
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 691–713

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Do Not Design, Learn: A Trainable Scoring Function
for Uncertainty Estimation in Generative LLMs

Duygu Nur Yaldiz1∗ Yavuz Faruk Bakman1∗ Baturalp Buyukates2

Chenyang Tao3† Anil Ramakrishna3† Dimitrios Dimitriadis3†

Jieyu Zhao1 Salman Avestimehr1

1University of Southern California 2University of Birmingham 3Amazon AI
{yaldiz, ybakman}@usc.edu

Abstract

Uncertainty estimation (UE) of generative large
language models (LLMs) is crucial for eval-
uating the reliability of generated sequences.
A significant subset of UE methods utilize to-
ken probabilities to assess uncertainty, aggre-
gating multiple token probabilities into a sin-
gle UE score using a scoring function. Ex-
isting scoring functions for probability-based
UE, such as length-normalized scoring and se-
mantic contribution-based weighting, are de-
signed to solve certain aspects of the problem
but exhibit limitations, including the inability
to handle biased probabilities and complex se-
mantic dependencies between tokens. To ad-
dress these issues, in this work, we propose
Learnable Response Scoring (LARS) function,
a novel scoring function that leverages super-
vised data to capture complex dependencies
between tokens and probabilities, thereby pro-
ducing more reliable and calibrated response
scores in computing the uncertainty of LLM
generations. Our comprehensive experiments
across question-answering and arithmetical rea-
soning tasks with various datasets demonstrate
that LARS significantly outperforms existing
scoring functions, achieving improvements of
up to 16% AUROC score.1

1 Introduction

Recent years have seen a transformative shift in AI
with the rise of generative Large Language Models
(LLMs). Their near-human capabilities in compre-
hension, generation, and information processing
have revolutionized human-machine interactions,
driving widespread adoption across industries such
as healthcare, law, finance, and marketing (Ye et al.,
2023; OpenAI, 2023; Touvron et al., 2023; Huang
et al., 2023). Given that LLMs can sometimes

*Equal contribution.
†This work does not relate to their position at Amazon.
1Code is available at https://github.com/

duygunuryldz/LARS and https://github.com/Ybakman/
TruthTorchLM

generate misleading or erroneous outputs (Ravi
et al., 2024; Oğuz et al., 2024), it is crucial to eval-
uate how much reliance should be placed on their
responses. Detecting unreliable, factually incor-
rect, or irrelevant outputs from LLMs is studied
under the topic of hallucination detection (Li et al.,
2023). Methods such as fact verification (Wang
et al., 2024; Chern et al., 2023), cross examination
(Cohen et al., 2023) and Uncertainty Estimation
(UE) (Malinin and Gales, 2021) serve as tools for
hallucination detection.

The field of UE, well-established in classifica-
tion tasks, has recently been adapted to generative
LLMs. In the context of generative LLMs, UE is
used to assess the model’s reliability for a given
query (Kuhn et al., 2023). UE methods are particu-
larly valuable as they differ from other hallucina-
tion detection approaches by not relying on external
resources, such as internet search tools (Chern et al.,
2023) or a teacher model (Cohen et al., 2023). UE
methods in generative LLMs can be broadly cate-
gorized into two categories: 1) Probability-based
methods (Malinin and Gales, 2021; Kuhn et al.,
2023) that utilize token probabilities externally to
predict uncertainty. 2) Non-probability-based meth-
ods (Lyu et al., 2024; Chen et al., 2024) that employ
heuristics without relying on token probabilities for
estimation. This work focuses on probability-based
methods due to their widespread use and promising
performance in UE (Bakman et al., 2024; Duan
et al., 2024; Kuhn et al., 2023), as well as their
applicability to closed-source API models where
token probabilities are accessible (OpenAI, 2023).

Probability-based UE in LLMs requires aggre-
gating multiple token probabilities into a single
score, which can be done through a scoring func-
tion. Length-Normalized Scoring (LNS) (Malinin
and Gales, 2021; Kuhn et al., 2023) is a common ap-
proach, which calculates the mean of log probabili-
ties of an LLM’s output to mitigate bias in longer
generations. Subsequent approaches by Bakman
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Figure 1: (Left) Answer generation using a generative LLM. (Mid Left) Overview of the proposed scoring function
LARS. It utilizes the question, answer tokens, and token probabilities. Token probabilities are fed to LARS model
as special probability tokens. (Mid Right) Illustration of few-hot represented embedding vectors of probability
tokens. (Right) Overview of probability-based UE methods taking different sampled answer scores such as LNS
(Malinin and Gales, 2021), MARS (Bakman et al., 2024), or LARS (this work), and outputting a single UE value.

et al. (2024); Duan et al. (2024) introduce heuris-
tics that prioritize semantically important tokens by
assigning higher weights to them, rather than sim-
ply averaging as in LNS. However, these scoring
functions, largely heuristic in design, often over-
look potential pitfalls such as biased probabilities
and complex dependencies between tokens. In this
work, we critically analyze the weaknesses of the
existing scoring functions and introduce a novel
scoring function that leverages supervised data to
produce more calibrated scores for UE in LLMs.

We summarize our main contributions as follows:
(1) We discuss the limitations of existing scoring
functions of UE from three different perspectives
including biased probabilities, token dependencies,
and applicability to other languages rather than En-
glish. (2) We introduce a novel off-the-shelf scor-
ing function, Learnable Response Scoring (LARS),
which is learned directly from supervised data (vi-
sualized in Figure 1). (3) We validate the superi-
ority of LARS over existing baselines across three
QA datasets, a mathematical reasoning task, and
four different languages. LARS outperforms SOTA
scoring functions by up to 16% in AUROC and 45%
in PRR. Additionally, we analyze its components
to explain the effectiveness of LARS.

2 Preliminaries

Uncertainty Estimation in Generative LLMs ad-
dresses the challenge of predicting a model’s uncer-
tainty regarding a given input sequence or question.
In the context of closed-ended QA and mathemat-
ical reasoning tasks, an effective UE method as-
signs a lower score (indicating less uncertainty)
to questions where the model is likely to pro-
vide the correct answer (reliable output), and a
higher score otherwise. Mathematically, we have
UE(θ, x1) < UE(θ, x2) if the most probable gen-
eration of model θ for question x1 is more likely to

be correct than for question x2 (Malinin and Gales,
2021; Kuhn et al., 2023; Duan et al., 2024).

Token Probability-based Methods use token
probabilities to estimate the model uncertainty.
This estimation requires aggregating multiple token
probabilities into a single score. In their founda-
tional work, Malinin and Gales (2021) formalize
the generation’s probability for a given question x
and a model parameterized by θ using the sequence
probability. This is defined as follows:

P (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ), (1)

where P (s|x, θ) is the probability for the gen-
erated sequence s (of length L), and s<l ≜
{s1, s2, . . . , sl−1} represents the tokens generated
before token sl. This sequence probability is used
in entropy calculation H(x, θ) by making a Monte
Carlo approximation, which requires multiple an-
swer sampling for the given question:

H(x, θ) ≈ − 1

B

B∑

b=1

lnP (sb|x, θ), (2)

where sb is a sampled generation to the question
x. Later Kuhn et al. (2023) improve the entropy
by utilizing the semantics of the sampled genera-
tions. They cluster the generations with the same
meaning and calculate entropy using the generation
probabilities associated with each cluster:

SE(x, θ) = − 1

|C|

|C|∑

i=1

lnP (ci|x, θ), (3)

where ci refers to each semantic cluster and C is the
set of all clusters. Notably, Aichberger et al. (2024)
enhance semantic entropy by enabling the model
to generate semantically more diverse outputs.

Both Malinin and Gales (2021) and Kuhn et al.
(2023) observe that sequence probability in (1) is
biased against longer generations. To address this,
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they use a length-normalized scoring as follows:

P̃ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
1
L , (4)

where L is the sequence length. Later Bakman
et al. (2024) and Duan et al. (2024) improve this
scoring function by incorporating the meaning con-
tribution of the tokens. Their scoring functions,
MARS and TokenSAR, respectively, adopt differ-
ent approaches in integrating token meaning but
can be generalized with the following formulation:

P̄ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (5)

where w(s,x, L, l) is the weight of the l-th token
assigned by MARS or TokenSAR. These scoring
functions aim to give more weight to tokens that
directly answer the question and are calibrated such
that if a generation is likely to be incorrect, they
yield a lower score, and vice versa. Our goal in this
work is to enhance this calibration by learning the
scoring function directly from the data.

3 Shortcomings of Existing Scoring
Functions

In this section, we discuss the shortcomings of
scoring functions: LNS, MARS, and TokenSAR.

Manually Crafted Design Choices. Existing
scoring functions are designed to address partic-
ular challenges within the UE problem domain.
For instance, LNS mitigates length bias, whereas
MARS and TokenSAR focus on reducing the im-
pact of non-essential token probabilities. However,
the complexities involved in designing an optimal
scoring function may not be immediately apparent.
Typically, scoring functions involve a dot product
of log probabilities and assigned weights, but al-
ternative formulations could provide more finely
calibrated estimations. Additionally, the existing
functions may not adequately capture complex de-
pendencies between tokens, such as grammatical
and semantic interactions (De Marneffe and Nivre,
2019). While MARS attempts to address this by
weighting phrases rather than individual tokens, it
only partially solves the problem and might fail to
capture deeper dependencies. Consider the ques-
tion, "What is the tallest building in the world?"
and the model’s response: "The tallest building
in the world might be Burj Khalifa with its lovely
sight." Here, although the tokens "might" and "Burj
Khalifa" may have high probabilities, "might" con-
veys uncertainty, suggesting that the model is un-

Figure 2: Average accuracy and probability assignments
of Llama2-7b-chat for specific entities in TriviaQA.

certain despite the high probability of those tokens.
An effective scoring function should recognize the
interaction between "might" and "Burj Khalifa"
and adjust the uncertainty accordingly. Addition-
ally, the phrase "with its lovely sight" adds sub-
jective opinion rather than factual reliability, yet
it affects the overall meaning. Ignoring the prob-
abilities of such tokens could improve the perfor-
mance of the scoring function. Such important
nuances are ignored by previous works. Lastly,
both MARS and TokenSAR apply normalization
on their weights w(s,x, L, l), through methods
like sum-normalization (TokenSAR) or softmax
(MARS). Such design choices directly impact the
UE output, potentially making the UE method con-
verge to sub-optimal points.

