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Abstract

Despite the unprecedented success of apply-
ing Large Language Models (LLMs) to graph
discriminative tasks such as node classification
and link prediction, its potential for graph struc-
ture generation remains largely unexplored. To
fill this crucial gap, this paper presents a system-
atic investigation into the capability of LLMs
for graph structure generation. Specifically,
we design prompts triggering LLMs to gen-
erate codes that optimize network properties
by injecting domain expertise from network
science. Since graphs in different domains
exhibit unique structural properties captured
by various metrics (e.g., clustering coefficient
capturing triangles in social networks while
squares reflecting road segments in transporta-
tion networks), we first evaluate the capability
of LLMs to generate graphs satisfying each
structural property in different domains. After
that, we select the optimal property configura-
tions and benchmark the graph structure gener-
ation performance of LLMs against established
graph generative models across multiple do-
mains. Our findings shed light on generating
graph structures from an LLM perspective. Our
code is publically available here.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable success in various real-world applica-
tions (Wu et al., 2024; Wang et al., 2024; Han et al.,
2024), including graph-based tasks such as node
classification and link prediction (Yan et al., 2023;
Chen et al., 2024). Two prominent paradigms for
enhancing graph tasks through LLMs are LLM-as-
Enhancers/Predictors. For the first paradigm (He
et al., 2023), LLMs are used to enrich graph data by
leveraging their pre-trained knowledge to enhance
the node/edge textual attributes. In the second
paradigm (Chen et al., 2023b), LLMs are used to
encode textual information for each node/edge and
directly participate in downstream predictions. Al-
though both approaches have shown significant suc-
cess, they primarily focus on discriminative tasks,
leaving a wide gap in graph-generative tasks.

Figure 1: As pre-trained LLMs store knowledge about
graph structures and graph generative models, we
prompt LLMs with prescribed graph properties to gen-
erate codes that can further generate graphs.

Unlike discriminative tasks, graph generation
aims to produce graphs of target distributions (Liv-
ernoche et al., 2023; Liu et al., 2024). Given the
wide variation in graph structural properties of dif-
ferent domains, such as the prevalence of trian-
gles in social networks versus squares in road net-
works (Rossi and Ahmed, 2019), graph generators
must understand different structural patterns and
adapt accordingly to the target domains. To capture
these diverse structural patterns, numerous graph
generative models have been developed, includ-
ing heuristic-based ones (Goldenberg et al., 2010;
Kolaczyk and Csárdi, 2014) and deep learning-
based ones (Guo and Zhao, 2022; Zhu et al., 2022).
Heuristic-based methods utilize pre-defined rules
to generate graphs approaching the target obser-
vations. However, its hard-coded rule oversimpli-
fies the complex distribution of real-world graphs.
Deep learning-based graph generative models au-
tomatically capture intricate statistics by learning
to recover graphs from training data (Simonovsky
and Komodakis, 2018; You et al., 2018; Zang and
Wang, 2020). Despite their effectiveness, they are
heavily based on training data and hardly gener-
alize to unseen domains (?). Furthermore, the
most state-of-the-art diffusion-based graph genera-
tive models, such as DiGress (Vignac et al., 2022)
and its scalable version SaGess (Limnios et al.,
2023), can only scale up to graphs with a few thou-
sand nodes, which are still much smaller than real-
world networks (Chen et al., 2023a) such as social
networks and citation networks with millions of
nodes (Hu et al., 2020).
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Given the success of LLMs in graph discrimi-
native tasks and the limitations of existing graph-
generative models, we aim to explore the potential
of LLMs in understanding and generating graph
structures. Specifically, we prompt LLMs with pre-
scribed graph structure properties to produce code
that generates graphs for different domains. Our
contributions are summarized as follows:

• Demystifying the power of LLMs to under-
stand and generate graph structures: We in-
vestigate how well LLMs can understand graph
structural properties from different domains.

• Proposing an LLM-based Graph Generative
Model: We propose two systematic prompts to
trigger LLMs to generate graphs with prescribed
structure properties, one solely by LLMs and the
other fusing the expertise from network science.

• Benchmarking with real-world graphs: We
benchmark our proposed method with different
baselines in generating real-world graphs from
three different domains and derive new insights
on LLM-based graph generative models.

2 Related Work
2.1 Large Language Model for Graph Tasks
Recently, a wide variety of graph-based tasks
have been enhanced by LLMs. For discrimina-
tive tasks (Chen et al., 2024; Pan et al., 2024),
the pre-trained knowledge in LLMs is either used
to enhance textual attributes or directly predict
node/edge classes (He et al., 2023; Chen et al.,
2023b). For generative tasks, one recent study has
explored the potential of LLMs for graph genera-
tion. However, it only considers very basic topolo-
gies such as trees and cycles (Yao et al., 2024). In
contrast, our work focuses on real-world networks.
Our work is also aligned with recent studies simu-
lating social networks through LLM agents (Chang
et al., 2024; Gao et al., 2023). However, we also
consider molecule and citation networks.

