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Abstract

In-Context Learning (ICL) empowers Large
Language Models (LLMs) with the ability to
learn from a few examples provided in the
prompt, enabling downstream generalization
without the requirement for gradient updates.
Despite encouragingly empirical success, the
underlying mechanism of ICL remains unclear.
Existing research remains ambiguous with var-
ious viewpoints, utilizing intuition-driven and
ad-hoc technical solutions to interpret ICL. In
this paper, we leverage a data generation per-
spective to reinterpret recent efforts from a
systematic angle, demonstrating the potential
broader usage of these popular technical so-
lutions. For a conceptual definition, we rig-
orously adopt the terms of skill recognition
and skill learning. Skill recognition selects
one learned data generation function previously
seen during pre-training while skill learning
can learn new data generation functions from
in-context data. Furthermore, we provide in-
sights into the strengths and weaknesses of
both abilities, emphasizing their commonali-
ties through the perspective of data generation.
This analysis suggests potential directions for
future research. The corresponding paper list
can be found here.

1 Introduction

LLMs have revolutionized Natural Language Pro-
cessing (NLP) (Achiam et al., 2023) and other rel-
evant areas such as multi-modal tasks over vision
and language (Liu et al., 2023a), accelerating nu-
merous challenging research directions, e.g., AI
agent (Durante et al., 2024), reasoning (Wei et al.,
2022b), and story telling (Xie et al., 2023). These
amazing applications display LLMs’ emerging ca-
pabilities, which can be formally defined as new
abilities that are not present in small models but
arise in larger ones (Zhao et al., 2023). Among
them, the emerging ICL ability serves as an im-
portant foundation of other capabilities. Notably,

Review: Wonderful food!         Sentiment: Positive

Review: The Beef is overcooked. Sentiment: Negative

. . .. . .

Review: Fruits taste great.            Sentiment:
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Figure 1: Illustration of ICL for Sentiment Analysis. The
upper instances (with background color gray) are the labeled
in-context demonstrations, while the last line is the query for
which LLMs infer the sentiment label.

small models also have the capability to perform
ICL, but the level of capability is different from
that of larger models, wherein people can easily ob-
serve more in-depth displays of understanding for
the given context of inputs, e.g., identify long-term
dependency and abstract concept comprehension.
For instance, Ganguli et al. (2023) demonstrates
that only LLMs over 22B parameters can under-
stand the moral concepts, being able to generate
unbiased answers.

ICL, a fundamental and emerging capability
serving as the pre-requisite for many complicated
abilities, is the process of leveraging a few selected
labeled demonstrations with the format (input, la-
bel)1, before the query input, for making predic-
tions in a few-/one-shot manner. An example of
ICL is illustrated in Figure 1.

Despite the empirical success of various ICL
prompting strategies for downstream applica-
tions (Mavromatis et al., 2023; Ye et al., 2022),
the mechanism of ICL remains unclear, leading to
unexplainable observations, e.g., sensitivity to the
sample order (Lu et al., 2021), or being robust to
human-crafted yet irrational input-label mapping.
Increasing attention has been paid to understand
ICL from various perspectives. However, this area
is still growing, with many open research questions
are actively being explored. Due to the complexity

1In this paper, we focus on classification tasks, as they are
widely used in theoretical studies of ICL due to their well-
defined mathematical tools and clear evaluation metrics.
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Table 1: A summarization table of representative works. SR and SL stand for skill recognition and skill learning, respectively.
Function approximation revolves around how effectively ICL can fit different generalized functions. The Internal Mechanism
describes how LLMs learn through various gradient descent algorithms. More details on empirical simplification and theoretical
assumptions can be found in Appendix D.

Literature Ability Analysis View Date Generation Function Characteristics

Xie et al. (2021); Zhang et al. (2023c) SR
Theoretical

HMM Internal Mechanism
& Empirical

Wang et al. (2023) SR Empirical LDA Generalization
Zhao (2023) SR Theoretical Hopfield Network Internal Mechanism
Raventos et al. (2023) SL Theoretical linear regression Generalization
Wu et al. (2023a) SL Empirical linear regression Generalization
Garg et al. (2022) SL Empirical linear regression, decision tree, NN Function Approximation
Bai et al. (2023); Fu et al. (2023a) SL Theoretical linear regression, decision tree, NN Generalization
Yadlowsky et al. (2023); Ahuja et al. (2023) SL Empirical linear regression, polynomial regression Generalization
Von Oswald et al. (2023); Zhang et al. (2023b)

SL Theoretical linear regression Internal Mechanism
(Mahankali et al., 2023; Ahn et al., 2023a)
Akyürek et al. (2022) SL Theoretical linear regression Internal Mechanism
Li et al. (2023a); Ren and Liu (2023)

SL Theoretical non-linear regression Internal Mechanism
Cheng et al. (2023); Guo et al. (2023)
Hahn and Goyal (2023) SR&SL Theoretical context-free grammar Generalization

of LLMs, most existing works only take one indi-
vidual factor into account, e.g., the pre-training data
distribution (Chan et al., 2022a), model scale (Wei
et al., 2023), or difficulty level of the in-context
task (Raventos et al., 2023). Moreover, existing
works focusing the same factor may adopt different
experimental settings (Yoo et al., 2022; Min et al.,
2022), leading to potentially conflicting conclu-
sions. Typically, Pan (2023) categorizes ICL into
two abilities: task recognition and task learning.

In this paper, we propose the data generation
perspective as a principled angle to comprehend
existing studies towards understanding ICL. Fol-
lowing this perspective, the pretraining stage can be
interpreted as learning the data generation function
classes underlying pretraining corpus, where the
masked language modeling objective (Devlin et al.,
2019) and the next token prediction objective (Rad-
ford et al., 2018) are both objectives that allow us
learn the data generation functions. Similarly, the
ICL stage can be considered as a label generation
process given the query inputs. Therefore, adopting
this data generation perspective enables a unified
framework through which we can cohesively an-
alyze both pretraining and ICL stages, offering a
holistic approach to understanding the foundations
of LLMs.

Guided by the data generation perspective, we in-
troduce a more principled and rigorous understand-
ing framework on skill learning and skill recogni-
tion, distinguished by whether LLMs can learn a
new data generation function in context. The skill
learning ability is to learn a new data generation
function in context, which is unseen in the pretrain-
ing stage. The skill recognition ability selects one
learned data generation function previously seen

during pre-training. To analyze the mechanism
of abilities, the function learning statistical frame-
work (Garg et al., 2022) and the Bayesian inference
statistical framework (Xie et al., 2021) are represen-
tative works for skill learning and skill recognition
ability, respectively.

Organization: Section 2 introduces previous
studies of ICL and Section 3 presents the termi-
nology. Key contributions lie in Section 4 and 5,
which systematically review the skill recognition
with the Bayesian inference framework and the
skill learning with the function learning framework,
respectively. We outline the challenges and poten-
tial directions in Section 6, aiming to offer a valu-
able guide for newcomers to the field while also
illuminating pathways for future research.

2 Related works

Comparison with existing relevant literature.
The key difference between our work and existing
ones lies in its more dedicating scope on the mech-
anism of ICL and advocating a principled data gen-
eration perspective, instead of a broad, application-
oriented perspective in Dong et al. (2022); Zhao
et al. (2023); Wei et al. (2022a). Our work provides
a comprehensive literature review and clear catego-
rization as shown in Table 1. Moreover, we propose
a new holistic data generation perspective which
can be utilized for the tokenizer, which clarifies the
connections and distinctions between different data
statistical frameworks.

Distinguish skill learning from skill recogni-
tion. The skill can be regarded as a data generation
function, referring to the underlying hypothesis on
the textual data generation. To determine whether
the utilized skill is from the pre-training function
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class or is a new function, an empirical method
is to validate whether LLMs can fit a set of data
generated with a ground-truth function which is
outside the pre-training function class.