Biased Probabilities. Existing scoring functions
directly utilize token probabilities, which may be
biased against certain entity types (Gallegos et al.,
2024). To explore this issue, we conducted an
experiment with Llama2-7b-chat (Touvron et al.,
2023) using TriviaQA (Joshi et al., 2017). We
posed TriviaQA questions to the model and an-
alyzed the probabilities assigned to answer to-
kens representing different entity types like person
names, organizations, and dates. Additionally, we
assessed the model’s accuracy on questions whose
ground truth answers are in these categories. As
shown in Figure 2, though the model shows com-
parable accuracy for date and person entities, it
assigns higher probabilities to date tokens. This
finding suggests a positive bias towards date enti-
ties. We observed similar trends across other entity
types. These differences in probability assignments
highlight the need for recalibration across entities,
which current scoring functions lack.

Performance in Different Languages. MARS
and TokenSAR rely on existing NLP tools for im-
plementation. Specifically, TokenSAR uses a sen-
tence similarity model (Duan et al., 2024), and
MARS relies on a QA evaluator model (Bulian
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et al., 2022). These models may not be readily
available for some low-resource languages. More-
over, the design of MARS and TokenSAR is pri-
marily oriented towards English. This orientation
may be challenging applied to languages that are
morphologically distinct from English.

In the next section, we introduce a trainable scor-
ing function, addressing these shortcomings.

4 LARS: Learnable Response Scoring

Intuition. We develop a new scoring function
that accounts for the semantic contributions of to-
kens in relation to the query, grasps biased proba-
bilities, recognizes dependencies between tokens,
and identifies other factors that may not be imme-
diately apparent but are crucial for UE. Since man-
ually designing a scoring function that has all these
sophisticated properties would be extremely chal-
lenging as discussed in Section 3, we instead train a
neural network with a transformer architecture that
is capable of learning these properties directly from
the data. An overview of the proposed approach is
visualized in Figure 1.

Training Strategy. Let f denote the scoring func-
tion, which accepts three arguments: the input
prompt x = (x1, x2, . . . , xN ), the generated se-
quence s = (s1, s2, . . . , sL), and the correspond-
ing probability vector p = (p1, p2, . . . , pL), where
pi represents the probability of token si. The func-
tion f outputs a real number o. This mapping cap-
tures crucial information: the meaning of the gen-
erated tokens (s), their relevance to the context pro-
vided by the input prompt (x), and the model’s con-
fidence in each token via the probabilities (p). In
token probability-based methods, it is desirable for
o to be lower when the generation s is more likely
to be incorrect, improving the model’s uncertainty
estimation. To achieve this desired calibration, we
make f directly learnable through supervised data.

We construct a calibration set to train our scoring
function, fw, which is parameterized by w. This
calibration set comprises 4-tuples: input prompt
x, generated sequence s, probability vector p, and
binary ground truth label g. The label g indicates
whether s is a correct response to x. To optimize
the parameters of fw, we employ the binary cross-
entropy loss, denoted by L, applied as follows:
L(fw(x, s,p), g). To train the scoring function fw,
we start with the pre-trained RoBERTa-base model
(Liu et al., 2019) and augment it by adding a linear
layer that outputs a single logit.

Input Mapping. Inputting text sequences x and
s into a transformer model is straightforward, as
we can leverage the standard text encoding strategy
(Vaswani, 2017). However, encoding the proba-
bility information, which is a single real number
for each token, poses a challenge due to its low
dimensionality compared to the high-dimensional
space of the model. To address this, we propose a
novel input encoding strategy inspired by the class
conditioning approach in conditional image gen-
eration (van den Oord et al., 2016). We encode
probability information to high-dimensional vec-
tors by few-hot encoding. More specifically, we
partition the probability range [0,1] to k partitions.
These partitions are mutually exclusive, cover the
entire probability range, and are determined based
on the quantiles of the probabilities in the calibra-
tion dataset. Given that the transformer model has
an input dimension d, if pi falls in the range of
r-th partition, we set its vector positions between
(r−1)× d

k and r× d
k to 1, while all other positions

are set to 0 (Figure 1 Mid Right). To ensure con-
sistency with the model’s token embedding norms,
we scale probability vectors by a fixed divisor and
get the probability vector p̃i. With this encoding
strategy, we represent distinct probability ranges
orthogonal to each other in high dimension. The
input format of the LARS model is structured as fol-
lows (and visualized in Figure 1 Mid Left): initial
prompt x, followed by a series of response tokens
s = (s1, s2, . . . , sL). Each response token si is
immediately succeeded by its probability vector p̃i.

5 Experiments

5.1 Experimental Setup

Test Datasets. To evaluate UE methods, we use
a mathematical reasoning dataset and three closed-
ended QA datasets. Specifically, we utilize the
complete test set of GSM8K for mathematical rea-
soning (Cobbe et al., 2021). Following (Kuhn et al.,
2023), we select a subset of the validation set from
TriviaQA (Joshi et al., 2017). Additionally, we eval-
uate using the entire validation split of NaturalQA
(Kwiatkowski et al., 2019). Finally, we combine
the training and validation splits of Web Questions
(WebQA) (Berant et al., 2013).

Models. We test UE methods on 5 popular open-
weight models. Llama2-7b-chat, Llama2-13b-
chat (Touvron et al., 2023) and Llama3-8b-instruct
(AI@Meta, 2024) are optimized for dialogue use
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UE Method Scoring Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR AUROC PRR

Tr
iv

ia
Q

A
Lex. Sim. - 0.647 0.374 0.683 0.483 0.720 0.517 0.597 0.227 0.611 0.314
# Sem. Gr. - 0.792 0.571 0.819 0.671 0.757 0.521 0.744 0.454 0.776 0.557
p(True) - 0.616 0.267 0.842 0.733 0.805 0.653 0.517 0.023 0.650 0.392

SAPLMA - 0.741 0.484 0.736 0.541 0.785 0.614 0.658 0.373 0.757 0.594
Eccentricity - 0.812 0.629 0.853 0.756 0.818 0.664 0.764 0.496 0.813 0.633

Degree Matrix - 0.812 0.620 0.851 0.746 0.820 0.658 0.766 0.511 0.817 0.646

Confidence
LNS 0.697 0.481 0.748 0.600 0.722 0.533 0.628 0.281 0.655 0.389
MARS 0.751 0.576 0.799 0.676 0.745 0.593 0.638 0.305 0.641 0.381
TokenSAR 0.747 0.572 0.792 0.674 0.747 0.584 0.688 0.386 0.728 0.527
LARS 0.851 0.760 0.872 0.817 0.844 0.759 0.819 0.690 0.846 0.766

SE
LNS 0.795 0.627 0.835 0.733 0.810 0.670 0.749 0.475 0.800 0.617
MARS 0.797 0.645 0.835 0.742 0.810 0.681 0.749 0.482 0.794 0.615
TokenSAR 0.796 0.640 0.839 0.747 0.813 0.681 0.753 0.493 0.806 0.639
LARS 0.849 0.745 0.866 0.811 0.854 0.782 0.821 0.699 0.866 0.797

N
at

ur
al

Q
A

Lex. Sim. - 0.600 0.263 0.651 0.373 0.637 0.340 0.585 0.163 0.604 0.261
# Sem. Gr. - 0.705 0.379 0.736 0.448 0.675 0.283 0.686 0.276 0.709 0.377
p(True) - 0.561 0.090 0.761 0.561 0.727 0.509 0.647 0.247 0.562 0.131

SAPLMA - 0.691 0.397 0.713 0.443 0.723 0.458 0.657 0.289 0.594 0.410
Eccentricity - 0.727 0.431 0.775 0.567 0.727 0.480 0.713 0.368 0.741 0.482

Degree Matrix - 0.727 0.435 0.771 0.554 0.732 0.483 0.715 0.358 0.742 0.487

Confidence
LNS 0.677 0.384 0.697 0.449 0.666 0.390 0.610 0.189 0.648 0.338
MARS 0.699 0.411 0.717 0.477 0.678 0.407 0.615 0.198 0.631 0.311
TokenSAR 0.703 0.431 0.717 0.476 0.682 0.426 0.643 0.249 0.677 0.393
LARS 0.780 0.581 0.812 0.654 0.782 0.599 0.794 0.541 0.772 0.574

SE
LNS 0.721 0.432 0.759 0.548 0.727 0.499 0.700 0.332 0.733 0.471
MARS 0.720 0.440 0.750 0.546 0.725 0.493 0.705 0.336 0.723 0.440
TokenSAR 0.721 0.443 0.756 0.544 0.726 0.498 0.700 0.340 0.736 0.485
LARS 0.772 0.569 0.794 0.638 0.778 0.591 0.785 0.548 0.779 0.583

Table 1: AUROC and PRR scores of UE methods on TriviaQA, NaturalQA.

cases. Mistral-7b-instruct (Jiang et al., 2023) and
Gemma-7b-it (Mesnard et al., 2024) are instruction
tuned versions of the corresponding base models.
For the sake of simplicity, we drop instruction indi-
cator words such as "-chat" in the rest of the paper.