2.2 Graph Generative Models
Graph generative models have been developed for
graphs across various applications, such as molecu-
lar design for high drug-likeness and imperceptible
adversarial attacks (Hoogeboom et al., 2022; Liv-
ernoche et al., 2023; Kang et al., 2024; Liu et al.,
2024). These models can be grouped into two cat-
egories: statistical ones (Goldenberg et al., 2010;

Prompt 1: LLM-based Graph Generation
System Message: You are a network generator who is
using the Python package NetworkX to write Python code
to generate a network with the user-specified property.
Please write a code to generate an undirected network with
the following properties.

Properties:
{Property 1 - Value 1}, {Property 2 - Value 2}, ...,
{Property K - Value K}.

Methods:
{Property 1 - Method 1}, {Property 2 - Method 2}, ...,
{Property K - Method K}.

Instructions:
{Instruction 1}, {Instruction 2]}, ..., {Instruction K}.

Kolaczyk and Csárdi, 2014), which rely on pre-
scribed rules and sampling techniques to simulate
networks with specific properties, and deep learn-
ing ones (Guo and Zhao, 2022; Zhu et al., 2022; ?),
which learn complex structural patterns from train-
ing graphs. Although statistical models are easier
to implement, they are too hard-coded to generalize
to complex real-world graphs. Deep learning ones,
in contrast, are more adaptable but require more
training data, and even the most advanced diffusion
models, such as DiGress (Vignac et al., 2022) and
its scalable version SaGress (Limnios et al., 2023),
are limited to handling networks with only a few
thousand nodes. Given previous deficiencies, our
work explores the new paradigm of using LLMs to
generate graphs.

3 Method
To instruct LLMs to generate graphs with specific
structural properties, we design Prompt 1, which
includes a system message outlining the LLM’s
general role and three key inputs: Properties, Meth-
ods, and Instructions. The Properties specifies
graph structural properties with prescribed proper-
ties extracted from target graphs that the generated
graphs should approximate. The Methods details
algorithms the LLM can use to achieve these prop-
erties. The Instructions provides general guidelines
for the LLM to follow. To assess the LLMs’ ability
to understand graph structure, we propose a simpli-
fied variant of Prompt 1 by removing the Methods,
forcing LLMs to rely solely on their own knowl-
edge to generate graphs. We refer to this basic
version as Text2Graph generation (T2G), while the
more advanced version with Methods as the hint be-
ing T2G+. Two examples of T2G/T2G+ prompts
and their generated codes are in Appendix A.2.
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Figure 2: (a)/(b): Average performance of generating graphs across all domains using T2G/T2G+ by prescribing
different structural properties; (c): T2G/T2G+ perform better in recovering lower-order graph structural properties
(e.g., Node) while worse in recovering higher-order graph structural properties (e.g., Square (Squ)); (d): Generative
performance first increases and then decreases as the number of prescribed graph properties increases, with the
changing point coming earlier on T2G compared with T2G+. Additional results are in Appendix A.4

For the input of Properties, we explore the po-
tential of LLMs in understanding the following
six properties that comprehensively characterize
graph structures in different aspects: Domain Name
(DM), average degree (DAvg), clustering coefficient
(CC), maximum degree (DMax), and the total num-
ber of triangles (Tri) and squares (Squ). The def-
initions and calculations for these properties are
provided in Appendix A.1. We omit the number of
edges, as it is naturally determined once the number
of nodes and the average degree are specified.

4 Experiment
In this section, we empirically evaluate the per-
formance of LLMs in understanding six pre-
defined structural properties and generating graphs
from three domains. For evaluation, we com-
pute the percentage difference in six structural
properties between generated graphs and ground-
truth graphs. The final performance is (1 −
percentage difference), ensuring that higher scores
indicate better generation performance. Detailed
experimental setting is in Appendix A.3.

Finding 1 - Figure 2(a)/(b): The performance
in block (i, j) represents the ability to reconstruct
the ith property when the jth property is prescribed
in the prompt. According to the first six columns in
Figure 2(a), LLMs possess and can leverage their
internal knowledge to reconstruct graphs of each
prescribed property, such as CC (82%), Tri (91%)
and DAvg (99%). However, LLMs are difficult to

Figure 3: Generative performance in different domains,
Citation, Social, and Molecule, by T2G and T2G+.

understand and generate higher-order structures
such as Squ (34%). This situation is significantly
improved after introducing network science exper-
tise by specifying concrete methods for LLMs’ us-
age in graph generation, as shown in Figure 2(b)
where the performance of reconstructing square
metric Squ increases significantly to 94%. This in-
dicates that fusing domain expertise from network
science enhances LLMs’ understanding and gener-
ative performance on graphs, especially for higher-
order metrics. Furthermore, providing domain in-
formation does not improve graph generation, evi-
denced by lower graph generation performance in
the 1st column, suggesting that LLMs do not in-
ternally possess stereotypes about network domain
knowledge and their structural properties. How-
ever, we observe that for molecular datasets like
MUTAG (Listing 3 in Appendix A.2) - especially
when the average degree is low - the LLM tends to
initialize graphs with cycles. In contrast, most so-
cial networks are initialized by the Barabasi-Albert
model (Barabási and Albert, 1999).
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Table 1: Comparison of graph generation performance across different methods. The best performance is bolded,
and the second best is underlined. We omit the “Square (Squ)" metric on large-size REDD due to excessively long
runtime. CITE - Citation Graphs, MOL - Molecule Graphs, SOC - Social Graphs.

