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Abstract
The massive amounts of web-mined parallel
data often contain large amounts of noise. Se-
mantic misalignment, as the primary source
of the noise, poses a challenge for training ma-
chine translation systems. In this paper, we first
introduce a process for simulating misalign-
ment controlled by semantic similarity, which
closely resembles misaligned sentences in real-
world web-crawled corpora. Under our simu-
lated misalignment noise settings, we quanti-
tatively analyze its impact on machine trans-
lation and demonstrate the limited effective-
ness of widely used pre-filters for noise detec-
tion. This underscores the necessity of more
fine-grained ways to handle hard-to-detect mis-
alignment noise. By analyzing the reliability of
the model’s self-knowledge for distinguishing
misaligned and clean data at the token level,
we propose self-correction—an approach that
gradually increases trust in the model’s self-
knowledge to correct the supervision signal
during training. Comprehensive experiments
show that our method significantly improves
translation performance both in the presence
of simulated misalignment noise and when ap-
plied to real-world, noisy web-mined datasets,
across a range of translation tasks.

1 Introduction

The success of machine translation (MT) models
is mainly due to the availability of large amounts
of web-crawled parallel data. However, pub-
licly available web-mined parallel corpora such
as CCAligned (El-Kishky et al., 2020), WikiMatrix
(Schwenk and Douze, 2017) and ParaCrawl (Bañón
et al., 2020) are shown to be noisy (Kreutzer et al.,
2022; Ranathunga et al., 2024). The notable per-
formance drop in NMT quality when training with
injected synthetic noise (Khayrallah and Koehn,
2018) or fine-tuning with CCAligned (Lee et al.,
2022) indicates the importance of improving the
model’s robustness when training on a noisy cor-
pus.

Given a noisy training dataset, a common and
straightforward approach to mitigate the impact of
noisy data is to filter low-quality training samples
(Herold et al., 2022; Bane et al., 2022). However,
in practice, large amounts of misalignments still
exist in pre-filtered web-mined datasets (Kreutzer
et al., 2022). This is because real-world misaligned
sentences often share partial meanings, making
them appear as seemingly parallel, increasing the
difficulty for pre-filters to detect them. To quan-
titatively analyze such hard-to-detect real-world
misalignments, we design a process to simulate it
controlled by semantic similarity. Unlike earlier
works (Khayrallah and Koehn, 2018; Herold et al.,
2022; Li et al., 2024) that generate misaligned bi-
text by random shuffling—an approach that is both
unrealistic and easy to detect—our simulated mis-
alignments closely resemble real-world noise and
challenge widely-used pre-filters, such as LASER
(Artetxe and Schwenk, 2018) and COMET (Rei
et al., 2020).

Under our simulated noise settings, we evaluate
a type of approach that could potentially handle
misalignment noise: Data truncation (Kang and
Hashimoto, 2020; Li et al., 2024; Flores and Co-
han, 2024), which ignores losses at the token level
during training when there is a relatively large dis-
crepancy between the model’s prediction and the
ground truth. Although promising, we observe
that truncation methods are sensitive to varying
levels of misalignment noise. For example, for low-
resource corpora with a high misalignment rate,
truncation methods even degrade the translation
performance; see Section 5.3. We argue that the
noisy low-resource setting prevents the model from
acquiring sufficient correct knowledge, resulting in
an inaccurate removal of clean and useful ground-
truth data. Moreover, truncation methods start to
ignore potential data noise from an early training
time, which overlooks the increasing reliability of
the model’s prediction over time.
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To overcome these limitations, we propose an
approach called self-correction, which leverages
the model’s self-knowledge to correct noise dur-
ing training while maintaining supervision from
the ground truth to avoid discarding useful train-
ing information. To adapt to the model’s changing
reliability, we set a dynamic schedule to gradually
increase trust in its output. During the early stages
of training, we place greater trust in the reference
over the model’s predictions. As the model ac-
quires more knowledge, we progressively use the
model’s predictions to revise the ground truth.

We evaluate our self-correction method in both
simulated and real-world noisy settings. We
demonstrate that our method consistently outper-
forms baselines in both high- and low-resource
datasets with different levels of misalignment
noise. Moreover, we clearly show that gains are
mainly due to revising the misaligned samples
while maintaining the performance of clean par-
allel data. In the real-world noise setting, our self-
correction method effectively handles naturally oc-
curring noise in web-mined parallel datasets, e.g.,
ParaCrawl and CCAligned, achieving performance
gains of up to 2.1 BLEU points across seven trans-
lation tasks and outperforming alternative methods,
including pre-filters and truncation.

2 Background

2.1 The Noisy World

Web-crawled parallel corpora are the primary train-
ing data source for machine translation models.
However, parallel data crawled from public web-
sites lack quality guarantees and contain different
types of noise (Kreutzer et al., 2022), including
wrong language, non-linguistic content, and seman-
tic misalignment.

The primary source of noise in parallel web-
mined data is semantic misalignment (Khayral-
lah and Koehn, 2018; Kreutzer et al., 2022;
Ranathunga et al., 2024). For instance, Khayrallah
and Koehn (2018) analyzed the data quality of the
raw ParaCrawl corpus, showing 77% of the ana-
lyzed sentence pairs to contain noise with half of
them being misalignments. Wrong language and
non-linguistic contents only account for a small por-
tion and can be easily handled by filters, e.g., lan-
guage identification toolkits (Herold et al., 2022).
Kreutzer et al. (2022) extended the data quality
analysis to pre-filtered web-mined datasets, e.g.,
WikiMatrix, CCAligned, noting that more than

50% of data in both corpora are noisy with mis-
alignments being the primary reason.

Overall, previous studies demonstrate the preva-
lence of noisy training data in web-mined corpora
for machine translation and underscore the impor-
tance of noise-robust training, particularly in han-
dling misaligned data.

2.2 Learning in the Noisy World
2.2.1 Data Filter
Data filtering is a straightforward way to mitigate
the impact of noise from translation corpora. Two
types of filters are often used to ensure semantic
alignment in a sentence pair: (1) surface-level fil-
ters, e.g., removing sentence pairs that differ a lot in
source and target length; (2) semantic-level filters,
relying on quality estimation models to score each
sentence pair (Kepler et al., 2019; Rei et al., 2020;
Peter et al., 2023). Other works consider misalign-
ment detection as a ranking problem by training a
classifier on annotated synthetic misaligned data
(Briakou and Carpuat, 2020).

In this paper, we mainly consider semantic-level
filters for comparison, e.g., LASER (Artetxe and
Schwenk, 2018) and COMET (Rei et al., 2020),
due to their broad applicability and common usage.

2.2.2 Training Robustness
The primary limitation of data filters is that they
discard entire training samples before training. To
retain as much useful information as possible in
noisy samples, several methods focus on mitigat-
ing their negative impact during model training.
For instance, Wang et al. (2018) propose an on-
line data selection approach that utilizes extrinsic
trusted data to identify high-quality samples during
training. Similarly, Briakou and Carpuat (2021)
employ external semantic divergence tags to guide
the training of the translation model. However,
both of these approaches depend on external data
or factors.

