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Abstract
Like most of NLP, models for human-centered
NLP tasks—tasks attempting to assess author-
level information—predominantly use rep-
resentations derived from hidden states of
Transformer-based LLMs. However, what com-
ponent of the LM is used for the representation
varies widely. Moreover, there is a need for Hu-
man Language Models (HuLMs) that implic-
itly model the author and provide a user1-level
hidden state. Here, we systematically evalu-
ate different ways of representing documents
and users using different LM and HuLM ar-
chitectures to predict task outcomes as both
dynamically changing states and averaged trait-
like user-level attributes of valence, arousal,
empathy, and distress. We find that represent-
ing documents as an average of the token hid-
den states performs the best generally. Further,
while a user-level hidden state itself is rarely the
best representation, we find its inclusion in the
model strengthens token or document embed-
dings used to derive document- and user-level
representations resulting in best performances.

1 Introduction
Human-centered NLP focuses on the humans gener-
ating language (Flek, 2020; Hovy and Yang, 2021;
Soni et al., 2024b) Many human-centered NLP
tasks focus on assessing human-attributes of a user
based on their language (Lynn et al., 2017), utiliz-
ing a representation of the author, often within a
specific time period or set of documents (Matero
et al., 2022; Giorgi et al., 2024).

Like most sub-fields in NLP, human-centered
NLP heavily relies on traditional LLMs (pre-
trained on the language modeling task of either
next word prediction or the missing word predic-
tion) that do not directly contain a representation
for the person. For example, no particular layer,
token, or output is accepted as the best way to rep-
resent a person. More recently, human language

1‘Author’, ’user’ and ‘person’ used interchangeably.

Figure 1: Evaluating representations derived from differ-
ent hidden states in both traditional Transformer-based
LMs and human language models (HuLMs). Document
representations as hidden states from: CLS, special to-
ken in auto-encoders; AT, averaged tokens in a docu-
ment; LT, last token in a document for autoregressive
models; LTinsep, special last token for HuLMs; and U,
user state for HuLMs. User representation as averaged
corresponding document representation types for all
documents written by a user.

models (HuLMs)—those that directly model the
language in the context of its “generator”, i.e., the
author (Soni et al., 2024c)—have been proposed
but still lack evaluations for capturing human-level
factors.

Here, we systematically compare and evalu-
ate the commonly used ways to represent words,
documents, and users in terms of hidden states
(i.e., vector embeddings) from traditional LMs
and HuLMs (Figure 1) for their ability to cap-
ture user-level information. We use the three lev-
els of representations (word, document, user) to
predict three levels of task outcomes: document-
level, wave-level, and user-level. These outcomes
are selected based on the prediction properties
of: a) changing user states – as an effect of dif-
ferent situations/times and particular states when
an author writes the document, b) changing user
states over a range of (closely spaced) periods of
time — as an effect of differences in user’s states
grouped together in one period of time (referring
to it as a wave) and specifically separated from the
next period of time (i.e., next wave), and c) sta-
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ble trait-like user-level attributes. We select four
well-established outcomes representative of psy-
chological human-centered NLP tasks spanning
fundamental human attributes: the affective circum-
plex (Russell, 1980; Mohammad, 2016) (valence
and arousal), empathy, and distress (Batson et al.,
1987; Litvak et al., 2016))

Transformer-based LM (Vaswani et al., 2017)
architectures provide us with many choices for doc-
ument representation: first token (i.e., CLS) (De-
vlin et al., 2019; Liu et al., 2019) in case of auto-
encoders, the last token in case of autoregressive
models (Radford et al., 2019), or the average of all
the tokens in a document. Since traditional LMs do
not have a notion of a user, prior works have used
a hierarchical user representation by averaging all
document embeddings written by a particular user
(Nagao and Katsurai, 2024) (Figure 1). While that
is a posthoc way to represent a user, HuLMs pro-
vide us with user representations – a relatively more
natural way for the same, by processing language
in its multi-level structure i.e., words are a part of
a document, and documents are generated by peo-
ple (Soni et al., 2022). We select representative
models for these different types of LMs currently
available: autoencoders (BERT-like), autoregres-
sive (GPT2-like), and HuLMs (HaRT-like (Soni
et al., 2022)). HuLMs are trained on user-aware
LM pre-training tasks that predict the next word
conditioned on the contextual words as well as a
user state, thereby processing text in the context
of their historical language by tracking user states
through recurrently updated vectors. HuLMs out-
put word embeddings like traditional LMs (how-
ever, these are user-state-informed), and also output
user states presenting additional opportunities for
producing rich user representations from such user
states. We hypothesized the user representations
derived from user states—as the natural output of
HuLMs—will result in better assessing the human-
attributes considered at the three different levels of
predictions.