DM Data Avg-Deg (DAvg) Triangle (Tri) Clustering Coefficient (CC)
BA SW ER SF CF T2G T2G+ BA SW ER SF CF T2G T2G+ BA SW ER SF CF T2G T2G+

CITE
Cora 65.0 51.3 96.4 94.9 99.8 68.4 100 20.0 0.0 0.7 66.2 5.6 99.1 92.7 5.7 0.0 0.6 52.2 2.5 68.0 99.9
Cite 68.4 73.1 98.0 77.0 99.8 99.9 99.9 6.3 0.0 0.1 40.3 3.3 49.4 67.8 5.5 0.0 0.3 95.0 1.9 99.2 88.6
Pub 56.2 89.0 99.8 84.0 99.8 99.1 75.7 11.1 86.6 0.1 64.4 4.9 1.4 64.8 5.9 16.1 0.3 50.0 2.7 4.5 45.9

MOL

MUT 85.2 90.6 70.5 93.1 97.5 87.3 100 100 91.1 53.3 0.0 62.2 97.4 100 100 91.1 53.3 0.0 62.2 97.4 100
PROT 90.0 67.5 82.3 84.7 94.9 84.1 99.3 57.2 21.3 50.9 61.2 13.0 93.2 84.5 51.4 26.0 30.0 39.9 14.4 52.9 75.5
NCI1 90.4 94.1 60.5 78.1 97.7 91.7 100 100 97.8 66.7 0.0 71.1 100 100 100 97.8 66.7 0.0 71.1 100 100
DD 84.8 79.9 83.6 91.4 99.4 100 99.7 30.4 48.5 11.7 88.0 2.5 51.3 53.7 17.7 87.5 6.2 45.4 2.7 77.6 51.3
ENZY 66.5 76.2 80.4 68.9 95.5 78.6 99.1 58.1 46.7 49.7 34.3 19.6 86.5 77.9 59.6 52.0 31.1 32.2 20.4 53.5 67.0

SOC IMDB 68.6 89.5 87.1 32.3 77.0 99.7 97.5 56.1 54.8 76.5 4.2 22.3 65.4 85.8 54.4 64.7 66.5 20.9 41.7 61.9 75.0
REDD 60.2 86.5 52.0 70.2 89.2 34.5 99.8 48.8 2.0 22.3 7.9 69.2 10.1 56.5 57.4 4.7 9.5 23.7 76.6 56.5 48.9

DM Data Square (Squ) Max-Deg (DMax) Average
BA SW ER SF CF T2G T2G+ BA SW ER SF CF T2G T2G+ BA SW ER SF CF T2G T2G+

CITE
Cora 66.8 0.0 0.7 4.7 11.9 53.7 39.1 95.8 3.0 7.1 22.7 96.4 94.1 100 50.7 10.9 21.1 48.1 43.2 76.6 86.3
Cite 8.8 0.0 0.1 5.2 2.2 3.6 7.4 81.1 5.0 9.1 6.9 98.0 100 100 34.0 15.6 21.5 44.9 41.0 70.4 72.7
Pub 11.7 16.1 0.3 7.8 4.6 0.7 4.4 37.6 4.7 9.4 2.7 98.8 53.9 100 24.5 42.5 22.0 41.8 42.2 31.9 58.2

MOL

MUT 100 95.6 57.8 51.1 53.3 94.7 42.5 46.1 84.8 73.9 44.5 100 87.1 100 86.3 90.6 61.8 37.8 75.0 92.8 88.5
PROT 63.2 13.0 56.8 43.6 22.7 49.2 68.6 43.9 75.1 71.1 37.6 94.4 53.5 91.9 61.2 40.6 58.2 53.4 47.9 66.6 83.2
NCI1 100 95.6 64.4 2.2 60.0 83.9 76.7 42.5 85.6 68.5 23.4 99.4 83.9 100 86.6 94.2 65.4 20.7 79.9 91.9 100
DD 68.7 23.5 28.7 15.8 6.5 52.7 44.0 19.8 58.9 73.5 10.4 100 45.0 95.3 44.3 59.7 40.7 50.2 42.2 58.9 68.0
ENZY 26.3 31.3 60.4 48.8 26.8 50.4 77.9 39.2 77.7 65.9 33.2 95.2 58.7 90.6 49.9 56.8 57.5 43.5 51.5 65.5 82.9

SOC IMDB 50.1 48.9 73.0 3.0 20.8 73.2 89.1 92.1 64.6 79.3 68.0 70.7 79.2 99.2 64.3 64.5 76.5 25.7 46.5 75.9 89.3
REDD — — — — — — — 26.1 3.3 9.5 83.2 98.3 10.1 69.2 48.1 24.1 32.9 46.3 75.1 34.2 75.9

Finding 2 - Figure 2(c): For each metric, we
average the graph generation performance across
all property configurations. Lower-order structural
properties end up with higher performance com-
pared to higher-order properties because higher-
order structural properties require more network
science expertise to implement and are inherently
more challenging for LLMs to satisfy. For instance,
ensuring zero-order properties, such as the number
of nodes, can be achieved by directly specifying the
input, while higher-order properties, such as CC
and Squ, demand more network science knowledge
to adjust graph structures. For example, manipu-
lating CC requires adding edges among the same
node’s neighbors, whereas manipulating Squ in-
volves adding edges to close paths of length 3.

