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Abstract

Large Language Models (LLMs) have demon-
strated emergent common-sense reasoning and
Theory of Mind (ToM) capabilities, mak-
ing them promising candidates for devel-
oping coordination agents. This study in-
troduces the LLM-Coordination Benchmark,
a novel benchmark for analyzing LLMs in
the context of Pure Coordination Settings,
where agents must cooperate to maximize
gains. Our benchmark evaluates LLMs through
two distinct tasks. The first is Agentic
Coordination, where LLMs act as proactive par-
ticipants in four pure coordination games. The
second is Coordination Question Answering
(CoordQA), which tests LLMs on 198 multiple-
choice questions across these games to evaluate
three key abilities: Environment Comprehen-
sion, ToM Reasoning, and Joint Planning. Re-
sults from Agentic Coordination experiments
reveal that LLM-Agents excel in multi-agent
coordination settings where decision-making
primarily relies on environmental variables but
face challenges in scenarios requiring active
consideration of partners’ beliefs and intentions.
The CoordQA experiments further highlight
significant room for improvement in LLMs’
Theory of Mind reasoning and joint planning
capabilities. Zero-Shot Coordination (ZSC)
experiments in the Agentic Coordination set-
ting demonstrate that LLM agents, unlike RL
methods, exhibit robustness to unseen partners.
These findings indicate the potential of LLMs
as Agents in pure coordination setups and un-
derscore areas for improvement.

1 Introduction

In a wide range of activities, from daily tasks such
as cooking to critical operations like rescue ef-
forts, cooperation without mixed intentions is es-
sential. These scenarios are examples of Pure Coor-
dination Games, where all involved parties benefit
from choosing strategies that are perfectly aligned,

avoiding any conflict of interest. These games re-
quire agents to reason about their environment and
plan while considering the beliefs and intentions
of their partners. Recently, Large Language Mod-
els (LLMs) have demonstrated emergent planning
abilities in both physical and virtual settings (Ra-
man et al., 2022; Wang et al., 2023a; Wu et al.,
2023), impressive reasoning capabilities (Wei et al.,
2022), and the hints of a Theory of Mind (Kosinski,
2023) making them promising candidates for de-
veloping coordination agents. Previous works have
explored the use of LLMs for developing collabora-
tive agents, yet the requisite conditions, strengths,
and limitations of LLMs in coordination games re-
main unclear. In this study, we intend to bridge the
gap by performing a comprehensive evaluation and
analysis of the multi-agent coordination abilities of
LLMs.

Therefore, = we introduce the LLM-
Coordination Benchmark featuring two
task settings for pure coordination games: 1.
Agentic Coordination and 2. CoordinationQA.
In Agentic Coordination, LLMs are scaffolded
with components that allow them to act within
actual game environments, providing a holistic
evaluation of the competencies of LLMs to act as
coordination agents. In CoordinationQA, LLMs
have to answer a curated set of questions about
edge-case scenarios drawn from coordination
games where agents need to actively cooperate
with their partners. The benchmark includes four
collaborative games, providing a comprehensive
analysis platform. Unlike studies on multi-LLM
frameworks (Hong et al., 2023; Qian et al., 2024;
Li et al., 2023a), which focus on orchestrating
multiple LLMs to solve tasks, our benchmark
assesses the innate ability of individual LLMs
to understand and act within pure coordination
scenarios where cooperation is essential.

Our experiments in the Agentic Coordination
setting reveal that Large Language Models are com-
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ure Coordination Games:

CoordinationQA

P
Agentic Coordination Overcooked, Hanabi, and
CollabGames

: | will place onion in cooker

e

3

y | will pick up an onion

| will pick up a plate

: | will place onion in cooker

Environment
Comprehension Question:
Q: How many more onions
need to be placed in c0?

ToM Question:

Q: What is my partner’s
intention?

A. pick up onion from o0.
B. pick up plate from pO.

Joint Planning Question
Q: What should be the next
best action from me?

A. pick up plate from pO.

B. pick up onion from o0.

Figure 1: The LLM Coordination Benchmark consists of two tasks: Agentic Coordination to study the holistic
abilities of LLMs in multi-turn pure coordination games, and Coordination QA to perform a fine-grained analysis of
the Environment Comprehension, Theory of Mind Reasoning, and Joint Planning abilities of LLMs in the context

of pure coordination scenarios.

petent at understanding the game objectives, gener-
ating coherent reasoning for their next actions, and
coordinating with partners across all coordination
games. They exhibit these behaviors without any
training, fine-tuning, or few-shot examples. A com-
parative analysis reveals that LLM agents match or
outperform RL baselines in games where optimal
decision-making can be done by observing envi-
ronment variables and positions (e.g., Overcooked).
However, they struggle in settings where agents
need to actively consider their partner’s beliefs and
intentions (e.g., Hanabi). We also observe that
LLM agents are capable of collaborating with new
partners, unlike self-play MARL methods (Carroll
et al., 2019a; Bard et al., 2020) that fail to adapt to
unseen agents.

For a more nuanced analysis of the coordination
abilities of LLMs, we create the CoordinationQA
Suite. This suite is designed to dissect the capa-
bilities of LLMs in single-turn reasoning within
coordination games, focusing on three key areas:
Joint Planning, Theory of Mind (ToM), and Envi-
ronment Comprehension. Joint Planning (JP) eval-
uates LLMs’ planning abilities for optimal coordi-
nation, ToM questions probe their understanding
of partner agents’ intentions and needs, and Envi-
ronment Comprehension (EC) assesses their infer-
ence of environment details, rules and objectives.

First, Our findings on CoordinationQA show a
marked performance gap between GPT-4-turbo and
other LLMs across three question types. Secondly,
LLMs are most proficient in Environment Com-
prehension, indicating they understand the rules
and environment states well. However, they face
significant challenges in Theory of Mind Reason-
ing, with difficulty inferring others’ intentions and
needs. This issue worsens in Joint Planning, where
most LLMs underperform, some even worse than
random choices. These results highlight LLMs’
limited reliability and effectiveness as coordina-
tion partners. Correlation analysis between LLMs’
performance on CoordinationQA and their perfor-
mance on agentic coordination setting further high-
lights their strengths in environmental reasoning
but exposes significant weaknesses in Theory of
Mind inference and Joint Planning capabilities.

In summary, our contributions are threefold:

1. We introduce the LLM-Coordination Bench-
mark for evaluating and analyzing LLLMs in Pure
Coordination Games, covering multi-turn Agen-
tic Coordination and single-turn Coordination
QA tasks.

2. We perform a holistic evaluation of LLM agents
in Self-play and Cross-play settings, offer-
ing a detailed comparison with RL baselines
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and showcasing their potential as Coordination
Agents.

3. We investigate Environment Comprehension,
Theory of Mind Reasoning, and Joint Planning
as essential components of LLMs’ overall coor-
dination capabilities, highlighting their critical
importance in pure coordination setups.