In this paper, we consider an alternative line
of works, i.e., data truncation, which relies solely
on the model’s self-knowledge to ignore poten-
tial noise and further benefits the robustness of
model training (Kang and Hashimoto, 2020; Li
et al., 2024). For example, Kang and Hashimoto
(2020) use losses to estimate data quality, where
tokens with high loss are considered as noise and
will be ignored during training by setting their loss
to zero. Li et al. (2024) further propose Error Norm
Truncation, using the l2 norm between the model’s
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en Alcohol poisoning is the biggest cause of death.

nl Jacht is de belangriekste doodsoorzaak.
en:Hunting is the biggest cause of death.

en With Bravofly you can compare the flight prices
Santa Cruz De La Palma of over 400 of the most
famous airlines in the world.

de Bravofly findet für Sie sämtliche Billigflüge
Zürich - Santa Cruz De La Palma der besten
europäischen Billigfluggesellschaften.
en: Bravofly finds all the cheap flights Zurich
- Santa Cruz De La Palma from the best Euro-
pean low-cost airlines for you.

Table 1: Examples of misaligned sentences in the ParaCrawl
dataset. Bold represents the misaligned meanings. Italic text
represents the English translation.

prediction distribution and the one-hot ground-truth
token distribution to measure data quality. Their
method considers the model’s prediction distribu-
tion of non-target tokens, providing a more accurate
data quality measurement.

However, there are two limitations of truncation
methods: First, they ignore the potential noisy train-
ing tokens from a specific training iteration, which
overlooks the changes in the model’s reliability dur-
ing training. Second, ignoring can remove partially
clean training information, which can be harmful
for low-resource tasks. In this paper, we go a step
further and propose a self-correction method to
gradually increase the trust of model prediction dis-
tributions to correct rather than ignore the ground-
truth data during training. Details are introduced in
Section 4.

3 An Empirical Study of Misalignment

In this section, we investigate the primary source
of noise, i.e., semantic misalignment, in a simu-
lated setting. We first introduce a strategy to sim-
ulate realistic misalignment noise by controlling
semantic similarity (Section 3.1). Next, we show
the similarity of our simulated noise to real-world
misalignment in terms of adequacy and its hard-to-
detect nature (Section 3.2). Under our simulated
noisy setting, we evaluate model-based metrics to
distinguish data noise and highlight their potential
limitations (Section 3.3).

3.1 Simulating Misalignment Noise

To simulate misalignment, previous works (Bane
et al., 2022; Herold et al., 2022; Li et al., 2024)
randomly shuffle target sentences of a clean paral-
lel corpus. However, random shuffling noise can
be easily removed by pre-filters based on length

Misaligned Types Adequacy
Real-World 3.1
Misaligned-COMET 2.7
Misaligned-LASER 2.6
Misaligned-Random 1.2

Table 2: Adequacy (scale: 1–5) scores on simulated and
real-world misaligned sentences. The real-world misaligned
sentences are selected from ParaCrawl V7.0. Misaligned-
COMET/LASER and real-world misaligned targets convey
partial meanings with the sources.

or obvious semantic differences (Herold et al.,
2022), oversimplifying misalignments found in
real-world web-mined corpora. While Briakou and
Carpuat (2020) proposed generating fine-grained
misaligned targets by perturbing equivalent sam-
ples, e.g., deletion or replacement, their method
does not guarantee the fluency and authenticity of
the misaligned sentences.

To quantitatively analyze the impact of realistic
misalignment noise, we designed a process to simu-
late real-world misalignment controlled by seman-
tic similarity. The main idea is to select misaligned
target sentences from a large pool of clean candi-
dates that share partial semantics with the corre-
sponding source sentences, where we use semantic-
level models, e.g., LASER or COMET, to measure
semantic similarity across languages.

More specifically, given a source sentence and a
large pool of target sentences, we first narrow down
potential candidates based on the length differences
and the word overlap ratio with the true parallel
target to reduce computational costs. Then, the can-
didate with the highest semantic similarity score
is selected as the final synthetic misaligned target.
By this two-step process, we generate misalign-
ment efficiently while maintaining shared seman-
tics. Algorithm 1 provides a detailed description
of our strategy. Examples of misaligned sentences
generated using LASER (Misaligned-LASER) and
COMET (Misaligned-COMET) can be found in
Appendix 6.

3.2 Real-World Misalignment

3.2.1 Adequacy
To show the similarity of our simulated noise to
real-world misalignment, we conduct a human
evaluation of 200 simulated and real-world mis-
aligned sentences, rating their Adequacy (scale
1–5), which measures the meaning overlap be-
tween source and target. In Table 2, we show
that both real-world misalignment and Misaligned-
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Figure 1: The accuracy of various data filters in distinguish-
ing misaligned noise from clean parallel data. All four data
filters perform similarly to random guessing (indicated by
the black dashed line) on Misaligned-LASER/COMET.

LASER/COMET (see Section 3.1) have a relatively
high adequacy score, above 2.5, while random shuf-
fled misaligned sentences only have an adequacy
of 1.2. This ensures our simulated misalignment
contains only partial semantic overlaps as the real-
world misalignment. Details of the human evalua-
tion are in Appendix B.3.

3.2.2 Hard-to-Detect Nature
To show the hard-to-detect nature of our simulated
noise, we investigate the noise detection ability
of widely used pre-filters: COMET, LASER, Bi-
Cleaner, and XLM-R. The details for each filter
model are provided in Appendix A.

We calculate the noise detection accuracy of the
data filters on a mixed set with the same amounts
of clean and noisy data. For the clean data, we
randomly sample 2,000 clean sentence pairs from
the WMT2017 De→En test set. For Misaligned-
Random, we randomly shuffle the order of target
sentences in the sampled clean sentence pairs. For
Misaligned-COMET and Misaligned-LASER, we
use the same source sentences from the sampled
clean data. We select the misaligned targets from
another 200K target sentences in the training cor-
pus based on Algorithm 1. We score each sentence
pair based on the filter models and determine a true
ratio threshold based on the amounts of clean and
noisy sentence pairs, here 1:1. Sentence pairs with
scores below this threshold are classified as noisy.

Figure 1 shows the noise detection accuracy
of the data filters for different misaligned noise.
First, all data filters have a relatively high detec-
tion accuracy for Misaligned-Random, particularly
when using LASER, with an accuracy of 76%.
This challenges previous assumptions (Khayrallah
and Koehn, 2018; Li et al., 2024) of the impact

of misalignment noise on translation performance
since most of them can be pre-filtered. However,
our introduced noise, i.e., Misaligned-LASER and
Misaligned-COMET, presents difficulties for all
pre-filters, as real-world misalignments do.

