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Abstract

Current multimodal machine translation
(MMT) systems rely on fully supervised
data (i.e sentences with their translations and
accompanying images), which is costly to
collect and prevents the extension of MMT
to language pairs with no such data. We
propose a method to bypass the need for fully
supervised data to train MMT systems, using
multimodal English data only. Our method
(ZeroMMT) consists in adapting a strong
text-only machine translation (MT) model by
training it jointly on two objectives: visually
conditioned masked language modelling and
the Kullback-Leibler divergence between
the original MT and new MMT outputs. We
evaluate on standard MMT benchmarks and
on CoMMuTE, a contrastive test set designed
to evaluate how well models use images to
disambiguate translations. ZeroMMT obtains
disambiguation results close to state-of-the-art
MMT models trained on fully supervised
examples. To prove that ZeroMMT generalizes
to languages with no fully supervised training
data, we extend CoMMuTE to three new
languages: Arabic, Russian and Chinese. We
also show that we can control the trade-off
between disambiguation capabilities and
translation fidelity at inference time using
classifier-free guidance and without any
additional data. Our code, data and trained
models are publicly accessible.1,2

1 Introduction

Multimodal machine translation (MMT) refers to
the use of additional modalities, such as images or
videos, in machine translation (MT) systems. The
main purpose is to provide an additional signal in
the case of ambiguity in the text to be translated
(i.e the text alone does not provide enough informa-
tion). Most current MMT models are trained solely

1https://github.com/MatthieuFP/CoMMuTE
2https://github.com/MatthieuFP/zerommt

on the Multi30K (M30K) dataset (Elliott et al.,
2016, 2017; Barrault et al., 2018), a multilingual
and multimodal corpus composed of 30K images,
their English captions and translations in French,
German and Czech. There have been recent break-
throughs in MMT thanks to the use of pretrained
text-only MT systems and monolingual caption-
ing data in order to adapt MT systems to MMT
(Futeral et al., 2023; Gupta et al., 2023; Vijayan
et al., 2024). Good results have been shown using
this strategy on CoMMuTE (Futeral et al., 2023), a
benchmark designed to evaluate MMT models on
their use of images to disambiguate between con-
trastive translations, and these results were signifi-
cantly better than MMT systems trained on M30K
only (Yin et al., 2020; Yao and Wan, 2020; Liu
et al., 2021; Wu et al., 2021; Li et al., 2022b). How-
ever, these models still rely on the multilingual and
multimodal M30K corpus during training to en-
sure good translation performance. This presents a
core limitation: collecting translations of captions
is costly,3 restricting MMT’s extension to new lan-
guages. Zero-shot transfer between languages has
been tested to bypass the problem (Hirasawa et al.,
2023), but this results in the poor exploitation of the
visual modality to disambiguate ambiguous texts.

In this work, we address this limitation by
proposing a method requiring only monolingual
multimodal text data (i.e. English text-image pairs),
removing the need for fully supervised data, i.e. par-
allel and multimodal data such as M30K. We start
from a strong pretrained MT system and use it to
translate multimodal English data into the target
languages of interest. We then adapt the pretrained
MT system to images using two objectives: (1) vi-
sually conditioned masked language modelling
(VMLM) (Li et al., 2019; Lu et al., 2019) on multi-
modal English data to force the model to use image

3Authors of M30K stated they spent C23,000 on the trans-
lation of the 30,000 English captions into German.
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information and (2) a KL penalty on the translated
multimodal data to maintain translation capabilities.
We test our method on six languages directions: En-
glish to French, Czech, German, Arabic, Russian
and Chinese, extending the CoMMuTE dataset to
cover the three additional languages. Our method,
called ZeroMMT, obtains CoMMuTE scores close
to the supervised state of the art, while there is
only a small drop in BLEU and COMET scores
compared to the underlying text-only MT system
on standard MMT benchmarks composed mainly
of unambiguous examples (i.e. where images are
not useful for correct translation). We further show
that we can control the trade-off between disam-
biguation and general translation performance at
inference time with classifier-free guidance.

2 Related Work

Training MMT systems Research in MMT orig-
inally focused on which visual features to use
(Li et al., 2022a) and how to integrate them into
sequence-to-sequence models (Sutskever et al.,
2014) trained from scratch on the widely used
M30K benchmark (Libovický et al., 2016; Calixto
et al., 2016; Elliott and Kádár, 2017; Calixto and
Liu, 2017; Yin et al., 2020; Liu et al., 2021; Li et al.,
2022b). These MMT systems typically show im-
provements of around 1-2 BLEU points on standard
MMT benchmarks in comparison to text-only base-
lines trained from scratch, which is not significant
enough to state that MMT systems are better than
their text-only counterparts (Mathur et al., 2020).
Wu et al. (2021) observed that while they obtained
+1 BLEU on average on M30K test sets with the use
of images, they got the same improvements with
randomly initialized visual features, most likely
due to regularization, i.e. the images were in reality
not being exploited effectively. On top of that, be-
ing trained from scratch on fully supervised MMT
data only, these models lag far behind state-of-the-
art MT systems (Costa-jussà et al., 2022) trained
on large amounts of parallel text.

Futeral et al. (2023) show that M30K contains
few ambiguous examples requiring visual context,
and that models can get good results on the bench-
mark while still struggling to exploit images cor-
rectly. They introduce VGAMT, an adapted MMT
model based on a frozen state-of-the-art MT model.
They also show that visually masked language mod-
elling (VMLM) on English captioning data was a
key additional objective to force MMT systems to

become truly multimodal. Sato et al. (2023) and
Bowen et al. (2024) further show that choosing the
masked tokens in a smart way instead of randomly
slightly boosts results. However, these methods
still require fully supervised data to be good at
translation; training on VMLM alone results in a
collapse in translation capabilities.

A few works have used pseudo-multimodal par-
allel data by translating English captions into the
target language using a pretrained MT system (Li
et al., 2021; Caglayan et al., 2021; Vijayan et al.,
2024). However, Caglayan et al. (2021) and Vi-
jayan et al. (2024) used them in a pretraining step
in a form of distillation of the knowledge of the
MT system into the new MMT model before fine-
tuning on M30K. Li et al. (2021) use backtransla-
tion to translate English captions into Turkish to
train a Turkish-to-English MMT model for disam-
biguating gender pronouns from Turkish to English.
While effective, their method cannot be applied be-
yond this particular context because it requires the
MT system to output the correct translation, which
cannot be assumed to be the case in more general
ambiguous contexts (i.e. when text context is not
enough to translate the English text correctly).

There have been efforts to train MMT models
without using fully supervised data (Su et al., 2019;
Huang et al., 2020; Fei et al., 2023). These ap-
proaches are however fundamentally different from
this work as their goal is to obtain MT models
using synthetic text-only parallel data through the
use of visual pivoting, not targeting disambiguation
capabilities. Hirasawa et al. (2023) proposed a zero-
shot method to learn MMT by training on the little
fully supervised data available aiming for zero-shot
cross-lingual transfer. As the amount of fully su-
pervised data for a single language is small (≤ 30K
text-image pairs), and few languages are covered
(≤ 8), this method results in poor exploitation of
the image to learn disambiguation capabilities.

