UNLEARN
Efficient Removal of Knowledge in Large Language Models

Tyler Lizzo, Larry Heck
Al Virtual Assistant (AVA) Lab
Georgia Institute of Technology
{lizzo,larryheck}@gatech.edu

Abstract

Large Language Models (LLMs) excel in many
Natural Language Processing tasks but are
outperformed by specialized tools for certain
tasks. This raises the question: Can we re-
duce redundant LLM parameters when using
these tools? Given the size and high train-
ing costs of LLMs, it is essential to efficiently
forget specific knowledge without retraining.
This paper introduces UNLEARN, a novel
method that uses subspace techniques to se-
lectively remove knowledge without access to
the original training data, without retraining,
and with minimal impact to other tasks. Our re-
sults show that UNLEARN significantly outper-
forms previous methods for forgetting targeted
(unwanted) knowledge while also preserving
related (wanted) knowledge. We also pro-
pose LEARN, a complementary approach for
targeted knowledge addition, which achieves
fine-tuning accuracy comparable to Low-Rank
Adaptation (LoRA) without degrading related
task performance.!

1 Introduction

In recent years, Large Language Models (LLMs)
have transitioned rapidly from research settings
to practical applications, serving millions of users
across diverse industries. Despite their broad versa-
tility in natural language processing (NLP), LLMs
face significant challenges in handling specific
tasks such as arithmetic computation and causal
reasoning, where simpler or more specialized task-
specific tools often outperform them in terms of ef-
ficiency and accuracy. For instance, the Toolformer
framework (Schick et al., 2023) demonstrates how
specialized queries can be routed outside the LLM
to external tools. This raises an important ques-
tion: Can we eliminate or reduce the parameters
within LLMs that are dedicated to these specialized
tasks, which become redundant in a Toolformer-
like architecture? Addressing this issue could lead
to more efficient parameter utilization and reduced
computational overhead by removing unnecessary
task knowledge from the model.

'Code will be released at https://github.com/
tylerlizzo/UNLEARN.

Current training paradigms offer limited solu-
tions for addressing this inefficiency. One possi-
ble approach involves associating training samples
with specific tasks and retraining the model to ex-
clude redundant parameters. However, for mod-
ern LLMs with their immense scale, retraining the
entire model is prohibitively expensive and time-
consuming, rendering such approaches impractical.

This paper introduces UNLEARN, a novel algo-
rithm that can forget or unlearn knowledge within
an LLM without access to the original training data,
without retraining, and without adversely affecting
related knowledge. UNLEARN leverages subspace
techniques to identify the subspaces spanned by
particular knowledge (tasks) and discrimination
methods to separate that subspace from subspaces
of similar tasks. This allows the algorithm to pre-
vent performance degradation when there are simi-
lar tasks, a common issue with traditional methods.
Further, this technique uses a unified set of oper-
ators, where the task matrices are identical and
used to either enhance or reduce the model’s per-
formance for a given task.

UNLEARN achieves 96% forgetting on the
task of interest while maintaining performance
on dissimilar tasks within 2.5% of the original
model. When the tasks are similar, UNLEARN
still achieves nearly 91% forgetting on the task of
interest while preserving performance on similar
tasks within 11%. These results significantly out-
perform the state-of-the-art, which achieves similar
forgetting but is accompanied by significant degra-
dation on similar tasks.

The forgetting of UNLEARN can easily be con-
verted to add knowledge to the LLM. This new
method LEARN matches the fine-tuning accuracy
of the LoRA method (Hu et al., 2021) without
affecting related tasks, demonstrating its dual na-
ture across both knowledge unlearning and fine-
tuning scenarios.

The contributions of this work are as follows:

* An efficient method to identify the subspace
of specific knowledge within an LLM.

7272

Findings of the Association for Computational Linguistics:
NAACL 2025, pages 7272-7283
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/tylerlizzo/UNLEARN
https://github.com/tylerlizzo/UNLEARN

* A novel approach called subspace discrimina-
tion and task removal to selectively target and
remove specific knowledge without adversely
affecting other knowledge in the LLM.

 The introduction of LEARN, a dual algorithm
to UNLEARN that provides a new approach
to adding new knowledge to the LLM without
affecting its other knowledge.