Overall, we show the validity of our simulated
noise in two aspects: (1) Adequacy, reflected in the
similar level of shared semantics as real-world mis-
alignments; (2) Hard-to-Detect Nature, reflected in
the low noise detection accuracy from widely used
pre-filters.

3.3 Fine-grained Misalignment Detection

To measure data quality during training, token-level
loss and error norm values are used in data trunca-
tion methods (Kang and Hashimoto, 2020; Li et al.,
2024). Here, we evaluate their effectiveness under
our simulated misalignment noise settings.

Loss measures the model’s predicted probability
of the ground-truth token. On the other hand, error
norm value (el2n) calculates the difference between
the ground-truth (one-hot) distribution OH (yt) and
the model’s prediction distribution pθ(·|y<t, x) (eq
1). Tokens with relatively high loss or el2n values
are indicated as noise.

el2n = ||pθ(·|x, y<t)−OH (yt)||2. (1)

We record the loss and el2n values for each to-
ken from 2,000 clean and Misaligned-LASER tar-
get sentences in the same data setting as in Sec-
tion 3.2.2. Figure 2 shows that clean and mis-
aligned sentences have different loss and el2n dis-
tributions as training time increases from epoch 5
to 30. This shows the effectiveness of the model’s
self-knowledge for distinguishing hard-to-detect
misalignment noise from clean sentences.

Notably, the el2n metric exhibits stronger dif-
ferentiability compared to loss, underscoring the
importance of considering the model’s full predic-
tion distribution. However, the noisy samples’ el2n
distribution still partially shifts towards lower val-
ues during training, mainly due to the presence
of clean tokens in the simulated misaligned sen-
tences. To confirm that the shifted tokens in the
noisy samples are truly clean, we provide token-
level annotations (see Appendix B.4) to show that
annotated misaligned tokens do have higher el2n
values (avg. 1.13) than clean ones (avg. 0.32).

Interestingly, we also observe that clean samples
contain tokens with high el2n values (see Table 9).
We hypothesize that these tokens might be difficult
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Figure 2: loss (above) and el2n (below) distribution for clean
and Misaligned-LASER noise samples during the training
process (Epoch = 5 and 30). Red distribution represents
misaligned-LASER noise and Blue distribution represents the
clean data. As training progresses, el2n distributions for
clean and noisy data shift differently. The distribution plots
for the full training process are in the Appendix in Figure 4.

for the model to learn. Future work could further
differentiate between hard-to-learn and noisy to-
kens and explore their respective impacts on the
model’s performance.

Overall, we point out two limitations of trunca-
tion methods relying on model-based metrics: First,
they overlook the increasing reliability of model
predictions by removing potential data noise al-
ready during early training stages. Second, they
cannot avoid ignoring clean but useful data. As
mentioned, partial clean tokens still have high el2n
values.

4 Noise Self -Correction

To overcome the limitations of truncation methods
in Section 3.3, we propose a self-correction method
to gradually increase the trust of the model’s predic-
tion distributions to correct the supervision during
training. Our method keeps the supervision signals
from the training data to avoid clean training infor-
mation loss and also progressively trusts a dynamic
entropy state of the model’s prediction to revise the
data. Our work is in line with label correction in
computer vision (discussed in Appendix C.1).

New Target. Consider conditional probability
models pθ(y|x) for machine translation. Such
models assign probabilities to a target sequence
y = (y1, ..., yT ) by factorizing it to the sum of
log probabilities of individual tokens yi from vo-
cabulary V . At each training iteration, the model

learns towards the ground-truth token distribution,
one-hot q(yi), with a model prediction distribution
pθ(·|x, y<i). In self-correction, we leverage the
model prediction pθ(·|x, y<i) to revise the one-hot
distribution q(yi) with the aim of learning towards
a new target q̄(yi):

q̄(yi) = (1− λ)q(yi) + λpθ(·|x, y<i) (2)

In this way, the new target q̄(yi) keeps the origi-
nal supervision signal from the training data and
the model’s prediction. λ denotes a weighting fac-
tor that determines how much to trust the model
prediction.

Dynamic Learning Schedule. We correlate λ
with a learning time function Time(t) of training
iteration t and model entropy H(pθ):

λ = (1−H(pθ))× Time(t) (3)

For H(pθ), the model trusts its prediction more
when it has a more confident prediction, i.e., lower
entropy. For Time(t), the model can trust its self-
knowledge as training progresses. We use a sched-
ule (Bengio et al., 2015) to increase Time(t) as
a function of the training iteration t and T as the
number of total iterations.

Time(t) =
1

1 + exp(β( t
T + α))

(4)

where α and β are hyper-parameters1.
In general, at the beginning of training, the

model is not well-trained, and a small Time(t)
value controls the model to rely more on the ground-
truth data than its own predictions. As training
progresses, increasing Time(t) allows the model to
trust more in its reliable prediction.

Sharpen the Model Prediction. To overcome
the overly uncertain model prediction when learn-
ing towards the new target in Equation 2, we
sharpen the model prediction distribution by con-
trolling the softmax temperature τ in p̄θ =

exp(zi/τ)∑N
j=1 exp(zj/τ)

. We control τ in a dynamic way

to vary it inversely with Time(t). Therefore, τ
gradually decreases as training goes on: a higher τ
value at early training stages can prevent the model
from converging and a smaller τ in the later stage
makes the model more confident in its output.

1We choose α and β based on prior experiments, see Ap-
pendix C.2.
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Misaligned-LASER Misaligned-COMET Raw-Crawl Data
10% 30% 50% 10% 30% 50% 10% 30% 50%

Baseline with noise 33.0* 31.7* 30.5* 33.1* 32.0* 30.0* 33.0* 31.5* 29.6*

Oracle w/o noise 33.3 32.7 32.0 33.3 32.7 32.0 33.3 32.7 32.0

Pre-Filter LASER 33.2 31.4* 30.0* 33.1* 32.6 30.2* 33.0* 31.6* 30.0*

COMET 32.9* 31.5* 30.4* 33.0* 31.7* 29.6* 32.4* 31.6* 28.5*

Truncation loss 33.1* 31.4* 30.7* 33.0* 31.2* 29.8* 33.0* 31.8 29.9*

el2n 33.0* 31.9* 31.0* 32.9* 31.8* 29.9* 33.0* 31.6* 30.0*

Self-Correction (Ours) fixed τ = 0.5 33.1 32.9 31.3 33.2 32.4 30.4 33.4 31.7 30.3
dynamic τ 33.5 32.3 31.4 33.3 32.5 30.6 33.5 31.9 30.4

Table 3: SacreBLEU scores of high-resource De → En translation task with different types of noise. The BLEU score of the
full clean training corpus (5.8M) De → En is 33.5. Baseline with noise: represents the translation performance when injecting
with 10%, 30%, 50% of data noise. Oracle w/o noise: represents the upper-bound translation performance when training with
the remaining clean data, specifically 90%, 70%, 50% of the data excluding the noise. Bold and Underline represents the best
and second best score. ∗ signifies that our self-correction method (dynamic τ ) is significantly better (p-value < 0.05) than
the comparing methods. The statistical significance results with paired bootstrap resampling are followed by (Koehn, 2004).
COMET and Chrf++ scores are provided in Table 12 in Appendix E.