Evaluating MMT systems The test sets typically
used to evaluate MMT systems are the test subsets
of M30K (Elliott et al., 2016, 2017; Barrault et al.,
2018). However, some of the translations were
produced without access to the images and they
have also been found to contain only a few ambigu-
ous examples where visual context is necessary
(Futeral et al., 2023). They are therefore not best
adapted to evaluating MMT systems. Elliott (2018)
and Caglayan et al. (2019) proposed to use an ad-
versarial evaluation method and a probing method
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Figure 1: Overview of our approach. We train on two objectives: Visually conditioned masked language modelling
(VMLM) and Kullback-Leibler (KL) divergence. All weights are frozen during training except the visual projector
and the adapters in the MT model.

based on masked text inputs to assess the utility of
images in translation. However, this is not a good
proxy for evaluating an MMT model’s capacity to
disambiguate translations as it relies on masked
inputs and so says little about models’ capacities
to disambiguate when given unmasked text inputs.
Lala and Specia (2018), Li et al. (2021) and Zhu
et al. (2023) released evaluation datasets composed
of sentences in English with ambiguous words ac-
companied with disambiguating images. However,
Li et al. (2021) only target the ambiguity of gen-
der pronouns, and all these datasets are prone to
distributional bias, which is difficult to measure
and is such that text-only MT systems can perform
very well on them (i.e. images are in fact often
not necessary for correct translation). Traditional
MT metrics (Papineni et al., 2002; Banerjee and
Lavie, 2005; Rei et al., 2020) are also unable to
catch how well MMT systems use images as they
do not specifically target translations where images
would be required to translate correctly. Tackling
these issues, Futeral et al. (2023) introduced CoM-
MuTE, a contrastive evaluation dataset, composed
of English sentences to be translated, built around
ambiguous words, each sentence accompanied by
two translations with two images, each of which
disambiguates the English sentence. MMT models
are evaluated on their capacity to give a lower per-
plexity to the correct translation than the incorrect
one, given the source sentence and an image. As
perplexity is used to evaluate MMT models, it is a
direct proxy of MMT models’ capacity to disam-
biguate English sentences. Furthermore, text-only
MT systems can only perform as well as random
(50%), as they do not have access to the images.

3 Extending the CoMMuTE benchmark

En Ar Ru Zh

#unique sents. 155 310 310 310
#tokens 1,384 2,958 3,105 2,832
#unique toks. 559 870 1,002 762

Table 1: Statistics of the extension of CoMMuTE.

Currently available for English-to-
{French,German,Czech}, we extend the
CoMMuTE benchmark to three new target
languages: Arabic, Chinese and Russian, using
professional translators. We also release a small
validation set of 30 English ambiguous words
(non-overlapping with test set examples) with two
French translations, each with its own image, to be
used for model selection during training. Table 1
shows statistics of our extension of CoMMuTE.4

4 Our Approach

Our goal is to train an MMT model capable of ef-
fectively using images to disambiguate ambiguous
translations (i.e. where an image is necessary to
translate correctly, which is MMT’s main purpose)
while keeping the general MT capacity of the un-
derlying MT model, without using fully supervised
data (i.e. in a zero-shot way). This allows us to
extend MMT to more language pairs, currently not
possible without collecting fully supervised data.

As shown in Figure 1, we start from a strong
pretrained NLLB (Costa-jussà et al., 2022) MT
model and use it to translate English captions. Sim-
ilarly to Futeral et al. (2023), we turn it into an

4Tokenisation using NLLB (Costa-jussà et al., 2022).
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MMT model by adding lightweight trainable mod-
ules (visual projectors and adapters), keeping origi-
nal weights frozen during training. We use visual
embeddings from SigLIP (Zhai et al., 2023) and
concatenate them to the sequences of text embed-
dings in the NLLB encoder. Our approach, Ze-
roMMT, is based on two objectives: (1) force the
model to use images when translating by using
visually-conditioned masked language modeling
(VMLM) and (2) maintain the performance of the
original MT system without any fully supervised
data using the Kullback-Leibler (KL) divergence
between the MMT system’s output and the original
MT system’s output distributions using the previ-
ously automatically translated data. While (1) has
already been proved successful for learning visual
disambiguation capabilities (Futeral et al., 2023),
we further show (Section 6) that (2) is key for re-
taining a strong translation capacity in an MMT
setting, enabling zero-shot training.

In more detail, let x1,...,n denote the sequence
of tokens of the English sentence, i the image
embedding, y1,...,m the translated sequence of
tokens, fθ the original MT system and fθ,β the
MMT system built on top of the text-only MT
model with additional light-weight modules β,
both outputting probability distributions over
tokens. We formally define the losses as follows:

LVMLM =
∑

j

yj log
(
fθ,β(yj ; y<j , x\M , i)

)
(1)

LKL =
∑

j

fθ(yj ; y<j , x) log
fθ(yj ; y<j , x)

fθ,β(yj ; y<j , x, i)
(2)

where M is the set of masked input indices. The
final loss is a weighted combination of (1) and (2),
and we choose the λ value based on results on
validation sets as described in Section 5.2:

L = LVMLM + λLKL

5 Experiments

5.1 Data
We trained our models on the Conceptual Captions
dataset5 (Sharma et al., 2018). We translated Con-
ceptual Captions into French, German, Czech, Chi-
nese, Russian and Arabic using NLLB (Costa-jussà
et al., 2022) (of size 600M, 1.3B or 3.3B depending
on the experiment) using a beam of size 4 for the
600M model and 2 for the largest ones.

5At the time of writing, we were able to collect 2,831,746
out of the 3,300,000 images.

We evaluate our models on the M30K test
sets (Elliott et al., 2016, 2017; Barrault et al.,
2018) for English-to-{German,French,Czech},
the EMMT test set (Zhu et al., 2023) for English-
to-Chinese, comprising 500 English product
titles from e-commercial websites translated
into Chinese, and the VATEX test set (Wang
et al., 2019) for English-to-Chinese, composed
of 10-second videos6 with English captions
translated into Chinese. We use these test sets
to make sure general translation quality is not
harmed when introducing additional visual inputs
in unambiguous cases (as described previously,
they cannot be used in practice to evaluate
MMT models’ ability to use images correctly).
Finally we evaluate on CoMMuTE for English-to-
{German,French,Czech,Chinese,Russian,Arabic},
used to test how well the MMT models exploit
visual context for disambiguation.

5.2 Implementation details

Modelling We trained three different versions of
ZeroMMT depending on the size of the underlying
NLLB model7 (Costa-jussà et al., 2022) (600M,
1.3B and 3.3B). For SigLIP (Zhai et al., 2023),
we use ViT-B-16-SigLIP-384 trained on WebLI
(Chen et al., 2023) from the timm library (Wight-
man, 2019). Following VGAMT (Futeral et al.,
2023), we used bottleneck adapters (Houlsby et al.,
2019) as implemented in the Adapters Python li-
brary (Poth et al., 2023) with a factor reduction of 8
and ReLU activation (Agarap, 2018) for each layer.
The visual projector is a 1-layer neural network fol-
lowed by ReLU activation projecting SigLIP (Zhai
et al., 2023) embeddings towards the hidden dimen-
sion of NLLB. The image representation is then
concatenated to the sequence of text embeddings.
The cross-attention mechanism in the decoder of
the model can only attend to the positions of text
embeddings. Similarly to VGAMT, we randomly
mask 25% of the input tokens for VMLM.

Training We train our models with a batch size
of 32, the Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.99 and learning rate of
10−4. We use λ = 0.1 to balance the two training
losses. All hyperparameters were selected based
on the combination of the CoMMuTE validation
set (see Section 3) and the English–French valida-

6We take 5 frames per second, compute SIGLIP features
and average them to obtain the visual input.