Metrics. Following previous works, we set the
model’s golden (most-probable) generation’s cor-
rectness2 as labels (0 and 1) and UE scores as pre-
dictions (Kuhn et al., 2023; Bakman et al., 2024;
Duan et al., 2024). Using this, we calculate the
AUROC (Area Under the Receiver Operating Char-
acteristic), a common metric for binary classifiers
(Kuhn et al., 2023; Duan et al., 2024; Lin et al.,
2024). Since AUROC is sensitive to data imbal-
ance, we also include the Prediction Rejection Ra-
tio (PRR) (Malinin and Gales, 2021). AUROC
scores range from 0.5 (random) to 1.0 (perfect),
and PRR ranges from 0.0 (random) to 1.0 (perfect).

Baselines. We use 4 probability-based UE meth-
ods. Confidence is calculated as the negative of
the most likely generation’s score for a given ques-
tion. The other UE methods are Entropy as in (2),
Semantic Entropy (SE) as in (3), and SentSAR
(Duan et al., 2024). Each method employs a scor-
ing function to assign a score to a generation. We
compare LARS with 3 SOTA scoring functions for
this purpose: Length-Normalized Scoring (LNS)
(Malinin and Gales, 2021), MARS (Bakman et al.,
2024) and TokenSAR (Duan et al., 2024). LARS is

2With given ground truth and model generation, we use
GPT-3.5-turbo for evaluating the correctness of the generation
(Lin et al., 2024; Duan et al., 2024; Bakman et al., 2024)

evaluated against these scoring functions across all
probability-based UE methods. It is worth noting
that combining SentSAR and TokenSAR results in
the SAR method (Duan et al., 2024).

Further, we add 6 non-probability-based UE ap-
proaches to our baseline set. Lexical Similarity
(Fomicheva et al., 2020), is the average of the
Rouge-L scores between unique sampled gener-
ation pairs to a given question. p(True) (Kadavath
et al., 2022), a self-check method, asks the model
itself if the most likely answer is correct by pro-
viding the question, sampled generations, and the
answer. SAPLMA (Azaria and Mitchell, 2023)
is a probing-based method that trains the model’s
internal representations to predict the correctness
of its generation. Eccentricity and Degree Ma-
trix (Lin et al., 2024) assesses output consistency
using different linear algebraic techniques. Lastly,
# Semantic Groups (Kuhn et al., 2023) is the num-
ber of semantic clusters, as in SE. In all of our
experiments, number of sampled generations is 5.

LARS Calibration Datasets. To train the model
of the proposed method LARS, we employ train
splits of TriviaQA, NaturalQA, and GSM8K. We
sample six generations per question, ensuring the
most likely generation is included, for each afore-
mentioned model. From these generations, we cu-
rate unique QA pairs for calibration data and use
GPT-3.5-turbo to evaluate their correctness. Typ-
ically, we train distinct LARS models for each
model-dataset combination. In some experiments,
we merge TriviaQA and NaturalQA per model and
train accordingly, which we specify when used.
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UE Method Scoring Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR AUROC PRR

W
eb

Q
A

Lex. Sim. - 0.643 0.310 0.640 0.321 0.645 0.312 0.608 0.214 0.624 0.261
# Sem. Gr. - 0.612 0.138 0.599 0.143 0.601 0.184 0.630 0.213 0.587 0.157
p(True) - 0.558 0.078 0.636 0.290 0.667 0.358 0.552 0.041 0.580 0.171

Eccentricity - 0.680 0.375 0.674 0.386 0.662 0.333 0.606 0.203 0.686 0.358
Degree Matrix - 0.683 0.380 0.676 0.384 0.662 0.326 0.611 0.195 0.682 0.364

Confidence
LNS 0.656 0.329 0.645 0.324 0.634 0.305 0.625 0.246 0.602 0.233
MARS 0.669 0.349 0.649 0.333 0.637 0.316 0.627 0.258 0.585 0.199
TokenSAR 0.664 0.345 0.656 0.347 0.640 0.320 0.657 0.287 0.615 0.248
LARS (OOD) 0.715 0.430 0.713 0.464 0.686 0.406 0.726 0.442 0.676 0.367

SE
LNS 0.672 0.360 0.664 0.366 0.665 0.353 0.675 0.334 0.644 0.297
MARS 0.679 0.367 0.667 0.370 0.665 0.354 0.679 0.340 0.632 0.267
TokenSAR 0.674 0.365 0.667 0.372 0.663 0.351 0.680 0.343 0.647 0.298
LARS (OOD) 0.711 0.440 0.694 0.449 0.697 0.430 0.719 0.440 0.678 0.382

G
SM

8K

Lex. Sim. - 0.444 0.000 0.632 0.272 0.537 0.019 0.544 0.080 0.551 0.110
# Sem. Gr. - 0.513 0.000 0.584 0.138 0.532 0.037 0.566 0.114 0.561 0.065
p(True) - 0.540 0.099 0.797 0.623 0.665 0.238 0.486 0.000 0.501 0.000

Eccentricity - 0.547 0.049 0.664 0.384 0.584 0.109 0.595 0.146 0.600 0.163
Degree Matrix - 0.535 0.056 0.667 0.667 0.604 0.165 0.584 0.117 0.605 0.179

Confidence

LNS 0.570 0.031 0.686 0.390 0.567 0.072 0.556 0.370 0.615 0.196
MARS 0.567 0.010 0.713 0.438 0.568 0.076 0.541 0.099 0.562 0.114
TokenSAR 0.579 0.045 0.719 0.460 0.619 0.156 0.579 0.161 0.636 0.233
LARS 0.720 0.319 0.836 0.711 0.708 0.350 0.706 0.370 0.738 0.497
LARS (OOD) 0.603 0.097 0.684 0.348 0.630 0.188 0.576 0.114 0.635 0.218

SE

LNS 0.516 0.000 0.633 0.321 0.560 0.076 0.588 0.141 0.587 0.153
MARS 0.513 0.000 0.640 0.344 0.563 0.080 0.586 0.134 0.583 0.122
TokenSAR 0.526 0.005 0.638 0.344 0.578 0.102 0.588 0.148 0.592 0.171
LARS 0.675 0.267 0.715 0.528 0.663 0.310 0.679 0.345 0.697 0.383
LARS (OOD) 0.572 0.072 0.633 0.298 0.605 0.170 0.579 0.112 0.608 0.209

Table 2: AUROC and PRR scores of UE methods on WebQA and GSM8K. LARS (OOD) denotes that the LARS
model is trained with TriviaQA and NaturalQA.

Further details are presented in Appendix D.

5.2 Main Results

We present the results of our method alongside
other baselines in Table 1 and extended results in
Appendix C. Notably, LARS significantly enhances
the performance of all existing scoring functions
across each probability-based UE method, with im-
provements reaching up to 0.231 AUROC and 0.46
PRR points over LNS. Additionally, LARS boosts
the confidence metric to levels comparable with SE.
This is particularly important considering the infer-
ence costs. Entropy-based methods require multi-
ple output samples (5 in our experiments), which
can be computationally expensive in the context of
LLMs. Further, SE requires O(N2) model passes
for semantic clustering, where N is the number of
sampled outputs. In contrast, LARS operates with
a single pass using a RoBERTa-based model with
125M parameters—a computation level that is neg-
ligible compared to models with capacities of 7B
parameters or more. Notably, LARS outperforms
SAPLMA, which also uses the same amount of
supervised data. Additionally, LARS consistently
surpasses response clustering methods that require
multiple output samples, such as Lexical Similar-
ity, the Number of Semantic Groups, Eccentricity,
Degree Matrix, and p(True) method.

5.3 Out-of-Distribution (OOD) Experiments

We train LARS using a calibration dataset, which is
curated from a set of questions and the correspond-

ing responses of a chat model. It is crucial to assess
the out-of-distribution capabilities of LARS, which
we analyze from two perspectives in this section.

OOD Data Generalization. First, we investigate
how the performance of LARS is affected when
the model encounters questions which have a dis-
tribution deviating from that of the calibration set.
To this end, we conduct tests using WebQA and
GSM8K, with LARS models trained on combined
TriviaQA and NaturalQA for each distinct chat
model. The results are presented in Table 2, and ad-
ditional results on out-of-distribution (OOD) data
generalization are available in Appendix C.3. Im-
pressively, LARS, despite being trained on differ-
ent datasets, outperforms all other scoring func-
tions across all probability-based UE methods in
WebQA, achieving an average improvement of ap-
proximately 0.04 AUROC points. However, in the
GSM8K dataset, where the model was trained on a
different task, performance degradation becomes
significant, highlighting the importance of train-
ing LARS on task-specific data for optimal results.
This performance gap may be attributed to differ-
ences in the nature of the datasets: while TriviaQA
answers are primarily composed of entities such as
person and organization names, GSM8K primarily
involves numerical answers. As a result, calibrating
LARS for entity-based answers in TriviaQA makes
it less effective for GSM8K, compared to direct
calibration on GSM8K itself. Nevertheless, LARS
still outperforms other scoring functions in all mod-
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els except Llama-3-8b, even when not specifically
calibrated for the correct dataset.