Distinguish skill recognition/learning from
task recognition/learning (Pan, 2023). We dis-
tinguish our proposed skill recognition/learning
from a data generation perspective with previous
task recognition/learning proposed in (Pan, 2023).
Task recognition/learning is a narrower aspect of
our skill recognition/learning as they majorly focus
on the empirical performance variation under the
label permutation on in-context data. Task learning
is recognized as performance degradation, indicat-
ing ICL learns the permuted in-context data. In
contrast, the task recognition corresponds to the
unchanged performance, indicating ICL only relies
on pre-training knowledge. The key advantages of
our proposed skill recognition/learning definition
are shown as follows: (1) Thanks to the mathe-
matical description with a data generation function,
skill learning/recognition enables both theoretical
analysis and empirical evidence, instead of only
focusing on the empirical one. (2) Task recogni-
tion/learning can only emphasize the performance
of a classification task in complicated real-world
applications. Instead, skill learning/recognition can
utilize different existing data generation functions
in the NLP domain, e.g., HMM, and LDA, rather
than merely input-label mapping for classification.
Moreover, the data generation enables to conduct
synthetic analyses in a systematic and controllable
setting.

3 Terminology

The prompt sequence of In-Context Learning con-
sists of two parts: (1) The demonstration is illus-
trated as an (input, label) pair, denoted as (xi, yi);
These demonstrations provide the basic description
of the intended task. (2) The query is the test input
after a few demonstrations. ICL aims to provide
the correct prediction for the query based on the in-
context demonstrations and the prior knowledge of
a pre-trained LLM. The data generation function
in this paper refers to the underlying hypothesis
on language data generation. It serves as the data
assumption in the theoretical understanding and
the simulation data generator for the synthetic ex-
perimental analysis. Each data generation function
obtained by the LLM can be recognized as a skill.

4 Skill Recognition

Skill recognition ability is the ability of an LLM
to select the most proper data generation func-
tion from the function class obtained during pre-
training. And this selection process is driven by the
in-context demonstrations. A Bayesian inference
framework (Xie et al., 2021) is introduced to ex-
plain the skill recognition. The ICL inference can
be instantiated as a Bayesian inference process as
follows:
p(y|prompt) =
∫

concept
p(y|concept,prompt)p(concept|prompt)d(concept)

where p(y|prompt) is the conditional probabil-
ity of the output generation y given the prompt.
It can be marginalized with pre-training concepts
and each concept corresponds to a pre-training
data generation function. p(concept|prompt) is the
probability of locating the latent concept aligned
with in-context demonstrations. After locating the
aligned concept, p(y|concept, prompt) utilizes the
selected data generation function for the output
generation.

This approach to modeling latent concepts is
widely used in the field of NLP, as language data
is inherently compositional, involving underlying
concepts—such as sentiment, topics, and syntactic
structures—that are not explicitly observable in the
raw text (Chung et al., 2015; Zhou et al., 2020).
Latent variable models can specify prior knowl-
edge and structural dependencies for language data
which enjoys the characteristics of high composi-
tionality. Deep latent variable models are popularly
utilized to improve various tasks such as alignment
in statistical machine translation, topic modeling,
and text generation (Kim et al., 2018; Fang et al.,
2019; Wang et al., 2023).

Though there are various definitions of latent
concepts, any latent information that can help ICL
can be considered as a good choice for the con-
cept in the Bayesian inference process above. We
summarize the existing concept definitions as fol-
lows: (1) Xie et al. (2021) defines the concept
as the transition matrix θ of a Hidden Markov
Model (HMM) (Baum and Petrie, 1966), which
assumes to be the underlying distribution of the
real-world language data. The concept helps to
state a transition distribution over observed tokens.
A concrete example of the concept is the transi-
tion between name (Albert Einstein) → nation-
ality (German) → occupation (physicist) in wiki
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bios. (2) Wang et al. (2023) simplifies the tran-
sition between tokens, modeled by HMM, with
LDA topic models where each topic corresponds to
one latent concept (Blei et al., 2003). (3) Despite
the above mathematical interpretations, Todd et al.
(2023) and Liu et al. (2023b) empirically estab-
lish the connection between the latent concept and
the downstream task, e.g., supervised classification
and question-answering, where the particular latent
representation in the LLM can capture essential
information about the task.

The Bayesian inference framework is firstly pro-
posed by Xie et al. (2021), interpreting how ob-
tained pre-training data functions are activated by
in-context demonstrations. Key challenges in this
framework are: (1) In the pre-training stage, how
the model obtains the latent concepts from the pre-
training corpus; and (2) In the ICL inference stage,
how in-context demonstrations can locate the most
relevant concept to generate the desired output.

The pre-training stage aims to obtain various con-
cepts from the large pre-training corpora if each
pre-training document is generated from an indi-
vidual HMM model. In such cases, the next token
prediction objective can converge if and only if the
LLM can successfully generate the correct next
token matching the HMM transitions. The transi-
tions are dominated by the underlying concept (Xie
et al., 2021). Different documents can be generated
from various concepts sampled from the concept
set denoted as Θ.

The ICL inference stage conducts an implicit
Bayesian inference to locate an appropriate concept
θ∗ ∈ Θ which shows the optimal likelihood to
generate the given in-context demonstrations. The
format of the prompt is shown below:

[Sn, xtest]

=
[
x1, y1, o

del, . . . , xn, yn, o
del, xtest

]
∼ pprompt

(1)

where pprompt is a data generation process imple-
mented with HMM parameterized by θ∗. xi, yi and
odel are the input, label, and delimiter, respectively.
The difficulty in locating θ∗ is due to low probabil-
ity for all the pre-training concepts to generate the
in-context demonstrations. The key reason is that
token transition patterns of the in-context demon-
strations are of three types: (1) the input to the
label xi → yi, (2) the label to the delimiter, and
(3) the delimiter to the input. The latter two pat-
terns hardly appear in the pre-training data due to

different delimiter usages.
To address the above issue of low probability,

Xie et al. (2021) proposes some assumptions. One
example is the located concept θ∗ enjoys a higher
probability transiting to delimiters than that of other
concepts. Equipped with those assumptions, we
are able to locate the aligned pre-training concept
to implement Bayesian inference. The model can
locate the corrrect concept with p(θ∗|prompt) = 1
and p(θ|prompt) = 0 for all θ ∈ Θ \ θ∗. Even
though we cannot locate the aligned concept, Xie
et al. (2021) provides the theoretical guarantee on
the effectiveness of the ICL in such cases, where
the ICL performance improves along with the in-
creasing number of in-context examples.

Inspired by the above Bayesian inference frame-
work, more methods towards understanding skill
recognition are proposed, e.g., the PAC-Bayesian
framework (Alquier et al., 2024) and Hopfield Net-
work (Hopfield, 2007). Zhang et al. (2023c) analo-
gizes ICL inference to a Bayesian model averaging
algorithm. Wies et al. (2023) presents a PAC-based
generalization framework exhibiting satisfying gen-
eralization bound on the ICL where a transformer
trained on multi-task can match the ICL perfor-
mance of a transformer trained solely on the down-
stream task. Zhao (2023) analogizes the latent
concept location as memory retrieval with the Hop-
field Network. More recently, a novel information-
theoretic framework (Jeon et al., 2024) has been
introduced, decomposing the ICL prediction error
into three distinct terms: irreducible error, meta-
learning error, and intra-task error. This decom-
position helps aligning ICL with existing studies
hypothesizing ICL as an instance of meta-learning.

Nonetheless, existing studies are based on either
synthetic data or pure theoretical analysis. It could
be a promising direction to investigate how LLMs
retrieve concepts and how to interpret the retrieved
concept through natural language.