Finding 3 - Figure 2(d): As more structural
properties are prescribed, the performance of graph
generation initially improves but then decreases,
with T2G showing this drop off earlier than T2G+.
We hypothesize that the initial improvement stems
from the richer structure information provided to
LLMs. However, imposing too many constraints
narrows the space of feasible graphs, reducing
the likelihood of matching the target ground truth.
Moreover, graph structural properties are often in-
terdependent—adjusting one property can inadver-
tently alter others. For instance, enforcing a lower
average degree constraint requires removing edges,

which conflicts with matching the high CC goal,
where additional edges are needed. The earlier de-
cline in T2G compared to T2G+ suggests that inte-
grating network science expertise improves LLMs’
capability in balancing the competing demands of
satisfying different structural properties.

Finding 4 - Figure 3: After averaging results
within the same domain, we find that LLMs con-
sistently exhibit lower performance on citation net-
works across all metrics. We hypothesize that this
disparity arises because Cora and Citeseer are gen-
erally larger than datasets in other domains. Con-
sequently, adding or removing edges may be more
challenging to manipulate their graph structures to
the desired level. Future research could investigate
the disparity of LLMs in graph generation across
different domains.

Finding 5 - Table 1: Based on our previous
demonstration of LLMs’ ability to capture certain
structural properties, we now evaluate their effec-
tiveness in generating realistic graphs. With the
optimal structural configuration identified in Fig-
ure 2(a)/(b), we generate graphs and benchmark
them against those generated from conventional
heuristic-based models (more details are in Ap-
pendix A.3). Recent deep-learning-based mod-
els are excluded due to their inability to scale to
networks larger than a few thousand nodes. As
shown in Table 1, T2G+ significantly outperforms
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Figure 4: Graph Generation Performance across dif-
ferent LLM backbones and the representative deep
learning-based model, DiGress.

all other methods by integrating network science
expertise. Although T2G ranks lower, it still re-
mains among the top approaches, underscoring the
capacity of LLMs to capture network structures to
a certain extent. In addition to the global evalu-
ation, we provide a fine-grained visualization of
DEG and CC distributions in Appendix A.4.

Finding 6 - Figure 4: To evaluate the generaliz-
ability of our T2G/T2G+ framework, we include
multiple LLMs, including GPT-4o, GPT-4, GPT-
4o-mini, and LLaMA-3, with their performance
computed by averaging results across all evalua-
tion metrics and datasets. Compared to heuristic-
based methods Table 1, both T2G and T2G+ con-
sistently outperform these baselines, demonstrating
the broad applicability of our approach across dif-
ferent LLM backbones. Among the tested LLMs,
T2G+-GPT-4o achieves the best performance, and
GPT-4o-mini ranks lowest, aligning with the gen-
eral expectation. Additionally, we compare against
DiGress, a state-of-the-art deep-learning-based
graph generation model. While DiGress shows
competitive performance, T2G+—which incorpo-
rates domain expertise—achieves superior results.

5 Conclusion
This work explores the capability of LLMs in graph
generation tasks by specifically investigating their
understanding of graph structural properties and re-
constructing real-world graphs. Our findings reveal
that LLMs possess a certain level of understand-
ing of graph properties, and this understanding can
be significantly boosted by incorporating domain
expertise of network science. Furthermore, the
complexity of understanding and generating struc-
tural properties varies as the order of topological
metrics, the number of constraints, and the domain
of the target graph changes.

6 Limitations and Future Work

Analysis Limitations: Our proposed baseline,
T2G, does not demonstrate a significantly higher
graph generation performance. This indicates that
LLMs still struggle to effectively leverage their in-
ternal knowledge to understand graph structural
properties and generate corresponding codes.

Method Design Limitations: Our current LLM-
based graph generation only supports generating
graph structures. However, real-world graphs usu-
ally possess attributes such as social profiles in
social networks and atom numbers for molecule
graphs. This constraint could be removed in the
future to make the method more generalizable.

Potential Risks: One potential risk of our LLM-
based graph generation lies in its generation ef-
ficiency being maliciously used by third parties.
If adversarially compromised, LLMs could be ex-
ploited to generate anomaly social graphs, posing
substantial risks. However, given the current per-
formance of this approach is still in its early stages,
the immediate threat remains limited. Nonetheless,
this concern highlights the need for research on
adversarial graph generation, fostering a deeper un-
derstanding of potential risks and the development
of mitigation strategies for future advancements.