OOD Model Generalization. Next, we analyze
how LARS performs when the responses in the
calibration set are derived from a different chat
model than the one used at test time. Due to space
limitations, we provide a subset of the results in
Table 3; however, comprehensive results are pre-
sented in Appendix C.10. Optimal LARS perfor-
mance is achieved when the same chat model is
used for both training and testing. Nevertheless,
OOD model scores still surpass those of baseline
scoring functions (see Tables 1 and 6 for baselines),
confirming the effectiveness of LARS.

UE
Method

Calib
Model

Llama2
7b

Llama3
8b

Mistral
7b

Confidence
Llama2-7b 0.858 0.836 0.831
Llama3-8b 0.852 0.874 0.850
Mistral-7b 0.835 0.833 0.852

Entropy
Llama2-7b 0.847 0.830 0.827
Llama3-8b 0.852 0.873 0.850
Mistral-7b 0.841 0.841 0.854

SE
Llama2-7b 0.850 0.836 0.840
Llama3-8b 0.863 0.872 0.862
Mistral-7b 0.850 0.849 0.859

SentSAR
Llama2-7b 0.857 0.841 0.841
Llama3-8b 0.866 0.884 0.863
Mistral-7b 0.851 0.847 0.860

Table 3: AUROC scores of UE methods with LARS
models trained with answers from various chat models.

5.4 LARS on Different Languages

To evaluate the performance of LARS and other
scoring functions across different languages, we
translated the TriviaQA test and calibration datasets
into Turkish, German, and Spanish. As shown in
Table 4, LARS demonstrates adaptability across
languages and outperforms existing scoring func-
tions, showing the importance of calibrating scor-
ing functions for multilingual applications.

Scoring Func. English Turkish German Spanish

LNS 0.747 0.692 0.710 0.701
MARS 0.801 0.695 0.728 0.723
TokenSAR 0.793 0.720 0.758 0.750
LARS 0.864 0.814 0.827 0.835

Table 4: AUROC performance of Entropy with differ-
ent scoring functions on Llama3-8B for the TriviaQA
dataset in different languages.

6 Ablation Studies

6.1 Probability Association Strategies

In Section 4, we explain a sequential approach to
associate tokens of the response with their proba-
bilities, where probability vectors are placed after

each response token in the input to LARS. As an al-
ternative, we explore an additive approach. In this
method, the embedding vectors of the probabilities
are added to the embedding vectors of their corre-
sponding response tokens. This strategy effectively
reduces the input sequence length for the LARS
model. Results in Figure 3 demonstrate that the se-
quential approach is, on average, 0.15 points better
when used with Confidence, although the gap nar-
rows for SE. Comparing the additive approach with
other baselines from Table 1, we observe that it
still significantly outperforms the baselines. Over-
all, these two probability association approaches
highlight a possible trade-off between shortened in-
put length (to the LARS model) and improved UE
performance. Extended results for this experiment
are presented in Appendix C.2.

Figure 3: Comparison of different probability associ-
ation methods for LARS on TriviaQA (top) and Natu-
ralQA (bottom).

6.2 Size of the Calibration Dataset

To assess the scalability of LARS, we calibrate it
using varying amounts of labeled data. Results
in Figure 4 show that even with as few as 1,000
labeled question-ground truth pairs, LARS outper-
forms the best-performing baseline. Impressively,
LARS demonstrates good scalability with calibra-
tion data size. Exploring the scaling of LARS with
even more data remains as a future direction.

Figure 4: AUROC scores of LARS for different amount
of questions in calibration data on TriviaQA. For each
UE method and model, the best score across baseline
scoring functions is provided as a reference.
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6.3 Importance of LARS Input Components
Effect of Probability Information. To assess the
importance of probability information for LARS,
we train a version of the model using only textual
inputs as: the question and the generated answer
Feng et al. (2024) did. The results (Table 5) indi-
cate that excluding probability information leads
to a decrease in the performance of LARS by up to
0.101 AUROC score. This shows the critical role
of probability information in LARS.

Effect of Textual Information. To assess the
impact of textual and semantic information in the
input, we conduct an experiment using only the
probability information. Specifically, we train a
Multilayer Perceptron (MLP) with two hidden lay-
ers, which accepts only the probability vector as
input. As presented in Table 5, the probability-only
model achieves an AUROC of 0.721 with the Con-
fidence metric, significantly underperforming com-
pared to MARS (0.751), TokenSAR (0.747), and
LARS (0.851). These results highlight the crucial
role of integrating textual and probability informa-
tion in enhancing the performance of LARS.

UE Method Scoring Function AUROC PRR

Confidence
Only text 0.750 0.581
Only probs 0.721 0.372
LARS 0.851 0.760

Entropy
Only text 0.754 0.592
Only probs 0.733 0.507
LARS 0.842 0.748

SE
Only text 0.817 0.711
Only probs 0.799 0.623
LARS 0.849 0.745

SentSAR
Only text 0.783 0.664
Only probs 0.771 0.589
LARS 0.850 0.763

Table 5: Comparison of different input modalities (text-
only, probabilities-only, and combined text and proba-
bilities) with Llama2-7b model on the TriviaQA.

7 Related Works

UE has recently become a topic of significant in-
terest, leading to the proposal of various methods.
These methods can be broadly categorized into four
types: 1. Self-checking methods: The model evalu-
ates its own generation correctness using different
strategies (Kadavath et al., 2022; Manakul et al.,
2023; Li et al., 2024; Luo et al., 2023; Zhao et al.,
2024). 2. Output consistency methods: Uncertainty
is predicted by examining the consistency of vari-
ous outputs for a given question (Lyu et al., 2024;
Lin et al., 2024; Zhang et al., 2023; Ulmer et al.,
2024; Elaraby et al., 2023). 3. Internal state exami-
nation methods: The activations of the model are

analyzed to predict the model errors (Chen et al.,
2024). 4. Token probability-based methods: Token
probabilities are utilized to estimate uncertainty
(Malinin and Gales, 2021; Kuhn et al., 2023; Bak-
man et al., 2024; Duan et al., 2024).

Several approaches (Lu et al., 2022; Ravi et al.,
2024; Azaria and Mitchell, 2023; Feng et al., 2024)
have utilized supervised training to predict model
generation reliability in various contexts, such as
hallucination detection and machine translation. Lu
et al. (2022); Azaria and Mitchell (2023) trained
simple neural networks that take an internal state
as input and output generation correctness. From a
practical perspective, this approach has limitations
compared to LARS, as accessing model activations
is not feasible for closed-weight models. Addition-
ally, using internal states might not be ideal for
predicting correctness, since these states contain
diverse information which may be irrelevant for
assessing reliability (Huben et al., 2024). In Table
1, we demonstrate that LARS significantly outper-
forms the approach of Azaria and Mitchell (2023).
Moreover, selecting which internal state to use re-
mains an open question, as the optimal state can
vary from model to model. Transferability across
models is also constrained, particularly when deal-
ing with differing internal dimensions, whereas
LARS exhibits strong model-transferability perfor-
mance. Another line of work by Ravi et al. (2024)
trains a separate generative LLM (observer LLM)
using input and corrected output pairs along with
the reasoning for corrections to detect errors in
the generation. Observer LLM relies on its own
reasoning and general knowledge capabilities to
detect hallucinations. Overall, this method requires
fine-tuning of a generative pretrained LLM with
big sizes such as 70B parameters and high-quality
data curated by human experts. Conversely, LARS
uses the model’s probabilities and the generation
to calibrate the UE computation. Therefore, our ap-
proach does not require training a very large genera-
tive model unlike Ravi et al. (2024) because LARS
does not rely on model’s own factual knowledge
and reasoning capabilities. Their approach can be
adapted to our setting by training only question-
text pairs with RoBERTa model which performs
poorly compared to LARS as shown in Section 6.3.

8 Conclusion

In this study, we first demonstrated the shortcom-
ings of existing scoring functions for uncertainty
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estimation in LLMs. Then, we introduced LARS,
an off-the-shelf scoring function directly learned
from data. We demonstrated that LARS signifi-
cantly outperforms existing baselines across three
different QA datasets, a mathematical reasoning
task, and four different languages. Further, our re-
sults indicate that LARS’ performance scales well
with increased data.

9 Limitations

One limitation of LARS is its reliance on labeled
data, which is not a requirement for other scor-
ing functions. Further, LARS depends on a pre-
trained RoBERTa model, which has a limited se-
quence length capability. This may necessitate the
pre-training of BERT-like models that can handle
longer sequences. Lastly, training LARS with a
transformer model reduces the interpretability of
the features. Traditional scoring functions mod-
ify the weighting of probabilities and compute a
dot product between log probabilities and weights,
offering a level of interpretability. LARS, how-
ever, lacks it due to being a more complex function
(despite its superior performance).

10 Ethics Statement

Although LARS demonstrates superior perfor-
mance compared to existing scoring functions, it
is important to remember that these methods still
fall short of perfection. Consequently, the results
from UE methods should still be taken with a grain
of salt, especially in critical domains such as law
and medicine. Additionally, LARS may propagate
any biases that may be present in its training data
into the scoring function, potentially introducing
biases in UE related to gender, ethnicity, age, and
so on. Such risks must be carefully managed in
real-world applications.
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A Details of non-English Languages
Experiment

Preparing calibration data for LARS: We trans-
late the same 13k question-ground truth pairs from
the train split of TriviaQA to Turkish, German, and
Spanish using the Googletrans library3. Then, we
apply the same procedure as we do for English:
Make the LLM generate 6 answers to the question,
ensuring the most likely generation is included.
The labels for each QA pair are obtained by using
GPT-3.5-turbo. To train LARS, we utilize unique
question-response pairs.
Preparing test data: To test the performance of
varying scoring functions in these languages, we
translate the question-ground truth pairs of test sam-
ples of TriviaQA. After having the translated test
set, the Entropy UE metric is calculated by using
various scoring functions.
Prompts for the LLM: The prompts for the LLM
to generate the answers are also translated into the
corresponding languages to make sure it provides
answers in the target language. Llama3-8b is used
for this experiment since it is known to be trained
in these languages. Prompts are provided below.