2 Related Work

Multi-agent Coordination. Pure Coordination
games in game theory are scenarios where agents
share the payoffs, and cooperation is the optimal
strategy. Benchmarks like the Multiparticle Envi-
ronment (Lowe et al., 2017), Overcooked-Al (Car-
roll et al., 2019a), and the Hanabi Challenge (Bard
et al., 2020) evaluate multi-agent coordination. Car-
roll et al. (2019a) highlighted the importance of
human data for effective Human-AlI collaboration.
Subsequent Overcooked-Al research focuses on
aligning self-play-trained agents with humans us-
ing techniques such as self-play with past check-
points (Strouse et al., 2021), population entropy
objectives (Zhao et al., 2023), graph-theoretic ob-
jectives (Li et al., 2023c), policy ensembles (Lou
et al., 2023), and integrating human biases (Yu
et al., 2023). In the Hanabi Challenge, efforts aim
to learn grounded policies over arbitrary conven-
tions (Hu et al., 2021b,a). While most solutions
enhance RL methods for coordination, we propose
that LL.Ms offer an alternative due to their emer-
gent reasoning and theory-of-mind-like abilities,
avoiding arbitrary joint interactions.

Planning and Reasoning with Large Language
Models. LLMs have shown remarkable natu-
ral language reasoning abilities (OpenAl, 2023;
Ouyang et al., 2022; Chiang et al., 2023), achiev-
ing state-of-the-art results in verbal reasoning tasks.
Augmented with components like memory and
tools, LLMs can interact with external environ-
ments, solving long-horizon tasks and playing
complex games (Wu et al., 2023; Wang et al.,
2023a; Liang et al., 2022; Song et al., 2022).
Guided by Cognitive Architectures for Language
Agents (Sumers et al., 2023) as a design principle
for agent design, we experiment with advanced
reasoning strategies such as ReAct (Yao et al.,
2023), Self-Verification (Weng et al., 2023), and
Self-Consistency (Wang et al., 2023b) to enhance
LLM reasoning. These strategies establish strong
baseline performance for our Language Agent im-
plementations.

Multi-agent LLMs. Recent studies have ex-
plored LLMs in multi-agent cooperation settings.
Zhang et al. (2023b) developed a modular agent
framework for spatial rearrangement tasks. Zhang
et al. (2023a) introduced an architecture enabling
LLMs to play Overcooked-Al. Shi et al. (2023)
demonstrated positive zero-shot coordination in
Avalon using code-driven reasoning. Li et al.
(2023d) showed emergent collaborative abilities
of LLMs in simulations, while Li et al. (2023b) in-
vestigated theory-of-mind inference using explicit
belief representations. Xu et al. (2024) perform an
analysis of LLMs in communication games Xu et al.
(2023) analyzed LLM cognitive abilities through
games, highlighting benefits of probabilistic mod-
eling. In contrast, our research rigorously evaluates
LLM agents’ coordination abilities in established
pure coordination games, where coordination is es-
sential. Our setting only includes scenarios where
agents must fully cooperate with each other with
no competitive incentives. We also conduct a fine-
grained, component-level analysis to understand
the intricacies of LLMs’ coordination capabilities.

3 LLM-Coordination Benchmark

3.1 Multi-turn Agentic Coordination

In the Multi-turn Agentic Coordination task, LLMs
participate in end-to-end pure coordination games
as agents, where the best strategy for all partici-
pating agents is to cooperate. We only consider
pure coordination scenarios with no competitive
incentives. LLMs under test are plugged into coor-
dination frameworks with memory and the ability
to act in complete games. These LLM agents can
then be partnered with any policies or agents to
complete the games.

Our LLM-Coordination benchmark includes 4
pure coordination games: Hanabi Challenge (Bard
et al., 2020), Overcooked-AlI (Carroll et al., 2019a),
and Collab Capture and Collab Escape (inspired by
the Pursuit-Evasion problem). These games were
carefully selected for their ability to isolate and
highlight specific coordination challenges, provid-
ing controlled environments that allow the analysis
of pure coordination scenarios without too much
emphasis on other reasoning challenges. While
LLMs are versatile and capable of addressing a
wide range of tasks, these well-studied settings
offer established benchmarks, clear metrics, and re-
producible scenarios that are particularly suited for
examining coordination abilities of participating
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agents.

Hanabi Challenge. In Hanabi (Bard et al., 2020),
players aim to assemble five sequences of cards in
ascending order (1 through 5), each sequence dedi-
cated to a different color: purple, red, blue, yellow,
and green. A unique aspect of the game is that the
players can only view their partner’s cards, not their
own. This requires players to work collaboratively,
utilizing reveal tokens to provide hints about the
cards in their partner’s hand. These hints can be
about either the color or the rank of the cards. For
instance, using a single reveal token, a player can
indicate all cards of a certain rank in their partner’s
hand. Once a player has an idea about which card
they have, they can choose to play the card on the
stack. If the card is correct, they get a point. Other-
wise, players lose a collective life token. The loss
of all 3 life tokens leads to the end of the game.
Hanabi serves as an exemplary Pure Coordination
game, necessitating player cooperation to achieve
optimal outcomes. Success in Hanabi hinges on the
ability to understand partners’ perspectives, nav-
igate decisions based on incomplete information,
and engage in implicit communication, making it
an excellent testing ground for coordination among
agents.

Overcooked-Al. In the Overcooked-Al environ-
ment (Carroll et al., 2019a), two agents—Alice
(Blue) and Bob (Green)—collaborate to cook and
deliver onion soups. This environment includes
a variety of layouts, each with its own arrange-
ment and quantity of onion dispensers, plate dis-
pensers, cookers, delivery zones, and countertops.
To prepare a dish, agents are required to insert
three onions into a cooker, initiating a cooking pro-
cess that lasts 20 time steps. Upon completion,
the soup must be plated and delivered to complete
the task. Each layout presents unique challenges,
emphasizing the need for agents to comprehend
their surroundings, locate necessary resources, and
synchronize their actions with their teammate for
effective collaboration.

Collab Capture. Collab Capture involves two
agents trying to capture an adversary in a maze of
interconnected rooms. The rooms are connected by
doors, which can be controlled through access but-
tons that can be found in other rooms. The agents’
task is to capture the adversary in the least amount
of time using effective strategies. To evaluate dif-
ferent coordination strategies between agents, we

design four scenarios by controlling the states of
the doors (open or closed) within the layout shown
in figure 5. These scenarios highlight various coor-
dination challenges, such as trapping the adversary
through precise positioning, enabling a teammate
by prioritizing door control over direct pursuit, and
strategically restricting the adversary’s movement
to facilitate capture. (see Appendix E.1 for more
details.)

Collab Escape. Collab Escape involves two
agents trying to escape an adversary in a maze of
interconnected rooms. They need to fix two gener-
ators (similar to the game Dead-by-Daylight (Dea,
2016)) located in different rooms to open an exit
portal. The adversary tries to catch the agents, and
the win condition is any one agent escaping. To
evaluate coordination strategies in Collab Escape,
we develop two scenarios by varying the initial
proximity of agents to the adversary and genera-
tors in the layout shown in figure 6. Depending on
their proximity to the adversary/generators, players
need to apply strategies such as luring the adver-
sary away from the partner, choosing to continue
fixing the generators while sacrificing for the part-
ner’s safety and manipulating the movement of the
adversary (see Appendix E.2 for more details.)

3.2 Single-turn Coordination QA

The agentic coordination task paints a holistic pic-
ture of the abilities of LLMs as agents. To dive
deeper into the specific strengths and weaknesses
of LLMs, we develop the CoordinationQA Suite.
Inspired by the idea of Unit Testing for evaluat-
ing Al agents (Knott et al., 2021), we manually
sampled edge cases from all 4 pure coordination
games mentioned in Section 3.1. All of these edge
cases necessitate agents to actively understand their
current state, think about their partner’s intentions,
and come up with the best plans for coordination.