5 Skill Learning

Through the skill learning ability, LLMs can in-
ference a new data generation function which has
not been seen during pre-training. The function
learning framework2 is utilized to interpret the skill
learning ability. Specifically, pre-training is con-
sidered as a process to learn a class of functions
that can fit the pre-training corpora, and the ICL

2We refer to algorithm learning as function learning with
an emphasis on the approximated functions by algorithms and,
in this way, it is easier to analyze ICL.
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inference is to learn a new data generation function
via fitting the ICL demonstrations.

Discussions on the skill learning ability are or-
ganized as follows. In Section 5.1, we first provide
a clear description of the function learning frame-
work and illustrate its benefits and drawbacks. In
Section 5.2, we investigate: (1) whether LLMs
can learn new functions in context, and (2) if so,
whether the learned functions can effectively gen-
eralize to test samples.

In Section 5.3 illustrates ICL can implement dif-
ferent learning algorithms, e.g., gradient descent.
More discussions on the robustness of ICL can be
found in Appendix F.

5.1 The Function Learning Framework

Previous research reformulates the pre-training ob-
jective of next-token prediction into an input-label
mapping objective during the ICL inference stage.
One limitation of the function learning framework
is that it has to pre-train the model from scratch
as the pre-training objective is different from the
next token prediction. Due to computational re-
source limitations, most works utilize transformers
with less than 6 layers. These conclusions may
not be generalizable to larger scale models. Garg
et al. (2022) has been the only work to utilize a
relative larger-scale model, reaching a similar scale
as GPT-2.

Denoting x ∼ PX ,x ∈ Rd where PX is a
distribution, a function class F where for each
f ∈ F , f : Rd → R. Given a sequence (x1, · · ·xi)
(i > 1) sampled from PX sequentially, and a
sampled function f ∼ F , the learning objec-
tive aims to correctly predict f(xi) based on the
sequence (x1, f(x1), · · · ,xi−1, f(xi−1),xi) with
both in-context examples and the query input xi.

E
x1...xn∼PX

f∼F

[
n∑

i=2

L (f(xi) , Tω ([x1, f (x1) . . .xi]))

]

(2)
Eq. (2) describes the learning objective, where L
is the loss function. Tω denotes the transformer
model, ω is the parameter of the transformer.

Notably, the model is pre-trained on the above
ICL objective instead of the original next-token pre-
diction objective. The function learning framework
enables us to: (1) arbitrarily generate data with de-
sired properties from the pre-defined function class
F ; (2) clearly examine the function-approximation
ability and the generalization of skill learning in

ICL; and (3) utilize well-developed statistical learn-
ing theory to understand ICL.

5.2 Function Approximation and
Generalization of ICL

In this subsection, we investigate the function ap-
proximation and generalization behavior of ICL.
Function approximation indicates to what extent
transformers can approximate the ground-truth
function underlying a given input, in the ICL in-
ference stage. Generalization, on the other hand,
measures the gap between the approximated func-
tion and the ground-truth data generation function.
Notably, the function learning framework inves-
tigates ICL in the function space, rather than the
token space.

To explore the function approximation ability,
Raventos et al. (2023) leverages different linear
functions to generate pre-training data and in-
context demonstrations. When pre-training on a
small set of linear functions, ICL acts as a Bayesian
optimal estimator, illustrating the skill recognition
ability (Raventos et al., 2023). If enlarging the set
of pre-training linear functions, ICL can act as an
optimal least squares estimator with better func-
tion approximation, illustrating the skill learning
ability (Raventos et al., 2023). Wu et al. (2023a)
provides a theoretical explanation to support the
above empirical observations.

Beyond the linear function class, Garg et al.
(2022) observes that the ICL is expressive enough
to approximate more complicated functions, includ-
ing sparse linear functions, two-layer neural net-
works, and decision trees. The only requirement
is that the same function class must be encoun-
tered during both pre-training and the ICL stage.
Bai et al. (2023) and Fu et al. (2023a) establish a
statistical task complexity bound for pre-training,
supporting the empirical observations mentioned
above. The findings suggest that skill learning can
be achieved with a dimension-independent number
of linear regression pre-training tasks. However,
two essential questions remain unsolved: (1) Why
do transformers suddenly obtain the skill learning
ability with significant performance increase once
the number of pre-training data generation func-
tions reaches a certain threshold? (2) Why is the
learned data generation function of ICL demonstra-
tions from the same class as the pre-training data
generation function?

The generalization of ICL is validated by com-
paring the ground-truth data generation function
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of in-context demonstrations and the approximated
one through ICL inference. A more complicated ex-
perimental setting is considered where pre-training
involves data generation functions from multiple
function classes simultaneously, rather than being
restricted to a single function class, as in the above
function approximation experiments. Assuming
pre-training data generation functions cover deci-
sion trees and linear functions, the ground-truth
data generation function of ICL demonstrations is
a linear function. The ICL generalization is strong
if and only if the predicted function of ICL demon-
strations is a linear one.

Bai et al. (2023); Ahuja et al. (2023); Vasudeva
et al. (2024); Tripuraneni et al. (2023) indicate
that transformers can achieve the Bayesian optimal
selection, choosing the best-fitting function class
with the minimum description length, from those
function classes seen during the pre-training stage.
Such Bayesian optimal selection helps a trans-
former pre-trained with multiple function classes
reach comparable ICL performance as one pre-
trained with only the ground-truth function class.
Notably, such Bayesian optimal on the synthetic
dataset may not fully explain all the experimental
observations. Yadlowsky et al. (2023) generates
each pre-training instance with functions from mul-
tiple function classes, e.g., 0.7f1(x) + 0.3f2(x)
where f1 and f2 are from different function classes.
The ICL can still achieve Bayesian optimal se-
lection, holding the same conclusion. Notably,
the above works focus on the scenario where the
ground-truth data function is within pre-training
function classes. Skill learning fails if the ground-
truth data function is out of the pre-training func-
tion class (Yadlowsky et al., 2023); ICL degrades to
skill recognition with Bayesian optimal estimator.

In summary, skill learning emerges if the number
of pre-training data generation functions is suffi-
ciently large. ICL can learn a function that lies
in the same function class of the pre-training data.
Moreover, ICL would implement a Bayesian op-
timal selection to select the function best-fitting
on ICL demonstrations, from pre-training function
classes.

5.3 The Internal Mechanisms of ICL
In this subsection, we explore how ICL can learn
an unseen function in context. Notably, there are
two common assumptions generally utilized in ex-
isting works: (1) The data generation functions for
both pre-training data and in-context demonstra-

tions are linear. (2) The toy transformer model is
linearized by removing feed-forward layers and the
softmax activation function in the attention layer.
This linearized simplification may generalize to the
standard transformer, as Ahn et al. (2023b) illus-
trates that the training dynamic of the linearized
version is similar to the standard transformer.

Previous works analogize ICL to meta-
learning (Finn et al., 2017). The pre-training stage
corresponds to the outer-loop optimization, and
the ICL inference stage is an instance of the inner-
loop optimization, implementing fast adaptation on
new novel tasks. Rather than a real inner gradi-
ent update, ICL inference mimics gradient update
via a forward process with in-context demonstra-
tions (Hubinger et al., 2019; von Oswald et al.,
2023; Zheng et al., 2024).

Based on the dual view that the backward pro-
cess on a linear neural layer is equivalent to the
forward process on a linear attention layer, Irie
et al. (2022); Dai et al. (2022) proves the mathe-
matical equivalence, illustrating the implicit gradi-
ent descent implementation with a linear attention.
However, such an analogy is only limited to mathe-
matical equivalence. It remains unclear why ICL
can learn a function since such an analogy over-
looks many practical details, including the choice
of the learning objective, pre-training weights, and
the training data distribution (Mahdavi et al., 2024).