LLM-based graph generation presents a promis-
ing direction due to its scalability and pre-trained
knowledge about network formation. Traditional
deep learning-based graph generative models strug-
gle with large-scale networks, as even the most
scalable graph diffusion models are limited to han-
dling networks with up to 10,000 nodes (Chen et al.,
2023a; Limnios et al., 2023), whereas real social
networks often comprise millions of nodes. In con-
trast, LLM-based methods effectively overcome
these scalability issues. Recent studies have demon-
strated that LLM-powered agents can simulate so-
cial networks with structural properties resembling
real graphs compared to previous baselines, high-
lighting LLMs’ inherent understanding of graph
structures. Looking ahead, we envision graph gen-
eration evolving into two paradigms: microscopic
graph generation, which will continuously rely on
deep learning models like graph diffusion to cap-
ture fine-grained structures in applications such
as drug discovery and bioinformatics, and macro-
scopic graph generation, where LLM-driven ap-
proaches, particularly agent-based simulations, will
dominate large-scale social network modeling (Gao
et al., 2023; Chang et al., 2024).
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A Appendix

A.1 Graph Structural Properties
• # of Nodes and Edges: the number of nodes

and edges in the graph. It defines the basic
size and density of the graphs.

• Average Degree (DAvg): the average number
of node degrees in the graph. Once the number
of nodes and edges is determined, the average
degree is also determined.

• Max Degree (DMax): the maximum number
of node degrees in the graph.

• Clustering Coefficient (CC): the measure of
the degree to which nodes in a graph tend
to cluster together. We first calculate the lo-
cal clustering coefficient of each node, which
quantifies how close its neighbors are to being
a clique. The calculation is as follows:

CCi =
2△i

Di(Di − 1)
, (1)

followed by the average operation across all
nodes to calculate the network-level clus-
tering coefficient. Specifically, we use
nx.average_clustering API from NetworkX.

• Triangle (Tri): the total number of triangles
contained in a network. Specifically, we first
calculate the number of triangles involving
each node using nx.triangles API from Net-
workX and divide the total number by three.

• Square (Squ): the total number of squares
contained in a network. As there is no well-
established API to calculate this metric, we
take inspiration from (Vignac et al., 2022) and
calculate it as:

Squ =
1

8
(Tr(A4)− 2

∑

vi∈V
d2i +

∑

vi∈V
di)
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A.2 Prompt Examples and Generated Codes
Here, we show two examples of prompts and their corresponding codes generated by LLMs, one for
T2G and the other one for T2G+. Comparing these two, the key difference is in addition to the specified
properties, T2G+ also specifies the concrete methods to realize those properties based on domain expertise
from network science.

Example Prompt for T2G
System Message: You are a network generator who is using the Python package NetworkX to write Python code to generate
a network with the user-specified property. Please write a code to generate an undirected network with the following properties.

Properties:
• [Average Degree]: 3.9
• [Clustering of Coefficient]: 0.24
• [Number of Nodes]: 2708
• [Number of Triangles]: 1630.0
• [Maximum of Degree]: 168
• [Number of Squares]: 4664.0

Instructions:
• do not use an Erdos Renyi or Gnm graph
• make sure to generate a graph that closely matches ALL above [Properties]
• if the target property is not specified, do not modify the graph based on that property
• do not initialize the graph with no edges
• select the initial graph generator based on the domain and values of the properties requested
• do not include any explanations in the outputs
• make sure code is executable
• setup the maximum iteration to 10000
• setup the threshold of relative difference between the ground-truth and generated graph to be 1%

import networkx as nx
import pickle as pkl
import random

def generate_graph ():
# Initialize with a Barabasi -Albert graph to get a good starting point
G = nx.barabasi_albert_graph (2708, 2)

# Function to calculate the average degree
def average_degree(G):

return sum(dict(G.degree ()).values ()) / float(len(G))

# Function to calculate the clustering coefficient
def clustering_coefficient(G):

return nx.average_clustering(G)

# Function to calculate the number of triangles
def number_of_triangles(G):

return sum(nx.triangles(G).values ()) / 3

# Function to calculate the number of squares
def number_of_squares(G):

squares = 0
for node in G:

neighbors = list(G.neighbors(node))
for i in range(len(neighbors)):

for j in range(i + 1, len(neighbors)):
common_neighbors = set(G.neighbors(neighbors[i])).intersection(

set(G.neighbors(neighbors[j])))
squares += len(common_neighbors)

return squares / 4

# Function to calculate the maximum degree
def maximum_degree(G):

return max(dict(G.degree ()).values ())

# Target properties
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target_avg_degree = 3.9
target_clustering_coefficient = 0.24
target_triangles = 1630.0
target_max_degree = 168
target_squares = 4664.0