To generate answers in Turkish:

System: Sen yardımcı, saygılı ve dürüst
bir asistansın. Sorularımı Türkçe olacak
şekilde net, kısa ve öz cevapla.
User: {question}

To generate answers in German:

System: Du bist ein hilfreicher Assistent.
Geben Sie auf die gestellten Fragen präzise,
kurze Antworten in einem Satz auf Deutsch.
User: {question}

To generate answers in Spanish:

System: Eres un asistente servicial,
respetuoso y honesto. Das respuestas
precisas, breves y de una sola oración a
las preguntas que se te dan en español.
User: {question}

The English translation of the above prompts is
as follows:

System: You are a helpful, respectful
and honest assistant. Give short and
precise answers to given
questions in {target_language}.
User: {question}

3https://py-googletrans.readthedocs.io

Prompt for GPT-3.5-turbo: The following
prompt is used for GPT-3.5-turbo to obtain labels:

You will behave as a question answer
evaluator. I will give you a question,
the ground truth of the question, and
a generated answer by a language model
in {target_language}. You will output
"correct" if the generated answer is
correct regarding question and ground
truth. Otherwise, output "false".
Question: {question},
Ground Truth: {gt_answer},
Generated Answer: {generation}

B Details of LARS training

We use the pre-trained RoBERTa-base model with
a single logit fully-connected layer added to the
end. Binary cross entropy loss is used, while the
optimizer is AdamW with a learning rate of 5e− 6.
The model is trained for 5 epochs. We did a search
for batch size in the set of {4, 8, 16, 32} and found
the optimal batch size as 8 and used it in all of the
experiments. The search set for learning rate was
{1e−6, 5e−6, 1e−5, 5e−4, 1e−4, 5e−4}. Lastly,
we explored training the model for more epochs
(up to 10); however, after epoch 5, we observed
overfitting.

The embedding vectors of probability tokens are
initialized as few-hot as explained in Section 4 and
kept frozen during the training of the model. We
also experimented with training those vectors as
well as initializing them as fully non-zero random
vectors. We observed that the mentioned few-hot
strategy gives superior and more stable results. On
the other hand, for the additive probability associa-
tion approach explained in Section 6.1, initializing
the embedding vectors as few-hot while keeping
them trainable gave the best performance.

C Additional Experiments

C.1 Extension of the Main Results

Extended version of the main results are presented
in Table 6 and 8.

In GSM8K, we observe a decrease in
consistency-based methods, which is due to the sen-
tence similarity step they include. When numeric
values remain more important, sentence similarity
models may perform worse, thus leading to lower
performance of UE methods compared to general-
knowledge datasets. Moreover, we see a common
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UE Method Scoring Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR AUROC PRR

Tr
iv

ia
Q

A

Lex. Sim. - 0.647 0.374 0.683 0.483 0.720 0.517 0.597 0.227 0.611 0.314
# Sem. Gr. - 0.792 0.571 0.819 0.671 0.757 0.521 0.744 0.454 0.776 0.557
p(True) - 0.616 0.267 0.842 0.733 0.805 0.653 0.517 0.023 0.650 0.392

SAPLMA - 0.741 0.484 0.736 0.541 0.785 0.614 0.658 0.373 0.757 0.594
Eccentricity - 0.812 0.629 0.853 0.756 0.818 0.664 0.764 0.496 0.813 0.633

Degree Matrix - 0.812 0.620 0.851 0.746 0.820 0.658 0.766 0.511 0.817 0.646

Confidence
LNS 0.697 0.481 0.748 0.600 0.722 0.533 0.628 0.281 0.655 0.389
MARS 0.751 0.576 0.799 0.676 0.745 0.593 0.638 0.305 0.641 0.381
TokenSAR 0.747 0.572 0.792 0.674 0.747 0.584 0.688 0.386 0.728 0.527
LARS 0.851 0.760 0.872 0.817 0.844 0.759 0.819 0.690 0.846 0.766

Entropy
LNS 0.692 0.461 0.747 0.594 0.738 0.563 0.633 0.286 0.669 0.404
MARS 0.736 0.547 0.801 0.672 0.755 0.602 0.659 0.336 0.672 0.421
TokenSAR 0.734 0.546 0.793 0.676 0.763 0.610 0.694 0.398 0.733 0.528
LARS 0.842 0.748 0.864 0.804 0.849 0.773 0.818 0.690 0.853 0.779

SE
LNS 0.795 0.627 0.835 0.733 0.810 0.670 0.749 0.475 0.800 0.617
MARS 0.797 0.645 0.835 0.742 0.810 0.681 0.749 0.482 0.794 0.615
TokenSAR 0.796 0.640 0.839 0.747 0.813 0.681 0.753 0.493 0.806 0.639
LARS 0.849 0.745 0.866 0.811 0.854 0.782 0.821 0.699 0.866 0.797

SentSAR
LNS 0.784 0.611 0.825 0.723 0.796 0.652 0.728 0.448 0.778 0.593
MARS 0.794 0.636 0.838 0.746 0.802 0.668 0.731 0.456 0.773 0.590
TokenSAR 0.790 0.633 0.840 0.750 0.805 0.669 0.741 0.475 0.791 0.618
LARS 0.850 0.763 0.879 0.823 0.855 0.773 0.823 0.685 0.859 0.770

N
at

ur
al

Q
A

Lex. Sim. - 0.600 0.263 0.651 0.373 0.637 0.340 0.585 0.163 0.604 0.261
# Sem. Gr. - 0.705 0.379 0.736 0.448 0.675 0.283 0.686 0.276 0.709 0.377
p(True) - 0.561 0.90 0.761 0.561 0.727 0.509 0.647 0.247 0.562 0.131

SAPLMA - 0.691 0.397 0.713 0.443 0.723 0.458 0.657 0.289 0.594 0.410
Eccentricity - 0.727 0.431 0.775 0.567 0.727 0.480 0.713 0.368 0.741 0.482

Degree Matrix - 0.727 0.435 0.771 0.554 0.732 0.483 0.715 0.358 0.742 0.487

Confidence
LNS 0.677 0.384 0.697 0.449 0.666 0.390 0.610 0.189 0.648 0.338
MARS 0.699 0.411 0.717 0.477 0.678 0.407 0.615 0.198 0.631 0.311
TokenSAR 0.703 0.431 0.717 0.476 0.682 0.426 0.643 0.249 0.677 0.393
LARS 0.780 0.581 0.812 0.654 0.782 0.599 0.794 0.541 0.772 0.574

Entropy
LNS 0.661 0.559 0.698 0.449 0.679 0.419 0.611 0.202 0.656 0.355
MARS 0.681 0.379 0.707 0.475 0.691 0.447 0.616 0.199 0.636 0.304
TokenSAR 0.683 0.392 0.714 0.477 0.694 0.451 0.644 0.261 0.686 0.410
LARS 0.775 0.573 0.805 0.652 0.781 0.595 0.785 0.529 0.773 0.574

SE
LNS 0.721 0.432 0.759 0.548 0.727 0.499 0.700 0.332 0.733 0.471
MARS 0.720 0.440 0.750 0.546 0.725 0.493 0.705 0.336 0.723 0.440
TokenSAR 0.721 0.443 0.756 0.544 0.726 0.498 0.700 0.340 0.736 0.485
LARS 0.772 0.569 0.794 0.638 0.778 0.591 0.785 0.548 0.779 0.583

SentSAR
LNS 0.712 0.423 0.752 0.543 0.721 0.487 0.680 0.297 0.725 0.468
MARS 0.718 0.435 0.752 0.550 0.722 0.492 0.689 0.301 0.714 0.443
TokenSAR 0.718 0.438 0.756 0.551 0.727 0.496 0.684 0.309 0.732 0.485
LARS 0.779 0.579 0.814 0.665 0.789 0.616 0.793 0.551 0.784 0.583

Table 6: AUROC and PRR scores of UE methods on TriviaQA and NaturalQA.

