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Abstract

To facilitate healthcare delivery, language mod-
els (LMs) have significant potential for clinical
prediction tasks using electronic health records
(EHRs). However, in these high-stakes appli-
cations, unreliable decisions can result in high
costs due to compromised patient safety and
ethical concerns, thus increasing the need for
good uncertainty modeling of automated clini-
cal predictions. To address this, we consider un-
certainty quantification of LMs for EHR tasks
in both white-box and black-box settings. We
first quantify uncertainty in white-box mod-
els, where we have access to model parame-
ters and output logits. We show that an ef-
fective reduction of model uncertainty can be
achieved by using the proposed multi-tasking
and ensemble methods in EHRs. Continu-
ing with this idea, we extend our approach
to black-box settings, including popular pro-
prietary LMs such as GPT-4. We validate
our framework using longitudinal clinical data
from over 6,000 patients across ten clinical pre-
diction tasks. Results show that ensembling
methods and multi-task prediction prompts
reduce uncertainty across different scenarios.
These findings increase model transparency in
white-box and black-box settings, thereby ad-
vancing reliable AI healthcare. Our code is
publically available at https://github.com/
Cyrus9721/EHR_Uncertainty.

1 Introduction

Language models, such as (Steinberg et al., 2021;
Theodorou et al., 2023; Steinberg et al., 2024) have
emerged to be an efficient tool in the domain of
EHR tasks. These models, extensively trained on
diverse sources of clinical data, such as physician
notes and longitudinal medical codes, have demon-
strated remarkable effectiveness in predicting clini-
cal outcomes. Despite their capabilities, measuring
and reducing the uncertainties of these models in
EHR tasks is crucial for ensuring patient safety, as

clinicians can avoid interventions that the model
indicates are uncertain and potentially hazardous.
In addition, quantifying the uncertainties in clini-
cal tasks can enhance the reliability of AI-driven
medical decision-making systems (Begoli et al.,
2019).

To address this challenge, leveraging the trans-
parency of model parameters, we utilize established
uncertainty metrics and propose to combine them
with ensembling and multi-tasking approaches to
effectively quantify and mitigate uncertainties in
EHR tasks for these white-box language models.
Recently, large language models have embarked
on demonstrating their utility in clinical-related
tasks, including EHR prediction tasks (Wornow
et al., 2023b), analyzing radiology report exami-
nations (Jeblick et al., 2024) and medical reason-
ing (Liévin et al., 2024). However, the encapsu-
lation of modern Large Language Models, typi-
cally offered as API services with restricted ac-
cess to internal model parameters and prediction
probabilities, impedes the direct application of tra-
ditional uncertainty quantification methods. To
overcome this limitation, We redefine uncertainty
quantification as a post-hoc approach by analyzing
the distribution of answers generated repeatedly
from our designed prompts for clinical prediction
tasks. Inspired by the effectiveness of our proposed
methods in reducing model uncertainty for white-
box LMs, we adapted and applied ensembling and
multi-tasking methods to the black-box settings.

The main contributions of this paper are summa-
rized as follows:
• We propose a multi-tasking method and a model

ensembling approach to reduce model uncertain-
ties for the white-box language model for clinical
predictions using medical code sequences.

• We redefine the uncertainty quantification in
EHR prediction tasks using black-box LLMs.

• We adapted our proposed two methods from
white-box LM settings to black-box LLM set-
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tings using natural languages and demonstrated
their effectiveness in reducing uncertainties.

2 Background and Related Work

Uncertainty Quantification in Clinical Tasks
Uncertainty quantification has emerged as a critical
component in clinical tasks, particularly in safety-
critical fields such as clinical decision-making (Be-
goli et al., 2019; Chen et al., 2021; Tomašev et al.,
2021) and medical imaging (Edupuganti et al.,
2020; Lambert et al., 2024). Current methods in-
volve applying Bayesian approaches (Dusenberry
et al., 2020; Jahmunah et al., 2023), ensembling
methods (Mimori et al., 2021; Abe et al., 2024)
and test-time augmentations (Ayhan et al., 2020) to
reduce model uncertainties. In addition, (Uy, 2022;
Rodman et al., 2023; Gao et al., 2024) examines the
pre-test and post-test probabilities on clinical tasks
for better decision-making. This work investigates
model uncertainty on structured, longitudinal EHR
datasets for clinical outcome predictions.

Langeuage Models for Clinical tasks Language
models are transforming healthcare as an advanced
tool for analyzing vast amounts of clinical data.
Bert-based Models, like (Huang et al., 2019; Rasmy
et al., 2021), have demonstrated their effectiveness
in optimizing the disease treatment plan (Wang
et al., 2023), clinical outcome prediction, etc. The
recent success of large language models in reason-
ing and planning has prompted the community to
adopt them for EHR tasks (Yang et al., 2022; Yoon
et al., 2025). Uncertainty estimation is crucial for
employing LLMs in electronic health record (EHR)
tasks, as it helps mitigate the risk of false positives
that could lead to inappropriate treatments or inter-
ventions (Savage et al., 2025). This paper mainly
focuses on estimating and reducing the uncertain-
ties for proprietary LLMs.