7As implemented in Transformers (Wolf et al., 2020).
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Ar Cs De Fr Ru Zh

Text-only MT baselines 50.0 50.0 50.0 50.0 50.0 50.0
NLLB-SIGLIP topline 82.6 76.0 83.7 75.0 75.8 88.1

MMT – fully supervised

Gated Fusion bilingual - 51.0 ±1.9 49.7 ±0.6 50.0 ±0.8 - -
VTLM + MMT bilingual - 52.0 ±0.7 50.2 ±0.3 51.4 ±0.9 - -
VGAMT full bilingual - 55.6 ±0.8 59.0 ±0.5 67.1 ±0.7 - -
VGAMT SIGLIP-only multi. - 57.5 ±1.2 57.1 ±0.4 61.3 ±1.1 - -

MMT – cross-lingual zero-shot

M2KT-VPN bilingual - 50.1 ±0.6 50.3 ±0.5 50.9 ±0.8 - -

MMT – zero-shot

Multilingual OpenFlamingo 61.3 59.1 63.7 68.5 67.4 66.5
ZeroMMT-600M (ours) multi. 56.1±0.8 55.5±0.5 55.7±0.3 58.7±0.4 57.2±1.2 58.2±1.1
ZeroMMT-1.3B (ours) multi. 57.3±0.2 59.4±0.5 57.4±0.4 62.2±0.5 60.6±0.5 60.1±0.8
ZeroMMT-3.3B (ours) multi. 58.9±0.5 61.7±0.3 60.8±0.8 65.0±0.7 62.9±0.3 60.1±0.7

Table 2: Results on CoMMuTE, averaged over 3 runs (± standard error). The best scores for each category are in
bold and the second best are underlined.

Fr De Cs Zh
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Text-only MT baselines

NLLB-600M distilled 49.17 ±0.78 85.18 ±0.67 33.04 ±3.44 81.98 ±2.16 26.58 ±0.19 85.02 ±0.42 16.07 ±1.35 57.81 ±4.21
NLLB-1.3B 51.90 ±0.79 86.28 ±0.77 35.39 ±2.83 83.49 ±2.15 30.77 ±0.46 87.48 ±0.29 18.22 ±0.20 60.02 ±3.51
NLLB-3.3B 53.73 ±0.57 86.98 ±0.88 37.26 ±2.10 84.76 ±1.76 33.37 ±0.27 88.70 ±0.37 20.55 ±0.46 61.27 ±3.50

MMT – fully supervised

Gated Fusion bilingual 49.79 ±7.46 80.62 ±3.01 31.57 ±5.24 72.89 ±3.15 28.30 ±2.52 79.24 ±2.41 - -
VTLM + MMT bilingual 55.27 ±6.00 83.45 ±1.98 35.94 ±3.44 79.10 ±2.35 32.63 ±2.26 82.40 ±1.77 - -
VGAMT full bilingual 59.97 ±6.66 88.29 ±1.83 39.10 ±3.14 85.72 ±1.73 35.89 ±1.70 89.50 ±1.08 - -
VGAMT SIGLIP-only multi. 58.39 ±5.67 87.27 ±1.74 37.36 ±3.51 83.85 ±2.04 34.88 ±1.77 87.45 ±1.19 - -

MMT – cross-lingual zero-shot

M2KT-VPN bilingual 51.58 ±6.72 80.19 ±3.77 29.27 ±5.77 71.63 ±2.77 28.02 ±2.31 78.63 ±2.77 - -

MMT – zero-shot

Multilingual OpenFlamingo 35.08 ±0.76 82.66 ±1.38 24.92 ±2.89 79.93 ±2.44 3.27 ±0.04 70.73 ±0.55 8.60 ±5.86 53.38 ±10.24
ZeroMMT-600M (ours) multi. 49.00 ±1.07 84.82 ±0.79 32.79 ±2.97 81.13 ±2.48 25.24 ±0.62 83.79 ±0.55 15.74 ±1.62 57.10 ±4.72
ZeroMMT-1.3B (ours) multi. 52.06 ±1.15 86.15 ±0.84 35.18 ±2.58 83.35 ±1.90 30.14 ±0.48 86.94 ±0.33 17.11 ±0.71 59.17 ±4.34
ZeroMMT-3.3B (ours) multi. 53.34 ±0.50 86.69 ±0.94 37.08 ±2.49 84.41 ±1.77 33.03 ±0.34 88.37 ±0.32 19.43 ±0.64 60.61 ±4.28

Table 3: Aggregated generation results for En→X. Fr and De results are averaged over Test2016, Test2017 from
M30K and AmbiguousCOCO. Cs results are averaged over M30K Test2016 and Test2018. Zh results are averaged
over EMMT and VATEX test sets.

tion dataset of M30K, each score weighted equally.
All our models are multilingual if not otherwise
specified. We run each experiment three times with
three different seeds and report average scores and
standard error. It took 15 hours on one NVIDIA
V100 for the 600M model and 20 hours on one
NVIDIA A100 for the largest models.

Evaluation We evaluate MMT generation with
BLEU (Papineni et al., 2002) and COMET (Rei
et al., 2020). For BLEU, we use the Sacrebleu
implementation (Post, 2018) with 13a tokeniza-
tion for French, German and Czech and zh tok-
enization for Chinese. For COMET, we use the
wmt22-comet-da (Rei et al., 2022) model from the
XLM-R backbone (Conneau et al., 2020). The
translations were obtained with beam search de-
coding of size 4. Following (Futeral et al., 2023),

we calculate disambiguation accuracy using CoM-
MuTE: given an English sentence and an associ-
ated image, we compute the perplexities of each
contrastive translation, giving a score of 1 if the per-
plexity of the correct translation is lower than the
perplexity of the contrastive one and 0 otherwise.

5.3 Results

Baselines and comparative models We com-
pare our approach to several others. Firstly, we
compare to the text-only MT systems on which
the ZeroMMT models are based, NLLB-600M dis-
tilled, NLLB-1.3B and NLLB-3.3B. We also com-
pare against well-known fully supervised MMT
systems: Gated Fusion (Wu et al., 2021), a tiny
3M-parameter Transformer (Vaswani et al., 2017)
trained from scratch on M30K; VTLM (+ MMT)
(Caglayan et al., 2021), a 44M-parameter MMT
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Ar Cs De Fr Ru Zh

NLLB-600M 79.06 83.31 80.84 80.17 79.94 75.41
ZeroMMT-600M (ours) 79.43 82.62 81.11 81.36 80.67 75.90

NLLB-1.3B 80.59 84.12 81.28 80.14 81.72 75.30
ZeroMMT-1.3B 81.02 85.41 83.46 82.35 83.45 77.06

NLLB-3.3B 79.90 84.97 81.20 81.16 82.26 76.69
ZeroMMT-3.3B 80.64 86.69 83.54 83.40 83.87 77.85

Table 4: COMET scores on CoMMuTE (as a translation
set). The best result for each model size is in bold.

system first pretrained on the translation language
modelling (TLM) objective (Lample and Conneau,
2019) with an additional image as input on trans-
lated captioning data (using the same translated
data and tokenizer as ZeroMMT-600M) and then
MMT-finetuned on M30K; and VGAMT (Futeral
et al., 2023), a 630M-parameter MMT system (of
which 13M trainable), which is an MT-fine-tuned
mBART (Liu et al., 2020) transformed into an
MMT system through the addition of lightweight
adapters trained jointly on the MMT and VMLM
objectives. VGAMT originally uses multiple types
of visual input and is bilingual. Therefore, to have a
comparable setup we retrain a VGAMT-like model
with NLLB-600M distilled as the underlying MT
model, with SIGLIP features only and in a multilin-
gual setting. Finally, we compare to Multilingual
OpenFlamingo (Futeral et al., 2024), a 3B multilin-
gual multimodal language model pretrained on a
large number of text-image pairs and interleaved
documents which allows for zero-shot MMT in a
way that is comparable with our model and M2KT-
VPN (Hirasawa et al., 2023), a cross-lingual zero-
shot MMT model based on a tiny Transformer.

We compute an approximate upperbound on
CoMMuTE for models trained with SIGLIP fea-
tures by evaluating on NLLB-SIGLIP (Visheratin,
2023). For each CoMMuTE instance, we compute
the cosine similarity between the translation and
(i) its associated image and (ii) the other image. If
the cosine similarity of (i) is higher than (ii), it is
considered a correct prediction.