In Section 5, we compare the performance of
both fixed2 and dynamic τ to self-correct the data
noise and also show the impact of different values
of fixed τ on the performance in Appendix C.3.

Training. After acquiring a new target q̄(yi), de-
rived from both the ground truth and the model’s
own predictions, we obtain a new training objective
based on maximum likelihood estimation (MLE).
The following loss function is minimized for every
training token over the training corpus D:

Lθ(x, y) = Eyi∼D [−q̄(yi) log pθ(·|x, y<i)] (5)

5 Experiments

In this section, we investigate the effectiveness
of our self-correction method for translation tasks
in two experimental settings: simulated and real-
world noisy settings. For the simulated noisy set-
ting (Section 5.2), we conduct experiments by in-
jecting two types of noise, raw-crawl data and sim-
ulated misaligned noise, into a clean translation cor-
pus. For the real-world noisy setting (Section 5.3),
we perform experiments on two noisy web-mined
datasets, i.e., ParaCrawl and CCAligned, across
different language pairs.

5.1 Comparing Systems

We compare our self-correction method with the
following comparing systems:3

Pre-Filtering. We select two widely used data
filters: LASER and COMET. We rank the training
sentence pairs based on the scores calculated by the

2We use fixed τ = 0.5 followed by (Wang et al., 2022).
3Note that all the models’ details align with the correspond-

ing baselines.

filter models. For the simulated noise experiments
(Section 5.2), we filter out the sentence pairs with
the lowest scores before training, matching the size
to the injected data noise. The training data size
for pre-filter methods is 90%, 70%, and 50% of the
full training corpus when injecting with 10%, 30%,
and 50% of data noise. For the real-world noise
experiments (Section 5.3), we filter out 20% of the
sentence pairs with the lowest scores.

Truncation. We compare two truncation meth-
ods: (1) loss truncation (Kang and Hashimoto,
2020), (2) error norm value (el2n) truncation (Li
et al., 2024). Following (Li et al., 2024), we choose
the best result among three truncation fractions
{0.05, 0.1, 0.2} for both loss and el2n truncation.
The starting iteration to truncate data is set as 1,500.

5.2 Simulated Noisy World

5.2.1 Experimental Setup
We conduct experiments on both high- and low-
resource translation tasks. We use the WMT2017
(German) De→En news translation data as the
high-resource task and En→Si (Sinhala) from
OPUS4 as the low-resource task.

Following Herold et al. (2022), we inject noise
by replacing a portion (10%, 30%, 50%) of the
clean training corpus with simulated misalignment
noise or raw crawl data. The misalignment noise
is generated by Algorithm 1 from the replaced por-
tion of the clean corpus. The raw crawl data noise
is randomly selected from the raw Paracrawl cor-
pus5. Specifically, the raw crawl data provides a
realistic test bed for noise-handling methods since

4https://opus.nlpl.eu/
5https://paracrawl.eu/
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Misaligned-LASER Misaligned-COMET Raw-Crawl Data
10% 30% 50% 10% 30% 50% 10% 30% 50%

Baseline with noise 22.3 20.0* 18.0* 21.4* 18.7* 14.2* 22.3 21.0* 19.0*

Oracle w/o noise 22.3 21.0 20.8 22.3 21.0 20.8 22.3 21.0 20.8

Pre-Filter LASER 22.0* 18.7* 17.0* 21.1* 18.9* 16.3 21.0* 21.2* 19.2*

COMET 22.0* 20.0* 17.6* 21.0* 18.6* 13.8* 22.2 20.9* 18.9*

Truncation loss 22.1 20.5 17.9* 20.0* 17.2* 14.2* 22.2 21.1* 19.1*

el2n 22.0* 20.5 18.2* 21.1* 18.9* 14.3* 22.0* 21.3* 19.2*

Self-Correction (Ours) fixed τ = 0.5 22.4 21.2 19.8 21.7 19.0 15.3 22.5 21.5 19.9
dynamic τ 22.3 20.7 20.2 22.1 19.6 16.2 22.3 21.9 19.6

Table 4: SacreBLEU scores of low-resource En → Si translation task with different types of noise. The BLEU score of full
clean training corpus (0.9M) En → Si is 22.5. Chrf++ and COMET score are provided in Table 13 in Appendix E.

it contains a mixture of naturally occurring noise,
including misaligned sentences, wrong language,
grammar errors, etc.

All translation models use the fairseq (Ott
et al., 2019) implementation of the Transformer-
Big architecture for the high-resource task and
Transformer-Base for the low-resource task. The
full training details are shown in Appendix D.1.

5.2.2 Results
Tables 3 and 4 show the high-resource De→En
and low-resource En→Si translation performance
trained on the corpus with simulated misalignment
or raw crawl data noise. Overall, both noise settings
negatively impact translation quality, as shown by
the performance drop with increasing noise levels.

First, we show that pre-filter COMET fails to
filter Misaligned-LASER noise, leading to a drop
in translation performance in both high-resource
and low-resource scenarios. This finding aligns
with Bane et al. (2022), which demonstrates that
COMET is weak at detecting misaligned segments.
On the other hand, pre-filter LASER is effective
in handling Misaligned-COMET noise but only
achieves modest gains when dealing with raw-
crawl data noise.

Second, we demonstrate the effectiveness of
leveraging the model’s self-knowledge to detect
data noise during training. Consistent with our
findings in Section 3.3, we show that using the el2n
metric yields better performance compared to us-
ing loss. However, el2n truncation still falls short
in highly noisy environments (50%). In such cases,
the noisy datasets prevent the model from acquir-
ing accurate knowledge, leading to incorrect data
removal during training.

Our self-correction method overcomes the limi-
tations of el2n truncation by ‘revising’ rather than
‘ignoring’ data noise. This approach retains ground
truth supervision, preventing the loss of clean data

Figure 3: Performance differences between our self-
correction method and baseline on noisy (Misaligned-LASER)
and clean data for De→En task with 30% injected misaligned-
LASER. The effectiveness of our method mainly arises
from improving the misaligned noisy data over clean ones.

information. This advantage is reflected in the supe-
rior performance of self-correction across low- and
high-resource tasks in various noise settings. For
instance, when injecting 50% Misaligned-LASER
noise into the En→Si task, our self-correction
method outperforms el2n truncation by 2.0 BLEU
points.

Overall, our findings highlight the importance
of utilizing the model’s own predictions. This sup-
ports the hypothesis that training models solely
on reference translations can limit performance,
particularly when the reference is inferior to the
model-generated translation (Xu et al., 2024).