Uncertainty Quantification with LLMs The in-
creasing reliance on black-box large language mod-
els (LLMs) such as GPT-4 (Achiam et al., 2023),
Claude 3 (Anthropic, 2023), and Gemini (Team
et al., 2023) in commercial applications has intro-
duced complex challenges in Uncertainty Quantifi-
cation. Due to the closed nature of LLMs, typically
offered as API services, traditional uncertainty
quantification methods that require access to model
parameters are not applicable. To overcome these
challenges, recent research (Kuhn et al., 2023; Lin
et al., 2023; Xiong et al., 2024) has developed inno-

vative techniques that estimate uncertainty based di-
rectly on the text outputs from LLMs, bypassing the
need for internal data. Notably, Kuhn et al.(2023)
have proposed semantic entropy as a new metric
for quantifying uncertainty in LLMs, which capi-
talizes on the semantic equivalence across varying
expressions. Subsequent studies (Lin et al., 2023;
Xiong et al., 2024) have further advanced these
approaches, crafting sophisticated methods that
enhance black-box UQ through strategic prompt-
ing, sampling, and result aggregation. The most
recent work (Geng et al., 2024) comprehensively
surveys confidence estimation and uncertainty cal-
ibration methods for LLMs. It outlines several
real-world applications to build more responsible
AIs, including Hallucination detection and mitiga-
tion (Manakul et al., 2023; Varshney et al., 2023)
and constructing an efficient Retrieval Augmented
Generation (RAG) pipeline (Jiang et al., 2023).

3 Predictions in Electronic Health
Records

Clinical Tasks We present our findings across a
range of clinical tasks using the newly published
EHRSHOT dataset (Wornow et al., 2023a). The
EHRSHOT dataset encompasses structured, lon-
gitudinal clinical data extracted from the elec-
tronic health records of 6,739 patients at Stanford
Medicine, featuring over 40 million clinical events.
Within the framework of EHRSHOT, we explore
10 EHR prediction sub-tasks organized into three
distinct categories. (i) General Operational Out-
comes: including long length-of-stay: predicting
whether a patient’s length of stay will exceed seven
days, and ICU Transfer: predicting whether the
patient will be transferred to the ICU on the same
day of admission. (ii) Lab Test results: This task
involves predicting the normalcy of lab test results
immediately before their official release. The lab
tests covered Thrombocytopenia, Hyperkalemia,
Hypoglycemia, Hyponatremia, and Anemia. (iii)
New Diagnose Diseases: This involves forecasting
whether the patient will be first diagnosed with spe-
cific diseases within the next year from the date of
discharge. Diseases tracked include Hypertension,
Hyperlipidemia, and Acute Myocardial Infarction.

EHR Tasks Formulation The EHR prediction
tasks can be formulated as follows: consider pa-
tient p’s data represented as {Cp, Yp}. Here, med-
ical sequence Cp={(c1, t1), (c2, t2), ..., (cn, tn)}.
denotes the complete clinical events for pa-

7528



Figure 1: EHR predictions with medical codes sequences. Left: structured, longitudinal medical tokens, each code
is in OMOP format (Reich et al., 2024) and associated with a specific time point. We translate these codes into
natural languages that describe a patient’s timeline. Right: The interpreted EHR data can be used for severing
various clinical applications such as Long Length of Stay or Hypoglycemia predictions.

tient p arranged chronologically. Each code
ci represents a specific medical event at time
point ti in Observational Medical Outcomes Part-
nership (OMOP) format (Reich et al., 2024).
Yp={y1, y2, ...ym}m∈{t1,t2,...tn} is a set of la-
bels indicating the clinical outcomes. At time
tk, our objective is to predict label ytk , with
a truncated medical sequence Here, we denote
Ctk−1

={(c1, t1), (c2, t2), ...(ck−1, tk−1)}, which
consists of data up to, but not include time point tk.

4 Modeling Uncertainties for Clinical
Outcome Predictions in EHR

We consider two settings for uncertainty model-
ing: white-box and black-box. In white-box set-
tings, the access to model’s parameters and out-
put probabilities/logits is available. We employ
four widely recognized metrics: Brier Score (Ru-
fibach, 2010), Expected Calibration Error (Naeini
et al., 2015), Adaptive Expected Calibration Er-
ror (Nixon et al., 2019), and Negative Log Like-
lihood. We also employ two additional methods,
Deep Ensemble and Monte Carlo Dropout, to re-
duce the model uncertainties for clinical predic-
tions. We detail the formulation of the uncertainty
metrics and implementing uncertainty methods
in section 4.1. Reducing the model uncertainties
can enhance the model’s trustworthiness, especially
in clinical decision-making. In the black-box set-
ting, where the intrinsic model parameters are un-
available, one approach to quantify uncertainty is
calculating entropy-based metrics on a repeatedly
generated answer set. Then, these metrics are used
to predict whether to rely on the model’s response

or not (Filos et al., 2019; Kuhn et al., 2023). We
utilize uncertainty metrics to quantify the trustwor-
thiness of the proprietary model in EHR tasks.

4.1 Modeling and Reducing Uncertainties in
White-box Settings

Clinical Prediction with BERT-Based Language
Models In our white box setting for EHR pre-
dictions, we first follow the settings of (Steinberg
et al., 2021; Wornow et al., 2023a) to generate se-
quence embeddings {ei}k−1

i=1 from medical code se-
quence Ctk−1

using the CLMBR-T-base, a founda-
tion model pre-trained on 2.57 million deidentified
structured patient records from the private Stanford
HealthCare Data Warehouse. The CLMBR-T-base
model is pre-trained autoregressively to predict
the subsequent medical code based on their prior
medical sequence. The published CLMBR-T-base
model includes encoders that generate represen-
tations of a patient’s medical tokens. It contains
embedding layers that first map up to 65536 unique
medical tokens into a hidden dimension space of
768, then followed by a 12 stacked transformer
layer with a fixed context window of 496 tokens.
Multiple token representations could exist at the
time point tk−1; however, the last possible represen-
tation ek−1 is used for the downstream EHR predic-
tions. According to (Wornow et al., 2023a), this se-
lection strategy not only maximizes the utilization
of available information but also helps prevent data
leakage by ensuring that future data do not influ-
ence prediction. We subsequently trained decoders
using the embedding ek−1 for each downstream
EHR prediction task as introduced in section 3. We
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then assess model uncertainties and implement the
uncertainty methods across decoders.