Contributions. (1) We depict some of the dif-
ferent ways to represent words, documents, and
users using traditional LMs and HuLMs hidden
states and user states to predict a user’s frequently
changing states (i.e., document-level), their chang-
ing states over a specific period of time (i.e., wave),
and their stable trait-like attributes (i.e., user-level).
(2) We systematically evaluate the multiple repre-
sentation types over broadly 2 levels of analysis of

user attributes: document- and wave-level dynam-
ically changing over time (states) and somewhat
stable user-level (trait-like) on an average. Traits
are defined as averages of multiple state measure-
ments (i.e. a trait defines the mean and sometimes
the variance of one’s distribution of states (Flee-
son, 2001)). (3) We draw 2 major findings: (a)
averaging the token embeddings as the basis for
document representations (states) and hierarchical
user representations (traits) perform the best on an
average, and (b) contrary to our hypothesis, user
states themselves are not the best representations,
but consistently strengthen user representations de-
rived from token and document embeddings where
a user-state was included.

2 Related Work

Human-centered NLP tasks are often grounded in
the person (Ganesan et al., 2024) and require user
representations for downstream applications, such
as assessing mental health (Ganesan et al., 2022;
Varadarajan et al., 2024), estimating demographic
attributes (Benton et al., 2016), assessing personal-
ity (Schwartz et al., 2013; Soni et al., 2024a), stance
detection (Matero et al., 2021), and personalized
recommendations (Qi et al., 2021; Wu et al., 2023).
Commonly, a hierarchical approach has been used
to average document representations across all text
sequences from a particular user since the pre-
LLMs era (He et al., 2019; Lynn et al., 2020). As
Transformer-based LLMs become ubiquitous in
human-centered NLP tasks, the hierarchical user
representation approach continues to prevail (Lynn
et al., 2020; Nagao and Katsurai, 2024). While
this allows us to derive a user representation, it
does not necessarily capture the author’s context,
as traditional LLMs process documents written by
the same individual independently or, conversely,
treating all language as if written by an average,
universal person (Soni et al., 2024c).

A large body of past work explored generating
user embeddings (Ning et al., 2024) and making
LLMs personalizable (Zhang et al., 2024). Re-
cently introduced Transformer-based Human Lan-
guage Models (HuLMs) (Soni et al., 2022) offer
a notion of the user by processing language in its
multi-level structure, where words are part of a
document, and documents are generated by people.
This provides a relatively natural way of represent-
ing a user. Traditional LMs and HuLMs present a
multitude of choices regarding which layer, token,
or output to select for the best representation of a
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person and their document- and token-level repre-
sentations. To this end, we perform a systematic
study to identify the best representations.

3 Datasets and Tasks

We select 2 datasets that allow for the multiple lev-
els of analysis broadly categorized into (a) dynamic
states (attributes that change with time and utter-
ances), and (b) user-level (trait-like attributes on an
average for a person). These datasets provide tasks
of predicting fundamental human-attributes like af-
fective circumplex grid (Russell, 1980) (valence
and arousal), and empathy and distress (Batson
et al., 1987).

Valence and Arousal. We use a subset of the
DS4UD (Data Science for Unhealthy Drinking)
dataset (Nilsson et al., 2024), consisting of affec-
tive circumplex grid self-reported questionnaires
and essays written by US service industry work-
ers on how they were feeling 3 times daily (mini-
mum once) for 14-day periods (we call it a “wave”),
across 6 data collection phases from 2021 to early
2024. We use self-reported outcomes derived from
the affective circumplex grid: Valence (0-4, highly
negative to highly positive affect), and Arousal (0-
2, low to high energy). Our selection criteria in-
clude users who participated in at least 2 waves and
wrote at least 2 essays (≥ 10 words each), resulting
in 120 users overall, 406 user instances across 6
waves (a user can have 2 to 6 wave instances, de-
pending on the number of waves they participated
in), and 10090 essays across all users. We com-
pute outcomes labels across waves by averaging
the labels corresponding to each essay for a user in
a particular wave. Further, we average the labels
corresponding to each wave for a user to get the
user-level outcomes labels, following classical test
theory (Rust and Golombok, 2014).