5.2.3 The Sources of Improvements
The previous section shows the benefits of our self-
correction method in the presence of simulated mis-
alignment noise. To further investigate whether the
improvements arise from addressing the misaligned
data, we compare the differences in translation per-
formance on clean and Misaligned-LASER data
after applying the self-correction method.

Specifically, we sample 1K clean and
Misaligned-LASER sentence pairs and re-
port their BLEU score differences between the
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en→fr♡ en→tr� en→es� en→be� en→si♡ en→sw♡ en→km♡ Avg.
Misaligned Rate (%) 10% 44% 22% 10% 62% 11% 18% -
Corpus Size (M) 5M 5M 5M 1.1M 210K 130K 60K -
Baseline 41.1* 23.5* 21.6* 9.9* 7.0* 13.0* 4.2* 17.1

Pre-Filter LASER 41.8* 23.2* 22.5 9.8* 6.6* 12.7* 3.8* 17.2
COMET 41.6* 23.7* 22.2* 9.6* 6.8* 12.5* 4.0* 17.2

Truncation loss 41.2* 23.8* 21.9* 9.8* 6.0* 12.5* 4.0* 17.0
el2n 41.3* 23.9* 22.0* 10.0* 6.0* 13.0* 4.5* 17.2

Self-Correction (Ours) fixed τ = 0.5 41.9 23.4 21.9 10.1 7.6 14.7 4.6 17.9
dynamic τ 42.3 24.2 22.8 10.5 7.8 15.1 5.0 18.2

Table 5: SacreBLEU scores on real-world web-mined corpora. Bold and Underline represents the best and second best
score. � denotes language pairs from CCAligned V1.0. ♡ denotes language pairs from ParaCrawl V7.1. ∗ indicates that our
self-correction method is significantly better (p-value < 0.05) than the baseline. The misaligned noise rate for different language
pairs is reported from Kreutzer et al. (2022). Chrf++ and COMET scores are provided in Table 14 in Appendix E.

baseline and the self-correction model during
training. For Misaligned-LASER noisy data,
BLEU scores are computed using the original
parallel true references. Figure 3 shows that
the effectiveness of our self-correction method
primarily stems from improving the translation
quality of misaligned data. Our method enhances
performance on misaligned noisy data by up to 1.5
BLEU points during training, while its impact on
clean data remains minimal.

5.3 Real Noisy World

5.3.1 Experimental Setup
We investigate two noisy web-crawled datasets:
Paracrawl V7.1 and CCAligned V1.0. These two
datasets exhibit varying semantic misalignment
rates across different low- and high-resource lan-
guage pairs (Kreutzer et al., 2022). For each
dataset, we select language pairs with varying lev-
els of misalignment noise rates, from high- to low-
resource. Training data details for the selected
language pairs are shown in Appendix D.2.2. The
validation and test sets for all tasks are from Flo-
res1016. We train for all tasks on the Transformer-
Big (Vaswani et al., 2017) architecture.

5.3.2 Results
Table 5 shows the translation performance for two
noisy web-crawled datasets, CCAligned V1.0 and
Paracrawl V7.1, across language pairs with varying
corpus size and misaligned rates.

Similar to our findings under the simulated noise
setting in Section 5.2, we show that pre-filters and
data truncation methods are limited to low-resource
tasks with varying misalignment rates, e.g., en→sw,
en→si, and en→km, even degrading the translation

6https://github.com/facebookresearch/flores

performance. These two methods handle data noise
by removing or ignoring it; however, the noisy
examples might still be partially helpful for the
model, especially in data-scarce scenarios.

In contrast, the self-correction method consis-
tently outperforms alternative methods, includ-
ing pre-filters and truncation, with an overall im-
provement of 1.1 BLEU, 1.7 COMET, and 1.5
ChrF++ points over the baseline. Specifically,
self-correction shows superior performance in low-
resource tasks, with up to 2.1 BLEU and 2.4
COMET points over the baseline for en→sw task.
This further emphasizes the effectiveness of using
the model’s self-knowledge to “correct” noise in
real-world web-mined datasets.

6 Conclusion

In this paper, we aim to address the data quality is-
sue in the web-mined translation corpora. We show
that the primary noise source in translation corpora,
namely semantic misalignment, is hard to filter or
handle by both widely used pre-filtering and data
truncation methods. To quantitatively analyze the
impact of misalignment noise, we propose a pro-
cess to simulate it controlled by semantic similarity,
which reflects the partially shared meanings often
found in misaligned sentence pairs from real-world
web-crawled corpora.

Under our simulated misalignment noise setting,
we observe increasing reliability of the model’s
self-knowledge for detecting misalignments at the
token level. Building on this, we propose self -
correction, which focuses on the model’s training
dynamics and revises the training supervision from
the reference data by the model’s prediction. Com-
prehensive experiments demonstrate the effective-
ness of our approach on both simulated and real-
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world web-mined translation corpora.This perfor-
mance outperforms alternative methods, including
pre-filtering and truncation methods. Moreover, we
show that the gains are mainly from revising the
misaligned samples while maintaining the perfor-
mance on clean data. Overall, our work provides a
critical finding on the effectiveness of leveraging
the model’s predictions instead of solely relying on
flawed reference data.

7 Limitation

First, we acknowledge the potential bias in our self-
correction method, which could learn towards the
noise due to its reliance on ground truth during
the early training stages. However, we believe this
is not a significant issue because our method con-
sistently demonstrates robust experimental results
across different noise scenarios. Future work could
explore modifications to mitigate this potential bias
and enhance performance in diverse settings.

Second, our work aims at learning from a noisy
training corpus, which might limit improvements
when using high-quality training datasets. Fur-
thermore, the self-correction approach has shown
promise for machine translation tasks, but another
limitation is the unexplored potential for other natu-
ral language processing tasks, e.g., summarization
or text generation. Future work should investigate
the effectiveness of this approach across different
downstream tasks.

Acknowledgments

This research was funded in part by the Nether-
lands Organization for Scientific Research (NWO)
under project numbers VI.C.192.080 and 2023.017.
We would like to thank Vlad Niculae, David Stap,
Sergey Troshin and Evgeniia Tokarchuk for their
useful suggestions. We would also like to thank the
reviewers for their feedback.

References
Mikel Artetxe and Holger Schwenk. 2018. Mas-

sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions
of the Association for Computational Linguistics,
7:597–610.

Fred Bane, Celia Soler Uguet, Wiktor Stribiżew, and
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A Data Filters

For LASER (Artetxe and Schwenk, 2018), data fil-
tering scores sentence pairs based on cross-lingual
sentence embeddings. To calculate the LASER
score for each sentence pair, we generate cross-
lingual sentence embeddings using the pre-trained
LASER model7. The underlying system is trained
as a multilingual translation system with a multi-
layer bidirectional LSTM encoder and an LSTM
decoder without information about the input lan-
guage on the encoder. The output vectors of the
encoder are compressed into a single embedding
of fixed length using max-pooling, which is the
cross-lingual sentence embedding resulting from
the LASER model. The assumption is that two
sentences with the same meaning but from differ-
ent languages will be mapped onto the same em-
bedding vectors. We calculate the LASER score
followed by (Chaudhary et al., 2019). The higher
the LASER score, the more semantically similar
the source and target sentence are.