This paper presents the UNLEARN algorithm and
demonstrates its performance in removing knowl-
edge represented as tasks. Section 2 reviews the
literature on Parameter Efficient Fine-Tuning, Ma-
chine Unlearning, and LLM Unlearning. Section
3 describes the three main parts of UNLEARN:
subspace identification, subspace discrimination,
and task removal. In Section 4, the performance
of UNLEARN is tested over a large set of metrics
and settings and compared to the current state-of-
the-art. Section 4.5 introduces LEARN, a dual
application of the UNLEARN algorithm for adding
knowledge to the LLM. A comparison to traditional
fine-tuning methods is made in Section 5. Future
works are discussed in Section 6. Finally, Section
7 concludes the paper and outlines potential direc-
tions for future research.

2 Related Works

2.1 Parameter Efficient Fine-Tuning
Parameter Efficient Fine-Tuning (PEFT) is used to
fine-tune large models without modifying most of
the original pre-trained weights, resulting in signif-
icant computational and storage savings.

One of the most significant PEFT methods is
Low-Rank Adaptation (LoRA; Hu et al., 2021),
which decomposes weight updates into two low-
rank matrices. While reducing trainable parame-
ters by 10,000 times and GPU memory usage by 3
times, LoRA is still able to maintain the fine-tuning
performance of a systems. Quantized Low-Rank
Adaptation would build upon LoRA’s performance
gains by quantizing model weights (Dettmers et al.,
2023).

Other notable PEFT methods include prompt
tuning (Lester et al., 2021; Qin and Eisner, 2021),
tuning hidden states (IA3; Liuetal., 2022a), adding
layers (Houlsby et al., 2019), tuning the embed-
ding layer inputs (An et al., 2022), and hybrid ap-
proaches (Mahabadi et al., 2021). These extend
prior work on domain adaptation of deep neural
networks for Natural Language Processing (Jaech
et al.,, 2016).

2.2 Machine Unlearning

Machine unlearning is the process of removing
the influence of data on an already trained model,
creating a model that behaves as if it was never
trained on that data (Xu et al., 2023). While origi-
nally motivated by data protection regulations, such
as the California Consumer Privacy Act (CCPA;
Goldman, 2020) and the European Union’s Gen-
eral Data Protection Regulation (GDPR; Goddard,
2017), unlearning has grown in relevance as mod-
els become more resource-intensive and the need
for efficient domain removal has emerged.

Machine unlearning has since been extended to
myriad areas: federated learning (Liu et al., 2022b;
Zhang et al., 2023b), image classification (Bour-
toule et al., 2021; Gupta et al., 2021; Liu et al.,
2024a), and image generation (Gandikota et al.,
2023; Kumari et al., 2023; Fan et al., 2024).

The most rigorous method for machine unlearn-
ing is ‘exact’ unlearning, completely retraining a
model with the data points of interest removed (Yan
et al., 2022; Nguyen et al., 2022; Fan et al., 2024).
Although exact unlearning guarantees the removal
of data, it is impractical for models of any signif-
icant size due to the high computation cost. For
instance, training Llama-2-70B took ~ 1.7 million
GPU-hours on Nvidia A100 GPUs (Touvron et al.,
2023).

2.3 LLM Unlearning

There is an increasing interest in machine unlearn-
ing in the context of LLMs (Jang et al., 2022; Meng
et al., 2023; Liu et al., 2024c). Recent works high-
light the importance of selective LLM unlearning to
improve parameter efficiency and model adaptabil-
ity.(Zhang et al., 2023a; Liu et al., 2024b; Schick
et al., 2023).

Current methods for LLM unlearning include
gradient ascent to reverse the learning of knowl-
edge (Jang et al., 2022; Chen and Yang, 2023; Yao
et al., 2024), preference optimization using alter-
native responses (Eldan and Russinovich, 2023;
Maini et al., 2024), and input-based approaches
(Pawelczyk et al., 2024; Thaker et al., 2024).