We then create a set of three types of questions for

each scenario in our CoordinationQA Suite.

* Environment Comprehension (EC) questions
require LLMs to make indirect inferences about
some aspect of their environment (See Appendix
D.1). The questions cover details of the layouts,
implications of current observations, and counts
of artifacts.

* Theory of Mind Reasoning (ToM) questions
challenge the LLMs to predict the intentions of
their partners and probe about the requirements
of their partners (See Appendix D.2).
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* Joint Planning (JP) questions provide agents
with the state/observation and ask them to predict
the best next action for effective coordination.
This question is essentially the same question
that LLMs need to repeatedly solve when they
act as agents (See Appendix D.3).

All the questions were manually developed and
labeled. We filtered out questions and scenarios
that showed any ambiguity, leaving only questions
that had clear, optimal solutions. We generated a
total of N=66 scenarios (25 from Overcooked, 28
from Hanabi, and 13 from the two Collab Games)
and created 3 questions per scenario, resulting in
198 unique questions. The right side of Figure 1
demonstrates the sampling process for the three
types of questions with an example from the game
Overcooked. The selected scenario shows the Blue
agent about to place their third onion in the cooker,
and the green agent needs to figure out what to
do next. See Appendix D for examples of ques-
tions and the templates used to formulate these
questions.

4 Experimental Setup

4.1 Agentic Coordination

We perform two types of experiments in agentic
coordination: Self-Play and Cross-Play. In self-
play settings, the participating agents are of the
same type. In Cross-Play experiments, we pair
agents with unseen partners, and they need to adapt
their behavior to the actions of these new partners.

4.1.1 LLM Agents

To allow LLMs to play multi-turn games, we scaf-
fold them with an agentic framework based on Cog-
nitive Architectures for Language Agents Sumers
et al. (2023). The framework includes three parts:
Memory, Reasoning, and Grounding.

Memory includes (1) Long-Term Memory for
storing the Game Description, including the game’s
rules, conventions, objectives, and action space,
(2) Working memory, which consists of a tex-
tual description of the current observation, and (3)
Episodic Memory which is a list of previous actions
selected by the agent.

Reasoning is where the Large Language Model
(LLM) is plugged into the framework. It takes
the textual description from the Memory as input
and generates the next action based on the context.
The LLM reasons about the current state and then
selects an action from the list of available actions

in natural language.

Self-Verification: For the coordination game
Hanabi, there is a low margin for error as any mis-
plays lead to the loss of life tokens, and the loss of
all three life tokens subsequently results at the end
of the game. We thus supplement the reasoning
process in Hanabi with Answer-Verification (Weng
et al., 2023), where the LLM is re-prompted to con-
firm that the action it generated is appropriate and
does not lead to fatal errors.

ToM-Reasoning: We also demonstrate the pos-
itive impact of a Theory of Mind Reasoning step
prior to generating the next action for Hanabi and
CollabEscape, which benefit from this intermediate
step. In the ToM reasoning step, the LLM gener-
ates an interpretation of their partner’s actions or
current position before generating the next action
to explicitly capture the belief inference process.
We do not test with additional ToM reasoning on
Overcooked due to significant latency and cost con-
straints, with marginal benefits.

Finally, the Grounding process translates the
natural language action generated by the reason-
ing module into game-compatible action(s). The
exact implementation of the grounding module de-
pends on the game in question; for example, in
Overcooked-Al, the grounding module needs to
convert high-level actions like "pick up onion from
00." into sequences of lower-level actions. On the
other hand, in games like Hanabi, the Grounding
needs to match actions like "Reveal Bob’s Red
Color Cards" to their lower-level representations.
The Grounding process is also responsible for fil-
tering out infeasible actions based on the context of
the game (See Appendices A, B for more details.)

There are no prompt or setup differences for
LLM Agents based on Cross-play or Self-play. We
use the LLMs gpt-4-0125-preview, GPT-3.5-turbo-
0125, Mixtral 8x7B, and GPT-40 for agentic evalu-
ation studies.

4.1.2 MARL Agents

Self-play MARL Baselines: For Overcooked we
use Proximal Policy Optimization (Schulman et al.,
2017) and Population-Based Training (Jaderberg
et al., 2017) as baselines for comparison. These
baselines were established by Carroll et al. (2019a).

For the Hanabi challenge, we use Bayesian Ac-
tion Decoder (BAD) (Bard et al., 2020), Simplified
Action Decoder (SAD) (Hu and Foerster, 2021),
and Off-Belief Learning (Hu et al., 2021a) as
MARL baselines for Hanabi. All three baselines
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Agent CR AA Ring FC CC

Self-Play (PPO) 198.8 £4.06 167.2 4+ 3.63 190.8 +4.25 151.9+3.28 122.3 £ 3.80
PBT 216.9+1.31 190.1 +£8.64  173.8 £18.27 169.5+10.09 140.1 £+ 13.86
GPT-3.5-turbo  33.3 £10.88 46.6 +10.88  40.0£0.00 66.6+14.40 53.3£5.44
Mixtral8x7B 46.6 & 14.40 200.0 = 9.42 113.3+5.44 46.6 & 14.40 100.0 £9.42
GPT-40 160 = 0.00 166.66 £ 5.44 66.66 = 21.77 120.0 £9.42 160.0 +0.00
GPT-4-turbo 173.3 £6.67 260.0£11.55 140.0+0.00 180.0+11.55 160.0 +0.00

Table 1: Performance comparison across Multi-Agent Reinforcement Learning (MARL) and LLM-agent methods.
Scores indicate the best performance in each category. The GPT-4-turbo Agent demonstrates superior coordination
in 3 out of 5 scenarios, underscoring advanced reasoning capabilities in coordination tasks. The five layouts are
CR: Cramped Room, AA: Asymmetric Advantages, Ring: Coordination Ring, FC: Forced Coordination, and CC:
Counter Circuit. For visualization and details of these layouts, see appendix A

Collab Escape Collab Capture
Agent Capture Rate  Avg. Turns  Escape Rate  Avg. Turns
GPT-4-turbo 0.83 4.60 1.00 35
— (w/out ToM Reasoning) 0.50 2.00 1.00 4.75
GPT-40 0.67 4.00 1.00 7.17
GPT-3.5-turbo 0.33 2.50 0.67 8.38
Mixtral-8x7b 0.50 7.67 0.92 7.55
Greedy Baseline 0.00 N.A. 0.50 6.00

Table 2: Comparison of different LLM Agents on CollabCapture and CollabEscape. In CollabEscape, two agents
work together to escape from an adversary. In CollabCapture, two agents coordinate to capture an adversary. The
reported results are run across 3 trials each for various layout configurations (Detailed in Appendix E). The table

also demonstrates the impact of the explicit ToM reasoning step in both game setups.

achieve near-perfect performance in Self-play.

Cross-play MARL Baselines: For Overcooked,
we use a Behavior Cloning model trained on human
data (Carroll et al., 2019a) and a Proximal Policy
Optimization (PPO) agent trained with the Human
Behavior Cloning agent (Carroll et al., 2019a) as
baselines for comparison. We also report Hidden-
Utility Self-play (HSP) (Yu et al., 2023) as a base-
line. We use human proxies based on behavior
cloning as unseen partners.