COMET is a neural framework for training ma-
chine translation evaluation models that can func-
tion as metrics (Rei et al., 2020). Their framework
uses cross-lingual pre-trained language modeling
that exploits information from both the source in-
put and the target reference to predict the target
translation quality. We use the reference-free
wmt-20-qe-da COMET model as the data filter to
score each sentence pair in the training corpus.

Bi-Cleaner is a tool in Python that aims
at detecting noisy sentence pairs in a paral-
lel corpus. It indicates the likelihood of a
pair of sentences being mutual translations.
Sentence pairs considered high-quality are
scored near 1, and those considered noisy are
scored with 0. We use the multilingual model
bitextor/bicleaner-ai-full-en-xx from
HuggingFace8 for the pre-filter for all language
tasks.

XLM-R is a transformer-based multilingual
masked language model pre-trained on text in 100
languages. We extract the sentence embeddings
from the source and target with the model from
Conneau et al. (2019) and calculate their cosine
similarity score as the XLM-R score.

7https://github.com/facebookresearch/LASER/
blob/main/nllb/README.md

8https://huggingface.co/bitextor/
bicleaner-ai-full-en-xx
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B Controlled Generated Misaligned Noise

B.1 Algorithm

Algorithm 1 generates misaligned noise, controlled
by two steps: (1) surface-level features control by
word overlap and sentence length; (2) quality con-
trol by LASER or COMET.

To save computational resources for calculat-
ing the LASER/COMET score for a source sen-
tence with a chunk of target sentences, we first
perform surface-level feature control (word overlap
and length mismatch) to select a subset of mis-
aligned target candidates. Word overlap is used as
a filter to ensure that the misaligned targets share
certain surface-level features with the true refer-
ence. The same holds for length mismatch.

To avoid overusing the selected misaligned tar-
get, we remove the selected target from the chunk
of target sentences T . In our adequacy evaluation
(shown in Appendix B.3 and Table 7), we also show
that our misaligned sentences contain only partial
meanings of the source sentences. This ensures a
low likelihood that the selected misaligned target
is a reasonable source sentence translation.

B.2 Misaligned Noise Samples

Table 6 shows the simulated misaligned samples
of Misaligned-LASER and Misaligned-COMET.
Overall, the simulated misaligned noise controlled
by external models all share certain amounts of se-
mantic meanings compared with the true reference.

B.3 Adequacy Evaluation

To evaluate the adequacy of the real world and
our simulated misalignment noise, we design an
annotation guide (see Table 7) to select the over-
lap meanings between a source sentence with the
misaligned target. The simulated misaligned sen-
tence pairs are constructed from the clean corpus
WMT2017 De→En, and the real-world misaligned
sentences are selected from web-mined Paracrawl
datasets. The annotations were conducted by the
two PhD students, who are also the authors of this
paper, as volunteers without compensation.

B.4 Token-level Annotation

We conducted a token-level annotation on 50 mis-
aligned and clean sentences, resulting in 480 mis-
aligned tokens and 1557 clean tokens. The anno-
tators must label each token as “clean” or “noisy”
given a source and a target sentence. The annotated
misaligned and clean sentences are sampled from

SRC der Rat kam überein, dass die Kommission
die Anwendung dieser Verordnung mit dem
Ziel überwacht, etwaige Probleme möglichst
schnell festzustellen und zu regeln.

REF the Council agreed that the Commission will
keep under review the implementation of this
Regulation with a view to detecting and ad-
dressing any difficulties as soon as possible.

Mis-LASER the Commission has therefore acted wisely
in exploring every possible avenue to guard
against any difficulties and to prepare for any
eventualities.

SRC Brüssel , 17 März 2015
REF Brussels , 17 March 2015
Mis-LASER Brussels , 4 May 2011
SRC wann möchten Sie im Aeolos Hotel über-

nachten?
REF when would you like to stay at the Aeolos

Hotel?
Mis-LASER when would you like to stay at the Leenane

Hotel?
SRC buchen Sie Ihre Unterkunft in Edinburgh to-

day!
REF book your accommodation in Edinburgh to-

day!
Mis-COMET book your accommodation in Amsterdam to-

day!
SRC wir akzeptieren folgende Kreditkarten:Visa,

Maestro, Master Card, American Express,
JBC, Dinners Club.

REF We accept the following credit cards: Visa,
Maestro, Master Card, American Express,
JBC, Dinners Club.

Mis-COMET we accept payments by credit card (Visa, Mas-
terCard, Diners Club), Paypal or transfer.

SRC Puchacz Puchacz Spa befindet sich in
Niechorze , in einer schönen und malerischen
Umgebung , ist lediglich 150m vom Meer ent-
fernt und liegt in der Nähe des Liwia Łuża
Sees .

REF Puchacz Puchacz Spa is located in Niechorze,
in a beautiful and picturesque setting, only
150m from the sea and close to Lake Liwia
Łuża.

Mis-COMET the Country Hotel Sa Talaia, surrounded by
beautiful gardens is located close to San Anto-
nio city and not far away from the historic city
of Ibiza

Table 6: Simulated Misaligned Sentences Samples

the sentences used in Section 3.3. The annotations
were conducted by the two PhD students, who are
also the authors of this paper, as volunteers without
compensation.

Table 8 shows that the average el2n values for
the misaligned tokens are higher than those for
clean tokens, in both misaligned and clean sam-
ples, further confirming the effectiveness of lever-
aging the model’s self-knowledge to distinguish
data noise. Moreover, we also find some clean to-
kens in clean target sentences do have higher el2n
values (shown in Table 9). We find that clean to-
kens with higher el2n values tend to be difficult
words for the model to learn, e.g., “communication”
and “developments”.
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Algorithm 1 Misaligned Noise Generation
Input: A chunk of parallel and de-duplicate clean data D with N sentence pairs, source and target (S, T );
A threshold k for selecting misaligned candidates; A quality controlled model M ∈ {LASER,COMET}
Output: Misaligned data D̄ with N sentence pairs source and misaligned target (S, T̄ ).

for each source sentence si in S do
Step 1: Surface-level Features Control

Initialize a list L of misaligned candidates for si
for each target sentence tj(j ̸=i) in T do

if len(L) < k then
if | len(tj)− len(si)| < 3 and word overlap ratio(tj , ti) > 0.4 then

Append tj to list L
end if

end if
end for
Step 2: Quality Control

Initialize a quality score list Q
for each candidate tn in L do

score(si, tn) = M(si, tn)
Append score to list Q

end for
Select tk from L with the highest score in Q
Append the pair (si, tk) to the misaligned data D̄
Remove tk from targets T to avoid tk over-reused

end for

Figure 4: loss (above) and el2n (below) distribution for clean and misaligned-LASER noise samples during the training process
(Epoch = 5, 10, 15, 30). Red distribution represents misaligned-LASER noise and blue distribution represents the clean data.