# Iterative improvement
max_iterations = 10000
threshold = 0.01

for _ in range(max_iterations):
avg_degree = average_degree(G)
clustering_coeff = clustering_coefficient(G)
triangles = number_of_triangles(G)
max_degree = maximum_degree(G)
squares = number_of_squares(G)

if (abs(avg_degree - target_avg_degree) / target_avg_degree < threshold and
abs(clustering_coeff - target_clustering_coefficient) /

target_clustering_coefficient < threshold and
abs(triangles - target_triangles) / target_triangles < threshold and
abs(max_degree - target_max_degree) / target_max_degree < threshold and
abs(squares - target_squares) / target_squares < threshold):
break

# Randomly add or remove edges to improve properties
if avg_degree < target_avg_degree:

u, v = random.sample(G.nodes(), 2)
if not G.has_edge(u, v):

G.add_edge(u, v)
else:

u, v = random.choice(list(G.edges()))
G.remove_edge(u, v)

return G

G = generate_graph ()
pkl.dump(G, open(f'./Cora/avg_degree_cc_tri_d_max_squ/graph_0.pkl', 'wb'))

Listing 1: LLM-generated Code with Prompting Scheme T2G
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Example Prompt for T2G+

System Message: You are a network generator who is using the Python package NetworkX to write Python code to generate
a network with the user-specified property. Please write a code to generate an undirected network with the following properties.

Properties:
• [Average Degree]: 3.9
• [Clustering of Coefficient]: 0.24
• [Number of Nodes]: 2708
• [Number of Triangles]: 1630.0
• [Maximum of Degree]: 168
• [Number of Squares]: 4664.0

Methods:
• If [Average Degree] is specified, if it is lower than the target, add edges; if higher than the target, remove edges
• If [Maximum Degree] is specified, if it is lower than the target, add edges to the current max_degree node; if higher than the
target, remove edges to the current max_degree node
• If [Clustering Coefficient] is specified, if it is lower than the target, randomly select a node and add edges within that node’s
neighbors; if higher than the target, randomly select a node and remove edges within that node’s neighbors
• if [Number of Triangles] is specified, if it is lower than the target, randomly select a node and two of that node neighbors,
and add an edge in-between; if higher than the target, randomly select a node and remove edges within that node’s neighbors
• If [Number of Squares] is specified, randomly select a node and two of that node’s neighbors; if lower than
the target, randomly select another node to connect with those two neighbors; if higher than the target, find the
intersection between neighbors of those two neighbors and remove edges to break the square. Note that we further pro-
vide the concrete code for generating Square as we empirically found LLMs are pretty difficult to understand Square structure.

Instructions:
• do not use an Erdos Renyi or Gnm graph
• make sure to generate a graph that closely matches ALL above [Properties]
• if the target property is not specified, do not modify the graph based on that property
• do not initialize the graph with no edges
• select the initial graph generator based on the domain and values of the properties requested
• do not include any explanations in the outputs
• make sure code is executable
• setup the maximum iteration to 10000
• setup the threshold of relative difference between the ground-truth and generated graph to be 1%

import networkx as nx
import numpy as np
import pickle as pkl
import random

def count_squares(G):
A = nx.to_numpy_array(G)
A4 = np.linalg.matrix_power(A, 4)
trace_A4 = np.trace(A4)
degrees = np.sum(A, axis =1)
sum_deg_squared = np.sum(degrees ** 2)
sum_deg = np.sum(degrees)
squares_count = (trace_A4 - 2 * sum_deg_squared + sum_deg) / 8
return squares_count

def generate_graph ():
G = nx.barabasi_albert_graph (2708, 2)
target_avg_degree = 3.9
target_clustering_coefficient = 0.24
target_num_triangles = 1630.0
target_max_degree = 168
target_num_squares = 4664.0

max_iterations = 10000
threshold = 0.01

for _ in range(max_iterations):
avg_degree = sum(dict(G.degree ()).values ()) / G.number_of_nodes ()
clustering_coefficient = nx.average_clustering(G)
num_triangles = sum(nx.triangles(G).values ()) / 3
max_degree = max(dict(G.degree ()).values ())
num_squares = count_squares(G)

8198



if abs(avg_degree - target_avg_degree) / target_avg_degree < threshold and \
abs(clustering_coefficient - target_clustering_coefficient) /

target_clustering_coefficient < threshold and \
abs(num_triangles - target_num_triangles) / target_num_triangles <

threshold and \
abs(max_degree - target_max_degree) / target_max_degree < threshold and \
abs(num_squares - target_num_squares) / target_num_squares < threshold:
break

if avg_degree < target_avg_degree:
u, v = random.sample(G.nodes(), 2)
G.add_edge(u, v)

elif avg_degree > target_avg_degree:
u, v = random.choice(list(G.edges()))
G.remove_edge(u, v)

if max_degree < target_max_degree:
max_node = max(G.degree , key=lambda x: x[1]) [0]
u = max_node
v = random.choice(list(set(G.nodes()) - set(G.neighbors(max_node)) - {

max_node }))
G.add_edge(u, v)

elif max_degree > target_max_degree:
max_node = max(G.degree , key=lambda x: x[1]) [0]
u, v = random.choice(list(G.edges(max_node)))
G.remove_edge(u, v)

if clustering_coefficient < target_clustering_coefficient:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
G.add_edge(u, v)

elif clustering_coefficient > target_clustering_coefficient:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
if G.has_edge(u, v):