Quantitative results Tables 2 and 3 show the
results on CoMMuTE and the aggregated results
on generation benchmarks not composed of am-
biguous examples (i.e. images are not required)
respectively. For full results, see Appendix A. Com-
pared to the text-only NLLB-600M distilled model,
our approach results in only a small drop in per-
formance on generation benchmarks (-0.52 BLEU
and -0.79 COMET on average), where images are

not required to translate the sentence correctly, de-
spite not using the M30K training data or any fully
supervised data. For the disambiguation task, Mul-
tilingual OpenFlamingo obtains the strongest CoM-
MuTE scores but it fails in generation as it was
not specifically trained to translate. Our approach
is significantly better than the random baseline
(>55% for all languages for the smallest model,
>61% on average for the largest model), showing
that it is able to exploit images for disambiguation;
results are close to VGAMT scores (for similar
model sizes) for Czech despite not having been
trained on fully supervised data. Table 4 shows
additional results on CoMMuTE but used as a tra-
ditional MMT generation benchmark. We obtain
higher COMET scores than the text-only baseline
NLLB on all languages for all model sizes except
Czech for the smallest model. These results show
that our approach is able to improve translation per-
formance by exploiting images for disambiguation
in cases of ambiguous examples without using any
fully supervised data during training. We shall see
in Section 7 how image exploitation can be con-
trolled at inference time and how our approach can
be made to outperform Multilingual OpenFlamingo
in image exploitation (as measured on CoMMuTe).

Qualitative results We analysed some transla-
tions of our ZeroMMT-600M model and compared
them with those of the text-only distilled NLLB-
600M model. Our model is able to exploit the im-
age to slightly change the translation towards the
correct meaning, as shown in Figure 2a, where am-
biguous parts of the translations change when the
image is provided. In Figure 2b, the translation is
also improved; bass is translated as鱼 ‘fish’ rather
than 低音 ‘bass (low tone)’. We also notice few
variations in the other areas of the translation with
respect to the NLLB translation, which means that
our model correctly identifies the part to change.
More examples can be found in Appendix B.

Human evaluation We conduct human evalu-
ation between ZeroMMT-3.3B and NLLB-3.3B
outputs to further confirm these results. We set
up A/B testing where annotators were asked to as-
sess which of the translations was better given the
source translation and the accompanying image.
We randomly sampled 100 examples from CoM-
MuTE to assess which model is better in cases of
ambiguity in the source sentence and 100 examples
from M30K test sets (equally represented) in cases
where images do not provide additional informa-
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Source
 

Ours
NLLB

Ours
NLLB

1

2

:   Next to the main square or the little one?

:   À côté de la place principale ou de la petite?
:   À côté de la place principale ou de la petite?

:   À côté du carré principal ou du petit?
:   À côté de la place principale ou de la petite?

En

Fr

Fr

1 2

(a) English–French example.

Source
 

Ours
NLLB

Ours
NLLB

1

2

:   What a beautiful bass!

:   这是一个美丽的低音!
:   这是一个美丽的低音!

:   这是一个美丽的鱼!
:   这是一个美丽的低音!

En

Zh

Zh

1 2

(b) English–Chinese example.

Figure 2: Translations of CoMMuTE by our approach,
ZeroMMT-600M, and the NLLB distilled MT model.
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Figure 3: French human evaluation on 100 examples
from CoMMuTE. ‘Draw’ means both translations are
exactly the same or considered of same quality.

tion for translation. Figure 3 shows that ZeroMMT-
3.3B is considered to be better than NLLB-3.3B
by a large margin in cases of ambiguity. In cases
where the image adds no additional information
(i.e. the sentence to translate is non-ambiguous),
Figure 4 shows that translations are considered the
same in most cases (80%), and in the remaining
cases NLLB-3.3B is considered to be slightly bet-
ter than ZeroMMT-3.3B (11 vs. 9). The results of
a similar analysis for Arabic and Chinese is given
in Figures 5 to 7. By manually looking at some
examples, we noticed that the few unambiguous
cases where NLLB-3.3B is considered superior to
ZeroMMT-3.3B are due to hallucinations (since
we add additional information in cases it is not
necessary, this can occasionally occur).

0 20 40 60 80 100
NLLB
Draw

ZeroMMT

11
80

9

Figure 4: French human evaluation on 100 examples
from M30K test sets. ‘Draw’ means both translations
are exactly the same or considered of the same quality.

6 Ablation study

Translation sets CoMMuTE
BLEU COMET accuracy

ZeroMMT-600M 32.73 ±12.33 77.95 ±10.82 56.9 ±1.4

w/o VMLM 33.12 ±12.01 78.49 ±10.69 50.3 ±0.4

w/o KL 14.10 ±10.70 65.88 ±11.72 58.9 ±1.8

+ MMT w/o KL 32.09 ±12.62 77.50 ±10.80 55.5 ±1.3

Table 5: Ablation study. Aggregated scores over bench-
marks and languages. The best results are in bold and
second best are underlined.

We conduct an ablation study on our ZeroMMT-
600M model to analyse the impact of our two ob-
jectives. We first train a model without the VMLM
objective, then a model without the KL penalty. We
also test the replacement of the KL penalty with
a standard auto-regressive MMT translation loss
with the translated data as the ground truth, and fi-
nally we vary the KL penalty coefficient to observe
the evolution of COMET and CoMMuTE scores.
Additional ablation study on the choice of visual
feature can be found in Appendix A.4.

KL penalty only (i.e. without VMLM) Table 5
shows that with the KL penalty only, the model can-
not exploit visual information for translation. This
is because there is no need to use the input image
and the model learns to ignore it. The aggregated
CoMMuTE score is close to random guessing.

VMLM only (i.e. without KL) Table 5 also
shows that, while the VMLM objective allows the
model to obtain good scores on CoMMuTE (it is
able to exploit visual information), the scores on
generation benchmarks collapse as expected, with
-19 BLEU points and -12 COMET points in com-
parison to the full approach.

KL penalty vs. MMT objective Finally, we
replace the KL penalty with the standard MMT
objective (i.e. +MMT w/O KL in Table 5) as the ob-
jective to maintain translation quality. We observe
a drop of 0.64 BLEU points and 0.45 COMET
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Figure 5: Chinese human evaluation on 100 examples
from CoMMuTE. ‘Draw’ means both translations are
exactly the same or considered of same quality.
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Figure 6: Chinese human evaluation on 100 examples
from VATEX. ‘Draw’ means both translations are ex-
actly the same or considered of same quality.
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Figure 7: Arabic human evaluation on 100 examples
from CoMMuTE. ‘Draw’ means both translations are
exactly the same or considered of the same quality.
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Figure 8: Evolution of aggregated COMET and CoM-
MuTE scores when changing the KL penalty coefficient.

points on average in comparison with the use of
the KL penalty. It additionally results in an average
drop of 1.4 points on CoMMuTE.

Varying the trade-off between objectives In
Figure 8 we show the variation of COMET and
CoMMuTE when testing our approach with differ-
ent λ coefficients for the KL penalty. We notice
that when λ is too high, it results in a large average
drop of performance on CoMMuTE.