Questionnaire
Whether this target translation conveys the same mean-
ings as the source sentence?

◦ all meanings ◦ most meanings ◦ much meanings ◦
little meanings ◦ no meanings

Table 7: Questionnaire for human evaluation, where ◦
indicate single-item selection. From all meanings to no
meanings, the adequacy score scales from 5–1.

Misaligned Clean-M Clean-C
1.13 0.32 0.37

Table 8: Average el2n values for annotated misaligned
and clean tokens. Clean-M: Clean tokens from mis-
aligned samples; Clean-C: Clean tokens from clean
samples.
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SRC _ganz _entschieden _möchte _ich _mich _gegen _den _Ansatz _der _Kommission _wenden _, _wie _er _in _ihrer _Mitteilung _zum _Ausdruck _kommt _.
TGT _I _should _also _like _to _firmly _contest _the _Commission _& apos ; s _approach _as _presented _in _its _communication _.

High el2n _contest, _communication
SRC _wir _werden _daher _diesen _Bericht _unterstützen _und _das _Thema _auch _weiterhin _mit _großer _Aufmerksamkeit _verfolgen _.
TGT _we _therefore _support _this _report _and _will _continue _to _closely _monitor _developments _.

High el2n _closely, _monitor, _developments
SRC _folglich _muß _bis _zur _Revision _ein _ausreichen der _Zeitraum _ver gehen _.
TGT _we _must _therefore _provide _for _a _review _after _a _sufficient _period _.

High el2n _therefore

Table 9: Clean sentence that contain tokens with high el2n values. Here high el2n represents the clean tokens have
an el2n value exceeding 1.35.

C Self-Correction Method Design

C.1 Label Correction in Computer Vision

Our self-correction method is in line with the la-
bel correction method in Computer Vision (Wang
et al., 2022; Lu and He, 2022). Both approaches
are motivated by the idea of correcting data noise
using a model’s self-knowledge. However, we are
the first work to apply this approach specifically in
the text de-noise field.

While other work (Kim et al., 2021) highlights
another benefit of using the model’s predictions
to refine the target, i.e. regularization. However,
we do not discuss this aspect in our paper. This
is because we share different motivations. Our
work primarily aims to improve the robustness of
training to address the low-quality training data
issues instead of regularizing the model.

C.2 Hyper-Parameter Selection

In Time(t), α decides the inflection point, and β
adjusts the exponentiation’s base and growth speed.
Therefore, we fixed α = −0.6 and conducted prior
experiments to select β. Table 10 provides the re-
sults of different β under 30% misaligned noise
rations for high-resource and low-resource tasks.
We select α = −0.6 and β = −6 for our experi-
ments.

β High-resource Low-resource
-4 31.9 19.7
-5 32.0 20.0
-6 32.3 20.3
-7 31.8 20.2
-8 31.4 20.0

Table 10: Hyper-parameter Selection for β. We report
the BLEU scores for different β on high-resource task:
De→ En and low-resource task: En→Si.

Figure 5: BLEU scores from the self-correction models
on De→En task with 30% different types of injected
noise with varying τ .

C.3 The Impact of Sharpening Model
Prediction.

Here, we aim to analyze the impact of sharpening
model prediction distribution, i.e., different fixed
values of τ , to correct the ground truth on transla-
tion performance. We train the self-correction mod-
els on De→En task with 30% of different types of
noise, with varying values of softmax temperature
τ . From figure 5, we show that using sharpen-
ing model prediction distribution with a smaller τ
achieves better translation performance for all noisy
settings. However, the optimal τ varies when train-
ing with different types of noise and thus increases
the difficulty of selecting a fixed τ for different
scenarios. This motivates us to design a dynamic
τ , which varies automatically in a low range of
entropy state over training time. The overall perfor-
mance in both Section 5.2 and Section 5.3 by using
a dynamic τ also shows its general applicability for
different noise scenarios.
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D Training Details.

D.1 Training and Evaluation
We follow the setup of the Transformer-base and
Transformer-big models (Bengio et al., 2015). For
each model, the number of layers in the encoder
and in the decoder is N = 6. We employ h = 8 par-
allel attention layers and heads for the Transformer-
base. The dimensionality of input and output is
dmodel = 512, and the inner layer of feed-forward
networks has dimensionality dff = 2048. We em-
ploy h = 16 parallel attention layers and heads for
Transformer-big. The dimensionality of input and
output is dmodel = 1024, and the inner layer of feed-
forward networks has dimensionality dff = 4096.

All models are trained with the Adam optimizer
(Kingma and Ba, 2015) for up to 500K steps
for high-resource tasks and 100K steps for low-
resource tasks, with a learning rate of 5e-4 and
an inverse square root scheduler. A dropout rate
of 0.3 and label smoothing of 0.2 are used. Each
model is trained on one NVIDIA A6000 GPU with
a batch size of 25K tokens. We choose the best
checkpoint according to the average validation loss
of all language pairs. The data is tokenized with the
SentencePiece tool (Kudo and Richardson, 2018),
and we build a shared vocabulary of 32K tokens.
For evaluation, we employ beam search decoding
with a beam size of 5. BLEU scores are computed
using detokenized case-sensitive SacreBLEU9.

D.2 Dataset Details
D.2.1 Simulated Noise Setting
Table 11 shows the training and evaluation dataset
details for clean training corpus in simulated noisy
experiments in Section 5.2.

Translation Task Training Source Dev Set Test Set

De→En WMT2017 (5.8M) NewsTest2016 NewsTest2017
En→Si OPUS (0.9M) OPUS OPUS

Table 11: The clean training corpus and evaluation
dataset details for experiments in Section 5.2.

D.2.2 Real-World Noise Setting
For Paracrawl, the language pairs are: en→fr
(French), en→si (Sinhala), en→sw (Swahili), and
en→km (Khmer). For CCAligned, the language
pairs are en→tr (Turkish), en→es (Spanish), and
en→be (Belarusian). For the high-resource lan-
guage pairs: en→fr, en→tr, en→es, we randomly

9nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

sample 5M sentence pairs as the training corpus.
For medium and low-resource language pairs, we
use the original corpus size.