G.remove_edge(u, v)

if num_triangles < target_num_triangles:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
G.add_edge(u, v)

elif num_triangles > target_num_triangles:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
if G.has_edge(u, v):

G.remove_edge(u, v)

if num_squares < target_num_squares:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
w = random.choice(list(set(G.nodes()) - set(G.neighbors(u)) - set(G.

neighbors(v)) - {u, v}))
G.add_edge(u, w)
G.add_edge(v, w)

elif num_squares > target_num_squares:
node = random.choice(list(G.nodes()))
neighbors = list(G.neighbors(node))
if len(neighbors) >= 2:

u, v = random.sample(neighbors , 2)
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common_neighbors = set(G.neighbors(u)).intersection(set(G.neighbors(
v)))

if common_neighbors:
w = random.choice(list(common_neighbors))
G.remove_edge(u, w)
G.remove_edge(v, w)

return G

G = generate_graph ()
pkl.dump(G, open(f'./Cora/avg_degree_cc_tri_d_max_squ/graph_0.pkl', 'wb'))

Listing 2: LLM-generated Code with Prompting Scheme T2G+

import networkx as nx
import random
import numpy as np
import pickle as pkl

def count_squares(G):
A = nx.to_numpy_array(G)
A4 = np.linalg.matrix_power(A, 4)
trace_A4 = np.trace(A4)
degrees = np.sum(A, axis =1)
sum_deg_squared = np.sum(degrees ** 2)
sum_deg = np.sum(degrees)
squares_count = (trace_A4 - 2 * sum_deg_squared + sum_deg) / 8
return squares_count

def generate_graph ():
target_avg_degree = 2.15
num_nodes = 13
max_iterations = 10000
threshold = 0.01

G = nx.cycle_graph(num_nodes)
current_avg_degree = sum(dict(G.degree ()).values ()) / num_nodes

for _ in range(max_iterations):
if abs(current_avg_degree - target_avg_degree) / target_avg_degree <

threshold:
break

if current_avg_degree < target_avg_degree:
u, v = random.sample(range(num_nodes), 2)
if not G.has_edge(u, v):

G.add_edge(u, v)
else:

u, v = random.choice(list(G.edges()))
G.remove_edge(u, v)

current_avg_degree = sum(dict(G.degree ()).values ()) / num_nodes

return G

G = generate_graph ()
pkl.dump(G, open(f'./MUTAG/avg_degree/graph_1.pkl', 'wb'))

Listing 3: LLM-generated Code for Generating MUTAG Graph by Initializing Cycles
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A.3 Experimental Settings
Dataset: Here, we specify our experimental setting.
For the dataset, we take graphs from these three
domains: citation, social, and molecule datasets.
For citation networks, we take Cora, Citeseer, and
Pubmed from the well-established Planetoid. For
social and molecule networks, we take IMDB-
Binary, REDDIT-Binary, MUTAG, PROTEINS,
NCI1, DD, ENZYME from the TUdataset. The
statistics of each dataset are shown in Table 2. For
each dataset, we select 50 graphs for evaluation to
save the API-call budget.

Evaluation: For each dataset containing N graphs,
we generate a corresponding set of N graphs by
prompting LLMs to generate code based on the
properties extracted from the original ground-truth
graphs. We then compute the percentage difference
for each metric as follows:

αij =
|pij − p′ij |

pij
, (2)

where pij , p
′
ij respectively represents the jth-

property of the ith graph for the original ground-
truth one and the generated one. αij represents
the performance of the generated ith graph for jth

metric. Furthermore, we average this performance
across all graph instances to obtain the final perfor-
mance ϕj for jth metric.

ϕj = 1− 1

N

N∑

i=1

αij , ∀j ∈ Φ (3)

where Φ denotes the set of metrics, including clus-
tering coefficient (CC), number of nodes/edges,
average degree (DAvg), triangle (Tri), square (Squ),
and a maximum of degree (DMax).

LLMs: We select GPT4o (2024-05-13b) as our
default code generator.

Baselines: For Table 1, we benchmark our pro-
posed T2G/T2G+ methods with conventional
heuristic-based methods, which are:

• Barabasi-Albert (BA) (Barabási and Albert,
1999): A preferential attachment model that
generates scale-free networks, where new
nodes connect to existing high-degree nodes,
resulting in a power-law degree distribution.
This model captures the preferential attach-
ment process observed in many real-world
networks. We vary the number of edges each

newly added node forms, ranging from 1 to
twice the graph’s average degree.

• Small World (SW) (Watts and Strogatz,
1998): A graph generation model that cre-
ates networks with high clustering and short
average path lengths resembling real-world
small-world properties. We employ the Watts-
Strogatz algorithm, where each node is ini-
tially connected to its nearest neighbors based
on the average degree of the ground-truth
graph. The probability of rewiring edges is
tuned from 0 to 1 in increments of 0.02 to
introduce varying levels of randomness.