7 Controlling the disambiguation level

We show that our method allows us to obtain
an MMT system with a good trade-off between
strong translation quality on unambiguous exam-
ples (i.e. where images are not necessary to trans-
late correctly) and the capacity to exploit visual
context for disambiguation. However, some ap-
plications could require stronger disambiguation
capabilities and be less reliant on translation fi-

γ BLEU COMET CoMMuTE

1.0 37.62 ±12.11 81.12 ±10.59 61.6 ±2.1
1.25 37.30 ±12.07 80.98 ±10.56 64.2 ±2.5
1.5 36.84 ±11.89 80.76 ±10.53 65.8 ±2.7
2.0 35.02 ±11.07 79.92 ±10.42 68.5 ±2.9
2.5 32.15 ±10.14 78.42 ±10.16 70.3 ±2.6
3.0 28.75 ±9.08 76.25 ±9.69 71.7 ±2.5

MOF 20.37 ±12.92 73.60 ±11.98 64.4 ±3.4

Table 6: Evolution of BLEU, COMET and CoMMuTE
scores of our CFG-enabled ZeroMMT-3.3B model (ag-
gregated over benchmarks and languages) compared
to CFG-free ZeroMMT (i.e. γ = 1.0). The best and
second best results for each model size are shown ty-
pographically. “MOF” shows scores for Multilingual
OpenFlamingo.

delity on unambiguous cases or vice versa. Instead
of retraining a model to control the trade-off be-
tween the two objectives, we instead propose to use
classifier-free guidance (CFG) (Ho and Salimans,
2021; Sanchez et al., 2023) to control this trade-off
at inference time. We define CFG in the context of
MMT as follows:

f̂θ,β(yj ; y<j , x, i) = fθ(yj ; y<j , x)+

γ
(
fθ,β(yj ; y<j , x, i)− fθ(yj ; y<j , x)

) (3)

where fθ is the text-only MT system, fθ,β the
adapted MMT system, x and y the source and gen-
erated sentence, i the visual input, j the token index
and γ the CFG value controlling guidance.

We analyse the evolution of BLEU and COMET
scores on standard generation benchmarks (where
text context is enough to translate correctly), and
CoMMuTE scores when varying the γ parameter.
Table 6 shows that ZeroMMT-3.3B can achieve a
boost in CoMMuTE accuracy of up to 4.2 points
for γ = 1.5, while facing only a moderate drop of
BLEU and COMET scores on unambiguous gen-
eration benchmarks (which do not require images
as additional context in theory). Higher γ values
result in stronger disambiguation capabilities, as
shown by CoMMuTE, but this comes at the ex-
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pense of a drop in generation quality on the un-
ambiguous benchmarks. CFG can therefore allow
us to control the trade-off between disambiguation
capability and translation fidelity depending on the
application. Importantly, we strongly outperform
Multilingual OpenFlamingo on all metrics for dif-
ferent CFG values and we can obtain CoMMuTE
scores up to 71.7 on average for γ = 3.0. Results
for ZeroMMT-600M and 1.3B can be found in Ta-
ble 11 in Appendix A.2.

8 Conclusion

We present ZeroMMT, a novel zero-shot MMT
approach bypassing the need for parallel multi-
modal data. ZeroMMT shows good disambigua-
tion capabilities (it is able to effectively exploit
images) while maintaining good translation results,
with only a very small drop in performance ac-
cording to standard generation benchmarks where
images are not necessary for correct translation.
ZeroMMT allows us to extend MMT to new lan-
guage directions; we show that it performs well
on the CoMMuTE test set for Russian and Arabic
for which no parallel multimodal training data is
available. Moreover, we show that it is possible
to control the disambiguation-generation trade-off
using classifier-free guidance. It is therefore a step
towards having MMT systems that cover a broader
set of languages without having to rely on acquiring
costly training data.

Limitations

While our approach allows us to exploit images for
translation disambiguation as shown by the scores
obtained on CoMMuTE, it is still behind the up-
perbound. Zero-shot disambiguation capabilities
also come at the expense of a slight drop in transla-
tion quality in cases where text context is enough to
translate correctly as shown by BLEU and COMET
scores. To fill this gap, a next step, which we leave
to future work, would be to detect ambiguity in
the source sentence and access the images only in
those cases. Indeed, in most cases, images are not
necessary to translate the English source sentence
correctly. There are therefore areas for improve-
ment even if our zero-shot approach is close to its
fully supervised counterparts. It is nevertheless a
step towards zero-shot multimodal machine trans-
lation and the expansion of MMT to new language
pairs.

Ethics Statement

The released extension of CoMMuTE is designed
to evaluate disambiguation capabilities of MMT
systems and should not be used in any other way.
Images were collected under the Creative Com-
mons license and CoMMuTE is distributed under
CC-BY-SA-4.0 license. All of our models are also
distributed under CC-BY-SA-4.0 license.

References
Abien Fred Agarap. 2018. Deep Learning using

Rectified Linear Units (ReLU). arXiv preprint
arXiv:1803.08375.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Loïc Barrault, Fethi Bougares, Lucia Specia, Chiraag
Lala, Desmond Elliott, and Stella Frank. 2018. Find-
ings of the third shared task on multimodal machine
translation. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
304–323, Belgium, Brussels. Association for Com-
putational Linguistics.

Braeden Bowen, Vipin Vijayan, Scott Grigsby, Timothy
Anderson, and Jeremy Gwinnup. 2024. Detecting
concrete visual tokens for multimodal machine trans-
lation. arXiv preprint arXiv:2403.03075.

Ozan Caglayan, Menekse Kuyu, Mustafa Sercan Amac,
Pranava Madhyastha, Erkut Erdem, Aykut Erdem,
and Lucia Specia. 2021. Cross-lingual visual pre-
training for multimodal machine translation. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1317–1324, Online.
Association for Computational Linguistics.

Ozan Caglayan, Pranava Madhyastha, Lucia Specia,
and Loïc Barrault. 2019. Probing the need for visual
context in multimodal machine translation. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 4159–4170, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Iacer Calixto, Desmond Elliott, and Stella Frank. 2016.
DCU-UvA multimodal MT system report. In Pro-
ceedings of the First Conference on Machine Transla-
tion: Volume 2, Shared Task Papers, pages 634–638,
Berlin, Germany. Association for Computational Lin-
guistics.

769

https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/W18-6402
https://doi.org/10.18653/v1/W18-6402
https://doi.org/10.18653/v1/W18-6402
https://doi.org/10.18653/v1/2021.eacl-main.112
https://doi.org/10.18653/v1/2021.eacl-main.112
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/N19-1422
https://doi.org/10.18653/v1/W16-2359


Iacer Calixto and Qun Liu. 2017. Incorporating global
visual features into attention-based neural machine
translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 992–1003, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Pier-
giovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas
Beyer, Alexander Kolesnikov, Joan Puigcerver, Nan
Ding, Keran Rong, Hassan Akbari, Gaurav Mishra,
Linting Xue, Ashish V Thapliyal, James Bradbury,
Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia,
Burcu Karagol Ayan, Carlos Riquelme Ruiz, An-
dreas Peter Steiner, Anelia Angelova, Xiaohua Zhai,
Neil Houlsby, and Radu Soricut. 2023. PaLI: A
jointly-scaled multilingual language-image model.
In Proceedings of the Eleventh International Confer-
ence on Learning Representations, Kigali Rwanda.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Marta R Costa-jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Desmond Elliott. 2018. Adversarial evaluation of mul-
timodal machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2974–2978, Brussels,
Belgium. Association for Computational Linguistics.

Desmond Elliott, Stella Frank, Loïc Barrault, Fethi
Bougares, and Lucia Specia. 2017. Findings of the
second shared task on multimodal machine transla-
tion and multilingual image description. In Proceed-
ings of the Second Conference on Machine Transla-
tion, Volume 2: Shared Task Papers, pages 215–233,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Desmond Elliott, Stella Frank, Khalil Sima’an, and Lu-
cia Specia. 2016. Multi30K: Multilingual English-
German image descriptions. In Proceedings of the
5th Workshop on Vision and Language, pages 70–
74, Berlin, Germany. Association for Computational
Linguistics.

Desmond Elliott and Ákos Kádár. 2017. Imagination
improves multimodal translation. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 130–141, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Hao Fei, Qian Liu, Meishan Zhang, Min Zhang, and
Tat-Seng Chua. 2023. Scene graph as pivoting:
Inference-time image-free unsupervised multimodal
machine translation with visual scene hallucination.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 5980–5994, Toronto, Canada.
Association for Computational Linguistics.