For Hanabi, we use the Simplified Action De-
coder (SAD), which is trained through self-play
as a baseline. We pair our agents with Off-Belief
Learning (Hu et al., 2021a), which was trained to
generate grounded policies and adapt to unseen
partner agents.

Metrics. We measure the total score achieved by
agents in Overcooked, where each delivery pro-
vides 20 points to both agents. In the case of Han-
abi, the metric is the total number of cards that
have been correctly arranged by the players. For
CollabEscape and CollabCapture, we report the
success rate of escape or capture across multiple
trials and the average turns to capture or escape.

4.2 CoordinationQA

We assess the performance of 5 Families of Large
Language Models (LLMs) (Jiang et al., 2023, 2024;
Touvron et al., 2023; Chiang et al., 2023; Ope-
nAl, 2023) across three dimensions: Environment
Comprehension (EC), Theory of Mind Reason-
ing (ToM), and Joint Planning (JP). For each cate-
gory, LL.Ms respond to multiple-choice questions
(MCQs), with their responses evaluated against
ground-truth answers through fuzzy string match-
ing. To account for the variability in LLM re-
sponses, we conduct three trials per model. All
models being tested are shown the same prompts.
We also report a Random baseline.

5 Discussion

Zero-shot LLM Agents match or surpass
trained RL methods in Environment-focused
Coordination Problems. We observed that LLM
agents (w. GPT-4-turbo) outperform or match the
overall performance of RL methods across all lay-
outs of Overcooked-Al. Table 1 presents the nu-
merical scores attained by different agents when
paired with a partner agent of the same type. This
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Agent Score
Bayesian Action Decoder 23.92£0.01
Simplified Action Decoder 24.01 £0.01
Off-Belief Learning 24.10+£0.01
GPT-4-turbo 13.33 £0.88
- (w.o ToM Reasoning) 10.33 £ 0.88
- (w.0 ToM Reasoning & Verif.) 4.33 4+ 0.88
GPT-4o0 8.33+1.20
GPT-3.5-turbo 1.33 £0.72
Mixtral-8x7b 0.33 £ 0.27

Table 3: Agentic performance comparison on Hanabi
Challenge. RL methods are very strong and obtain near-
perfect scores. The best GPT-4-turbo-based LLM Agent
is much weaker compared to RL baselines. Removing
the ToM reasoning and Verification steps from the LLM
agent leads to further performance degradation

0.95
0.88 0.95 0.78 0.92 000
0.85

0.72

EC

5 0.66 0.85 0.57
-0.75
-0.70
o 0.85 0.98 0.68 0.89 [ o6
-0.60
Overcooked Hanabi C.Cabture C.Escape

Figure 2: Correlation of LLM Agent performance in
Agentic Coordination setup on all four games vs. per-
formance on the CoordinationQA benchmark.

implies that LLM agents match RL agents that have
been explicitly trained through Self-play without
any game-specific training or fine-tuning. However,
it is important to note that LLLM agents are signifi-
cantly slower and larger than RL models, making
them unsuitable for real-time use at present. We
also see positive results on the CollabCapture and
CollabEscape games, with most LL.Ms being able
to complete both challenges (see Table 2).

LLM agents struggle at effective planning when
advanced Theory of Mind reasoning is re-
quired. In Hanabi Challenge, LLM agents seem
to struggle compared to RL methods (see Table 3).
GPT-4-turbo performs reasonably well, while other
LLMs can barely complete the games. We attribute
this failure to two factors. First, there is little room
for errors in Hanabi. Any misplay leads to the loss

of a life token. Second, Hanabi requires more com-
plex Theory of Mind Reasoning compared to the
Overcooked-Al environment. Each action requires
agents to actively consider their partner’s beliefs,
intentions, and how they would react to implicit
communication. In contrast, Overcooked is fully
observable, and its action space consists of actions
like pick up an onion from onion_dispenser_0 and
place onion in cooker_0. Under most scenarios and
layouts, LLMs only need to consider the next best
steps based on the state of the environment.

We use correlation study to provide additional
validation to these findings. We calculate the Pear-
son Correlation Coefficient (r) of the performance
of the four LLMs (GPT-4-turbo, GPT-40, GPT-
3.5-turbo, and Mixtral 8x7b) on Agentic Coordi-
nation setup (Average score per game) vs. the
score on CoordinationQA task. Figure 2 shows a
high correlation between Environment Comprehen-
sion capabilities and Success at Overcooked, but
a more moderate correlation between Theory of
Mind Reasoning capabilities and Success at Over-
cooked. Conversely, in Hanabi, high success is
strongly correlated with both Environment Compre-
hension and Theory of Mind Reasoning Abilities.
In CollabEscape we see a higher correlation with
ToM reasoning abilities compared to CollabCap-
ture. This correlation study also connects and es-
tablishes a positive alignment between LLM-agent
performance on the multi-turn agentic task and the
single-turn CoordinationQA.

Aucxiliary reasoning strategies like Verification
and ToM reasoning help LLMs reason for coor-
dination. Adding an Answer Verification step
significantly reduces fatal mistakes (wrong card
plays) caused by LLM hallucinations. Without
the support of the Verification step, LLM agents
bomb (lose all three lives) before the end of the
game in every trial. The ToM reasoning step sep-
arates the tasks of interpreting partner clues and
generating actions, allowing the LLM to better syn-
thesize available information for action planning.
Table 3 shows the impact of ablating the verifica-
tion and ToM reasoning steps from the LLM Agent.
The ToM reasoning step is also useful in the Col-
labEscape (see table 2) game, as players need to
actively consider what their partner needs and act
sacrificially if needed. In CollabCapture, it shows
a relatively low benefit since agents can observe
the positions of all agents as well as doors on the
map and infer the correct action based on this envi-
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Figure 3: The performance of different LLMs on CoordinationQA, which provides a fine-grained analysis of LLMs’
Environment Comprehension, Theory of Mind Reasoning, and Joint Planning abilities within pure coordination

scenarios.
Method CR AA Ring FC CC
BC 103.5 ] 110.0 136.5 | 137.5 59.0 | 70.0 20.5 | 31.0 38.0 | 44.0
PPOgc 156.4 | 163.9 72.6 | 178.8 126.4 | 129.8 58.9 | 76.9 69.5 | 57.6
HSP - 300.3 | 217.1 160.0 | 160.6 - 107.4 | 106.6
GPT-4-turbo' 160.0 | 160.0 180.0 ] 200.0 160.0| 140.0 120.0 | 80.0 140.0] 100.0

Table 4: Zero-shot coordination results of AI-Human Proxy Gameplay. We compare Behavior Cloning (BC),
PPO_BC, HSP (Yu et al., 2023), and GPT-4-turbo agent. The LLM agent outperforms the PPO and BC methods
and matches the HSP (Yu et al., 2023) baseline in most cases, demonstrating robustness to unseen partner agents.
Since the two agents in Overcooked-Al might be tasked with different roles based on their starting locations, we

show results playing from either side separated by |.

ronmental context.