To address the gap between theoretical mod-
els and real-world implementation, the following
works consider the construction of pre-training
weights. Von Oswald et al. (2023) first demon-
strate that ICL on the single-layer transformer can
implement one-step gradient descent with a linear
regression objective. Bai et al. (2023) further show
that ICL inference can implement ridge regression,
least square, lasso, and even gradient descent on
a two-layer Neural Network. Nonetheless, those
strong assumptions about the attention weights
may be not practically reasonable. For instance,
Von Oswald et al. (2023) construct the key, query,
value matrices WK ,WQ,WV with WK = WQ =(

Ix 0
0 0

)
,WV =

(
0 0
W0 −Iy

)
, where Ix

and Iy are two different identity matrices and W0 is
the initialized parameters of the transformer model.
Nonetheless, it is unclear why a pre-trained trans-
former would have such type of weights, and it
has been reported that this is not easily achieved in
practice (Shen et al., 2023).

Instead of explicit attention weight construction,
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Zhang et al. (2023a); Mahankali et al. (2023); Ahn
et al. (2023a) analyze the converged weights ob-
tained after pre-training. Von Oswald et al. (2023)
observes the ICL on the one-layer linear trans-
former can implement gradient descent or precon-
ditioned gradient descent algorithm (Ahn et al.,
2023a) given a linear regression objective. Given a
two-layer transformer, ICL can implement a gradi-
ent descent with adaptive step size and special spar-
sity regularization (Ahn et al., 2023a). Moreover,
Ahn et al. (2023a); Von Oswald et al. (2023) reveal
that multiple-layered transformers can implement
a GD++ algorithm. For larger-scale transformers,
Akyürek et al. (2022) empirically illustrates that,
instead of performing GD, large-scale transform-
ers show emergent ability directly approximating
the closed-form solution of ridge-regression, while
there is still a gap on why this ability emerges as
the model-scale increases.

Beyond the linear activation for attention heads,
recent researches take the softmax activation func-
tion into consideration. Von Oswald et al. (2023)
demonstrates there exists a transformer that per-
forms GD to solve more complicated nonlinear
regression tasks. Li et al. (2023a); Ren and Liu
(2023) identify the nonlinear regression task as the
softmax regression and contrastive learning objec-
tive, respectively. Cheng et al. (2023) further takes
non-linear data generation functions into consid-
eration, elucidating a transformer can implement
gradient descent and converge to the Bayes opti-
mal predictor. Wibisono and Wang (2023) theo-
retically finds that the softmax can help to find
the correct data pair from the unstructured data
which the input-output pair is permuted. Guo et al.
(2023); Zhang et al. (2024) further studies a more
challenging but practical setting of representation
learning, in which predictions depend on inputs
through the MLP. The theoretical evidence in Guo
et al. (2023) indicates that the ICL inference can
implement ridge regression in context with the in-
put of neural representations, while (Collins et al.,
2024) argue theoretically and empirically that ICL
inference with a single self-attention head behaves
like a Nadaraya-Watson kernel regressor and train-
ing the attention weights entails learning the ap-
propriate neighborhood size and subspace for this
regressor based on the Lipschitzness of the target
functions.

Practical usage of mechanism analysis. The
above section has indicated that ICL implements a
gradient descent vector to achieve successful func-

tion learning. From a practical perspective, Todd
et al. (2023); Liu et al. (2023b) find the existence of
compressed task vectors3 in transformers with spe-
cific functionality. More recently, Li et al. (2024)
attempts to connect the gradient vector with the
compressed task vector, utilizing inner and mo-
mentum optimization towards a better task vector.
Success of the new optimized task vector can be
found on multiple tasks.

6 Insights & Future Directions

In this section, we delve into key insights from the
data mechanism perspective of ICL and identify
open questions that remain to be addressed in this
evolving field.

The uniformity of the two frameworks. The
core idea from the data-generative perspective is
to (1) construct a data generation function hypoth-
esis with one specific statistical framework and
(2) analyze the data generation capability of the
LLM with ICL instances with a focus on either
skill learning/recognition mechanism. The exist-
ing pipelines on skill recognition and skill learning
abilities are comprehensively discussed with the
statistical frameworks of the Bayesian inference
and function learning in Section 4 and 5, respec-
tively. However, most existing analysis follows one-
to-one correspondence which explains one ability
with one specific statistical framework, serving as
a solution for skill learning.

Our new data generative perspective suggests the
researcher find a suitable statistical framework as
the starting point for analysis. We exhibit the poten-
tial that both frameworks can be easily utilized to
understand the mechanism of both abilities. Such
extension enables the future mechanism analysis to
select the suitable analysis framework, by referring
to their strengths and weaknesses. The function
learning framework provides an elegant description
of the data generation process with more compre-
hensive conclusions. However, it is over-simplified
with an unclear relevance to the real-world sce-
nario. The Bayesian inference framework provides
a more concrete and detailed description of the data
generation process through an HMM model, e.g.,
the delimiter is taken into consideration, while the
theoretical analysis on the role of delimiters is hard
since it requires several assumptions over statistical
modeling.

3Similar task vectors (Hojel et al., 2024) can also be found
in the computational vision domain.
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We provide a comprehensive discussion on ex-
tending one framework to the other statistical
framework. The function learning framework can
be easily extended to understand skill recognition
by simply replacing the data generation function
from a mixture of HMMs with linear functions.
A comprehensive discussion on how to utilize the
Bayesian inference framework to model the mecha-
nism of skill learning in Appendix A. We first show
that the original function learning framework for
the skill learning ability also implements an im-
plicit Bayesian optimal selection in Appendix A.1.
We then extend the Bayesian inference framework
to learn new in-context data generate functions in
Appendix A.2. The Bayesian inference framework
can also serve as a solution for skill learning.

The unique strengths and weaknesses of skill
learning/recognition ability Considering the in-
tricate interplay of both abilities on different tasks,
we further illustrate the strengths and weaknesses
inherent in each ability. Skill learning ability can
obtain new knowledge from the in-context data,
and even over-ride the pre-training knowledge. It
provides an easy way to update the knowledge on
the specific application without requiring compu-
tationally heavy fine-tuning. Such ability has been
successfully utilized in different LLM applications,
e.g. model editing with ICL (Zheng et al., 2023).
Nonetheless, the skill learning ability may fail as it
can be easily distracted by irrelevant context (Shi
et al., 2023). Skill recognition ability is insensi-
tive to the new in-context pattern leading to the
failure on the specification-heavy task (Peng et al.,
2023) while it exhibits robustness to the incorrect-
ness of label-demonstrations and other in-context
noise (Webson and Pavlick, 2021). Based on the
above discussion, we suggest a careful evaluation
of LLMs about each ability and select a desired
one for the downstream task.

Emergent Skill Composition Ability. We ma-
jorly focus on the skill recognition/learning ability
in our paper. More recently, new skill composition
ability is found on larger model with specialized
ICL prompts like Chain-of-Thought (CoT) (Wei
et al., 2022b). The skill composition ability com-
bines multiple data generation functions to create a
more complicated data generation function. This
ability, supported theoretically by Arora and Goyal
(2023), shows that complex tasks can exhibit per-
formance gains when decomposed skills improve
linearly. More analyses on the effectiveness of skill
composition ability can be found in Appendix C.

Application of Skills. After the LLM obtained
the skill learning and skill recognition abilities
during pre-training, we then investigate how the
model utilizes both abilities for achieving satisfac-
tory downstream task performance during the ICL
inference stage. Overall, the behavior of the LLM
is more consistent with the skill recognition mech-
anism on difficult tasks while observations aligned
with skill learning are more common to see on easy
tasks.