Figure 5: Comparison of different probability association methods for LARS on TriviaQA (top) and NaturalQA
(bottom).
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UE Method Scoring Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR AUROC PRR

Lex. Sim. - 0.643 0.310 0.640 0.321 0.645 0.312 0.608 0.214 0.624 0.261
# Sem. Gr. - 0.612 0.138 0.599 0.143 0.601 0.184 0.630 0.213 0.587 0.157
p(True) - 0.558 0.078 0.636 0.290 0.667 0.358 0.552 0.041 0.580 0.171

Eccentricity - 0.680 0.375 0.674 0.386 0.662 0.333 0.606 0.203 0.686 0.358
Degree Matrix - 0.683 0.380 0.676 0.384 0.662 0.326 0.611 0.195 0.682 0.364

Confidence

LNS 0.656 0.329 0.645 0.324 0.634 0.305 0.625 0.246 0.602 0.233
MARS 0.669 0.349 0.649 0.333 0.637 0.316 0.627 0.258 0.585 0.199
TokenSAR 0.664 0.345 0.656 0.347 0.640 0.320 0.657 0.287 0.615 0.248
LARS (T) 0.701 0.413 0.704 0.423 0.681 0.399 0.710 0.422 0.675 0.368
LARS (N) 0.701 0.385 0.690 0.413 0.682 0.358 0.732 0.439 0.683 0.384
LARS (T+N) 0.715 0.430 0.713 0.464 0.686 0.406 0.726 0.442 0.676 0.367

Entropy

LNS 0.656 0.332 0.650 0.340 0.647 0.323 0.638 0.272 0.625 0.259
MARS 0.675 0.354 0.657 0.349 0.647 0.328 0.656 0.293 0.602 0.219
TokenSAR 0.668 0.351 0.661 0.355 0.649 0.330 0.665 0.307 0.630 0.267
LARS (T) 0.705 0.433 0.705 0.430 0.686 0.405 0.710 0.428 0.681 0.388
LARS (N) 0.712 0.418 0.690 0.428 0.691 0.393 0.731 0.438 0.687 0.401
LARS (T+N) 0.714 0.441 0.703 0.456 0.693 0.422 0.717 0.430 0.677 0.376

SE

LNS 0.672 0.360 0.664 0.366 0.665 0.353 0.675 0.334 0.644 0.297
MARS 0.679 0.367 0.667 0.370 0.665 0.354 0.679 0.340 0.632 0.267
TokenSAR 0.674 0.365 0.667 0.372 0.663 0.351 0.680 0.343 0.647 0.298
LARS (T) 0.707 0.439 0.697 0.428 0.686 0.407 0.710 0.431 0.680 0.388
LARS (N) 0.709 0.422 0.685 0.426 0.693 0.402 0.726 0.437 0.684 0.400
LARS (T+N) 0.711 0.440 0.694 0.449 0.697 0.430 0.719 0.440 0.678 0.382

SentSAR

LNS 0.703 0.406 0.687 0.400 0.677 0.362 0.691 0.356 0.672 0.336
MARS 0.705 0.408 0.692 0.406 0.677 0.365 0.700 0.365 0.662 0.313
TokenSAR 0.704 0.407 0.691 0.406 0.678 0.363 0.698 0.364 0.671 0.333
LARS (T) 0.714 0.445 0.718 0.455 0.693 0.408 0.724 0.457 0.695 0.403
LARS (N) 0.730 0.465 0.705 0.455 0.705 0.423 0.747 0.484 0.701 0.421
LARS (T+N) 0.728 0.471 0.721 0.484 0.698 0.409 0.732 0.467 0.692 0.404

Table 7: AUROC and PRR performance of UE methods on WebQA dataset. LARS models are trained with
TriviaQA (T) and/or NaturalQA (N).

UE Method Scoring Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR AUROC PRR

Lex. Sim. - 0.444 0 0.632 0.272 0.537 0.019 0.544 0.080 0.551 0.110
# Sem. Gr. - 0.513 0 0.584 0.138 0.532 0.037 0.566 0.114 0.561 0.065
p(True) - 0.540 0.099 0.797 0.623 0.665 0.238 0.486 0 0.501 0

Eccentricity - 0.547 0.049 0.664 0.384 0.584 0.109 0.595 0.146 0.600 0.163
Degree Matrix - 0.535 0.056 0.667 0.667 0.604 0.165 0.584 0.117 0.605 0.179

Confidence

LNS 0.570 0.031 0.686 0.390 0.567 0.072 0.556 0.370 0.615 0.196
MARS 0.567 0.010 0.713 0.438 0.568 0.076 0.541 0.099 0.562 0.114
TokenSAR 0.579 0.045 0.719 0.460 0.619 0.156 0.579 0.161 0.636 0.233
LARS(G) 0.720 0.319 0.836 0.711 0.708 0.350 0.706 0.370 0.738 0.497
LARS(T) 0.582 0.091 0.683 0.379 0.637 0.197 0.554 0.081 0.584 0.137
LARS(N) 0.578 0.087 0.695 0.391 0.603 0.149 0.600 0.144 0.641 0.239
LARS(T+N) 0.603 0.097 0.684 0.348 0.630 0.188 0.676 0.114 0.635 0.218

Entropy

LNS 0.511 0 0.643 0.308 0.571 0.090 0.570 0.124 0.574 0.123
MARS 0.509 0 0.668 0.367 0.573 0.088 0.559 0.103 0.562 0.086
TokenSAR 0.537 0 0.665 0.369 0.618 0.148 0.577 0.131 0.597 0.156
LARS(G) 0.701 0.300 0.759 0.579 0.684 0.316 0.681 0.328 0.706 0.408
LARS(T) 0.579 0.082 0.641 0.330 0.624 0.194 0.555 0.070 0.586 0.172
LARS(N) 0.542 0.047 0.646 0.319 0.623 0.166 0.557 0.089 0.594 0.182
LARS(T+N) 0.586 0.083 0.632 0.291 0.624 0.182 0.562 0.081 0.604 0.191

SE

LNS 0.516 0 0.633 0.321 0.560 0.076 0.588 0.141 0.587 0.153
MARS 0.513 0 0.640 0.344 0.563 0.080 0.586 0.134 0.583 0.122
TokenSAR 0.526 0.005 0.638 0.344 0.578 0.102 0.588 0.148 0.592 0.171
LARS(G) 0.675 0.267 0.715 0.528 0.663 0.310 0.679 0.345 0.697 0.383
LARS(T) 0.565 0.068 0.639 0.325 0.598 0.173 0.573 0.096 0.593 0.186
LARS(N) 0.537 0.042 0.635 0.319 0.598 0.141 0.581 0.128 0.598 0.194
LARS(T+N) 0.572 0.072 0.633 0.298 0.605 0.170 0.579 0.112 0.608 0.209

SentSAR

LNS 0.559 0.007 0.698 0.440 0.622 0.167 0.580 0.335 0.634 0.220
MARS 0.545 0 0.712 0.467 0.618 0.157 0.574 0.128 0.622 0.187
TokenSAR 0.569 0.027 0.712 0.477 0.645 0.189 0.581 0.134 0.640 0.226
LARS(G) 0.699 0.300 0.772 0.613 0.695 0.338 0.681 0.335 0.712 0.419
LARS(T) 0.579 0.080 0.662 0.383 0.639 0.214 0.562 0.081 0.591 0.170
LARS(N) 0.551 0.046 0.671 0.389 0.641 0.209 0.569 0.109 0.605 0.202
LARS(T+N) 0.587 0.081 0.645 0.323 0.636 0.207 0.574 0.090 0.612 0.199

Table 8: AUROC and PRR performance of UE methods on GSM8K dataset. LARS models are trained with
GSM8K (G) or TriviaQA (T) and/or NaturalQA (N).
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UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

Confidence

Best Score of Baselines 0.7032 0.7136 0.6823 0.6433
LARS (N) 0.7685 0.7940 0.7765 0.7919
LARS (T) 0.7455 0.7689 0.7365 0.7415
LARS (T+N) 0.7731 0.7997 0.7774 0.7838

Entropy

Best Score of Baselines 0.6831 0.7144 0.6944 0.6439
LARS (N) 0.7655 0.7936 0.7781 0.7832
LARS (T) 0.7434 0.7736 0.7392 0.7431
LARS (T+N) 0.7629 0.7918 0.7761 0.7759

SE

Best Score of Baselines 0.7210 0.7591 0.7272 0.7049
LARS (N) 0.7665 0.7873 0.7770 0.7845
LARS (T) 0.7511 0.7750 0.7497 0.7594
LARS (T+N) 0.7635 0.7849 0.7766 0.7804

SentSAR

Best Score of Baselines 0.7177 0.7563 0.7268 0.6891
LARS (N) 0.7709 0.8034 0.7880 0.7900
LARS (T) 0.7496 0.7845 0.7492 0.7508
LARS (T+N) 0.7714 0.8031 0.7832 0.7812

Table 9: OOD data experiments on NaturalQA dataset with AUROC score. LARS models are trained with
TriviaQA (T) and/or NaturalQA (N).

UE Method Scoring Function Llama2-7b Llama3-8b Mistral-7b Gemma-7b

Confidence

Best Score of Baselines 0.7510 0.7994 0.7468 0.6883
LARS (T) 0.8505 0.8721 0.8443 0.8191
LARS (N) 0.7780 0.8243 0.7893 0.7678
LARS (T+N) 0.8414 0.8620 0.8305 0.8060

Entropy

Best Score of Baselines 0.7356 0.8012 0.7634 0.6941
LARS (T) 0.8416 0.8642 0.8488 0.8184
LARS (N) 0.7852 0.8348 0.8090 0.7760
LARS (T+N) 0.8354 0.8602 0.8373 0.8092

SE

Best Score of Baselines 0.7973 0.8388 0.8132 0.7528
LARS (T) 0.8488 0.8662 0.8541 0.8214
LARS (N) 0.8181 0.8515 0.8349 0.7968
LARS (T+N) 0.8457 0.8621 0.8493 0.8157

SentSAR

Best Score of Baselines 0.7940 0.8402 0.8050 0.7411
LARS (T) 0.8496 0.8789 0.8545 0.8231
LARS (N) 0.8102 0.8549 0.8285 0.7889
LARS (T+N) 0.8483 0.8758 0.8454 0.8159

Table 10: OOD data experiments on TriviaQA dataset with AUROC score. LARS models are trained with
TriviaQA (T) and/or NaturalQA (N).
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behavior that SE and sentSAR mostly improves
performance compared to confidence and entropy
on most of the scoring functions for TriviaQA, Nat-
uralQA and WebQA. This increase is expected due
to their mechanism of checking the consistency
of the outputs. However, when the performance
of sentence similarity measuring approaches are
not stable–as we see in GSM8K–the positive effect
of SE and SentSAR remains very low. A similar
discussion can be made for Eccentricity and De-
gree Matrix approaches since they use the same
sentence similarity model as SE.