Comparative Results of LLMs in Environment
Comprehension, ToM Reasoning, and Joint
Planning. In Figure 3, we see that most LLMs
achieve their best results on the Environment Com-
prehension question. The best performing LLM
GPT-4-turbo gets more than 80% Environment
Comprehension Questions correct. The overall
performance across LLMs drops on the more chal-
lenging Theory of Mind reasoning questions. Both
GPT-4-turbo and GPT-40 do well on the Theory of
Mind reasoning questions. The overall accuracy of
LLMs on Joint Planning questions is still signifi-
cantly weak, with even the best LLM scoring less
than 40%, indicating a large room for improvement
in LLMs’ ability to perform coordination reason-
ing. Another cause for concern is that open-source
LLMs perform abysmally at Joint Planning, with
some models performing worse than random.

LLM Agents are robust to unseen partners.

We use Overcooked-Al and the Hanabi challenge
as testbeds to evaluate the performance of LLM
agents when paired with unseen agents. This task

is popularly known as Zero Shot Coordination. In
Overcooked-Al, we pair our LLM agents as well as
baselines with proxy-human agents. These proxy
human agents are behavior cloning agents trained
using human data by Carroll et al. (2019b). As
shown in Table 4, we discover that LLM agents
outperform both Behavior Cloning as well as PPO
agents trained with human data. Apart from the
Asymmetric Advantages layout, they also match
or outperform the Hidden Utility Self-play (HSP)
baseline, which is designed to excel at ZSC.

In Hanabi, we pair our agents with Off-Belief
Learning (OBL) agents (Hu et al., 2021a). OBL is a
MARL strategy that generates grounded clues and
actions and is the state-of-the-art method for cross-
play in Hanabi. OBL agents provide observation-
grounded clues and collaborate well with humans.
Therefore, we use them as unseen partners in our
experiments. Table 5 shows that the GPT-4-turbo
agent scores an average of 15 points with the
OBL-1 agent compared to their self-play scores
of 13.66, indicating no degradation in performance

"For GPT-4-turbo, we run a single trial from either position
due to cost and time constraints.
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Method Self-Play Cross-Play w/ OBL-1 Cross-Play w/ OBL-4
SAD 23.66 + 0.54 11.33 £ 4.00 8.00 £ 0.47
GPT-4-turbo  13.66 £ 0.27 15.00 +2.94 12.00 +0.94

Table 5: Cross-Play results of RL agent (SAD) and LLM agent (GPT-4-turbo). All agents play three games with
different seeds (same seeds across agents). SAD performs really well at self-play but suffers significant performance
degradation with new partners OBL-1 and OBL-4. LLM Agents coordinate well with the new, unseen partners.

with a new partner. The baseline RL method, Sim-
plified Action Decoder (SAD) (Hu and Foerster,
2021), fails critically when paired with unseen OBL
agents, even though it excels at self-play (22.00
points) due to self-play training.

6 Conclusion

In this study, we evaluated and analyzed the cur-
rent large language models in the context of pure
coordination games. We introduced the LLM-
Coordination benchmark with its two tasks: 1.
Agentic Coordination and 2. CoordinationQA.
These settings allowed us to conduct holistic com-
parative studies of LLMs as agents and dive deeper
into the fine-grained aspects of LLMs as coordina-
tion reasoners. We juxtaposed LLM agents with ex-
isting Multi-agent Reinforcement Learning agents,
discussing the conditions in which LLMs thrive and
fail. Finally, we discussed the Theory of Mind Rea-
soning, Environment Comprehension, and Joint
Planning as prerequisites for coordination and eval-
uated existing LLMs on these components.
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8 Limitations

Latency and Compute Requirements: As high-
lighted in Section 35, effective reasoning for coor-
dination is achievable primarily with larger LLMs
like GPT-4-turbo. However, these models are as-
sociated with significant latency and require sub-
stantial computational resources, making them less
suitable for real-time applications where rapid
decision-making is crucial.

Initial Prompt Configuration: Achieving optimal
reasoning performance necessitates careful manual
configuration of the initial prompts that describe
the game (Procedural Memory). While this prompt

could be extracted from game manuals or exist-
ing resources, it still needs to be formatted and
designed with the LLM agent in mind. Further-
more, the results for individual games could be
improved by letting the LLM generate more text
and engineering the prompt. However, we leave
these optimizations to future works focused on per-
formance improvement rather than benchmarking.

Manual Curation of Edge Cases: The Coordina-
tionQA suite involves manually curating unambigu-
ous edge cases in coordination games to construct
the dataset. This can hinder the ability to scale the
benchmark to accommodate new scenarios. Yet,
it is important to curate these examples for more
reliable studies.
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Figure 4: The Overcooked layouts from left to right: Cramped Room (CR), Asymmetric Advantages (AA), Forced
Coordination (FC), Coordination Ring (CR), and Counter Circuit (CC).

A Overcooked Implementation Details

In the game Overcooked-Al, two chefs must co-
ordinate their actions to cook and deliver onion
soups. Each soup requires three onions as ingre-
dients, which can be found in onion dispensers.
The players must add three onions to a cooker to
start cooking. Once the three onions are added, the
soup starts cooking automatically and requires 20
time steps to complete. Once the soup is cooked, a
player needs to pick up a plate, load the soup, and
deliver it to the required delivery area. Players must
coordinate their actions to effectively deliver soup.
Depending on the layouts (see figure 4), players
need to adapt to cramped spaces, understand envi-
ronment layouts for role assignments, pass objects
to each other, make way for one another, and find
the most effective paths.

A.1 Game and Layout Description

We use a general game description G that explains
the rules and objectives of overcooked. Since each
layout has a different number of locations, like
onion dispensers and cookers, we include a suc-
cinct description of each environment I;, which
includes how many instances of particular facilities
there are. For environments that include partitions,
we mention which partition each of the agents is
situated in and what facilities that agents can ac-
cess. In addition, we also mentioned the shape of
the environment.

I am {self.player_names[self.player_id]}. I am playing the

game Overcooked with my partner {self.player_names[self.
other_player_id]}.

{EnvDescriptions[self.layout_name]}

Overcooked has the following rules: {self.rules}

We have agreed to follow the following conventions:

{self.conventions}. I\'ll provide my action history,

current state, teammate's status, and my possible actions.

Help me select the best action from the list.

Format your response as:

Explanation:<Brief explanation for my next action>.

Action: <action>.

Only select one action. Do not say anything else. Got it?

A.2 State Description

The State is represented in natural language D(S)
in the working memory, which can be processed

by a Large Language Model (LLM). The state S
includes variables that fully represent the necessary
details of the layout as well as the players. The
information provided in D(.S) is equivalent to what
would be accessible to a Reinforcement Learning
(RL) agent in the form of state representations. The
following information is included in D(S):

Objects Held by Each Player The state descrip-
tion D(S) begins by detailing the inventories /,,
and I, of Alice and Bob, respectively. Each in-
ventory I,,(where i € {1,2}) can contain one of
the following items: {"onion", "plate", "cooked
soup"}. This inventory information is translated
into natural language and incorporated into D(S)
in the format: “I am holding I,,,. Bob is holding
I, Such information is vital for inferring the
likely subsequent actions of the partner agent.