Empirical analyses are conducted on the well-
trained LLM, focusing on the ICL behavior on
downstream tasks with various difficulties. Typ-
ically, we examine whether the model behavior
aligns with the skill recognition ability or the skill
learning one via the performance sensitivity on cor-
rupting in-context data with incorrect input-label
mapping. If the LLM takes advantage of the skill
learning ability more, the LLM can learn the cor-
rupted in-context mapping, leading to performance
degradation compared with the origin setting. In
contrast, if the LLM follows the skill recognition
ability more, the LLM should be robust to the
correctness of the input-label mapping, since the
skill recognition ability only implements the pre-
training data generation function with correct input-
label mapping. Min et al. (2022) first observes that
the corrupted mapping does not necessarily lead
to the overall performance degradation, indicating
an overall skill recognition behavior. Instead of ex-
amining the overall performance across tasks, Yoo
et al. (2022) conducts a more careful evaluation
of each task individually where the ICL shows dif-
ferent behaviors on tasks with different difficulties.
The relatively easy tasks exhibit performance degra-
dation on the wrong input-label mapping while the
robust performance appears on those difficult tasks.
Such observation indicates that the skill learning
ability is more applicable to easy tasks while the
skill recognition ability dominates on difficult ones.

How the skill learning ability emerges dur-
ing pre-training. The emergence of the skill
learning ability can be partially attributed to the
skewed rank-frequency distribution of pre-training
corpora. (Chan et al., 2022a), and (Reddy, 2023)
highlight the role of the induction head (Olsson
et al., 2022), a particular attention head which
explicitly searches for a prior occurrence of the
current token in-context and copying the suffix as
predictions. Moreover, the function class-based
analysis (Raventos et al., 2023) illustrates that the
transition from skill recognition to skill learning
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only happens given diverse enough tasks in pre-
training corpora. It is interesting to explore how
these factors collaboratively influence the emer-
gence of skill learning.

Why does ICL only learn the data generation
function that appeared during pre-training? In
Section 5, we provide a comprehensive discussion
on what function can be learned in context. Obser-
vations indicate that ICL can only learn the function
within the pre-training data generation function
class. Nonetheless, the causality of the pre-training
data generation function to ICL remains unclear.
Garg et al. (2022) proposes the research question
as: Can we train a model to in-context learn a cer-
tain function class but overlooks the effect of the
pre-training data generation function class. Once
we have a certain clue about causality, we can lever-
age the skill-learning ability in a more controllable
and safe manner.

Another line of research is to conduct analyses
on more realistic scenarios. Recently, Chen et al.
(2024) finds the parallel structures in pre-training
data-pairs of phrases following similar templates
in the same context window is the key to the emer-
gence of the ICL capability. We conjecture that
the underlying reason can be the formulation of the
induction head with repeat patterns.

Data generation functions aligned with real-
world scenarios. One major concern on the sta-
tistical framework is that the correspondence with
real-world scenarios is unknown and overly sim-
plified. Recently, Akyürek et al. (2024) proposes
a new approach for generating data functions that
are more aligned with real-world scenarios. The
framework allows for more accurate simulations
and testing of machine learning models by inte-
grating domain-specific knowledge and constraints
into the data generation process. This alignment
enhances the applicability and reliability of exist-
ing conclusions to the real-world scenarios. We
advocate for theoretical analyses focused on real-
world data generation functions, moving beyond
traditional statistical frameworks. More empiri-
cal analysis on skill learning and skill recognition
abilities are illustrated in Appendix B.

Extending existing findings to other capabili-
ties of LLMs. More ICL capabilities are observed
except for classification tasks, e.g., step-by-step
reasoning ability (Wei et al., 2022b) for reason-
ing and self-correction (Ganguli et al., 2023). A
critical question is how we can extend the under-
standing frameworks introduced in this paper, par-

ticularly the data generation perspective, to more
complicated LLMs’ capabilities. Some pioneer-
ing research has been done; Prystawski and Good-
man (2023) extends the Bayesian inference frame-
work to understand the effectiveness of the CoT
prompt. Kadavath et al. (2022) focuses on the self-
evaluation prompt showing that LLMs can accu-
rately examine the correctness of their statements.
We believe the introduced data generation perspec-
tive and two main understanding frameworks on
ICL serve as the milestone to explore more intrinsic
capabilities of LLMs.

7 Conclusion

In this study, we introduce a novel data generation
perspective to understand the underlying mecha-
nism driving the current success of ICL. We pri-
marily focus on understanding the LLM’s ability
of skill learning and skill recognition, and investi-
gate whether ICL inference is capable of learning
new data generation functions in context. Our work
makes a step forward to enhancing our understand-
ing of underlying mechanisms.

8 Limitations

In this paper, we provide a mechanism understand-
ing of the ICL from a data generation perspective,
We systematically consider the limitations from var-
ious perspectives such as fairness, security, harm
to people, and so on, and we do not find any ap-
parent social risk related to our work. However,
there is a notable technical limitation in our study.
The current statistical frameworks with controlled
experimental settings may not fully capture com-
plexities present in real-world scenarios. This gap
between the theoretical framework and practical ap-
plications suggests that further research is needed
to adapt and refine the mechanism analysis to align
with real-world application.
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A Insights on the Bayesian Inference and
the Function Learning Framework

A.1 Bayesian Selection in the Function
Learning Framework

The Bayesian perspective can be found in the func-
tion learning framework originally utilized for the
skill learning mechanism. Typically, we illustrate
the underlying Bayesian selection in the function
learning framework, indicating the intrinsic con-
nection between the two statistical frameworks.
According to Ahuja et al. (2023), the transform-
ers pre-trained on the data generated from diverse
function classes exhibit improved function-fitting
ability across all the pre-training function classes.
To identify the best-fit solution among the whole
function class, the function selection process imple-
ments a Bayesian optimal selection. More details
can be found in Section 5.2. Notably, instead of
the original Bayesian inference framework only se-
lecting pre-training data generation functions, the
function selection scope is enlarged, including all
the unseen functions from the same function class
with the pre-training functions.

A.2 Extending the Bayesian Inference
Framework for Skill Learning

We then illustrate the possibility of extending
the Bayesian inference framework to understand
the skill learning mechanism to capture new data
generation functions from the in-context data via
relaxing the particular assumption. One impor-
tant assumption in the Bayesian inference frame-
work (Xie et al., 2021) is that all ICL demon-
strations should be generated with the same la-
tent concept. Nonetheless, this strong assumption
may not be held in practice. For instance, one
demonstration sample discusses the topic of so-
ciology but another one is relevant to cardiology,
the data generation function for these two domains
should be rather different. Inspired by the high
compositionality nature of language data, Hahn
and Goyal (2023) came up with an information-
theoretic bound showing that ICL performance
can be improved given more unique compositional
structures in pre-training data, therefore skill learn-
ing ability can appear by combining compositional-
ity structures, in pre-training data, to infer the data
generation function of ICL demonstrations.

Empirical evidence shows that, given an input-
label pair of two semantically unrelated concepts,
e.g., mapping sports to animals, Rong (2021); Wei
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et al. (2023) still observe a satisfactory performance
with the increasing model scale, indicating that the
LLM can retrieve multiple concepts and combine
them as a new data generation process. Feng and
Steinhardt (2023) interpret the combination with a
binding mechanism with an internal function vector
to recognize the input feature and bind it to the
corresponding label.

Swaminathan et al. (2023) proposes another
way to extend the existing Bayesian frame-
work for skill learning via replacing the origi-
nal HMM model into the clone-structured causal
graph (CSCG) (George et al., 2021; Dedieu et al.,
2019). The major difference is that the CSCG con-
siders a learnable emission matrix, which deter-
mines the probability of observing a particular out-
put given each hidden state in the model. A relevant
transition matrix as the concept is retrieved, similar
to the Bayesian inference (Xie et al., 2021). The
hidden states for each token can then be obtained
given the particular relevant template. The LLM
then learns the suitable emission matrix, providing
the best-fit mapping from the hidden states to the
observed token.