Empathy and Distress. We use a subset of the
WASSA 2024 Shared Task on Empathy and Per-
sonality Detection in Interactions, specifically a
part of Track 3 (Giorgi et al., 2024). The task is to
predict the empathic concern and personal distress
scores (Batson et al., 1987) for each essay written
by crowd workers in response to news articles, with
real-valued labels ranging from 1 to 7. We include
train and dev data from WASSA 2024 and WASSA
2023 (Barriere et al., 2023), the years with user-
level data, resulting in 180 users and 1837 essays.
User-level trait-like outcome labels are obtained by
averaging empathy and distress scores across each

user’s essays.

4 Methods and Experiments

Models and Types of Representations. In this
study, we will evaluate different types of representa-
tions from 4 models, of which 2 are autoregressive:
1) HaRT (Soni et al., 2022), 2) GPT-2 small, and 2
are auto-encoders: 3) BERT, 4) RoBERTa.

HaRT enables us to use 4 types of document
representations: a) Average of token embeddings
(AT), b) Last token (LT), c) Last token as insep
(LTinsep), d) User states (U) (Figure 1). Autoregres-
sive GPT-2 can provide the first 2 of these 4 types,
while auto-encoders (BERT, RoBERTa) normally
use the CLS token embeddings (CLS) or the AT to
represent a document. We employ the hierarchical
averaging structure over the different types of docu-
ment embeddings across all documents from a user,
or in a specific time-period (i.e., wave) to retrieve
different types of user and wave representations
(refer Section 3), respectively.

HaRT Architecture and Variants. We sought to
use an architecture that can handle multiple repre-
sentations criteria: (1) a multi-level structure span-
ning words, documents, and user-level data, (2)
last-token and special-token representations, and
(3) applicability to traditional LM tasks. For our pri-
mary results we build on Human-aware Recurrent
Transformer (HaRT) model that was pre-trained
on the human language modeling task (Soni et al.,
2022) (see Section 1). Originally, HaRT processes
temporally ordered text sequences from a user, sep-
arated by a special insep token, chunked into blocks
(up to 8 for training), each capped at 1024 tokens
(referred to HaRTfrozen). HaRT maintains user state
vectors, updated recurrently after processing each
block. However, concatenated blocks of 1024 to-
kens didn’t provide an easy way to extract user
states at the end of each document for document-
and wave-level prediction. To address this, we fur-
ther pre-train HaRT on DS4UD essays data (refer
Section 3) with a limit of one document per block
(referred to HaRTODPB) and adjusting the maximum
number of training blocks (to 55) to retain compa-
rable user-level data, enabling user state extraction
after each document. Additionally, in another vari-
ant (HaRTconcat), we continue to pre-train HaRTfrozen

using the DS4UD essays data with the original
block-settings to help tease out any spurious effects
introduced bt altered block-settings in HaRTODPB.
Following Soni et al., we derive user and wave rep-

7675



Dynamic States Trait-like
Method Document-Level Wave-Level User-Level

Val Aro Emp Dis Avg Val Aro Avg Val Aro Emp Dis Avg
GPT-2

LT 0.53 0.25 0.71 0.58 0.52 0.64 0.28 0.46 0.63 -0.14 0.37 0.42 0.32
AT 0.60 0.34 0.69 0.54 0.54* 0.77 0.33 0.55* 0.75 0.18 0.52 0.68 0.53*

BERT
CLS 0.58 0.30 0.70 0.66 0.56 0.74 0.28 0.51 0.71 0.09 0.45 0.42 0.42
AT 0.61 0.35 0.72 0.59 0.57* 0.75 0.26 0.50 0.73 0.14 0.45 0.39 0.43