Location of the Agent Controlled by LLM:
Given the limitations of Large Language Models
(LLMs) in interpreting grid-based spatial informa-
tion, we opt to provide processed location data to
the LLM. For each agent P; (where i € {1,2}),
and for each location of interest denoted as loc,
we calculate the distance d(p, joc) as the number
of steps required to reach loc from P; using the
shortest available path. The state description D(.S)
then includes this processed location information
in the format: “loc is d(p, joc) Units away.” Here,
loc can represent various points of interest such
as onion dispensers, plate dispensers, cookers, de-
livery areas, kitchen counters, or shared counters.
If a location is either inaccessible or blocked by
another agent, this is explicitly stated in D(S). For
example, if a location is blocked by Bob, it would
be stated as “loc is blocked by Bob.” To distin-
guish between the location information relevant to
each agent, D(.S) prefixes the respective sections
with “Your location information:” for the agent
controlled by the LLM and “Bob’s location infor-
mation:” for the partner agent.

Cooker Information The state description D(S)
also incorporates information about the cooker,
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which is central to the gameplay strategy. Specifi-
cally, for each cooker 7, D(.S) includes the number
of onions n; currently in the pot. Additionally,
D(S) provides the operational state of the cooker,
denoted as CookerState;, which can be either "Off"
or "On". Lastly, the current condition of the soup
in the cooker is represented by SoupState,;, which
can take one of the following values: "Cooking",
"Cooked", or "Not Started". Thus, the information
for cooker ¢; is formatted as: “c; has n; onions. c;
is CookerState;. Soup in ¢; is SoupState;.”

Kitchen Counter Information The state descrip-
tion D(.S) includes information about kitchen coun-
ters, which are primarily used for temporary object
storage. Specifically, D(S) identifies the closest
empty kitchen counter kempry and the set Kfjeq of
all counters currently holding an object.

Shared Counter Information Shared counters
serve as specialized kitchen counters for object
transfer between agents. For each shared counter
i, D(S) includes the status for s;, as “sg is empty”
or “s; contains onion,” to offer a complete environ-
mental overview. Unlike kitchen counters, where
only the closest empty counter is mentioned, all
empty shared counters are mentioned.

<Inventory>: I am holding onion. Bob is holding nothing.

<My Location Information>: 00 is @ units away. ol is 1 units
away. p@ is 3 units away. c@ is 6 units away blocked by
Bob. c1 is 7 units away. d@ is 4 units away. s@ is 1
units away. s1 is @ units away. s2 is 1 units away. s3
in 2 units away. Closest empty kitchen counter k12 is 1
units away.

<Bob's Location Information>: 0@ is blocked by Alice. o1 is 7
units away. p@ is 3 units away. c@ is @ units away. cl
is 1 units away. d@ is 4 units away. s@ is 1 units away.

s1 is @ units away. s2 is 1 units away. s3 in 2 units
away .

<Environment Details>: c@ contains 1 out of 3 onions. c@ is
off. soup in c@ is not cooking. c1 contains @ out of 3
onions. c1 is off. soup in c1 is not cooking.

Available Actions: [place onion in c@, place onion in c1.,
place onion on s@., place onion on s1., place onion on
s2, place onion on s3., place onion on k12., wait., move

away. ]

8065



B Hanabi Implementation Details

Hanabi is a card game in which all players are on
the same team. The deck is made up of cards num-
bered 1 through 5, further divided into five different
colors. Players are working together to create these
numbered sequences (1 through 5) for each of the
five colors. Each card played provides 1 point, and
the goal is to obtain all 25 points (5 colors with 5
cards each) by completing the sequence for each
color. The three actions a player can take include
playing a card, discarding a card, and giving a hint
(reveal) to a teammate. The challenge is that play-
ers cannot see their own cards. They may, however,
see the cards that are in the hands of their team-
mate(s). This is where hints (reveals) come into
play. Players are able to figure out which cards
should be played through the reveal mechanism.
You can hint (reveal) a teammate about a color or
number in their hand, and this will point out to
them all cards in their hand that have this color or
number. The team starts with 8 reveal tokens but
can recover used tokens when discarding a card
or upon the completion of a stack. Playing a card
carries a risk because the team loses completely
if three incorrect cards are played. Further, an in-
correctly played card gets sent to the discard pile.
Each number of a particular color only has so many
copies, so if, for example, the last copy of a green 3
is lost, then the team loses out on not only playing
the green 3 but also the green 4 and 5. This is the
risk of playing or discarding. With these risks, and
since reveal tokens are scarce, players ideally try to
make assumptions about implicit information that
a reveal may offer, and, ideally, the team converges
to particular conventions. Implicit communication,
collaboration, and memory are key.

B.1 Game Description

We structure the game description of Hanabi into
the overall objective, and the rules of the game.

The card game Hanabi has the following rules:

- The game uses a 50-card deck, divided into five colours (red
(R), green (G), blue (B), yellow (Y), white (W)). Each

color has cards of ranks 1 to 5. Each color has with
three 1's, two 2's, two 3's, two 4's, one 5.

- Players have to create stacks of each color. Each color
stack starts with a Rank 1 card and goes up one by one
in ascending order up to Rank 5. (e.g. Red Stack should

go from R1 -> R2 -> R3 -> R4 -> R5). A card can only be
played if it is the next in the incremental sequence
for its color stack.

- Players can only see the other's hand, not their own.

- Players have plausible knowledge of their cards based on
previously provided hints by the other player

- They can either play a card, give a reveal, or discard a
card.

- Players can only chose an action from the Available Legal
Actions.

**kxActions:xxx

1. Reveal (Clue): Spend a reveal token to reveal cards with a
particular color or rank. Revealing a color reveals all
cards of that color in partner's hand. Revealing a rank
reveals all cards with that rank in partner's hand. The
game starts with 8 reveal tokens. If no token left, no
more reveals can be given.

2. Discard: Discard a card to regain a reveal token and draw a

new card.

3. Play a Card: If a card played follows sequence in its color
stack, it succeeds. Success of rank 5 card in any stack
gives an additional reveal token. Failure discards the

card, and loses a life. Playing a card you are unsure
about is risky as it costs a life and you have only 3
lives. Before playing a card make sure that it's the
next card in the sequence for that stack.

**xThe game ends when:*xx

- All five stacks are completed. 25 Points.

- Three lives have been lost. @ Points no matter how many
cards have been placed in the stack.

- After the last card from the deck is drawn and each player
has had a final turn. Sum total of the top card ranks of
each color stack.
I am Alice, playing the card game Hanabi with my partner Bob.

At each time step I will provide you with the relevant
information of the game. I will also provide you with
the legal action, help me select the best next action.
Remember I am playing as Alice. Format your response as
Explanation: <brief explanation for selecting the move>\
nAction:<selected move>. Do not say anything else. Got
it?
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B.2 State Description

The state description includes the current Stack .S,
the player’s knowledge of their cards K (updated
based on clues), the partner agent’s cards C, the
partner agent’s knowledge of their cards K’ (up-
dated based on previous clues), each card in the
discard pile d;, the remaining Life Tokens [/, and re-
veal tokens r and the remaining Deck Size D. We
also precalculate the next card that goes on each
stack since LLMs frequently fail to count which
card should go next on each stack.