B Empirical Investigation On Skill
Recognition and Skill Learning

In this section, we exhibit more empirical analyses
revolving around skill recognition and skill learn-
ing abilities. In contrast to the mechanism analysis
that focuses on whether the ICL can learn new in-
context data generation functions or not, empirical
evidence in this section indicates that it is highly
likely that LLMs exhibit both skill recognition and
skill learning abilities of various levels, instead of
an all-or-nothing conclusion. We first discuss how
the LLM jointly obtains both abilities during the
pre-training stage in Section B.1. Specifically, the
origin of both abilities is determined by the pre-
training data distribution (Chan et al., 2022a) and
the model scale (Wei et al., 2023; Pan, 2023). Typi-
cally, the LLM exhibits varying degrees of usage on
those two abilities according to tasks with different
difficulties.

B.1 Origin of Skills

In this subsection, we carefully examine how well
the LLM obtains the skill learning and the skill
recognition abilities during the pre-training stage,
with a focus on the impact of the pre-training data
distribution and model scale. Roughly speaking,

the skill recognition ability is easy to achieve while
the skill learning ability develops much slower and
only emerges when the model scale is sufficiently
large.

Analyses are first conducted focusing on how
those abilities are developed along the pre-training
procedure. (Bietti et al., 2023) observe that the
skill recognition ability is obtained early in the pre-
training procedure, while the skill learning ability is
developed much later. However, Singh et al. (2023)
shows that the obtained skill learning ability grad-
ually vanishes after over-training and is replaced
by the skill recognition ability. Such observation
indicates that skill learning is a transient ability
that may disappear when the model is over-trained
rather than a persistent one which can be kept once
obtained. The reason can be attributed to the pre-
training data distribution (Chan et al., 2022a) where
the task learning ability degrades if the pre-training
data follows a uniform, i.i.d distribution. Nonethe-
less, such degradation may not happen when the
pre-training data follows a properly skewed Zipfian
distribution. Chan et al. (2022a) further empha-
sizes that the skill learning ability emerges when
the pre-training data meets the following properties:
(1) Skewed rank-frequency distributions: Dynamic
contextual meaning does not uniform across data,
instead, only a few meanings dominate with the
long tail of other infrequent meanings. (2) Bursti-
ness: Dynamic contextual meaning is not uniform
across time, but appears in clusters. The reason
why ICL ability can be obtained on such data dis-
tribution remains unclear. A potential explanation
could be that the pre-training weight can only ob-
tain the head meaning frequently appears while the
long tail knowledge can only be obtained via ICL.

Analyses are then conducted with a focus on
the impact of the model scale. Pan (2023) illus-
trates that the skill recognition ability can be found
across LLMs with different scales. In contrast,
LLMs obtain better skill learning ability along with
an increasingly larger scale. Similar observations
can be found in (Wei et al., 2023) that the LLM can
learn the flipped input-label mapping and override
pre-training knowledge when the model scale is
sufficiently large. (Fu et al., 2023b) provides the
potential explanation where the good skill recogni-
tion ability serves as a necessity for developing the
skill learning ability.
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C Skill Composition

We primarily focus on the skill learning ability
where the ICL can learn a new data generation
function, and skill recognition ability where the
ICL utilizes the data generation function from pre-
training data. Instead of focusing on the single
data generation function, combining multiple data
generation functions together can lead to a com-
plicated data generation function. We named such
capability as skill composition capability, helping
the LLM to achieve a complicated task by combin-
ing a sequence of simple and basic steps. Arora and
Goyal (2023) theoretically indicates the effective-
ness of skill composition where the complicated
task can exhibit emergent performance gain when
all the decomposed basic skills improve linearly.

The discussions on skill composition are orga-
nized as follows. In Section C.1, we investigate the
effectiveness of skill composition ability. In Sec-
tion C.2, we analyze when the skill composition
capability can work. In Section C.3, we further
illustrate more discussion and real-world applica-
tions on the skill composition ability. Notably, the
skill composition ability is complicated without
a general data generation function framework so
far. The skill-composition ability often requires to
be elicited by specific-designed ICL prompts, e.g.,
Chain-of-Thought prompting (CoT) (Wei et al.,
2022b), Tree-of-thought (Yao et al., 2023), and
Graph-of-Thought (Besta et al., 2023), which gen-
erates multiple intermediate steps before the final
answer. Most following literature conducts analy-
sis on the CoT prompt.

C.1 Effectiveness of Skill Composition

In this section, we investigate the effectiveness
of skill composition ability. Feng et al. (2023)
indicates that if the skill decomposition is ap-
plied, the LLM can be more expressive to describe
more complicated problems, e.g., mathematical
and decision-making problems. Li et al. (2023b);
Yang et al. (2023) further demonstrate the data effi-
ciency where the skill composition facilitates can
learn complicated functions with a reduced sam-
ple complexity. Prystawski and Goodman (2023)
attributes the above expressiveness and efficiency
with the local structures in the training data gener-
ation function. Such locality enables to accurate
inference on each intermediate step supported by
the similar pre-training data generation function. In
contrast, direct inference as a whole instead of each

local steps are likely to fail requiring since such
complicated data generation function does not ap-
pear during the pre-training stage. In summary, the
skill composition ability of LLMs enhances their
expressiveness and data efficiency for modeling
complicated data generation function, building on
the basis of locality data generation function from
the pre-training data.

C.2 When Skill Composition Works
We demonstrate the effectiveness of the composi-
tion in Section C.1, however, it remains unknown
whether the decomposed intermediate steps are
well-organized aligning with human cognition. To
examine the correctness of the LLM decomposi-
tion, the literature focuses on formal deductive
reasoning tasks like math reasoning (Ahn et al.,
2024). It enables to conducting systematic and con-
trollable analysis on each reasoning step with the
unique correct answer.

LLMs are able to conduct correct decomposi-
tion on particular tasks, aligning with the ideal
human reasoning process. Zhou et al. (2023) finds
a theoretical criterion to identify when the LLM
can implement the ideal decomposition. Typically,
when the task can be described by a short RASP
program (Weiss et al., 2021), a programming lan-
guage designed for the computational model of
a Transformer, the LLM can achieve the correct
decomposition. Similarly, Yao et al. (2021) demon-
strates that the transformer can process correct de-
composition on particular formal languages with
hierarchical structure, e.g., Dyckk (Chomsky and
Schützenberger, 1959). With a suitable decomposi-
tion, LLMs can easily solve arbitrary complicated
problems (Jelassi et al., 2023; Li and McClelland,
2023).

Beyond those identified tasks, it remains many
tasks where LLMs cannot conduct an ideal decom-
position. The key underlying reason (McCoy et al.,
2023) is the gap between human cognition and the
next-token prediction pre-training task, requiring
to tackle problems sequentially greedily. Instead
of a proper decomposition, a greedy shortcut can
be obtained from standard training, which skips
the particular step instead of a formal decompo-
sition. Theoretical evidence on the existence of
shortcuts can be found in (Liu et al., 2022) on the
semi-automaton reasoning task. Saparov and He
(2022) indicates that the shortcut can easily select
the wrong step, leading to an incomplete planning
and subsequently an incorrect answer, leading to
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failure on complicated tasks (Dziri et al., 2023).
Such inherent failure is unavoidable as the trans-
former always finds a shortcut solution (Liu et al.,
2022) while impossibile to find the exact implemen-
tation of the semi-automaton reasoning requiring
recurrent models of computation with shallow and
non-recurrent architecture. On the contrary, the
shortcut also shows its benefits, converting the orig-
inal complicated reasoning problem with multiple
hops into a simpler one with less hops (Wu et al.,
2023b; Saparov and He, 2022), alleviating the per-
formance degradation along with the increased hop.

In summary, the shortcut solution of LLMs can
be a double-side sword to solve a compositional
problem. Nonetheless, it remains no existing study
on how the LLM acquires the decomposition capa-
bility from pre-training data. Notably, we focus on
whether the LLM composition aligns with the hu-
man decomposition while the manually-conducted
deduction rules may not be optimal. The optimal
decomposition remains unknown.