RoBERTa
CLS 0.62 0.35 0.77 0.63 0.59* 0.75 0.29 0.52 0.72 0.10 0.51 0.59 0.48
AT 0.63 0.36 0.72 0.63 0.58 0.75 0.33 0.54** 0.75 0.16 0.59 0.53 0.51

HaRTfrozen

LT 0.52 0.22 0.70 0.57 0.50 0.69 0.21 0.45 0.73 0.18 0.42 0.60 0.48
LTinsep 0.55 0.23 0.76 0.67 0.55 0.69 0.22 0.46 0.74 0.23 0.45 0.62 0.51
AT 0.64 0.33 0.75 0.68 0.60* 0.79 0.27 0.53* 0.73 0.35 0.67 0.66 0.60*†
U - - - - - - - - 0.59 -0.01 0.46 0.49 0.38

HaRTconcat

LT 0.53 0.22 0.72 0.62 0.52 0.70 0.16 0.43 0.74 0.18 0.42 0.68 0.50
LTinsep 0.57 0.26 0.76 0.56 0.54 0.75 0.30 0.53 0.77 0.15 0.61 0.55 0.52
AT 0.65 0.34 0.75 0.70 0.61*† 0.80 0.27 0.54 0.77 0.34 0.62 0.65 0.59*
U - - - - - - - - 0.65 0.06 0.59 0.49 0.45

HaRTODPB

LT 0.57 0.27 0.68 0.56 0.52 0.72 0.17 0.44 0.72 0.24 0.41 0.55 0.48
LTinsep 0.64 0.34 0.74 0.66 0.59 0.79 0.27 0.53 0.72 0.09 0.40 0.50 0.43
AT 0.63 0.36 0.73 0.63 0.59* 0.80 0.28 0.54 0.75 0.12 0.58 0.51 0.49**
U 0.52 0.15 0.46 0.40 0.38 0.65 0.01 0.33 0.66 0.04 0.50 0.47 0.42

Table 1: Linear model predictions for 4 well-established psychological outcomes: valence, arousal, empathy, and
distress, correlated (Pearson r) with the labels associated with the datasets in Section 3. Averaged token embeddings
(AT) generally outperform LT, CLS, LTinsep, and U across respective models. Token and document embeddings
informed by the user state perform best for averaged document- and user-level outcomes. No statistically significant
difference found between HaRTconcat and GPT-2 for averaged wave-level outcomes. Bold indicates best in column
and * indicates paired t-test statistical significance with p < 0.001 and ** with p < 0.05 for each model’s AT results
against its respective second best result. † represents statistical significance (p < 0.05) across models for each of
document-, wave-, and user-level analysis between best overall best (HaRT variants) and best traditional LM.

resentations by averaging user states across blocks
in each HaRT variant (see Section 3).

Experiments. We use averaged token embed-
dings, special token embeddings, and user states
embeddings (where available) from HaRT vari-
ants, GPT-2, BERT, and RoBERTa2 to predict va-
lence, arousal, empathy, and distress as both dy-
namic states and trait-like stable outcomes based
on a person’s text sequences (Table 1). We use
DLATK (Schwartz et al., 2017) to apply ridge re-
gression (aplha values: 1.e+00, 1.e+01, 1.e+02,
1.e+03, 1.e+04, 1.e+05, 1.e+06) over the differ-
ent embeddings representations, learning only the
ridge regression weights without any task-specific
fine-tuning model parameters.

To evaluate vector representations, we measure
Pearson r correlations between the linear model
predictions and dataset labels (Section 3). We run
10- straitified group-based cross-validation folds,
ensuring no user overlap between the train and test
splits in any fold, and report the averaged Pearson
r. The experiments took ~5 hours on A6000 GPU

2Code available at https://github.com/soni-
n/LLMs_Author_Representations

using approx ~24GB memory.

5 Results and Discussion
Overall, averaged across outcomes, we find HuLMs
(HaRT variants) to perform the best for predicting
both the changing states and trait-like outcomes at
the document- and user-level (refer Table 1). We
do not find any statistically significant difference in
the performance of GPT-2 and HaRTconcat for wave-
level predictions.

