6x4, 4x4,4x6,4x8, and 4x16.

| Eval  Add. Params.

MoDE 8x4 59.00 3.48%
MoDE 6x4 60.91 2.69%
MoDE 4 x4 60.18 1.90%
MoDE 4x6 60.53 2.86%
MoDE 4x8 58.92 3.81%
MoDE 4x16 | 60.04 7.62%

Table 6: Ablation study on MoDE with varying number of ranks and experts. The evaluation metric used is
ROUGE-L. The last column represents the total number of adapter parameters as a percentage of the total number
of non-embedding parameters in Gemma-2B.

Number of Experts (m): Increasing the number of experts initially improves performance (MoDE
4x4 v.s. MoDE 6x4), suggesting that having more experts allows for better specialization. However,
further increasing the number of experts to 8 or 16 (MoDE 8 x4 or MoDE 16x4) does not lead to any
improvement in performance, suggesting diminishing returns beyond a certain point.

Rank r: For a fixed number of experts (4), increasing the rank of the LoRA matrices from 4 to 6 (MoDE
4x4 vs. MoDE 4 x6) results in a slight performance improvement (0.6018 vs. 0.6053 ROUGE-L). This
suggests that higher rank matrices can capture more nuanced information, leading to better adaptation to
different tasks. Further increasing the rank of both down-projection and up-projection matrices to 8 or 16
(MoDE 4 x8 or MoDE 4 x16) leads to a decrease in performance.
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B Detailed Results for Case Study with Fixed Parameter Budge

Table 7 presents the detailed model performance with 12 model configures on the 15 tasks.

Task LoRA MoLORA MoLORA-SD MoDE
ID 15x4 1x60 | 12x4 6x8 3x16 | 36x4 24x8 12x6 5x32 | 14x4 6x8 3x16

24 2591 25.30 | 26.67 26.16 2629 | 26.81 2726 27.12 2771 | 2740 2731 27.55 | 27.36
25 4127 4135 | 417 4143 4199 | 4191 4173 4192 4236 | 4229 4192 4297 | 42.04
74 4273 4253 | 43.12 4286 42.64 | 42.67 42.88 43.53 4330 | 4234 4335 43.03 | 43.08
89 3390 3821 | 6441 63.64 5724 | 7142 7T71.19 6471 6148 | 77.73 7643 78.20 | 70.31
114 | 84.15 87.85 | 91.54 89.85 90.15 | 91.08 92.00 9092 9138 | 90.77 90.62 90.62 | 91.14
141 | 75,79 82.87 | 94.00 91.08 91.85 | 94.15 9431 9395 9349 | 96.00 9533 9492 | 94.62
155 | 51.09 53.88 | 6242 59.16 5699 | 61.18 61.80 5435 60.71 | 63.82 6537 63.66 | 61.21
192 | 7247 7721 | 83.35 8041 80.86 | 8299 82.68 84.47 83.61 | 84.78 8342 85.69 | 83.79
269 | 7540 7551 | 7546 7556 7550 | 75.61 7552 7533 75.72 | 7559 75.71 75.52 | 75.57
279 | 6990 8259 | 89.52 8839 88.44 | 90.60 89.68 90.45 9142 | 9153 91.73 91.58 | 90.96
291 | 7997 85.14 | 86.64 86.31 8531 | 86.31 86.31 85.81 85.81 | 87.48 87.65 86.81 | 86.61
622 | 9995 99.70 | 99.97 9993 99.96 | 99.96 9993 9993 99.94 | 99.96 99.94 99.93 | 99.94
672 | 39.69 45.08 | 48.92 4646 4585 | 4831 49.69 51.69 48.62 | 5046 51.85 50.31 | 50.46
1711 | 4.19 833 | 1040  7.66 8.43 9.81 10.16 985 10.19 | 997 8.37 9.16 9.71
1729 | 1721  17.11 | 1743 1677 1734 | 17.25 17.35 17.60 17.68 | 17.31 17.75 17.61 | 17.54

Avg | 53.83 57.07 | 6193 60.63 60.16 | 62.25 6242 61.66 61.79 | 63.39 63.37 63.39 | 62.53

Full

Table 7: Performance comparison among various model configurations on 15 tasks with a fixed parameter budget.
The scores in blue and green correspond to the highest and second-highest scores for the corresponding task.

C PCA Clustering of LoRA Matrices

Scatter plots after applying Principal Component Analysis (PCA) on all of the LoRA projection matrices
at layer 6 and 12 are shown in Figure 6. The distinct grouping of down-projection vectors indicates
common representations across tasks, providing the inspiration for the MoDE architecture.

8260



4.0_down k_0_down v_0_down 0_0_down

I v
e’ gn
- - "\/ - -
.0_up k_0_up v_0_up 0.0_up

a_4_down k_4_down v_4_down 0_4_down

1up k. up v.4_up 0_4_up

a_8_down k_8_down v_8_down 0_8_down

a.8_up k_8_up

0.8_up

_12_down k_12_down v_12_down 0_12_down
'Yy -
e
os . i
‘\.\/
q.12_up K 12_up v_12_up 0_12_up

Figure 6: Scatter plots after applying Principal Component Analysis (PCA) on all LoRA projection matrices, i.e.
query, key, value, and output, sliced along the rank dimension.The clear clustering of down-projection vectors
suggests the presence of shared representations across tasks, motivating the design of the MoDE architecture.
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