Uncertainty Metrics We adopt Brier Score, Ex-
pected Calibration Error, Adaptive Expected Cal-
ibration Error, and Negative Log Likelihood to
quantify and assess the model uncertainties in EHR
prediction tasks within our white-box settings. We
explain the formulations for these metrics: Brier
Score (BS) is formulated to evaluate the accuracy
of model’s probabilistic predictions:

BS =
1

N

N∑

i=1

(yi − p̂i)
2. (1)

where yi represents the actual label and p̂i is the
predicted probability of a clinical outcome for each
case i. A lower Brier score reflects the higher confi-
dence of the model in its classification predictions.

Expected Calibration Error/Adaptive Expected
Calibration Error (ECE/aECE) is used to measure
the calibration error of the classification models:

ECE =
M∑

m=1

|Bm|
N

|acc(Bm)− conf(Bm)| . (2)

which calculate the difference between predicted
probabilities and actual outcomes in M bins, which
are formed by dividing predicted probabilities into
a series of intervals. Here, Bm are prediction bins
and acc(Bm) and conf(Bm) represent the preci-
sion and the average predicted probability within
each bin, respectively. ECE uses fixed-width bins,
while aECE adjusts the bin widths based on the
data distribution. A lower ECE/aECE suggests that
a probabilistic model is well-calibrated, indicat-
ing a close correspondence between the predicted
probabilities and the actual clinical outcomes.

Negative log-likelihood (NLL) measures the
probability of the actual data given the model pa-
rameters, and representation set xi:

NLL = −
N∑

i=1

log(p(yi|xi)). (3)

A lower Negative log-likelihood indicates that the
model assigns high probabilities to the correct out-
comes, implying high confidence in its predictions.
aECE/ECE directly measures the model calibration
error but does not penalize the model for being un-
confident. The BS measures the confidence level
for the prediction, and NLL significantly penal-
izes the model for being overconfident about false
predictions. Integrating the above three metrics
measures the overall model uncertainties.

Uncertainty Methods We implement two uncer-
tainty methods and propose one framework to quan-
tify and reduce model uncertainty in the decoders
used for clinical predictions. We introduce two
uncertainty methods: Monte Carlo Dropout (Gal
and Ghahramani, 2016) and Deep Ensemble (Lak-
shminarayanan et al., 2017; Rahaman et al., 2021).
Monte Carlo Dropout applies dropout not only dur-
ing the training of neural networks but also dur-
ing inference stages. This approach approximates
Bayesian inference in deep Gaussian processes and
allows the model to generate a distribution of pre-
dictions. Thus, it quantifies the uncertainty by al-
lowing the network to express its confidence level
through the variability of its predictions under dif-
ferent neuron configurations. Deep ensembles are
created by training multiple versions of the same
decoders, with variations only in random seeds and
hyperparameters. The predictions of individual
models are aggregated to produce a final prediction.
This approach mitigates the inherent bias on the
models, thereby reducing the overall uncertainty of
the model. In addition, we propose a simple yet
effective multitasking framework to predict multi-
ple clinical tasks within the same category (Gen-
eral Operation Outcome, Lab Test Results, and
New Diagnose Diseases) presented simultaneously
in section 3. For simplicity, we formulate the multi-
tasking framework as follows:

{yhi
tk−1

}hi∈H = f(ek−1 ⊕ ehi
). (4)

Here, ek−1 is the representation embeddings for
the clinical sequences Ctk−1

, ehi
denotes the task-

specific embeddings that are combined with ek−1

to distinguish among different clinical subtasks, hi
refers to a specific clinical task, and H represents
the clinical tasks within the same category.

We present our results table 3. Observing Deep
Ensemble’s multitasking approach reduces uncer-
tainties with white-box models by a large margin
in EHR tasks. We are compelled to ask:
Can uncertainty reduction apply to proprietary LLMs?

This propels us to investigate specialized uncer-
tainty quantification for the proprietary black-box
models like GPTs in EHR prediction tasks.

4.2 Transferring to Black-box Setting
Clinical Prediction with GPTs In our black-box
settings where the model parameters are opaque,
we transform the patient’s medical code sequence
Ctk−1

into free-form languages by generating text
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descriptions for each medical token. This pro-
cess leverages information from the Athena On-
tology Database (Hripcsak et al., 2015; Reich et al.,
2024), where the concept of each medical code
is clearly defined, categorized and described. We
then adapted the descriptions by retaining only the
most recent medical code details to fit within the
input context length constraints of the GPT mod-
els. We use Stk−1

to denote the text descriptions of
the medical sequences of a patient. We construct
prompt Ptk−1

={G,Stk−1
,Ω, O} based on Stk−1

,
where G denotes general prompts which specify
the role and scenario LLM acts, Ω specifies the
clinical tasks to be performed, O defines the output
formats of the GPT’s response. We instruct the
LLM to repeatedly generate a set of n responses
R={r1, r2, ..., rn} from prompt Ptk−1

. We then
conduct post-hoc uncertainty quantification over
the response set R. In the following sections, we
detail the methods for quantifying and reducing the
uncertainties in white-box LM settings and propri-
etary LLM settings for EHR prediction tasks.

Uncertainty Quantification for EHR tasks with
GPTs We introduce the uncertainty quantifica-
tion method and develop the corresponding metrics
explicitly designed for proprietary large-language
models, which are applied in the context of clin-
ical prediction tasks. Similarly to the existing
pipeline on proprietary LLM uncertainty quantifi-
cation (Kuhn et al., 2023; Liu et al., 2024), we
characterize black-box uncertainty quantification
methods as post hoc approaches, required by the
limited access to internal model parameters.