Averaged Token Embeddings (AT). Using the
averaged token embeddings helps more often than
the last token or CLS embeddings for all types of
models considered: autoregresive, auto-encoders,
and HuLMs. Intuitively, AT embeddings perform
better because they may be better able to capture
the nuanced, context-dependent details needed to
represent both stable traits and changing states—
key aspects of human-level attributes—from each
token of a document. Whereas, when we use a
single special token’s embeddings as a document
representation, we may lose important nuanced in-
formation distributed across the tokens in the doc-
ument in the process of compressing information
into one token’s embeddings. However, this is only
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theoretical and we do not have evidence to prove
the reasoning in the current study and encourage
future studies to explore further.

Inclusion of User States. The user states by
themselves are rarely the best embeddings but con-
sistently the LT and AT-based embeddings were
strong when a user-state was included. We see
under the HuLMs (HaRT variants) in Table 1, rep-
resentations from U to perform below par, however
user-level representations derived from AT (and
in some cases last tokens LT and LTinsep), that are
processed in the context of the user states, boost
the performance. While using AT is the current
best choice, this also opens up avenues for future
works to improve the natural representations of
user states capturing the author’s context and thus
further improve the word’s meaning embedded in
tokens.

Last Token as a Special Token (LTinsep). Interest-
ingly, we find representations derived from LTinsep

embeddings from HuLMs (HaRT variants) to per-
form better than those from LT embeddings (Table
1) that suggests insep is able to capture the average
of the tokens in a documents from a user. Theo-
retically, LTinsep, the special token for HuLMs, can
be seen as analogous to the CLS token for auto-
encoders.

Outcomes Predictions Analysis. Arousal pre-
diction remains a challenging task across all 3 dif-
ferent levels of predictions (document, wave, and
user). However, RoBERTa predicts it best at the
document- and wave-level, while HaRTfrozen is the
best in predicting it as an average trait for the author
(i.e., user-level).

Valence is better predicted at the user- and wave-
level across models, suggesting it is harder to cap-
ture the frequently changing affect over quick suc-
cession of time (i.e., within the same day or con-
secutive days, as associated with each document
written by an author); as opposed to capturing over
a period of time. HaRTconcat performs the best across
document-, wave-, and user- levels of predictions.

Empathy is much better predicted as a frequently
changing human state (i.e, at the document-level)
versus as an average trait for the author. However,
HaRTfrozen is the best in predicting it as an average
trait for the author (i.e., user-level).

Distress prediction showed mixed results with
HaRTconcat doing better for both document- and user-
level predictions, while GPT-2 show same perfor-

mance as HaRTconcat for user-level but lower at the
document-level. BERT-like models were sub-par
at user-level.

Later Layers of Transformer-based Architec-
tures. We performed initial evaluation by fetch-
ing hidden states from last layer and second-to-last
layer, and comparing the different types of embed-
dings over the document-, wave-, and user-level
tasks of predicting the human attributes (valence,
arousal, empathy, and distress) (Appendix Table
2). We find a dominating trend with last layer
hidden states for special tokens—LT and CLS to-
kens, whereas averaged token embeddings show
similar results using both last and second-to-last
layers with the latter having better results for auto-
encoders at the document-level. We report the re-
sults from the last layer for representations using
special tokens and second-to-last layer for AT rep-
resentations to use a stronger baseline auto-encoder
based results in Table 1.

6 Conclusion

We provided the first systematic evaluation of
different types of word-, document-, and user-
representations across three levels of analysis for
tasks predicting both dynamically changing states
and averaged trait-like user-level attributes (va-
lence, arousal, empathy, and distress). We used
traditional LMs (BERT, RoBERTA, and GPT-2)
as well as human language models (versions of
HaRT) and represented documents using the CLS
token, the last token, the last token as insep, U (user
state from a HuLM), and the averaged tokens hid-
den states for respective models. We hierarchically
average the corresponding document representa-
tions written by a particular user to derive their
user representation. Generally, document-, wave-
(user over a specific time period), and user- repre-
sentations based on averaged token hidden states
outperform CLS, LT, LTinsep, and U for respective
models. Although the user states themselves do not
prove to be a powerful representation for predict-
ing user-level outcomes, they improve the averaged
user-level performance when using user representa-
tions derived from user-state-informed tokens hid-
den states making HuLMs (HaRT variants) as the
best performing model. Overall, our study and find-
ings provide a standardized comparison and iden-
tify the best representations to select when applying
LMs for psychological human-centered NLP tasks.
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Ethical Considerations