C.2 Probability Association Strategies
The extended comparison between sequential and
additive probability association strategies are pre-
sented in Figure 5.

C.3 OOD Data Experiments - LARS
Extended OOD data results for WebQA and
GSM8K are presented in Tables 7 and 8.

Table 9 details OOD data experiments on Natu-
ralQA, and Table 10 covers OOD data experiments
on TriviaQA. Training LARS with data from dif-
ferent distributions results in a performance drop.
However, when we integrate the original calibra-
tion data with OOD data, LARS achieves better
results in NaturalQA experiments. This suggests
that increasing the dataset size, even with data from
other distributions, might enhance the performance
of LARS depending on the dataset.

C.4 LARS without Labeled Data
In this section, we explore the performance of
LARS in the absence of labeled data. For this,
for each question in the calibration dataset, we
first use Llama3-8b to generate answers. To as-
sess the correctness of these answers, we employ
a teacher LLM (either Llama3-70b or Llama3-8b)
and prompt it to evaluate the correctness of the gen-
erated answers. This method produces noisy labels,
some of which are incorrect.

Despite these noisy labels, training LARS with
them yields a good performance, surpassing both
other baselines and the self-evaluation of the LLM
(see Table 11). This finding is promising and sug-
gests that the pre-trained nature of the RoBERTa
model, which already possesses some understand-
ing of textual inputs, enables it to understand key
features from the noisy and partial feedback pro-
vided by the teacher LLM. This capability con-
tributes to getting a better scoring function than

asking the LLM itself. Such effectiveness of pre-
trained models in handling noisy labels supports
previous research (Kim et al., 2021), underscoring
the potential of LARS for further investigation in
such environments.

Teacher Model

UE Method Llama3-70b Llama3-8b

Ask LLM 0.746 0.635
LARS (No Labeled Data) 0.837 0.809

Table 11: Results for LARS trained without labeled data
on TriviaQA. The Confidence method is used for UE.

C.5 Effect of the Model Family Choice
The reasoning behind our model choice for LARS
is thoroughly explained in Section 4. To further
validate our decision to use a transformer-based
architecture, we trained a supervised MLP model
that transforms the input text, output text, and prob-
abilities into a fixed vector. Specifically, we used a
sentence encoder to encode the text into a fixed vec-
tor and appended the corresponding probabilities,
which served as input for the MLP.

The results, presented in Table 12, clearly
demonstrate that LARS consistently outperforms
the MLP by substantial margins. These findings
indicate that a naive input strategy, such as the one
used for the MLP, fails to capture the complexi-
ties of the problem, whereas a more sophisticated
model family, like the one employed by LARS, is
necessary to achieve optimal performance in un-
certainty estimation. Moreover, the input strategy
used in the MLP performs worse than directly feed-
ing the probability vectors into the model. This
could be due to the fact that adding a fixed repre-
sentation of the text meaning increases the input
dimensionality without significantly benefiting UE.
As a result, this approach may reduce the model’s
ability to generalize effectively.

UE Method Scoring Function AUROC PRR

Confidence MLP 0.666 0.398
LARS 0.851 0.760

Entropy MLP 0.718 0.509
LARS 0.842 0.748

SE MLP 0.787 0.634
LARS 0.849 0.745

SentSAR MLP 0.744 0.571
LARS 0.850 0.763

Table 12: Comparison of LARS and MLP with the same
modalities on Llama2-7b model on the TriviaQA.

C.6 Choice of Encoder-only Transformer
To evaluate the effect of LARS model selection on
both architecture and model size, we trained four
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LARS models using TriviaQA-LLama3-8b calibra-
tion data. The LARS models utilized are: bert-
base-uncased, bert-large-uncased (Devlin et al.,
2019), roberta-base, and roberta-large (Liu et al.,
2019). The sizes of each model are 110M, 336M,
125M, and 355M, respectively. The results are
presented in Figure 6. When comparing BERT
and RoBERTa models of similar sizes, it is evi-
dent that RoBERTa consistently outperforms BERT.
As model size increases, BERT’s performance im-
proves, whereas RoBERTa exhibits the opposite be-
havior. Notably, a detailed hyperparameter search
was not performed for RoBERTa-large. If con-
ducted, this might allow RoBERTa-large to sur-
pass RoBERTa-base; however, considering the in-
ference costs, RoBERTa-base is used as the default
LARS model.

C.7 Effect of Number of Probability Tokens

Figure 7 shows the impact of varying the num-
ber of probability tokens, k during LARS training.
Probabilities are divided into k quantiles, each rep-
resented by a unique few-hot vector, as described
in Section 4. The choice of k directly influences
the bias-variance trade-off of the model. With a
high number of probability tokens, the model may
overfit, reflecting minor fluctuations in probability
within the inputs. Conversely, a small number of
tokens might hinder the model’s ability to distin-
guish between significantly different probabilities,
as they are represented by identical tokens. Our
results indicate that using 8 quantiles for the proba-
bility vectors generally yields the best generaliza-
tion.

C.8 LARS on Different Languages

Extended results on different languages from Sec-
tion 5.4 are presented in Table 14. In all languages,
LARS consistently outperforms baseline UE meth-
ods and scoring functions.

C.9 Impact of Question as LARS Input

In this section, we evaluate the impact of includ-
ing the question as input to the LARS model. The
results, shown in Table 13, indicate a consistent
performance drop when the question is omitted.
This outcome is expected, as the question context
plays a crucial role in determining whether a gener-
ated response is nonsensical or off-topic. However,
we argue that the performance drop is not substan-
tial. Thus, if computational efficiency is a priority,

LARS can still be effectively used without the ques-
tion context.

UE Method Scoring Function AUROC PRR

Confidence No question 0.832 0.720
LARS 0.851 0.760

Entropy No question 0.828 0.716
LARS 0.842 0.748

SE No question 0.836 0.736
LARS 0.849 0.745

SentSAR No question 0.842 0.740
LARS 0.850 0.763

Table 13: LARS with and without question in the input.

C.10 OOD Model Experiments - LARS

In this section, we present extensive OOD model
experiments for LARS. The results are detailed in
Table 15, with interpretations similar to those in
Table 3. Training LARS on outputs from different
LLMs results in an expected performance drop.
Nonetheless, LARS continues to outperform other
scoring functions, demonstrating its robustness and
potential.

In this experiment, for each LLM we use, we
train a LARS model using all of the TriviaQA and
NaturalQA samples we created for training.

D Experimental Details

Datasets. To train the LARS model, for each Triv-
iaQA and NaturalQA training split, we randomly
select ∼13k samples resulting in ∼60k sampled
unique QA pairs. We use all of the train split of
GSM8K containing ∼8k samples. To evaluate the
UE methods we use 4 datasets: ∼9k samples from
the TriviaQA validation split, the validation set
of NaturalQA consisting of ∼3500 samples, ∼6k
samples coming from the train and validation sets
of WebQA combined, and complete test split of
GSM8K containing ∼1k samples.

Example Samples from Datasets. We provide
samples from the datasets we use for the evaluation
of UE methods in Table 16.

Generation Configurations. We utilize Hugging-
face library and its built-in generate() function
to obtain answers. We use num_beams=1. For the
most likely responses we set do_sample=False
while for the set of sampled generations, it is True.
We set the default LLMs’ eos token as end of sen-
tence token to stop the generation.
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Figure 6: AUROC scores for different choice of LARS models on TriviaQA and LLama3-8b.

Figure 7: AUROC scores for varying number of probability tokens for LARS on 2 models and 2 datasets.

UE Method Scoring English Turkish German Spanish
Function AUROC PRR AUROC PRR AUROC PRR AUROC PRR

Lex. Sim. - 0.683 0.483 0.652 0.361 0.660 0.410 0.640 0.369
# Sem. Gr. - 0.819 0.671 0.683 0.343 0.774 0.571 0.787 0.605

Eccentricity - 0.853 0756. 0.732 0.482 0.805 0.668 0.813 0.689
Degree Matrix - 0.851 0.746 0.748 0.583 0.802 0.675 0.814 0.692

Confidence
LNS 0.748 0.600 0.714 0.500 0.727 0.544 0.704 0.504
MARS 0.799 0.676 0.720 0.503 0.747 0.582 0.728 0.550
TokenSAR 0.792 0.674 0.747 0.568 0.779 0.645 0.761 0.609
LARS 0.872 0.817 0.831 0.703 0.843 0.754 0.852 0.764

Entropy
LNS 0.747 0.594 0.692 0.450 0.710 0.523 0.701 0.491
MARS 0.801 0.672 0.695 0.457 0.728 0.555 0.723 0.533
TokenSAR 0.793 0.676 0.720 0.515 0.758 0.614 0.750 0.590
LARS 0.864 0.804 0.814 0.680 0.827 0.737 0.835 0.742

SE
LNS 0.835 0.733 0.734 0.554 0.791 0.663 0.797 0.667
MARS 0.835 0.742 0.734 0.551 0.789 0.663 0.795 0.666
TokenSAR 0.839 0.747 0.739 0.568 0.796 0.676 0.800 0.677
LARS 0.866 0.811 0.799 0.668 0.824 0.735 0.831 0.742

SentSAR
LNS 0.825 0.723 0.728 0.530 0.765 0.629 0.765 0.617
MARS 0.838 0.746 0.731 0.531 0.775 0.641 0.775 0.631
TokenSAR 0.840 0.750 0.752 0.577 0.793 0.673 0.790 0.660
LARS 0.879 0.823 0.828 0.705 0.841 0.757 0.848 0.763