1. For a clinical prediction task on an EHR for
the patient p, we generate a patient text de-
scription Sp from its medical sequence Cp.

2. Construct the prompt P={G,Sp,Ω, O} by in-
tegrating the text description with the role and
scenario prompt G, the clinical task prompt
Ω, and the output format prompt O.

3. For clinical tasks with a specific prediction
time tk, we customized the prompt P accord-
ingly: first, all clinical events after the time
point tk are excluded to prevent data leakage;
second, we limit the number of clinical events
included to fit within the context length con-
straints of the Large Language Model. We
denote the tailored clinical events descriptions
as Stk−1

and the customized prompt as Ptk−1

User: What is code "CVX/20?"
ChatGPT4:
Answer 1: The term "CVX/20" doesn’t refer to a widely
recognized standard or concept ...
Answer 2: The code "CVX/20" typically refers to a
vaccine code in the context of medical records ...
However, I’d need more context to provide a specific
answer about this code ...

User: What is: "diphtheria, tetanus toxoids and acellular
pertussis vaccine," can you briefly explain?
ChatGPT4:
Answer: The "Diphtheria, Tetanus Toxoids and Acellular
Pertussis Vaccine," commonly abbreviated as DTaP, is a
combination vaccine that protects against three serious
diseases caused by bacteria ... This vaccine is crucial for
preventing these diseases in children, who are particularly
susceptible to serious complications from them ...

Table 1: A card of a sample dialogue between a user and
ChatGPT4 regarding medical codes and their descrip-
tions: GPTs have a limited understanding of OMOP
medical tokens. The first prompt is a direct ask for the
OMOP code. The second prompt converts the OMOP
codes into clinical descriptions using the Athena On-
tology Database. We observe that GPT does not fully
understand the medical codes used in various formats
across hospitals and organizations (Soroush et al., 2024),
while it can relatively grasp the clinical meanings de-
noted by these tokens.

4. Instruct Large Langugage Models to gener-
ate n responses for the prompt Ptk−1

. Conse-
quently, we obtain a set of responses Rtk−1

=
{r1tk−1

, r2tk−1
, ..., rntk−1

}. Here, ritk−1
repre-

sents the outputs of ith response.

5. Calculate the uncertainty score U from the
response repeatedly generated Rtk−1

.

In Step 1, we expand each medical token with
the corresponding time point (ci, ti)∈Cp into free-
formed languages that describe medical events at
time ti. We describe and demonstrate the signifi-
cance of this conversion in section 4.2.

For steps 2 and 3, we constructed our prompts
into four parts: (i) A role-playing prompt G with
task-specific instructions; here, we instruct GPT
to act as experienced doctors capable of providing
clinical insights. (ii) Clinical descriptions Sp that
indicate the patient p’s medical events. We begin
by extracting the patient’s demographic informa-
tion and calculating the patient’s age at the pre-
diction time from Cp using the OMOP Common
Data Model (Hripcsak et al., 2016; Reich et al.,
2024). (iii) Questions and Clinical Tasks Ω to be
answered. We develop task-specific prompts for
each of the ten clinical tasks within the EHRSHOT
dataset. (iv) Output format prompt O that requests
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GPT to provide restricted responses for clinical
tasks (E.g., "Yes, the patient will be transferred to
ICU." or "No." otherwise. For predicting whether
the patient will be transferred to ICU on the day on
admission). We present section 4.2 to demonstrate
our prompt design for guiding GPTs in EHR tasks.
Due to the lengthy context of clinical descriptions,
we repeat our task questions at both the beginning
and ending of a prompt, utilizing the Needle-In-A-
Haystack (NIAH) method with GPT models. For
steps 4 and 5, given a set of repeatedly generated
responses: Rtk−1

= {r1tk−1
, r2tk−1

, ..., rntk−1
}. We

adopt the methodology outlined in (Kuhn et al.,
2023) to compute Class Entropy U(Rtk−1

) as Un-
certainty Score. U(Rtk−1

)’s formula presented as:

U(Rtk−1
) = −

∑

ai∈A
P (ai) logP (ai), (5)

where ai∈A is the clinical outcome label predicted
by GPTs, the probability P (ai) of each clinical
class i is determined by the frequency of occur-
rences of class ai within the answer class set A.
Following (Kuhn et al., 2023; Lin et al., 2023), we
construct our Uncertainty Metric using the Uncer-
tainty Score U(Rtk−1

) to predict whether LLM can
correctly generate an answer. We employ the area
under the receiver operating characteristic curve
(AUROC) as the metric for assessing uncertainty.

4.3 Reducing Uncertainties for proprietary
black-box models

In this section, we employ two approaches to re-
duce the uncertainty in EHR predictions generated
by GPTs. Our first approach involves ensembling
clinical predictions from multiple GPT models. For
a specific prompt generated from a patient’s se-
quence of medical codes, we repeatedly generate
response sets from GPT-3.5-Turbo and GPT-4. We
then combine two sets of GPT responses and com-
pute the uncertainty score U . This idea is drawn
from the proven efficacy of ensemble methods in
reducing uncertainty for white-box deep learning
models, as substantiated by key studies (Lakshmi-
narayanan et al., 2017; Rahaman et al., 2021; Abe
et al., 2023) and our empirical findings in table 3
with clinical EHR tasks. Similarly, based on our
empirical findings from section 5.3, where predict-
ing multiple clinical tasks within the same category
can marginally reduce the uncertainty of the white
box model. We extend this methodology to large
language models of the GPT style. Our second

Role: Assuming you are an experienced doctor. Based on
the descriptions of the patient’s age, demographics, and
medical events provided, Use your knowledge and
reasoning to predict whether {Tasks}.
Chain of thoughts:
1. Review Patient Profile: Analyzing age, sex, and
medical history ...
2. Evaluate Current Symptoms: Identify vital signs
outside the normal range ...
......