Models that incorporate the author’s context and/or
use data involving private and sensitive informa-
tion must adopt a responsible use and release strat-
egy. All models carry some human-level attribute
information, and it is important for ethical ap-
plications (both for prosocial mental health use
cases and for privacy preserving use cases) that we
understand where these attributes are best repre-
sented. However, user states, user representations,
or document/word representations are not mapped
to any “one” identifiable user. These models are
not trained to identify “individual users” or are
not fed particular user-attributes, but instead use
anonymized user identifiers while our evaluations
compare how well they pick up on user attributes.
While such models are essential for advancing re-
search in human-centered NLP and understanding
language in the context of the author, they may
also pose unintended nefarious risks. For these rea-
sons, the DS4UD data used in this study, which
involves private user data, cannot be made pub-
licly available due to ethical and privacy concerns.
The affective grid circumplex tasks presented here
were reviewed and approved or exempted by an
academic institutional review board (IRB) as per
the original dataset owners.

Limitations

The purpose of our study is to evaluate and stan-
dardize some of the commonly used Transformer-
based approaches for representing users, their doc-
uments, and tokens in human-centered NLP tasks.
We use some of the relevant and widely used mod-
els, exploring a few different types of representa-
tions. While our study focuses on specific models
and methods, we encourage the NLP community
to investigate lesser-explored approaches for mod-
eling human context and deriving representations.
We also acknowledge limitations inherent to these
models and representations, such as context size
and the extent of a user’s historical language used
as human context, which are beyond the scope for
this study.

Traditional LMs and HuLMs have many differ-
ent ways of deriving these representations but no
study suggests the best route. And, we select repre-
sentative models for these different types of LMs
currently available: autoencoders (BERT-like), au-
toregressive (GPT2-like), and HuLMs (HaRT-like).
At the same time, larger LLMs are mainly used for

prompting, and not by deriving embedding-based
representations to use for human-centered tasks.
We use GPT-2 and BERT-like models because these
are comparable in the number of parameters with
HaRT-like HuLMs. Currently, larger HuLMs are
not available and we encourage future studies to
explore this area of research and compare the per-
formances.

Regarding datasets, some users and essays in the
WASSA dataset were duplicates or skewed. We
removed the duplicates and retained the remaining
data for evaluation. Finally, models and datasets
involving sensitive user information, such as the
DS4UD dataset, require careful and responsible us-
age. Due to privacy concerns, the authors of these
datasets cannot make them publicly available. The
datasets for human-centered NLP tasks are often
small-scale due to a variety of reasons including:
(i) availability of user information, (ii) privacy is-
sues, (iii) difficulty in collecting labeled datasets
at the user level for a continued period of time.
DS4UD dataset provides a rich historical language
of authors (essays) collected for a continued period
of time (e.g., DS4UD was collected over 3 years,
from early 2021 until 2024), with associated multi-
ple human-level attributes. Thus, this provides us
with an opportunity to analyze the stable traits and
changing human states of people. To the best of
our knowledge, no studies provide rich longitudinal
data at such scale. WASSA datasets are publicly
available and provide rich textual data with asso-
ciated labels for multiple documents written by a
particular author, thus enabling the prediction of
different empathetic (or distress) states of a person.
To sum up, these datasets provide complex scenar-
ios encapsulating changing human states and aver-
aged traits of a person. More importantly, DS4UD
also provides the temporally changing human-level
attributes with self-reported labels instead of in-
ferred attributes or annotated labels. Furthermore,
these datasets are essay-like language which re-
duces the limitations of social-media datasets that
are short and not necessarily continuous over time.
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Dynamic States
Method Document-Level Wave-Level

Val Aro Emp Dis Val Aro
L SL L SL L SL L SL L SL L SL

GPT-2
LT 0.53 0.48 0.25 0.18 0.71 0.71 0.58 0.58 0.64 0.61 0.28 0.15
AT 0.60 0.60 0.34 0.34 0.70 0.69 0.58 0.54 0.76 0.77 0.29 0.33