E Chrf++ and COMET Scores

Table 12, 13, and 14 shows the COMET
(Unbabel/wmt22-comet-da) and Chrf++ scores
for all experiments.
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COMET
Misaligned-LASER Misaligned-COMET Raw-Crawl Data

10% 30% 50% 10% 30% 50% 10% 30% 50%
Baseline with noise 77.8* 77.0* 76.1* 77.6* 76.5* 75.5* 77.9* 77.1* 75.8*

Oracle w/o noise 79.5 79.0 78.6 79.5 79.0 78.6 79.5 79.0 78.6

Pre-Filter LASER 78.0* 76.9* 75.6* 78.2* 78.0 76.0* 78.0* 77.8* 76.9
COMET 77.9* 77.5* 76.3* 77.5* 76.3* 74.0* 78.0* 76.8* 75.6*

Truncation loss 78.3* 76.5* 76.2* 78.0* 76.3* 75.0* 78.0* 77.2* 76.6*

el2n 78.3* 78.3 76.5* 78.1* 76.1* 76.0* 78.2* 77.5* 76.2*

Self-Correction (Ours) fixed τ = 0.5 79.0 78.5 76.8 78.5 77.6 76.2 78.8 78.1 76.5
dynamic τ 79.1 78.6 77.0 78.7 77.7 76.6 79.0 78.3 77.0

Chrf++
Baseline with noise 55.5* 54.9* 54.1* 55.1* 54.7* 52.5* 55.0* 54.9* 53.6*

Oracle w/o noise 57.2 56.9 55.5 57.2 56.9 55.5 57.2 56.9 55.5

Pre-Filter LASER 56.5* 54.5* 53.4* 56.3 56.0 52.6* 55.2* 55.0* 54.3*

COMET 56.0* 54.2* 53.0* 55.0* 54.2* 51.9* 55.2* 54.2* 52.8*

Truncation loss 56.0* 54.3* 54.2* 55.5* 54.1* 52.0* 55.5* 55.0* 54.0*

el2n 56.1* 55.2* 54.2* 55.5* 55.0* 52.0* 56.2* 55.0* 54.2*

Self-Correction (Ours) fixed τ = 0.5 56.8 56.5 54.3 56.6 55.2 52.8 56.6 55.5 54.0
dynamic τ 56.9 56.2 54.6 56.4 55.6 53.0 56.7 55.8 54.9

Table 12: COMET and Chrf++ scores of high-resource De → En translation task with different types of noise. The COMET
score of full clean training corpus (5.8M) De → En is 80.0. The Chrf++ score of full clean training corpus (5.8M) De → En is
57.2. ∗ signifies that our self-correction method is significantly better (p-value < 0.05) than the baseline.

COMET
Misaligned-LASER Misaligned-COMET Raw-Crawl Data

10% 30% 50% 10% 30% 50% 10% 30% 50%
Baseline with noise 79.8* 79.0 77.8* 79.7 75.9* 71.6* 79.7* 79.5* 78.3*

Oracle w/o noise 79.8 79.4 78.9 79.8 79.4 78.9 79.8 79.4 78.9

Pre-Filter LASER 79.5* 78.5* 77.0* 79.5* 76.2* 74.7 79.8* 79.8* 79.0
COMET 79.6* 78.8* 76.8* 79.2* 76.0* 71.0* 79.5* 79.0* 77.8*

Truncation loss 79.9 78.4* 78.0 * 79.0* 75.6* 71.2* 79.8* 79.4* 78.6*

el2n 80.1 79.1 78.2* 79.8 76.2* 72.3* 79.9 79.5* 78.8*

Self-Correction (Ours) fixed τ = 0.5 80.3 79.0 78.5 79.9 77.0 74.0 80.3 79.8 79.5
dynamic τ 80.1 79.2 78.8 79.9 77.1 74.6 80.2 80.1 79.2

Chrf++
Baseline with noise 35.7 34.0* 33.0* 34.9* 30.1* 24.2* 35.6* 34.0* 32.7*

Oracle w/o noise 35.9 34.6 34.2 35.9 34.6 34.2 35.9 34.6 34.2

Pre-Filter LASER 35.4* 33.2* 32.5* 35.4* 31.2 28.0 35.7 34.2* 33.0*

COMET 35.4* 33.5* 32.6* 33.6* 29.5* 23.8* 35.4* 33.8* 32.5*

Truncation loss 35.8 33.6* 33.2* 35.3* 30.2* 25.8* 35.7 34.2* 32.8*

el2n 35.6 34.1* 33.3* 35.6 30.4* 26.0* 35.6 34.1* 32.8*

Self-Correction (Ours) fixed τ = 0.5 36.0 34.3 33.3 35.5 31.0 27.0 36.0 34.8 33.8
dynamic τ 35.8 34.4 33.6 35.8 31.5 28.3 35.8 35.0 33.4

Table 13: COMET and Chrf++ scores of low-resource En → Si translation task with different types of noise. The COMET
score of full clean training corpus (0.9M) En → Si is 82.0. The Chrf++ score of full clean training corpus (0.9M) En → Si is
37.0. ∗ signifies that our self-correction method is significantly better (p-value < 0.05) than the baseline.
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COMET
en→fr♡ en→tr� en→es� en→be� en→si♡ en→sw♡ en→km♡ Avg.

Misaligned Rate (%) 10% 44% 22% 10% 62% 11% 18% -
Corpus Size (M) 5M 5M 5M 1.1M 210K 130K 60K -
Baseline 80.0* 82.0* 76.5* 68.3* 59.6* 59.0* 73.6* 71.3

Pre-Filter LASER 81.0* 81.3* 76.7* 67.4* 59.7* 58.3* 73.6* 71.1
COMET 80.5* 81.0* 76.0* 68.5* 59.5* 58.1* 73.2* 71.0

Truncation loss 81.0* 82.2* 76.8* 67.6* 59.0* 58.8* 73.0* 71.2
el2n 80.2* 82.1* 76.2* 68.6* 60.0* 58.6* 72.8* 71.2

Self-Correction fixed τ = 0.5 81.2 82.5 76.4 68.4 63.0 61.0 74.5 72.4
dynamic τ 81.6 83.0 77.9 68.9 63.6 61.4 75.0 73.0

ChrF++
Baseline 67.3* 54.8* 49.1* 36.5* 20.2* 37.9* 15.6* 40.2

Pre-Filter LASER 67.9* 54.6* 49.6* 36.1* 21.7* 37.5* 14.7* 40.3
COMET 67.6* 54.3* 49.6* 36.2* 20.6* 37.2* 15.0* 40.1

Truncation loss 67.4* 55.2 49.2* 36.3* 20.0* 37.9* 13.4* 39.9
el2n 67.6* 55.2 49.5* 36.5* 20.6* 37.3* 13.0* 40.1

Self-Correction fixed τ = 0.5 68.0 54.9 49.6 36.8 24.0 41.0 16.5 41.5
dynamic τ 68.2 55.4 50.0 37.2 22.2 42.3 16.8 41.7

Table 14: COMET and Chrf++ scores on real-world web-mined corpora. For pre-filter methods, we remove 20% of the training
samples with the lowest scores. � denotes language pairs from CCAligned V1.0. ♡denotes language pairs from ParaCrawl V7.1.
The misaligned noise rate for different language pairs is reported from Kreutzer et al. (2022). ∗ signifies that our self-correction
method is significantly better (p-value < 0.05) than the baseline.
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