Patient age and demographic information:
The patient was 36 years old at the discharge time. The
patient has the following demographic information: ...
Medical Events:
On June 12, 2014:
One clinical drug event, "Oxycodone hydrochloride 5 MG
Oral Tablet" was recorded.
One clinical Drug event, "Acetaminophen 10 MG/ML
Injectable Solution" recorded.
On June 13, 2014:
One clinical drug event, "Oxycodone hydrochloride 5 MG
Oral Tablet" was recorded.
Four measurement events, "Systolic blood pressure" was
recorded with values: 131.0, 127.0, 133.0, 143.0.
......

Tasks: {Tasks}.

Output format:
Please answer with "Yes" or "No".

Table 2: An example card of prompts for EHR tasks,
structured into four parts. The first section comprises
a general prompt incorporating role-playing and chain-
of-thought reasoning using GPTs. The second section
comprises clinical descriptions in natural languages con-
verted from medical codes. The third and fourth sections
describe the clinical task and output restrictions.

approach involves instructing GPT models to gen-
erate predictions for several EHR tasks within the
same clinical task category in a single-generation
process. Similarly to eq. (4), we formulate the
multi-task framework for GPTs as follows:

{yhi}hi∈H = LLM({G,S,Ω, O}). (6)

Here, hi refers to a specific clinical task, and H
represents the set of all clinical tasks within the
same category in section 3. {G,S,Ω, O} is our
constructed prompt for the clinical tasks S. {yhi}
represents the ensemble of EHR predictions we
prompt the LLM to generate simultaneously.

5 Experiment

5.1 Data Setup
Following (Wornow et al., 2023a), we use the
EHRSHOT benchmark to set up our experiments
on structured longitudinal EHR datasets. We se-
lected ten clinical tasks to evaluate the model un-
certainty of the white-box model in clinical pre-
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Single-tasking Baseline Single-tasking Deep Ensemble Single-tasking MC dropout

EHR Task / U.Q Metric Brier ↓ NLL ↓ ECE ↓ aECE ↓ Brier ↓ NLL ↓ ECE ↓ aECE ↓ Brier ↓ NLL ↓ ECE ↓ aECE ↓
Long Length of Stay 0.5645 1.5253 0.2575 0.2575 0.4942 0.8746 0.1661 0.1696 0.5416 1.3656 0.2232 0.2265
ICU Transfer 0.1388 0.4266 0.0530 0.0527 0.1013 0.3291 0.0425 0.0411 0.1108 0.4432 0.0500 0.0424

Thrombocytopenia 0.5002 0.6935 0.4861 0.4857 0.0395 0.1364 0.0183 0.0219 0.5004 0.6938 0.4858 0.4849
Hyperkalemia 0.5006 0.6939 0.4809 0.4796 0.0496 0.1772 0.0252 0.0272 0.5002 0.6933 0.4806 0.4801
Hypoglycemia 0.6345 1.4092 0.2727 0.2706 0.5160 0.7986 0.1357 0.1357 0.6178 1.1984 0.2399 0.2400
Hyponatremia 0.7079 1.6924 0.3162 0.3162 0.5613 0.9057 0.1748 0.1748 0.6701 1.3312 0.2745 0.2745
Anemia 0.7212 1.7921 0.3213 0.3211 0.5888 0.9668 0.1986 0.1986 0.6673 1.4020 0.2750 0.2737

Hypertension 0.2763 0.8392 0.1149 0.1134 0.2587 0.5458 0.0905 0.0893 0.2756 0.7987 0.1181 0.1101
Hyperlipidemia 0.2495 0.8229 0.1157 0.1111 0.2187 0.5106 0.0825 0.0810 0.2453 0.7004 0.1051 0.0967
Acute MI 0.0769 0.2480 0.0315 0.0282 0.0690 0.1676 0.0302 0.0226 0.0900 0.2308 0.0339 0.0268

Multi-tasking Baseline Multi-tasking Ensemble Multi-tasking MC dropout

EHR Task / U.Q Metric Brier ↓ NLL ↓ ECE ↓ aECE ↓ Brier ↓ NLL ↓ ECE ↓ aECE ↓ Brier ↓ NLL ↓ ECE ↓ aECE ↓
Long Length of Stay 0.6215 1.5723 0.2798 0.2789 0.5257 0.9421 0.1890 0.1896 0.5703 1.3140 0.2381 0.2381
ICU Transfer 0.0993 0.7288 0.0477 0.0466 0.0922 0.3905 0.0399 0.0382 0.0969 0.6399 0.0455 0.0418

Thrombocytopenia 0.0344 0.1532 0.0199 0.0227 0.0301 0.0947 0.0108 0.0203 0.0369 0.1293 0.0231 0.0300
Hyperkalemia 0.0459 0.1692 0.0246 0.0284 0.0408 0.1197 0.0155 0.0234 0.0474 0.1490 0.0272 0.0325
Hypoglycemia 0.5001 0.6945 0.2230 0.2208 0.5020 0.6972 0.0787 0.0882 0.4959 0.6929 0.2119 0.2067
Hyponatremia 0.5649 1.1548 0.2236 0.2225 0.5047 0.8144 0.1702 0.1701 0.5242 0.9476 0.1767 0.1757
Anemia 0.6797 1.3099 0.2856 0.2824 0.5605 0.8118 0.1586 0.1586 0.6386 1.0853 0.2379 0.2366