Matthieu Futeral, Cordelia Schmid, Ivan Laptev, Benoît
Sagot, and Rachel Bawden. 2023. Tackling ambi-
guity with images: Improved multimodal machine
translation and contrastive evaluation. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5394–5413, Toronto, Canada. Association for
Computational Linguistics.

Matthieu Futeral, Armel Zebaze, Pedro Ortiz Suarez,
Julien Abadji, Rémi Lacroix, Cordelia Schmid,
Rachel Bawden, and Benoît Sagot. 2024. mOSCAR:
A large-scale multilingual and multimodal document-
level corpus. arXiv preprint arXiv:2406.08707.

Devaansh Gupta, Siddhant Kharbanda, Jiawei Zhou,
Wanhua Li, Hanspeter Pfister, and Donglai Wei. 2023.
CLIPTrans: Transferring Visual Knowledge with Pre-
trained Models for Multimodal Machine Translation.
In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision.

Tosho Hirasawa, Emanuele Bugliarello, Desmond El-
liott, and Mamoru Komachi. 2023. Visual prediction
improves zero-shot cross-modal machine translation.
In Proceedings of the Eighth Conference on Machine
Translation, pages 522–535, Singapore. Association
for Computational Linguistics.

Jonathan Ho and Tim Salimans. 2021. Classifier-free
diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Po-Yao Huang, Junjie Hu, Xiaojun Chang, and Alexan-
der Hauptmann. 2020. Unsupervised multimodal
neural machine translation with pseudo visual pivot-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
8226–8237, Online. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Chiraag Lala and Lucia Specia. 2018. Multimodal lex-
ical translation. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

770

https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://doi.org/10.18653/v1/D17-1105
https://openreview.net/forum?id=mWVoBz4W0u
https://openreview.net/forum?id=mWVoBz4W0u
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1329
https://doi.org/10.18653/v1/D18-1329
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
http://www.aclweb.org/anthology/W17-4718
https://doi.org/10.18653/v1/W16-3210
https://doi.org/10.18653/v1/W16-3210
https://aclanthology.org/I17-1014
https://aclanthology.org/I17-1014
https://doi.org/10.18653/v1/2023.acl-long.329
https://doi.org/10.18653/v1/2023.acl-long.329
https://doi.org/10.18653/v1/2023.acl-long.329
https://doi.org/10.18653/v1/2023.acl-long.295
https://doi.org/10.18653/v1/2023.acl-long.295
https://doi.org/10.18653/v1/2023.acl-long.295
https://arxiv.org/abs/2406.08707
https://arxiv.org/abs/2406.08707
https://arxiv.org/abs/2406.08707
https://doi.org/10.18653/v1/2023.wmt-1.47
https://doi.org/10.18653/v1/2023.wmt-1.47
https://doi.org/10.18653/v1/2020.acl-main.731
https://doi.org/10.18653/v1/2020.acl-main.731
https://doi.org/10.18653/v1/2020.acl-main.731
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14
https://aclanthology.org/L18-1602
https://aclanthology.org/L18-1602


Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. In Proceedings
of the 33rd Conference on Neural Information Pro-
cessing Systems (NeurIPS 2019), Vancouver, Canada.

Bei Li, Chuanhao Lv, Zefan Zhou, Tao Zhou, Tong
Xiao, Anxiang Ma, and JingBo Zhu. 2022a. On
vision features in multimodal machine translation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6327–6337, Dublin, Ireland.
Association for Computational Linguistics.

Jiaoda Li, Duygu Ataman, and Rico Sennrich. 2021.
Vision matters when it should: Sanity checking mul-
timodal machine translation models. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 8556–8562, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. Visualbert: A sim-
ple and performant baseline for vision and language.
CoRR, abs/1908.03557.

Yi Li, Rameswar Panda, Yoon Kim, Chun-Fu (Richard)
Chen, Rogerio S. Feris, David Cox, and Nuno Vas-
concelos. 2022b. Valhalla: Visual hallucination
for machine translation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5216–5226.
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A Detailed results

A.1 Main results
Tables 7 to 10 show full BLEU and COMET scores
for all languages and all benchmarks.

A.2 Impact of γ in CFG
Table 11 shows the impact of γ on BLEU, COMET
and CoMMuTE scores of our CFG-enabled Ze-
roMMT 600M and 1.3B models (aggregated
over benchmarks and languages) compared to the
vanilla, CFG-free ZeroMMT model (i.e. γ = 1.0).
See Section 7 for results with our ZeroMMT-3.3B
model.

A.3 Ablation study - Full results
Tables 12 to 15 show the full results of the ablation
study for all languages and all benchmarks.

A.4 Ablation study - Choice of visual
representation

We additionally train several ZeroMMT-600M
models with different types of visual encoder. As
shown by Table 16, the type of visual encoder
does not have an impact on global translation per-
formances as BLEU and COMET scores do not
vary a lot on standard benchmarks between mod-
els. However, we notice significant differences on
CoMMuTE; the performance of CLIP,8 SIGLIP9

and SIGLIP large10 visual encoders are about 1.5
points higher on average on CoMMuTE in compar-
ison to VIT11 and ResNet-50.12 This is probably
due to the fact that VIT and ResNet-50 are trained
on ImageNet, which limits their capacity to Ima-
geNet classes while CLIP and SIGLIP-like visual
encoders are trained on free-form image-text large
datasets. However, all scores on CoMMuTE are
well above random, therefore validating the method
for different types of visual representation.

B Additional examples

Figures 9a to 9f show additional translation ex-
amples from CoMMuTE by ZeroMMT (Ours)
and the text-only NLLB-600M distilled model.

8ViT-B-32
9vit_base_patch16_siglip_384

10vit_so400m_patch14_siglip_384
11google/vit-base-patch16-224-in21k
12microsoft/resnet-50
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Test2016 Test2017 COCO
BLEU COMET BLEU COMET BLEU COMET

Text-only MT baselines

NLLB-600M distilled 48.71 85.18 48.54 85.99 50.28 84.36
NLLB-1.3B 51.68 86.60 51.06 87.01 52.95 85.22
NLLB-3.3B 54.15 87.57 52.92 87.64 54.11 85.73

MMT – fully supervised

Gated Fusion bilingual 58.70 ± 0.30 83.60 ± 0.08 50.80 ± 0.70 81.74 ± 0.25 40.40 ± 0.40 76.52 ± 0.25
VTLM + MMT bilingual 63.37 ± 0.13 85.29 ± 0.06 55.77 ± 0.17 84.35 ± 0.04 47.69 ± 0.16 80.70 ± 0.20
VGAMT full bilingual 67.20 ± 0.10 89.78 ± 0.04 61.60 ± 0.10 89.37 ± 0.04 51.10 ± 0.60 85.78 ± 0.11
VGAMT SIGLIP-only multi. 65.04 ± 0.52 88.74 ± 0.04 58.90 ± 0.28 88.23 ± 0.19 51.24 ± 0.73 84.84 ± 0.29

MMT – cross-lingual zero-shot

M2KT-VPN bilingual 59.21 ± 0.56 83.95 ± 0.13 52.63 ± 0.63 81.55 ± 0.41 42.90 ± 0.20 75.08 ± 0.51

MMT – zero-shot

Multilingual OpenFlamingo 36.01 83.56 35.10 83.72 34.14 80.71
ZeroMMT-600M (ours) multi. 48.62 ± 0.38 84.92 ± 0.09 48.10 ± 0.11 85.66 ± 0.16 50.29 ± 0.82 83.78 ± 0.20
ZeroMMT-1.3B (ours) multi. 51.47 ± 0.11 86.42 ± 0.17 51.10 ± 0.02 87.00 ± 0.17 53.60 ± 0.54 85.03 ± 0.08
ZeroMMT-3.3B (ours) multi. 52.89 ± 0.36 87.22 ± 0.05 53.29 ± 0.19 87.48 ± 0.13 53.86 ± 0.30 85.38 ± 0.13

Table 7: En→Fr results for Test2016, Test2017 and COCO subsets of M30K, avg. over 3 runs (± standard error).