C.3 More Discussions

Despite the above comprehensive understanding,
there are more empirical studies on the skill compo-
sition ability from various perspectives as follows.
Madaan and Yazdanbakhsh (2022) divides the CoT
prompt into three key components: symbols, pat-
terns, and text with distinct roles as follows: (1)
The exact type of symbols does not matter. (2) The
patterns are the template serving as a trigger help-
ing to locate the correct concept (3) Text contains
commonsense knowledge and meaning, leading to
the ultimate success. Similarly, Wang et al. (2022)
divides the CoT prompt into two key components:
bridging objects (the key and necessary objects)
and language templates. Interestingly, neither of
them matters. In contrast, the relevance to the query
and correct reasoning ordering matters.

More recently, Xu et al. (2024) challenges the
skill compositional capability of LLMs, pointing
out the failure on the sequential reasoning tasks.
On the contrary, LLMs can perform well on simple
composite tasks that can be easily separated into
sub-tasks based on the inputs solely. The skill
composition ability remains mysterious, requiring
further analyses.

D Transformer architecture
simplification

To facilitate analysis, many studies introduce nec-
essary simplifications to the standard Transformer
architecture. While all empirical analyses use the
standard Transformer setup, theoretical analyses
adopt a modified version without layer normaliza-
tion. More detailed theoretical simplification can
be found as follows.

• Do not consider model architecture (Xie et al.,
2021; Hahn and Goyal, 2023)

• A single-layer linear attention (Von Oswald
et al., 2023; Ahn et al., 2023a; Mahankali
et al., 2023)

• A single-layer relu attention (Fu et al., 2023a)

• A single-layer softmax attention (Zhao, 2023;
Zhang et al., 2023c; Ren and Liu, 2023; Li
et al., 2023a)

• An L-layer linear attention (Ahn et al., 2023a)

• A single-layer linear attention with
FFN (Von Oswald et al., 2023)

• A full transformer (Akyürek et al., 2022;
Cheng et al., 2023; Bai et al., 2023; Guo et al.,
2023)

E Discussions

E.1 The Emergence Phenomenon On the ICL
Generalization

Chan et al. (2022b) proposes an interesting perspec-
tive to characterize how the ICL generalizes to the
test data based on the in-context samples. Observa-
tions exhibit that the larger LLMs can achieve rule-
based generalization similarly with the SVM. The
rule-based generalization makes decisions using a
minimal set that is central to the category definition,
disregarding less essential data, Nonetheless, induc-
tion heads mechanism with prefix match and copy
are more aligned with examplar-based generaliza-
tion like KNN. The reason why LLM can achieve
rule-based generalization still remains unclear.

E.2 Advantages And Disadvantages of Skill
Learning And Skill Recognition

Skill learning mechanism can obtain new knowl-
edge from the in-context pattern, and even over-ride
the pre-training knowledge. It provides an easy way
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to update the knowledge on the specific application
without requiring computational-heavy fine-tuning.
Such ability has been successfully utilized in dif-
ferent LLM applications, e.g. model editing with
ICL (Zheng et al., 2023). Nonetheless, the skill
learning mechanism may fail as it can be easily dis-
tracted by irrelevant context (Shi et al., 2023). The
failure reason found in (Tang et al., 2023) is that the
input-label mapping is more to be the shortcut as
the model scale increases. Skill recognition mech-
anism is insensitive to the new in-context pattern
leading to the failure on the specification-heavy
task (Peng et al., 2023) while it exhibits robust-
ness to the incorrectness of label-demonstrations
and other in-context noise (Webson and Pavlick,
2021). For instance, the skill recognition mecha-
nism can perform well in a noisy setting as it can
only locate the origin ability developed during the
training procedure. The LLM cannot learn the new
in-context information with noisy labels. Instead,
it only helps to locate the most similar concept
seen during the pre-training stage. Despite the la-
bels being noisy, ICL may still be able to locate
the correct concept with the input text information.
Empirical evidences (Min et al., 2022) indicates
that even random permute the model label can lead
to a satisfying performance.

E.3 Abstraction Ability of LLMs

Despite the success of LLM based in the natural
language, (Webb et al., 2023; Mirchandani et al.,
2023; Huang et al., 2023b; Chen et al., 2023) indi-
cate the effectiveness on abstract symbol without
knowing semantic meanings of any individual sym-
bol. Webb et al. (2023) exhibits the emergence
ability of LLM for abstract pattern induction while
(Mirchandani et al., 2023) suggest that LLM is a
general pattern machine extrapolating sequences of
numbers that represent states over time to complete
simple motions. Huang et al. (2023b) achieves com-
parable performance using random Gaussian vec-
tors instead of the original token embedding when
context is sufficient. Chen et al. (2023) indicates
such abstraction with randomizing embeddings can
help LLM learn multiple languages.

E.4 Discussion On the Self-correction

The self-correction (Pan et al., 2023; Kim et al.,
2023; Gou et al., 2023; Welleck et al., 2022) is
an advanced ICL technique iteratively revise the
outputs of LLM utilizing feedbacks, aiming to miti-
gate undesired and inconsistent behaviors, e.g., lex-

ically constrained generation and toxic reduction.
Despite its effectiveness, the underlying mecha-
nism remains an open question. The initial obser-
vations can be found as follows. Kadavath et al.
(2022) illustrates positive evidence where LLM can
accurately examine the correctness of their state-
ments, serving as the necessary condition for self-
correction. Nonetheless, Huang et al. (2023a) ob-
serves that self-correction cannot improve the per-
formance since the added feedback may bias the
model away from producing an optimal response
to the initial prompt. Hong et al. (2023) provides
more detailed evaluation setting and identifies that
(1) LLMs perform much worse at identifying falla-
cies related to logical structure than those related to
content. (2) LLMs cannot classify different types
of fallacies. Despite the above phenomenons, there
is still no understanding of the underlying mecha-
nism of self-correction so far.

E.5 How The Data-generating Functions Are
Different Than Arbitrary Functions

We first emphasize the importance of the data gen-
eration function. The strong generative capability
is an essential ability for LLMs. Most successful
applications and usage of the LLM revolve around
the generative capability. Therefore, the data gen-
eration perspective is essential to understand the
LLM.

The data-generating function is generally uti-
lized to understand the data-generation capability
of LLMs. It can be defined as ’the underlying hy-
pothesis on textual data generation’. Technically,
the data-generation function can be any function
that can model the probability over a potential to-
ken given a sequence of tokens, after being trained
with text data. The main difference between the
data-generation function and arbitrary function is
whether the function can be used to generate reason-
able natural language sequences. Understanding
the data-generation process is a core problem in nat-
ural language processing, particularly for natural
language generation tasks.

More concretely, N-gram, HMM, and Recurrent
Neural Networks are three straightforward data-
generation functions but they cannot model long
contexts, and the first two are non-parameterized
data-generation functions. On the other hand, we
can have a linguistic-driven data generation func-
tion, e.g. probabilistic context-free grammar (Hahn
and Goyal, 2023), to introduce some priors of syn-
tax. Since the complicated and hierarchical na-
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ture of human languages, LLMs are great in terms
of incorporating contextual information through a
powerful function approximation ability. Honestly
speaking, we can claim that the impressive results
of LLMs depend on the ability to approximate the
unknown data-generation function underlying the
pre-training corpora.

Notably, the statistical framework, which uti-
lized the input-label mapping as the data generate
function is a simplified setting. Such a simplified
setting enables to conduct of more theoretical anal-
ysis. Therefore, we can qualitatively analyze the
expressiveness, generalization, and internal mecha-
nisms of the ICL. For instance, with the function ab-
straction, we can analyze the generalization within
the same function class and between different func-
tion classes. However, how to take advantage of it
in a real-world scenario remains unclear.