It is currently My (Alice) turn.
Current Stacks:
Red - Red 5, Yellow - Yellow 4, Green - Green 1, White - White
1, Blue - Blue 3
My cards based on my knowledge:
Card @ could be: [Red, Yellow, Green, Bluel [1, 2, 3]
Card 1 could be: [Yellow, White, Blue] [1, 2, 3]
Card 2 could be: [Red] [2]
Card 3 could be: [Yellow, White, Blue] [1]
Card 4 could be: [Yellow, White, Blue] [1]
I can see Bob's Cards are:
[Card @: Green 1]
[Card 1: Green 2]
[Card 2: Green 4]
[Card 3: White 4]
[Card 4: Yellow 1]
Bob's Knowledge about his cards:
Bob believes his Card @ could be: [Yellow, Green, White, Bluel
[1, 2, 41
Bob believes his Card 1 could be: [Green, White] [1, 2, 4]
Bob believes his Card 2 could be: [Yellow, Green] [1, 2, 3, 4]
Bob believes his Card 3 could be: [Yellow, Green, White] [1, 2,
3, 4]
Bob believes his Card 4 could be: [Yellow, Green] [1, 2, 4]
Remaining Reveal Tokens: 1
Remaining Lives: 1
Deck Size: 3
The discard pile is: [Red 4, Red 3, Red 1, Red 1, Yellow 5,
Yellow 2, Yellow 4, Green 3, Green 2, Green 4, Green 3,
Green 1, Green 5, Blue 5, Blue 3, Blue 4, Blue 4, Blue 1,
White 4, White 3, White 2, White 5, White 3]
My Action History: [Discard Card 4, Play Card @, Reveal Bob's
Rank 3 Cards, Discard Card @, Play Card 4]
The next playable cards for each stack are:
Red Stack is Full.
Only Yellow 5 can be played on Yellow Stack
Only Green 2 can be played on Green Stack
Only White 2 can be played on White Stack
Only Blue 4 can be played on Blue Stack

Available Actions:

. Reveal Bob's Yellow color cards
. Reveal Bob's Green color cards
. Reveal Bob's White color cards
. Reveal Bob's rank 1 cards

. Reveal Bob's rank 2 cards

. Reveal Bob's rank 4 cards

Play my Card @

Play my Card 1

Play my Card 2

Play my Card 3

Play my Card 4

. Discard my Card @

. Discard my Card 1

. Discard my Card 2

. Discard my Card 3

. Discard my Card 4

VTOZIMCrXNyHIOMMOOm>
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C Examples of prompts of LLMs used in

the Agent framework

C.1 Hanabi LLM Prompt

C.4 Ablation on Theory of Mind Reasoning
and Verification Steps

The card game Hanabi has the following rules:

{self.rules}
I am {self.player_names[self.player_id]}, playing the card
game Hanabi with {self.player_names[1 - self.player_id]}.
At each time step I will provide you with the relevant
information of the game. I will also provide you with the
legal action, help me select the best next action.
Remember I am playing as {self.player_names[self.player_id]}.
Format your response as
Explanation: <brief explanation for selecting the move>
Action:<selected move>.
Do not say anything else. Got it?

Method Score Bomb Rate
ToM + GPT-4-turbo+V  13.33 +0.88 0.00
GPT-4-turbo + V 10.33 £ 0.88 0.00
GPT-4-turbo 4.33 £0.67 1.00

Table 6: Ablation study of LLM agents on Hanabi Chal-
lenge (w. GPT-4-turbo). Answer Verification (AV)
markedly enhances overall performance by ensuring
that actions that make incorrect assumptions are filtered
out. The explicit Theory of Mind (ToM) reasoning

C.2 Prompt for Theory of Mind Reasoning
step

provides further improvements by directly interpreting
partner clues and requirements.

The card game Hanabi has the following rules:

{self.rules}

I am {self.player_names[self.player_id]}, playing the card
game Hanabi with {self.player_names[1-self.player_id]}.

You are a Theory of Mind inference agent for our game. You
will be provided with my partner's selected action and
my latest state information after my partner took their
action. You will provide me with two things: 1. An
explanation for my partner's previous action along with
their intention and implicit communication. 2. What is
the best information for me to give my partner based on
their knowledge?

Format your response as:

Partner Action Explanation:<1 sentence explanation of partner
action>

Clue Suggestion:<What information (specify rank or color)
should I reveal to my partner based on their knowledge>.

C.3 Prompt for Answer Verification Step

You are an action verification agent for games. I will provide
you with an action and you need to check whether the action
satisfies the criteria:

1. Rule Following: It follows to the rules of the game.

2. Safety: It won't lead to the game ending immediately.

Think about the action, the current state of the stack and the
available lives and reveal tokens.

End you response with "Verification: Okay” if selected action
follows *xxboth*xx criteria and "Verification: Not Okay"”
otherwise. Restrict your response to 4-5 sentences.

8068



D Generating Questions for
CoordinationQA

D.1 Environment Comprehension Questions

The Environment Comprehension (EC) questions
are indirect formulations regarding spatial aspects
of the layout. In order for an agent to correctly
answer an EC question, they must have an under-
standing of the dynamic details of the current state
and the rules of the game and exhibit spatial aware-
ness. As such, when creating the EC questions, we
carefully comb through a given scenario in search
of salient points to probe an agent’s understanding
of the given environment. Some examples include:

D.2 Theory of Mind Reasoning Questions

There are two primary question types in Hanabi for
ToM Reasoning questions. In the first type, we ask
the LLM about what information the partner agent
needs, while in the second type, we ask it to make
inferences about the partner agent’s last action. For
all games apart from Hanabi, the ToM questions
ask the models to predict the next intended action
of the partner agent

D.2.1 Hanabi Question Type-1

<Inventory>: I am holding nothing. Bob is holding onion.
<My location information:> 0@ is 1 units away. ol is @ units
away. p@ is 1 units away. d@ is inaccessible. c@ is
inaccessible. c1 is inaccessible. s@ is 1 units away. s1
is @ units away. s2 is 1 units away.
<Bob's location information>: 0@ is inaccessible. ol is
inaccessible. p@ is inaccessible. d@ is 2 units away. c@
is @ units away. cl1 is @ units away. s@ is @ units away.
s1 is 1 units away. s2 is 2 units away.
<Environment Details>: c@ contains 3 out of 3 onions. c@ is on.
soup in c@ is still cooking. c1 contains @ out of 3
onions. c1 is off. soup in c1 is not cooking. s0 is
empty. s1 contains onion. s2 is empty. Closest empty
kitchen counter k1 is 1 units away.

How many onions are still needed to fill up c@?
Available Answers:

A. 4 or more

3

mo o w
S =N

My name is Alice. I am in room 1. Bob is in room 6. I was
fixing the generator and there is only one more fix
needed, which could be done before getting caught.
Currently, we have information that the killer will move

to the room 1 after this turn. Generator in room
still needs 1 fix. Generator in room 2 is fixed. The
exit gate is closed.

If I fix generator 1, is Bob in a position to escape?

Available Answers:

A. Yes, he's only one room away from the gate when it opens.
B. No, the killer is blocking his path to the exit gate.

C. No, we stil need to fix generator 2.

It is currently My (Alice) turn. Current Stacks: Red - Red 0,
Yellow - Yellow @, Green - Green @, White - White 0,
Blue - Blue @

My cards based on my knowledge:

Card @ could be: [Red, Yellow, Green, White, Bluel [1, 2
5]

Card 1 could be:
5]

Card 2 could be:
5]

Card 3 could be:
5]

Card 4 could be:
5]

I can see Bob's Cards are:

[Card @: Red 3]

[Card 1: White 1]

[Card 2: Green 3]

[Card 3: White 4]

[Card 4: Blue 4]

Bob's Knowledge about his cards:

Bob believes his Card @ could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 1 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 2 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 3 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 4 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Remaining Reveal Tokens: 8

Remaining Lives: 3

Deck Size: 40

The discard pile is: []

My Action History: []

The next playable cards for each stack are:

Only Red 1 can be played on Red Stack

Only Yellow 1 can be played on Yellow Stack

Only Green 1 can be played on Green Stack

Only White 1 can be played on White Stack

Only Blue 1 can be played on Blue Stack

w
N

[Red, Yellow, Green, White, Bluel] [1, 2

w
S

[Red, Yellow, Green, White, Bluel [1, 2

w
EN

[Red, Yellow, Green, White, Blue] [1, 2

w
IS

[Red, Yellow, Green, White, Bluel] [1, 2

w
I
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What information about his cards should I reveal to my partner
so that he knows to play a card on his turn?