• Erdős-Rényi (ER) (Erdos et al., 1960): A
random graph model where edges are formed
between node pairs with a constant probabil-
ity, resulting in a Poisson degree distribution.
This model is commonly used to study ran-
dom network structures. The edge formation
probability is tuned from 0 to 1 with a 0.02
interval to generate a range of random graph
structures.

• Scale-Free (SF) (Bollobás et al., 2003): A
model that generates networks following a
power-law degree distribution, similar to the
Barabasi-Albert model but with more tunable
parameters. These networks exhibit a few
highly connected nodes or hubs. We tune the
hyperparameters α, β, ∆1, and ∆2 from 0.1 to
1 in 0.2 intervals to capture different structural
variations of scale-free networks.

• Configuration (CF) (Newman, 2003): A
model that generates graphs based on a given
degree sequence, ensuring that the resulting
graph retains the same degree distribution
as the input. This method preserves degree-
related properties and is ideal for cases where
maintaining the original degree distribution is
important.

For each of the above baselines, we tune their
corresponding hyperparameters to select the opti-
mal ones by the performance of the generated graph
(the average difference of the property between the
generated graphs and ground-truth graphs).
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Table 2: Dataset Statistics. CC - Clustering Coefficient, DAvg - Average Degree, Tri - Triangle, Squ - Square, DMax -
Maximum Degree.

Dataset CC # Nodes # Edges DAvg Tri Squ DMax

MUTAG (MUT) 0.0 ± 0.0 17.76 ± 4.16 19.7 ± 5.2 2.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 3.02 ± 0.14
PROTEINS (PROT) 0.45 ± 0.2 62.78 ± 85.22 120.84 ± 180.35 3.69 ± 0.42 49.9 ± 97.96 78.02 ± 165.91 5.96 ± 1.02
DD 0.48 ± 0.04 520.2 ± 939.98 1305.82 ± 2333.0 5.04 ± 0.48 899.1 ± 1524.75 1774.14 ± 2897.8 9.68 ± 1.19
ENZYMES (ENZY) 0.53 ± 0.19 34.94 ± 16.76 66.06 ± 27.96 3.84 ± 0.77 32.46 ± 14.05 47.46 ± 25.19 5.88 ± 1.32
NCI1 0.0 ± 0.0 23.72 ± 6.77 25.14 ± 7.55 2.11 ± 0.09 0.0 ± 0.0 0.0 ± 0.0 3.16 ± 0.37
IMDB-B (IMDB) 0.95 ± 0.03 21.66 ± 12.04 100.72 ± 64.06 9.32 ± 3.7 307.36 ± 334.89 2585.98 ± 4203.62 20.66 ± 12.04
REDDIT-B (REDDIT) 0.04 ± 0.02 550.42 ± 416.89 642.24 ± 488.03 2.31 ± 0.13 27.82 ± 23.97 115.06 ± 154.26 279.78 ± 242.51
Cora 0.24 ± 0.0 2708.0 ± 0.0 5278.0 ± 0.0 3.9 ± 0.0 1630.0 ± 0.0 4664.0 ± 0.0 168.0 ± 0.0
Citeseer (Cite) 0.14 ± 0.0 3327.0 ± 0.0 4552.0 ± 0.0 2.74 ± 0.0 1167.0 ± 0.0 6060.0 ± 0.0 99.0 ± 0.0
Pubmed (Pub) 0.06 ± 0.0 19717.0 ± 0.0 44324.0 ± 0.0 4.5 ± 0.0 12520.0 ± 0.0 163505.0 ± 0.0 171.0 ± 0.0

Figure 5: Visualization of the generated and ground-
truth degree distribution for Cora (a) and Citeseer (b).

A.4 Comprehensive Results
Here we present comprehensive results to comple-
ment the result analysis in Section 4.
Clustering Coefficient Distribution Analysis: In-
stead of comparing the global differences in clus-
tering coefficients between the generated graph and
the ground-truth graph, we perform a local com-
parison by visualizing their clustering coefficient
distributions in Figure 5(a) and (b) for the Cora and
Citeseer datasets. We find that only SF and T2G+

can replicate the distribution of the clustering coef-
ficient of the original network.
Generation Performance on Other Datasets: In
Figure 6-13, we visualize the graph generation per-
formance on additional datasets. Here, we observe
that T2G+ performs significantly better than T2G
due to the incorporation of additional domain exper-
tise. Furthermore, incorporating high-order graph
structural properties leads to lower performance,
which aligns with our observations in the main text.
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Figure 6: T2G+ Performance of generating citation network Cora with prescribed structural properties.

Figure 7: T2G Performance of generating citation network Cora with prescribed structural properties.

Figure 8: T2G+ Performance of generating molecular network Protein with prescribed structural properties.

Figure 9: T2G Performance of generating molecular network Protein with prescribed structural properties.
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Figure 10: T2G+ Performance of generating social network IMDB with prescribed structural properties.

Figure 11: T2G Performance of generating social network IMDB with prescribed structural properties.

Figure 12: T2G+ Performance of generating molecular network DD with prescribed structural properties.

Figure 13: T2G Performance of generating molecular network DD with prescribed structural properties.
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