Test2016 Test2017 COCO
BLEU COMET BLEU COMET BLEU COMET

Text-only MT baselines

NLLB-600M distilled 37.14 83.79 33.24 83.21 28.73 78.95
NLLB-1.3B 37.91 85.14 36.81 84.86 31.44 80.45
NLLB-3.3B 39.47 86.22 37.86 85.76 34.44 82.28

MMT – fully supervised

Gated Fusion bilingual 38.70 ± 0.20 76.32 ± 0.17 29.50 ± 0.20 73.61 ± 0.32 26.60 ± 0.30 68.74 ± 0.36
VTLM + MMT bilingual 40.46 ± 0.64 81.58 ± 0.08 35.19 ± 0.16 79.79 ± 0.06 32.18 ± 0.21 75.94 ± 0.08
VGAMT full bilingual 43.30 ± 0.20 87.34 ± 0.08 38.30 ± 0.20 86.49 ± 0.07 35.70 ± 0.30 83.33 ± 0.08
VGAMT SIGLIP-only multi. 41.93 ± 0.75 85.79 ± 0.13 36.68 ± 0.23 84.72 ± 0.27 33.48 ± 0.13 81.05 ± 0.29

MMT – cross-lingual zero-shot

M2KT-VPN bilingual 37.14 ± 0.69 75.51 ± 0.63 27.09 ± 0.40 72.29 ± 0.67 23.57 ± 0.54 66.07 ± 1.11

MMT – zero-shot

Multilingual OpenFlamingo 28.86 82.31 23.91 80.91 21.99 76.58
ZeroMMT-600M (ours) multi. 36.22 ± 0.40 83.04 ± 0.39 33.11 ± 0.68 82.54 ± 0.17 29.04 ± 0.13 77.72 ± 0.16
ZeroMMT-1.3B (ours) multi. 37.63 ± 0.13 84.80 ± 0.19 36.24 ± 0.54 84.56 ± 0.19 31.66 ± 0.47 80.68 ± 0.14
ZeroMMT-3.3B (ours) multi. 39.58 ± 0.30 85.85 ± 0.05 37.97 ± 0.21 85.46 ± 0.13 33.71 ± 0.40 81.92 ± 0.16

Table 8: En→De results for Test2016, Test2017 and COCO subsets of M30K, avg. over 3 runs (± standard error).
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Test2016 Test2018
BLEU COMET BLEU COMET

Text-only MT baselines

NLLB-600M distilled 26.39 85.44 26.76 84.60
NLLB-1.3B 30.31 87.77 31.23 87.19
NLLB-3.3B 33.64 89.08 33.10 88.33

MMT – fully supervised

Gated Fusion bilingual 30.80 ± 0.40 81.64 ± 0.32 25.80 ± 0.10 76.85 ± 0.18
VTLM + MMT bilingual 34.87 ± 0.19 84.15 ± 0.17 30.38 ± 0.35 80.64 ± 0.20
VGAMT full bilingual 37.60 ± 0.20 90.57 ± 0.08 34.20 ± 0.10 88.43 ± 0.06
VGAMT SIGLIP-only multi. 36.62 ± 0.42 88.63 ± 0.16 33.13 ± 0.23 86.28 ± 0.11

MMT – cross-lingual zero-shot

M2KT-VPN bilingual 30.29 ± 0.54 81.33 ± 0.50 25.75 ± 0.28 75.93 ± 0.72

MMT – zero-shot

Multilingual OpenFlamingo 3.22 71.27 3.31 70.18
ZeroMMT-600M (ours) multi. 25.66 ± 0.43 84.27 ± 0.36 24.82 ± 0.49 83.32 ± 0.14
ZeroMMT-1.3B (ours) multi. 29.98 ± 0.59 87.13 ± 0.27 30.29 ± 0.25 86.75 ± 0.28
ZeroMMT-3.3B (ours) multi. 32.99 ± 0.38 88.67 ± 0.07 33.08 ± 0.30 88.06 ± 0.11

Table 9: En→Cs results for Test2016 and Test2018 subsets of M30K, avg. over 3 runs (± standard error).

EMMT VATEX
BLEU COMET BLEU COMET

Text-only MT baselines

NLLB-600M distilled 14.72 53.60 17.42 62.03
NLLB-1.3B 18.42 56.51 18.02 63.54
NLLB-3.3B 21.01 57.77 20.09 64.77

MMT – zero-shot

Multilingual OpenFlamingo 2.74 43.14 14.46 63.62
ZeroMMT-600M (ours) multi. 14.12 ± 0.09 52.39 ± 0.07 17.36 ± 0.13 61.82 ± 0.12
ZeroMMT-1.3B (ours) multi. 16.42 ± 0.15 54.84 ± 0.44 17.80 ± 0.16 63.50 ± 0.16
ZeroMMT-3.3B (ours) multi. 18.97 ± 0.59 56.34 ± 0.50 19.88 ± 0.25 64.87 ± 0.07

Table 10: En→Zh results for EMMT and VATEX test sets, averaged over 3 runs (± standard error).

γ BLEU COMET CoMMuTE BLEU COMET CoMMuTE

ZeroMMT-600M ZeroMMT-1.3B

1.0 32.73 ±12.33 77.95 ±10.82 56.9 ±1.4 35.62 ±12.58 80.07 ±10.78 59.5 ±1.8
1.25 32.39 ±12.24 77.73 ±10.76 58.4 ±1.4 35.25 ±12.56 79.89 ±10.73 61.6 ±1.3
1.5 31.81 ±12.04 77.39 ±10.66 59.7 ±1.8 34.67 ±12.42 79.62 ±10.65 63.8 ±2.8
2.0 30.29 ±11.52 76.35 ±10.46 62.3 ±1.9 32.96 ±11.92 78.72 ±10.40 66.1 ±2.4
2.5 27.98 ±10.75 74.68 ±10.09 64.1 ±2.1 30.36 ±11.29 77.09 ±10.04 68.0 ±2.4
3.0 25.03 ±9.56 72.29 ±9.58 65.4 ±2.2 27.06 ±10.21 74.60 ±9.49 69.2 ±2.0

Table 11: Evolution of BLEU, COMET and CoMMuTE scores of our CFG-enabled ZeroMMT 600M and 1.3B
models (aggregated over benchmarks and languages) compared to the vanilla, CFG-free ZeroMMT model (i.e. γ =
1.0). The best result of each model size is in bold. The second best result is underlined. See Section 7 for
ZeroMMT-3.3B results.
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Test2016 Test2017 COCO CoMMuTE
BLEU COMET BLEU COMET BLEU COMET Accuracy

ZeroMMT-600M 48.62 ± 0.38 84.92 ± 0.09 48.10 ± 0.11 85.66 ± 0.16 50.29 ± 0.82 83.78 ± 0.20 58.7 ±0.4
w/o VMLM 49.01 ± 0.16 85.09 ± 0.04 47.64 ± 0.19 85.59 ± 0.04 49.92 ± 0.28 83.91 ± 0.02 50.0 ± 0.3
w/o KL 28.73 ± 5.97 78.51 ± 2.96 23.63 ± 5.99 76.95 ± 3.40 30.78 ± 6.48 76.50 ± 2.98 60.4 ± 1.4
+ MMT w/o KL 48.68 ± 0.22 84.64 ± 0.21 47.64 ± 0.35 85.37 ± 0.05 49.40 ± 0.19 83.11 ± 0.18 56.8 ± 1.7

Table 12: Ablation study En→Fr. The best result is in bold and the second best result is underlined.