Table 14: AUROC and PRR performance of different UE methods on Llama3-8B for the TriviaQA dataset in
different languages.
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Dataset UE Method Calibration Model Llama2-7b Llama3-8b Mistral-7b Gemma-7b Llama2-13b

Tr
iv

ia
Q

A

Confidence

Best Baseline Score 0.7510 0.7994 0.7468 0.6883 0.7278
Llama2-7b 0.8577 0.8355 0.8309 0.7993 0.8432
Llama3-8b 0.8519 0.8737 0.8499 0.7830 0.8146
Mistral-7b 0.8352 0.8327 0.8518 0.7872 0.8315
Gemma-7b 0.8169 0.8172 0.8097 0.8311 0.8054
Llama2-13b 0.8376 0.8526 0.8327 0.7829 0.8510

Entropy

Best Baseline Score 0.7356 0.8012 0.7634 0.6941 0.7332
Llama2-7b 0.8469 0.8298 0.8271 0.8060 0.8473
Llama3-8b 0.8520 0.8730 0.8501 0.7955 0.8313
Mistral-7b 0.8410 0.8407 0.8542 0.7974 0.8380
Gemma-7b 0.8145 0.8181 0.8200 0.8279 0.8115
Llama2-13b 0.8335 0.8525 0.8435 0.7916 0.8553

SE

Best Baseline Score 0.7973 0.8388 0.8132 0.7528 0.8062
Llama2-7b 0.8497 0.8358 0.8402 0.8100 0.8603
Llama3-8b 0.8625 0.8719 0.8623 0.8008 0.8518
Mistral-7b 0.8496 0.8490 0.8591 0.8056 0.8579
Gemma-7b 0.8334 0.8425 0.8372 0.8289 0.8386
Llama2-13b 0.8447 0.8660 0.8554 0.8049 0.8671

SentSAR

Best Baseline Score 0.7940 0.8402 0.8050 0.7411 0.7910
Llama2-7b 0.8572 0.8409 0.8413 0.7900 0.8584
Llama3-8b 0.8663 0.8838 0.8634 0.8017 0.8453
Mistral-7b 0.8514 0.8474 0.8596 0.8055 0.8513
Gemma-7b 0.8309 0.8363 0.8327 0.8338 0.8272
Llama2-13b 0.8456 0.8687 0.8506 0.7980 0.8616

N
at

ur
al

Q
A

Confidence

Best Baseline Score 0.7032 0.7136 0.6823 0.6433 0.6774
Llama2-7b 0.7886 0.7546 0.7512 0.7288 0.7613
Llama3-8b 0.7732 0.8113 0.7679 0.7265 0.7517
Mistral-7b 0.7538 0.7543 0.7868 0.7195 0.7507
Gemma-7b 0.7522 0.7397 0.7493 0.8033 0.7295
Llama2-13b 0.7727 0.7695 0.7571 0.7308 0.7812

Entropy

Best Baseline Score 0.6831 0.7144 0.6944 0.6439 0.6859
Llama2-7b 0.7756 0.7582 0.7550 0.7367 0.7641
Llama3-8b 0.7734 0.8103 0.7767 0.7374 0.7544
Mistral-7b 0.7569 0.7642 0.7877 0.7305 0.7607
Gemma-7b 0.7481 0.7463 0.7506 0.7939 0.7351
Llama2-13b 0.7671 0.7752 0.7569 0.7363 0.7783

SE

Best Baseline Score 0.7210 0.7591 0.7272 0.7049 0.7361
Llama2-7b 0.7695 0.7590 0.7574 0.7521 0.7716
Llama3-8b 0.7767 0.8038 0.7820 0.7513 0.7661
Mistral-7b 0.7627 0.7681 0.7826 0.7484 0.7680
Gemma-7b 0.7517 0.7602 0.7561 0.7916 0.7511
Llama2-13b 0.8049 0.7837 0.7672 0.7548 0.7843

SentSAR

Best Baseline Score 0.7177 0.7563 0.7268 0.6891 0.7319
Llama2-7b 0.7835 0.7639 0.7595 0.7423 0.7738
Llama3-8b 0.7816 0.8154 0.7838 0.7417 0.7655
Mistral-7b 0.7669 0.7705 0.7940 0.7360 0.7682
Gemma-7b 0.7572 0.7567 0.7616 0.7978 0.7486
Llama2-13b 0.7980 0.7838 0.7654 0.7415 0.7853

Table 15: OOD model experiments on TriviaQA and NaturalQA datasets with AUROC scores.
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Question Ground Truth

Tr
iv

ia
Q

A

David Lloyd George was British Prime Minister during the reign of
which monarch?

King George V

How many symphonies did Jean Sibelius compose? Seven

The capital of Brazil was moved from Rio de Janeiro to the purpose-
built capital city of Brasilia in what year?

1960

N
at

ur
al

Q
A when was the last time anyone was on the moon December 1972

who wrote he ain’t heavy he’s my brother lyrics Bobby Scott, Bob Russell

how many seasons of the bastard executioner are there one

W
eb

Q
A

what is the name of justin bieber brother? Jazmyn Bieber

what character did natalie portman play in star wars? Padmé Amidala

what character did john noble play in lord of the rings? Denethor II

G
SM

8K

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in
April and May?

72

Julie is reading a 120-page book. Yesterday, she was able to read 12
pages and today, she read twice as many pages as yesterday. If she
wants to read half of the remaining pages tomorrow, how many pages
should she read?

42

Mr. Sam shared a certain amount of money between his two sons,
Ken and Tony. If Ken got $1750, and Tony got twice as much as Ken,
how much was the money shared?

5250

Table 16: Data samples from the datasets we use to evaluate UE methods: TriviaQA, NaturalQA, WebQA, and
GSM8K.
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GPT Performance in Evaluation of Deneration
Correctness. Following prior works (Lin et al.,
2024; Duan et al., 2024; Bakman et al., 2024), we
employed GPT-3.5-turbo to assign correctness la-
bels to model-generated answers based on the pro-
vided ground truth and question. To assess the
effectiveness of GPT-3.5-turbo in this task, we con-
ducted a human evaluation. A human evaluator
independently assessed the answers against the
ground truth and the question without access to
GPT-generated labels. The accuracy of GPT-3.5-
turbo’s correctness labels was then calculated by
comparing them to the human evaluations. It ob-
tained an accuracy of 96%, highlighting the high
performance of GPT-3.5-turbo in this task.

Computational Cost. We use 40 GB Nvidia A-
100 GPUs for all the experiments. The total GPU-
hours for training a LARS model with a calibra-
tion dataset generated from ∼13k questions is ap-
proximately 4. Labeling of the calibration data for
one dataset and one model takes approximately 30
GPU-hours. Getting all the results in Tables 6 and
8 compromises ∼300 GPU-hours excluding LARS
training. All presented results are obtained with a
single run.

Prompts. The prompts for the LLM models to
generate answers to questions are given below.

For LLama family:

System:You are a helpful, respectful
and honest assistant. Give precise,
short, one sentence answers to given
questions. Do not use emojis.
User:{question}

For Mistral-7b:

User: Give precise, short, one
sentence answers to given
questions. {question}

For Gemma-7b:

User: You are a helpful, respectful
and honest assistant. Give precise,
short, one sentence answers to
given questions. Question:{question}

The prompt used for GPT-3.5-turbo to obtain
labels:

You will behave as a question answer
evaluator. I will give you a question,
the ground truth of the question, and

a generated answer by a language model.
You will output "correct" if the
generated answer is correct regarding
question and ground truth.
Otherwise, output "false".
Question: {question},
Ground Truth: {gt_answer},
Generated Answer: {generation}

The prompt for the teacher models explained in
Section C.4 is as follows:

System: You are a helpful, respectful
and honest question-answer evaluator.
You will be given a question and a
possible answer. Evaluate the
possible answer as true or false
considering the question. Output
"true" if the answer is correct.
Otherwise, output "false". Do not
make any explanation.
User: Question:{question}
Possible answer:{answer}

The prompts for the LLM models to self-check
their answers for p(True) evaluation is provided
below. For Llama family:

System: You are a helpful, respectful
and honest question-answer evaluator.
You will be given a question, some
brainstormed ideas and a possible
answer. Evaluate the possible answer
as True or False considering the
question and brainstormed ideas.
Output only True or False.
User: Question:{few_shot_q1}
Here are some ideas that were
brainstormed:{few_shot_samples1}
Possible answer:{few_shot_ans1}
The possible answer is:
Assistant: True
User: Question:{few_shot_q2}
Here are some ideas that were
brainstormed:{few_shot_samples2}
Possible answer:{few_shot_ans2}
The possible answer is:
Assistant: False
User: Question:{question}
Here are some ideas that were
brainstormed:{sampled_generation}
Possible answer:{most_likelt_gen}
The possible answer is:
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For Mistral-7b and Gemma-7b:

User: You are a helpful, respectful
and honest question-answer evaluator.
You will be given a question, some
brainstormed ideas and a possible
answer. Evaluate the possible answer
as True or False considering the
question and brainstormed ideas.
Output only True or False.
Question:{few_shot_q1}
Here are some ideas that were
brainstormed:{few_shot_samples1}
Possible answer:{few_shot_ans1}
The possible answer is:
Assistant: True
User: Question:{few_shot_q2}
Here are some ideas that were
brainstormed:{few_shot_samples2}
Possible answer:{few_shot_ans2}
The possible answer is:
Assistant: False
User: Question:{question}
Here are some ideas that were
brainstormed:{sampled_generation}
Possible answer:{most_likelt_gen}
The possible answer is:
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