Hypertension 0.2778 0.9824 0.1213 0.1205 0.2549 0.5810 0.0903 0.0793 0.2601 0.8215 0.1075 0.1019
Hyperlipidemia 0.2503 1.0269 0.1151 0.1147 0.2410 0.6209 0.0936 0.0927 0.2283 0.9220 0.1023 0.0944
Acute MI 0.0636 0.3306 0.0299 0.0258 0.0615 0.1892 0.0276 0.0252 0.0675 0.3405 0.0292 0.0289

Table 3: Uncertainty Metrics for clinical predictions with BERT-Based Language Models on white-box settings. Top:
Uncertainty metrics for single task settings. Ten decoders are trained for each clinical baseline task. Bottom: Uncertainty
metrics for multi-task settings. Three decoders are trained for each baseline clinical task category. left: Baseline, Middle: Deep
Ensembles, Right: MC Dropout. We adopted single-tasking without ensembles or MC dropouts Top left as the baseline. We
compare the baseline with the other five methods, including a combination of the multi-tasking setting and the Ensembling and
MC dropout methods. We highlight the chunks with the lowest uncertainty metrics.

dictions. In the data preparation phase, we tailor
the EHRSHOT dataset for each sub-task within a
given task category. This approach ensures that, for
each prediction category, every patient’s medical
sequence is associated with multiple corresponding
labels at the same prediction time point. To assess
the uncertainty of proprietary GPTs, we stochasti-
cally choose 100 medical sequences from each cat-
egory of clinical tasks in the EHRSHOT database.
The selection method ensures that each dataset in-
cludes a sufficient number of positive labels. We
present our dataset information in Table 4.

5.2 White-box Model Results

This section presents the Uncertainty Quantifica-
tion findings of using BERT-based language mod-
els for EHR tasks. We first generate sequential
embeddings from structured, sequential medical
codes using CLMBR-T-base. We then follow the
setting of (Wornow et al., 2023a) to extract the med-
ical codes’ representation at prediction time point
for downstream tasks. The prediction time point
for General Operation Outcome tasks is at 11:59
pm on the day of admission and visits that last less
than one day. For lab testing tasks, the prediction
time point corresponds to one minute before the
latest lab results are available. For New Diagno-
sis tasks, the prediction time is set to one minute

White-box Data #Patient #Events # Train/Val/Test

Operational Outcome 3,617 6,491 2,402 / 2,052 / 2,037
Lab Tests 5,691 152,331 59,983 / 44,928 / 47,420
New Diagnose 1,916 2,794 959 / 956 / 879

Black-box Data #Patient # Avg. Tokens # Train/Val/Test

Operational Outcome 89 4,609 - / - / 100
Lab Tests 100 3,907 - / - / 100
New Diagnose 99 4,417 - / - / 100

Table 4: Data Statistics for both while-box and black-
box settings. Operational Outcome, include Long
Length of Stay and ICU Transfer. Lab Tests include
Thrombocytopenia, Hyperkalemia, Hypoglycemia, Hy-
ponatremia and Anemia. New Diagnose include Hyper-
tension, Hyperlipidemia, and Acute MI. Top: Clinical
medical codes in structured, longitudinal format for
assessing white-box model uncertainties. Bottom: Nat-
ural languages converted from medical sequence, for
assessing uncertainties of proprietary GPTs.

before midnight on the day of discharge. We then
trained a 2-layer Neural Network as decoders on
the extracted representation embeddings for down-
stream tasks and reported the uncertainty metrics in
the top left section of table 3. We then implement
Deep Ensemble and MC Dropout to reduce model
uncertainties, results presented in the top middle
and top right sections of table 3, respectively. For
Deep Ensemble, we set the number of ensembling
models to 5. For MC Dropout, we set the dropout
ratio to 0.5. Second, we implement a multi-tasking
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approach such that a decoder can give predictions
for clinical tasks within the same category. We
begin by generating embedding for each task and
combining it with the representations. Again, we
implement the Deep Ensembles and MC Dropout
for the multi-tasking pipeline with the same hy-
perparameter. We present the multi-tasking uncer-
tainty metrics for the at the bottom of Table 3.
Observations For both single-task settings and
multi-task settings, Deep Ensemble consistently
shows lower uncertainty metrics (measured by
Brier score, NLL, ECE, and aECE) across most
EHR tasks compared to the baseline. For new diag-
nosis tasks like "Thrombocytopenia" and "Hyper-
kalemia," Deep Ensemble improves considerably
upon the baseline. The MC Dropout method also
improves over the baseline but is generally less
effective than the Deep Ensemble in reducing un-
certainty. This indicates the effectiveness of the
ensembling method in reducing the uncertainty of
the model for clinical predictions, which prompted
us to propose our initial methods to reduce the un-
certainties of proprietary GPTs in section 4.3. In
addition, the multi-task Deep Ensemble configura-
tion consistently shows lower uncertainty metrics
than the single-task configuration. Similar to Deep
Ensemble, MC Dropout benefits from a multi-task
setting, albeit with smaller margins of improve-
ment. This indicates the benefits of our proposed
multi-tasking method in EHR predictions, where
tasks are within the same clinical category.