BERT
CLS 0.58 0.59 0.30 0.29 0.70 0.71 0.66 0.60 0.74 0.70 0.28 0.29
AT 0.61 0.61 0.35 0.35 0.71 0.72 0.59 0.59 0.77 0.75 0.29 0.26

RoBERTa
CLS 0.62 0.59 0.35 0.30 0.77 0.69 0.63 0.42 0.75 0.71 0.29 0.30
AT 0.63 0.63 0.36 0.36 0.71 0.72 0.60 0.63 0.79 0.75 0.33 0.33

HaRTfrozen

LT 0.52 0.51 0.22 0.20 0.70 0.70 0.57 0.56 0.69 0.68 0.21 0.16
LTinsep 0.55 0.56 0.23 0.21 0.76 0.74 0.67 0.52 0.69 0.69 0.22 0.20
AT 0.63 0.64 0.33 0.33 0.77 0.75 0.70 0.68 0.79 0.79 0.27 0.27
U - - - - - -

HaRTconcat

LT 0.53 0.52 0.22 0.18 0.72 0.70 0.62 0.60 0.70 0.70 0.16 0.13
LTinsep 0.57 0.59 0.26 0.26 0.76 0.46 0.56 0.48 0.75 0.74 0.30 0.28
AT 0.64 0.65 0.34 0.34 0.77 0.75 0.72 0.70 0.80 0.80 0.30 0.27
U - - - - - -

HaRTODPB

LT 0.57 0.53 0.27 0.21 0.68 0.63 0.56 0.52 0.72 0.69 0.17 0.13
LTinsep 0.64 0.65 0.34 0.33 0.74 0.73 0.66 0.65 0.79 0.80 0.27 0.25
AT 0.63 0.63 0.36 0.36 0.74 0.73 0.64 0.63 0.80 0.80 0.29 0.28
U 0.52 0.15 0.46 0.40 0.65 0.01

Table 2: We evaluate the performance differences in hidden states from the last layer (“L”) and second-to-last layer
(“SL”) for all models. We find second to last layer to perform better for AT hidden states in case of auto-encoders
for document-level tasks, and last layer to work generally well for the other types of representations across models.
AT embeddings from L and SL show similar results for most other outcomes. Bold indicates better performance
between L and SL for each model/representation/outcome.

Trait-like
Method User-Level

Val Aro Emp Dis
L SL L SL L SL L SL

GPT-2
LT 0.63 0.52 -0.14 -0.01 0.37 0.36 0.42 0.47
AT 0.75 0.75 0.19 0.18 0.52 0.52 0.64 0.68

BERT
CLS 0.71 0.68 0.09 0.05 0.45 0.48 0.42 0.42
AT 0.75 0.73 0.17 0.14 0.44 0.45 0.37 0.39

RoBERTa
CLS 0.72 0.61 0.10 0.13 0.51 0.48 0.59 0.66
AT 0.75 0.75 0.20 0.16 0.62 0.59 0.58 0.53

HaRTfrozen

LT 0.73 0.72 0.18 0.13 0.42 0.43 0.60 0.59
LTinsep 0.74 0.73 0.23 0.20 0.45 0.44 0.62 0.47
AT 0.72 0.73 0.35 0.35 0.68 0.67 0.64 0.66
U 0.59 -0.01 0.46 0.49

HaRTconcat

LT 0.74 0.71 0.18 0.12 0.42 0.43 0.68 0.63
LTinsep 0.77 0.75 0.15 0.13 0.61 0.65 0.55 0.59
AT 0.76 0.77 0.35 0.34 0.64 0.62 0.63 0.65
U 0.65 0.06 0.59 0.49

HaRTODPB

LT 0.72 0.68 0.24 0.23 0.41 0.42 0.55 0.56
LTinsep 0.72 0.71 0.09 0.09 0.40 0.39 0.50 0.47
AT 0.75 0.75 0.18 0.12 0.57 0.58 0.52 0.51
U 0.66 0.04 0.50 0.47

Table 3: We evaluate the performance differences in hidden states from the last layer (“L”) and second-to-last
layer (“SL”) for all models. AT embeddings from L and SL show mixed and similar results for most outcomes at
user-level. Last layer works generally well for the other types of representations across models. Bold indicates
better performance between L and SL for each model/representation/outcome.
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