Available Answers:

. Reveal Bob's Red color cards.

. Reveal Bob's White color cards.

. Reveal Bob's Green color cards.

. Reveal Bob's Blue color cards.

. Reveal Bob's rank 1 cards.

. Reveal Bob's rank 3 cards.

. Reveal Bob's rank 4 cards.

O mMMmooO W >

D.2.3 Other Games

D.2.2 Hanabi Question Type-2

It is currently My (Alice) turn. Current Stacks: Red - Red 1,
Yellow - Yellow 2, Green - Green 1, White - White 4,
Blue - Blue 3

My cards based on my knowledge:

Card @ could be: [Red, Yellow, Green, White, Bluel [1, 2, 3, 4,

5]

Card 1 could be: [Red, Yellow, Green, White, Blue] [1, 2, 3,
5]

Card 2 could be: [Red, Yellow, Green, White, Bluel [1, 2, 3,
5]

Card 3 could be: [Red, Yellow, Green, Blue] [3]
Card 4 could be: [White] [5]
I can see Bob's Cards are:

[Card @: Yellow 1]
[Card 1: Blue 1]
[Card 2: Blue 1]
[Card 3: Red 3]

[Card 4: Green 3]

Bob's Knowledge about his cards:

Bob believes his Card @ could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 1 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 2 could be: [Red, Yellow, Green, White,
Bluel [1, 2, 3, 4, 5]

Bob believes his Card 4 could be: [Red, Yellow, Green, Bluel
[31

Remaining Reveal Tokens: 1

Remaining Lives: 2

Deck Size: 25

The discard pile is: [Yellow 4, Blue 2, Blue 3, White 2, White

3, White 4]

My Action History: [Reveal Bob's Rank 2 Cards, Reveal Bob's
Rank 5 Cards, Reveal Bob's Rank 2 Cards, Play Card 1,
Reveal Bob's Rank 1 Cards, Discard Card @, Reveal Bob's

Rank 3, Reveal Bob's Rank 2, Reveal Bob's Rank 2 Cards,
Reveal Bob's Rank 1 Cards, Discard Card 3, Reveal Bob's
White Color Cards, Discard Card 1]

The next playable cards for each stack are:

Only Red 2 can be played on Red Stack

Only Yellow 3 can be played on Yellow Stack

Only Green 2 can be played on Green Stack

Only White 5 can be played on White Stack

Only Blue 4 can be played on Blue Stack

What can I infer from my partner's previous action?
Available Answers:

I should Play Card
should Play Card
should Play Card
should Play Card
should Play Card
should Discard Card @
should Discard Card 1
should Discard Card 2
should Discard Card 3
should Discard Card 4

GUH I OMMmoOO W >
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<Inventory>: I am holding onion. Bob is holding nothing.

<My Location Information>: 0@ is @ units away. ol is 1 units
away. p@ is 3 units away. c@ is 6 units away blocked by
Bob. c1 is 7 units away. d@ is 4 units away. s@ is 1
units away. s1 is @ units away. s2 is 1 units away. s3
in 2 units away. Closest empty kitchen counter k12 is 1
units away.

<Bob's Location Information>: 0@ is blocked by Alice. ol is 7
units away. p@ is 3 units away. c@ is @ units away. cl
is 1 units away. d@ is 4 units away. s@ is 1 units away.

s1 is @ units away. s2 is 1 units away. s3 in 2 units
away .

<Environment Details>: c@ contains 1 out of 3 onions. c@ is
off. soup in c@ is not cooking. c1 contains @ out of 3
onions. cl1 is off. soup in c1 is not cooking.

What action does my partner intend to take?
Available Actions:

. pick up onion from 00.
. pick up onion from ol.
. pick up plate from pe@.
. pick up onion from s@.
. pick up onion from si.
. pick up onion from s2.
. pick up onion from s3.
. pick up plate from s@.
. pick up plate from si.
. pick up plate from s2.
. pick up plate from s3.
. wait.

. move away.

TrAaHIOTTMOoOOWm>

D.3 Joint Planning Questions

Joint planning questions are effectively the same
questions that the LLLM solves when they are part
of an agentic framework. For each scenario, we
ask the LLM to answer the question: "What is the
best next action?".

I (Alice) am in Room 6. Bob is in Room 1. Thief is in Room 2.
Door between Room 1 and 2 is closed. Door between Room 3 and 4
is closed.

What action should I take next?
Available Actions:

A. Move to Room 1

B. Move to Room 5

C. Move to Room 9

D. Stay in current Room
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E CollabCapture and CollabEscape
E.1 CollabCapture

CollabCapture places two agents in a set of inter-
connected rooms and doors. Their goal is to capture
an adversary within the smallest number of moves
possible. The adversary moves away from agents
in a greedy fashion, but the agents have the ability
to close and open doors while the adversary does
not. The doors are controlled by a corresponding
button that is in another location on the map. (See
Figure 5)

CollabCapture contains one layout with four sce-
narios created by controlling the gate states (open/-
closed). This corresponds to cases where players
need to: 1. Pincer their opponent through coor-
dination 2. One agent needs to enable the other
agent by choosing not to chase the agent but rather
open the door to allow the other agent to capture
the adversary. 3. One agent needs to disable the ad-
versary by closing a door, allowing the other agent
to catch them. CollabCapture is based on the clas-
sic task of Pursuit Evasion from the perspective of
the pursuers. This is representative of a common-
payoff task as the only objective is capturing the
adversary with no mixed incentives (Akin to deliv-
eries in Overcooked, where all chefs get a common
payoff with no preference for the one making the
delivery).

E.2 CollabEscape

CollabEscape also places two agents in a set of
interconnected rooms and doors. Their goal in this
environment, however, is to escape an adversary
that is looking to catch them. The map has two
generators that power an exit gate, both of which
need to be fixed. Upon fixing both generators, the
players must then escape by reaching the exit gate.
Only one player needs to reach the exit gate in order
for them both to win. If the adversary catches either
of them, however, they both lose. (See Figure 6)
In CollabEscape, we have one layout with two
scenarios created by varying the starting positions
of the two agents. Depending on their proximity
to the adversary/generators, players need to apply
strategies such as luring the adversary away from
the partner, choosing to continue fixing the genera-
tors while sacrificing for the partner’s safety, and
manipulating the movement of the adversary. This
is also representative of a common payoff task, as
players are commonly rewarded if any one of them
escapes, introducing roles of explicit assistance and

sacrifice for a higher common payoft.
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Collab Capture
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Figure 5: Map layout for CollabCapture
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Figure 6: Map layout for CollabEscape
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