5.3 Black-box GPT Results
We conduct evaluations of our black-box uncer-
tainty quantification methods using the specifically
tailored EHRSHOT dataset, as detailed in table 4.
For each task category, we began by filtering the
EHRSHOT dataset based on prediction time points;
we ensured that each instance of converted med-
ical language had corresponding ground truth la-
bels for all tasks within the same category. We
then constructed the test set for each task category
by stochastically sampling 100 entries from the
tailored EHRSHOT dataset. Our sampling algo-
rithm was designed to terminate once the data for
all subtasks contained at least 12 positive labels.
For evaluations, we employ GPT-4 and GPT-3.5
Turbo to generate responses. We repeatedly gen-
erate five responses for each constructed prompt.
We then calculate the AUC score by cleaning the
outputs and matching the generated answers with
the ground-truth clinical outcomes. We then calcu-

late the uncertainty metric U.Q. in eq. (5) and use
it to predict whether the response from GPTs is cor-
rect. Similar to the multitasking method described
in section 5.2, we reformulated our prompts to re-
quest predictions for multiple clinical tasks within
the same category. Furthermore, akin to the Deep
Ensemble approach in the white-box setting, we
aggregate the responses from multiple GPTs and
calculate the AUCs and the uncertainty metrics.
Our results are presented in Table 5.
Observations In evaluating model performances,
GPTs show limited performance in predicting clin-
ical outcomes from free-formed languages. In eval-
uation uncertainties, for GPT-3.5-Turbo and GPT-4,
the ensembling methods score higher in UQ metrics
in almost every case listed than in the single-model
setting. In addition, GPT-4 ensembles outperform
single-model significantly in UQ metrics. This
indicates that ensembling models perform signif-
icantly better in quantifying thus reducing uncer-
tainty across all clinical prediction tasks than their
single counterparts. We observe minimal or no im-
provements in analyzing the UQ metric between
single-tasking and multi-tasking settings within in-
dividual GPT models. Tasks such as Hypokalemia
and Hyponatremia exhibit similar U.Q. scores re-
gardless of whether they are approached through
single or multi-task configurations within the same
models. However, when multi-tasking is integrated
with ensemble methods, we observe a marginal im-
provement in U.Q metrics. This indicates that com-
bining multi-tasking approaches within ensemble
frameworks substantially contributes to more reli-
able assessments of whether to trust LLM’s output,
thus reduce the uncertainties for EHR predictions.

6 Conclusion
In this work, we explored the quantification and
reduction of uncertainty in clinical outcome predic-
tions with EHR by harnessing white-box language
models and black-box large language models. We
focused on two main methodologies to mitigate un-
certainty: ensemble methods, which combine pre-
dictions from multiple models, and multi-tasking,
where models simultaneously predict multiple clin-
ical outcomes. By transferring and adapting these
methodologies originally developed for LMs to the
realm of LLMs, we demonstrated reductions in un-
certainties across white-box and black-box models.
Limitations Our uncertainty quantification meth-
ods were validated using clinical prediction tasks
containing longitudinal EHRs. While the results
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GPT-3.5 Single GPT-3.5 Multi GPT-4 Single GPT-4 Multi Ensemble Single Ensemble Multi

Auc.↑ U.Q.↑ Auc.↑ U.Q.↑ Auc.↑ U.Q.↑ Auc.↑ U.Q.↑ Auc.↑ U.Q.↑ Auc.↑ U.Q.↑
Long Length of Stay 0.5430 0.4570 0.6153 0.4265 0.3614 0.4992 0.5125 0.4875 0.5461 0.8385 0.6166 0.7237
ICU Transfer 0.5047 0.5331 0.6853 0.3596 0.5938 0.5140 0.7083 0.4888 0.5538 0.6455 0.7552 0.4831

Thrombocytopenia 0.5327 0.4460 0.3745 0.5464 0.2917 0.5548 0.2062 0.5246 0.3235 0.6382 0.2973 0.5594
Hyperkalemia 0.4795 0.4821 0.3673 0.5988 0.2508 0.5094 0.4020 0.5125 0.2553 0.8470 0.3446 0.5948
Hypoglycemia 0.5404 0.4410 0.5416 0.4352 0.7131 0.4388 0.6688 0.4481 0.7052 0.5274 0.6386 0.5723
Hyponatremia 0.4593 0.5220 0.3189 0.6303 0.2652 0.5347 0.2844 0.4939 0.2745 0.6186 0.2437 0.6786
Anemia 0.4433 0.6100 0.2739 0.7254 0.1962 0.6877 0.2173 0.6044 0.2037 0.7722 0.2069 0.6825

Hypertension 0.4762 0.5238 0.5758 0.4707 0.7136 0.4488 0.7136 0.4222 0.6920 0.5606 0.7042 0.6804
Hyperlipidemia 0.5559 0.4203 0.5478 0.5032 0.6289 0.4077 0.6845 0.4127 0.7109 0.4014 0.6736 0.7338
Acute MI 0.5455 0.4545 0.4929 0.6379 0.7317 0.3394 0.6149 0.3436 0.6403 0.6053 0.6074 0.7335

Table 5: Uncertainty Metrics for Clinical Predictions with Proprietary GPTs. Single refers to the setting where answers are
generated for one task at a time. Multi refers to the setting where multiple answers are generated simultaneously for tasks within
the same clinical category. Ensemble refers to the approach that combines responses from multiple proprietary GPTs.

were promising, the generalizability of these meth-
ods to other distinct domains with limited data has
not yet been tested. Future work may explore data
from different cultures and the adaptation of these
methods for broader applications beyond the cur-
rent scope.
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A General performance of the CLMBR-T

We provide both the AUR score and the Accuracy
score using the CLMBR-T embedding on the origi-
nal EHRSHOT dataset (Wornow et al., 2023a) in ta-
ble 6. We observe that though our multi-tasking
framework can marginally reduce the uncertainty,
it remains limited in improving the LM’s perfor-
mance. Still, we want to increase the trustworthi-
ness of using (large) language models in clinical
tasks. This finding inspires us to explore similar
uncertainty quantification frameworks within the
context of proprietary black-box models like GPTs.