Test2016 Test2017 COCO CoMMuTE
BLEU COMET BLEU COMET BLEU COMET Accuracy

ZeroMMT-600M 36.22 ± 0.40 83.04 ± 0.39 33.11 ± 0.68 82.54 ± 0.17 29.04 ± 0.13 77.72 ± 0.16 55.7 ± 0.3
w/o VMLM 37.17 ± 0.16 83.59 ± 0.08 33.72 ± 0.21 83.10 ± 0.09 28.14 ± 0.38 78.53 ± 0.21 50.0 ± 0.0
w/o KL 12.42 ± 5.76 67.10 ± 5.04 7.92 ± 4.36 64.92 ± 4.64 8.39 ± 4.17 61.32 ± 4.28 56.8 ± 1.1
+ MMT w/o KL 35.95 ± 0.51 82.58 ± 0.10 32.72 ± 0.31 82.02 ± 0.11 27.40 ± 0.33 77.13 ± 0.02 54.6 ± 0.6

Table 13: Ablation study En→De. The best result is in bold and the second best result is underlined.

Test2016 Test2018 CoMMuTE
BLEU COMET BLEU COMET Accuracy

ZeroMMT-600M 25.66 ± 0.43 84.27 ± 0.36 24.82 ± 0.49 83.32 ± 0.14 55.5 ± 0.5
w/o VMLM 26.49 ± 0.20 85.17 ± 0.07 26.55 ± 0.03 84.34 ± 0.07 50.1 ± 0.2
w/o KL 10.90 ± 5.49 71.97 ± 5.42 8.15 ± 4.14 67.27 ± 5.68 59.1 ± 0.8
+ MMT w/o KL 25.10 ± 0.27 83.78 ± 0.20 25.43 ± 0.10 82.66 ± 0.10 54.8 ± 0.9

Table 14: Ablation study En→Cs. The best result is in bold and the second best result is underlined.

EMMT VATEX CoMMuTE
BLEU COMET BLEU COMET Accuracy

ZeroMMT-600M 14.12 ± 0.09 52.39 ± 0.07 17.36 ± 0.13 61.82 ± 0.12 58.2 ± 1.1
w/o VMLM 15.19 ± 0.27 53.60 ± 0.11 17.40 ± 0.10 61.95 ± 0.12 50.1 ± 0.2
w/o KL 1.12 ± 4.86 43.30 ± 1.06 8.99 ± 4.27 51.01 ± 5.38 60.7 ± 0.5
+ MMT w/o KL 11.89 ± 0.44 51.56 ± 0.63 16.70 ± 0.18 62.16 ± 0.24 56.5 ± 0.5

Table 15: Ablation study En→Zh. The best result is in bold and the second best result is underlined.

Fr De Cs CoMMuTEBLEU COMET BLEU COMET BLEU COMET

ZeroMMT-600M (SIGLIP) 49.00 ±1.07 84.82 ±0.79 32.79 ±2.97 81.13 ±2.48 25.24 ±0.62 83.79 ±0.55 56.90 ±1.40
ZeroMMT-600M (SIGLIP large) 48.77 ±1.16 84.61 ±0.77 32.39 ±3.20 81.13 ±2.40 25.35 ±0.26 83.89 ±0.40 56.73 ±1.65
ZeroMMT-600M (CLIP) 48.94 ±1.08 84.77 ±0.74 32.55 ±3.31 81.11 ±2.43 25.44 ±0.40 83.62 ±0.65 57.25 ±1.70
ZeroMMT-600M (VIT) 48.86 ±1.45 84.64 ±0.67 32.62 ±3.03 81.17 ±2.23 25.10 ±0.37 83.64 ±0.53 55.59 ±0.96
ZeroMMT-600M (ResNet) 48.98 ±1.12 84.90 ±0.71 32.90 ±3.20 81.34 ±2.41 25.56 ±0.40 83.75 ±0.42 55.54 ±0.91

Table 16: Impact of visual features. Aggregated generation results for En→X. Fr and De results are averaged over
Test2016, Test2017 from M30K and AmbiguousCOCO. Cs results are averaged over M30K Test2016 and Test2018.
CoMMuTE results are averaged over languages. Bold is best result. Underline is second best.
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Source
 

Ours
NLLB

Ours
NLLB

1

2

:   A woman is folding sheets.

:   Une femme est en train de plier des feuilles.
:   Une femme est en train de plier des draps.

:   Une femme est en train de plier des draps.
:   Une femme est en train de plier des draps.

En

Fr

Fr

21

(a) French example from CoMMuTE. The English word
‘sheets’ can refer to ‘paper’ or ‘bed sheets’. Correctly trans-
lated by ZeroMMT in both cases.

Source
 

Ours
NLLB

Ours
NLLB

1

2

:   Give me the bill.

:   Donne-moi la facture.
:   Donnez-moi la facture.

:   Donne-moi le billet.
:   Donnez-moi la facture.

En

Fr

Fr

1 2

(b) French example from CoMMuTE. The English word ‘bill’
can refer to ‘paper statement of money owed’ or ‘banknote’.
Correctly translated by ZeroMMT in both cases.

Source
 

Ours
NLLB

Ours
NLLB

1

2

:   Your gum doesn't look good!

:   Dein Zahnfleisch sieht nicht gut aus!
:   Dein Kaugummi sieht nicht gut aus!

:   Deine Kaugummi sieht nicht gut aus!
:   Dein Kaugummi sieht nicht gut aus!

En

De

De

1 2

(c) German example from CoMMuTE. The English word ‘gum’
can refer to ‘mouth tissue’ or ‘chewing gum’. Correctly trans-
lated by ZeroMMT in both cases.

Source
 

Ours
NLLB

Ours
NLLB

1

2

:   The match lasted a long time!

:   Матч длился очень долго!
:   Матч длился долго!

:   Спичка очень долго горела!
:   Матч длился долго!

En

Ru

Ru

1 2

(d) Russian example from CoMMuTE. The English word
‘match’ can refer to ‘sports game’ or ‘small flammable sticks’.
Correctly translated by ZeroMMT in both cases.

1

2

الأرواح أنھا شك من ما
الأرواح أنّھ بدّ لا

الكحولیة المشروبات أنھا شك من ما
الأرواح أنّھ بدّ لا

21

(e) Arabic example from CoMMuTE. The English word ‘spir-
its’ can refer to ‘souls’ or ‘alcoholic beverages’. Correctly
translated by ZeroMMT in both cases.

1

2

恐怕又卡纸了。
我们有另一个麻烦我担心

恐怕又遇上堵车了。
我们有另一个麻烦我担心

1 2

(f) Chinese example from CoMMuTE. The English word ‘jam’
can refer to ‘paper stuck in a printer’ or ‘being stuck in the
traffic’. Correctly translated by ZeroMMT in both cases.

Figure 9: Translations of CoMMuTE by our approach, ZeroMMT-600M, and the NLLB distilled MT model.
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Source
 

Ours
NLLB

Ours
NLLB

1

2

:   Have you got any coke?

:   У тебя есть кока-кола?
:   У тебя есть кокаин?

:   У тебя есть кокаин?
:   У тебя есть кокаин?

En

Ru

Ru

1 2

(a) English–Russian example.

1

2

1 2

(b) English–German example.

1

2

العجین أعطني
النقود أعطني

النقود أعطني
النقود أعطني

1 2

(c) English–Arabic example.

Source
 

Ours
NLLB

Ours
NLLB

1

2

:   We changed coaches.

:   Změnili jsme trenéry.
:   Změnili jsme trenéry.

:   Změnili jsme autobusy.
:   Změnili jsme trenéry.

En

Cs

Cs

21

(d) English–Czech example.

Figure 10: Additional translations of CoMMuTE by our approach, ZeroMMT-600M, and the NLLB distilled MT
model.
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