E.6 Whether Different Demonstrations
Represent Different Data Generation
Functions

Whether different demos represent different data
generation functions depends on the hypothesis
of the data generative function. It is possible for
different demonstrations to share the same data
generation function. On the contrary, it is also pos-
sible for different orders of the demonstrations to
correspond to different data generation functions.

E.7 Whether there is the connection between
skill learning/recognition and model
under/overfitting?

The ICL procedure does not have any backward
learning process, i.e. gradient descent, generally
utilized in deep learning. Therefore, the ICL pro-
cedure is not explicitly related to the model under-
/overfitting without an explicit fitting procedure.

Both skill learning and skill recognition can
achieve a certain generalization, without explicit
under-fitting or over-fitting. The skill recognition
is not directly memorization. Given the train data
(x,y) generated from the function y = kx, the
pre-training data can be within the input interval
x ∈ [0, 1], while the ICL test data can be within the
input interval x ∈ [1, 2]. In such a case, the ICL
can still achieve satisfying performance, indicating
the generalization ability. It indicates the ICL with
skill recognition can achieve generalization when
test data are within the same function. A more
comprehensive discussion when meeting out-of-
distribution scenarios can be found in Appendix F.

The difference between skill learning and recog-
nition is the different extent of the generalization.
The skill recognition generalizes through seeking
an existing function within the same function class
but skill learning can come up with a new function
within this function class.

E.8 The real-world correspondence of data
generation functions

Our paper focuses on whether the ICL can learn a
new data generation function in context. From a
practice scenario, the new data generation function
can be defined as the n-gram does not appear in the
training stage. Such compositional generalization
is a key concept in the NLP domain. For instance,
such out-of-distribution can happen when LLMs
read the news. The skill learning mechanism can
learn the new n-gram and knowledge in context,
while skill recognition tries to map the pre-training
knowledge with the news.

F The Robustness of ICL On the
Statistical Framework

We primarily analyze the skill-learning mechanism
when (1) data generation functions during the pre-
training and ICL inference stages are from the same
function class, and (2) input features are sampled
from the same distribution in Section 5. In this
section, we provide a further discussion of how the
skill-learning mechanism works when distribution
shifts happen, indicating the robustness of the ICL.
The robustness of the ICL is evaluated in different
out-of-distribution scenarios, which can be roughly
divided into the following categories: (1) Task shift,
where the pre-training and in-context labels are gen-
erated from different function classes, is discussed
in Appendix F.2. (2) Corvariate shift, where the
pre-training and in-context inputs are sampled from
different distributions, is discussed in Appendix F.3.
(3) Query shift, where the in-context training inputs
and the query sample input are sampled from differ-
ent distributions, is discussed in Appendix F.4. No-
tably, all the above out-of-distribution scenarios are
conducted on the statistical framework while it re-
mains an unclear correspondence to the real-world
LLM system pre-training on the massive corpus.
More recently, Vladymyrov et al. (2024) focuses
on the corrupted training data scenario with noises
on different extend. Both empirical and theoretical
results indicate the robustness of transformers in
such scenario.
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F.1 Preliminary

To formally describe different out-of-distribution
scenarios, we first provide a rigorous descrip-
tion of the pre-training and prompt data from a
distribution perspective. The pre-training data
is defined as (x1,h(x1), · · · ,xN ,h(xN ),xquery)
where xi ∼ Dtrain

x , xquery ∼ Dtrain
x and h ∼ Dtrain

H .
The test prompt is defined similarly but drawing
from a different distribution where xi ∼ Dtest

x and
xquery ∼ Dtest

x . We then describe different out-of-
distribution scenarios and how the LLM behaves
on them differently in the following sections.

F.2 Task Shift

Task shift (Zhang et al., 2023a) is a concept shift
which be formally defined as Dtrain

H ̸= Dtest
H . It

describes that the pre-training and in-context la-
bels are generated from different function groups.
Existing literature demonstrates two different task
shifts, i.e., noise shift (Zhang et al., 2023a), and
regression vector shift (Raventos et al., 2023).

Noise shift (Zhang et al., 2023a) corresponds to
the scenario where the shift is induced by the ran-
dom Gaussian noise. Typically, the pre-training
data generation function is y = ⟨w,x⟩ where
in-context data generation function is from noisy
linear function yi = ⟨w,x⟩ + ϵ. Zhang et al.
(2023a) observes satisfying performance under
such shift, indicating the robustness under such
Gaussian noise.

Regression vector shift (Raventos et al., 2023)
corresponds to the scenario where pre-training data
generation functions are a limited group Ftrain of
linear functions fi : y = ⟨wi,x⟩ + bi, where
fi ∈ Ftrain The in-context data generation func-
tion is from all the possible linear functions cover-
ing the entire function space fi ∈ Fcontext, where
Ftrain ⊆ Fcontext. The task shift appears on the
unseen data generation function during training.
Raventos et al. (2023) observes that ICL exhibits
the generalization gap with insufficient pre-training
data. The emergence happens when the number of
pre-training functions increases with satisfying out-
of-distribution performance.

F.3 Covariate Shift

Covariate shift (Zhang et al., 2023a) can be for-
mally defined as Dtrain

x ̸= Dtest
x . It describes that

the pre-training inputs and the in-context inputs
are sampled from different distributions. Existing
literature demonstrates different covariate shifts in-

cluding low-dimensional subspace shift, skewed
covariance shift, mean shift, and random covariate
shift.

Low-dimensional subspace shift (Garg et al.,
2022) samples prompt input feature from random
10-dimensional subspace from the pre-training in-
put feature. Garg et al. (2022) empirically observes
the robustness over such covariate shift.

Skewed covariance shift (Garg et al., 2022) sam-
ples in-context features from N (0,Σ) where Σ is
a skewed covariance matrix with eigen-basis cho-
sen uniformly at random and ith eigenvalue pro-
portional to 1/i2. Empirically observations (Garg
et al., 2022) indicate the performance degradation
when the input feature dimension is larger than 10.

Mean shift (Ahuja and Lopez-Paz, 2023) sam-
ples train and test inputs from N (µtrain,Σ) and
N (µtest,Σ) where N (µtrain ̸= N (µtest). Despite
performance degradation to a certain extend, the
transformer backbone shows better generalization
than the MLP backbone with both empirical obser-
vations and theoretical evidence.

Random covariate shift (Zhang et al., 2023a) cor-
responds to that pre-training training prompts and
in-context prompts are sampled from distributions
with different covariates. The ICL performance
degradation (Von Oswald et al., 2023; Zhang et al.,
2023c) drops to 0 quickly with theoretical explana-
tion (Zhang et al., 2023c). The larger transformer
with non-linearity serves as the solution to random
covariate shift, while the reason underlying the
emergent ability remains unclear.

F.4 Query Shift
Query shift (Zhang et al., 2023a) is the covariate
shift, which can be formally defined as Dtest

query ̸=
Dtest

x . It describes the distribution shift within the
in-context training samples and test samples are
sampled from different distributions. Different
from the task shift focusing on the distribution
shift between pre-training data and prompt data,
query shifts describe the distribution shift within
the prompt data, where the training prompt data
distribution is different from the prompt query dis-
tribution. Existing literature demonstrates two dif-
ferent query shifts as follows.

The orthants shift changes the positive or nega-
tive signs to each coordinate of in-context features,
ensuring both prompt data and prompt query fall
within the same orthant, distinct from the query
input’s orthant. Garg et al. (2022) observes the
robustness to this shift when differences between
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orthants are not large.
The orthogonal shift maps the the prompt query

to the orthogonal space of prompt data, which is an
extreme case of the formal one. Garg et al. (2022)
shows empirical evidence where the prediction will
be zero and the error will be significantly large.
Zhang et al. (2023c) further theoretically underpins
the underlying reason while no solution is found
currently.
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