Single-tasking Multi-tasking

Acc. Auc. Acc. Auc.

Long Length of Stay 77.130 68.604 76.856 69.723
ICU Transfer 94.845 60.740 95.483 60.510

Thrombocytopenia 72.468 71.685 73.575 71.833
Hyperkalemia 95.010 55.972 95.042 55.204
Hypoglycemia 97.376 51.594 97.345 52.191
Hyponatremia 68.319 62.453 66.446 62.560
Anemia 86.949 84.706 86.965 82.662

Hypertension 83.148 55.927 82.114 56.411
Hyperlipidemia 82.916 56.579 83.219 56.259
Acute MI 89.939 55.319 90.503 54.655

Table 6: Performance metrics for CLMBR-T-base in single-
task and multi-task settings. Acc. stands for accuracy score,
and Auc. stands for Area Under the ROC Curve.

B Ablation study

We present the table for illustrations on the white-
box model for each single clinical task. Here, we
report the Brier score, NLL, ECE, and aECE met-
rics when the number of model m spans in a range
of 1, 5, 10, and 50. Firstly, as the ensemble size
increases from 1 to 10, we observe an overall de-
crease in the uncertainty scores. This suggests that
using more models in the ensemble generally leads
to better calibration and lower uncertainty in pre-
dictions. However, an interesting reversal of this
trend is observed when the ensemble size becomes
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Metric Brier (m = 1) NLL (m = 1) ECE (m = 1) aECE (m = 1) Brier (m = 5) NLL (m = 5) ECE (m = 5) aECE (m = 5)

Long Length of Stay 0.5645 1.5253 0.2575 0.2575 0.4942 0.8746 0.1661 0.1696
ICU Transfer 0.1388 0.4266 0.053 0.0527 0.1013 0.3291 0.0425 0.0411

Thrombocytopenia 0.7212 1.7921 0.3213 0.3211 0.5888 0.9668 0.1986 0.1986
Hyperkalemia 0.5006 0.6939 0.4809 0.4796 0.0496 0.1772 0.0252 0.0272
Hypoglycemia 0.5002 0.6935 0.4861 0.4857 0.0395 0.1364 0.0183 0.0219
Hyponatremia 0.6345 1.4092 0.2727 0.2706 0.516 0.7986 0.1357 0.1357
Anemia 0.7079 1.6924 0.3162 0.3162 0.5613 0.9057 0.1748 0.1748

Hypertension 0.2763 0.8392 0.1149 0.1134 0.2587 0.5458 0.0905 0.0893
Hyperlipidemia 0.2495 0.8229 0.1157 0.1111 0.2187 0.5106 0.0825 0.081
Acute MI 0.0769 0.248 0.0315 0.0282 0.069 0.1676 0.0302 0.0226

Metric Brier (m = 10) NLL (m = 10) ECE (m = 10) aECE (m = 10) Brier (m = 50) NLL (m = 50) ECE (m = 50) aECE (m = 50)

Long Length of Stay 0.4702 0.7053 0.1089 0.1145 0.4777 0.6706 0.0458 0.0577
ICU Transfer 0.1041 0.2827 0.0407 0.0395 0.1849 0.3296 0.1111 0.1117

Thrombocytopenia 0.5543 0.868 0.1728 0.1728 0.5037 0.7025 0.0737 0.0742
Hyperkalemia 0.0444 0.1716 0.0208 0.0227 0.0482 0.1322 0.0218 0.0283
Hypoglycemia 0.0332 0.1249 0.0149 0.0183 0.0363 0.1032 0.0156 0.0243
Hyponatremia 0.5057 0.7415 0.1145 0.1145 0.4923 0.6863 0.0388 0.0387
Anemia 0.5391 0.8062 0.1504 0.1504 0.5203 0.7187 0.0951 0.0951

Hypertension 0.2708 0.4673 0.072 0.079 0.3985 0.5891 0.1921 0.1921
Hyperlipidemia 0.2243 0.4262 0.0664 0.0643 0.3383 0.5231 0.1725 0.1725
Acute MI 0.0715 0.1572 0.0182 0.0254 0.1658 0.3215 0.2057 0.2057

Table 7: Metrics for ensembling methods across a various number of ensembles decoding models. Each column
shows metrics for different model ensemble sizes (m = 1, 5, 10, 50).

very large (m = 50). At this point, the uncertainty
scores start to increase again. This could indicate
that while adding more models to the ensemble ini-
tially improves prediction reliability, there might be
a point of diminishing returns where the addition
of too many models leads to increased variability
or overfitting to specific aspects of the training data,
thereby increasing overall uncertainty.

C Implementation Challenges

We separately discuss the implementation chal-
lenges for white-box LMs and black-box LLMs.
For the Bert-based model used for clinical predic-
tions, we believe a general challenge (or uncer-
tainty) is to generate the embeddings for a sequence
of medical tokens. We adopted CLMBR-T, which
pre-trained on 2.57 million deidentified patients’
medical token sequences, for the clinical tasks. Un-
like the general BERT-based model to perform clas-
sification tasks, the vector output corresponding to
the [CLS] token is usually used to embed a sen-
tence. The medical code sequence does not contain
a [CLS] token. (Wornow et al., 2023a) proposes to
use the representation of the last medical tokens to
represent a sequence of medical codes. However,
there is currently no consensus on the best method
to represent sequences of medical codes. For pro-
prietary LMs such as GPT-4, we believe the biggest
real-world implementation challenge is the context
length of the medical event descriptions converted
from the medical code sequences. Since we cannot

access the internal model parameter, we can only
adopt post-hoc methods to analyze the repeatedly
generated set of answers; therefore, with limited
budgets, the number of experiments that can be
performed is limited.
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