However, these methods face significant chal-
lenges. There are the aforementioned cost and time
restraints. The vast amounts of training data used
for LLM training adds to the complexity, as iden-
tifying and isolating the specific data points to be
unlearned is a non-trivial task (Eldan and Russi-
novich, 2023; Ilharco et al., 2023). The scope of
unlearning is generally under-specified; unlearning

7273

should remove knowledge within the scope of the
targeted data while maintaining performance on
other data (Mitchell et al., 2022). Finally, there is
a lack of comprehensive evaluation methods to as-
sess the effectiveness of unlearning in LLMs (Patil
et al., 2023; Shi et al., 2024).

2.4 Toolformer

Toolformer (Schick et al., 2023) addresses a crucial
limitation in LLMs: while these models excel at
complex language tasks, they often struggle with
simpler tasks like arithmetic and factual lookup,
where small, specialized systems perform better.
This inefficiency underscores the need to offload
such tasks from LLMs to more appropriate down-
stream tools. Toolformer enables LLMs to call
external APIs for these tasks, resulting in supe-
rior performance compared to the base LLM. This
approach closely aligns with the goal of enhanc-
ing parameter efficiency by offloading tasks and
reducing the burden of unnecessary knowledge in
LLMs, relying on specialized tools instead. This
underscores the need for tools to offload knowledge
better handled by external tools, ensuring the LLM
focuses on tasks where it provides the most value.

3 UNLEARN Method

The method proposed in this paper consists of three
main tasks: subspace identification, discrimina-
tion, and removal®. Subspace identification trains
a knowledge (task)-dependent matrix for a speci-
fied layer while freezing all other layers. This se-
quential, layer-by-layer training starts with the first
layer and progresses through the entire network
to yield a set of matrices that represent the task-
dependent subspace (Section 3.1). Once identified,
subspace discrimination removes the information
unique to the task of interest while preventing any
degradation of other tasks. This is achieved using
a variation of the Gram-Schmidt process to orthog-
onalize subspaces, allowing mutual information to
be preserved (Section 3.2). The final step is sub-
space removal, where the modified task matrix, Ti’ ,
is subtracted (Section 3.3).

3.1 Subspace Identification

This step identifies the subspace of a specific task
within the LLM weight space. The method utilizes
a general training that is implemented layer-by-
layer, starting with the first layer (I = 1). All

The code will be released with the camera-ready version
under GNU Public License.

training is performed with a train/validation/test
split of 0.6/0.2/0.2: The train set is used for training
the network, the validation set determines when to
stop training for a specific layer in our sequential
process, and all evaluations are performed on the
final test set:

0. Model: The original pre-trained weights of
the LLM are removed and the weights for all
layers are randomly initialized.

1. Layer Freezing: Except for the weights at
layer [, all other weights for the subsequent
layers of an LLM are frozen to isolate the
training to one layer at a time.

2. Training: Training is completed on the task
dataset with the [-th layer unfrozen. This is
achieved by maximizing the conditional lan-
guage modeling objective:

[yl
m

o Yo D log(Pr(yida,y<r)) (1)
(

¢ (my)eZ =1

where z; and y; are sequences of tokens and
T! € R is the matrix for task i at the I-th
layer and n x n the dimensions of the original
pre-trained weight matrix.

Given the matrix Til is trained on a specific
task, the matrix is likely rank deficient. To
facilitate training, we alter each layer using a
bottleneck architecture as shown in Figure 2
with interior dimension k, where Til = FG@.

3. Sequential Training: Once the training at
layer [is complete, that layer is frozen and the
next layer is unfrozen. For our experiments,
training concluded once loss on the validation
set had stopped decreasing (i.e. potential over-
fitting of the training set was starting). Similar
training is then performed on the next layer.
This process is repeated across all layers, re-
sulting in weight matrices for each layer.

By the end of this sequential training and freez-
ing process, shown in Figure 1, the set of weight
matrices captures an accurate representation of the
task-dependent subspace within the weights of the
Transformer model. This method is lightweight,
maintaining the computational efficiency of low
rank training. The layer-by-layer approach was
taken because the early layers contain higher-level
semantic information, while the later layers con-
tain more task/fact-specific information. Training

7274

o ITTEE

M
@ %ﬁﬁ % o Wl
olEE-B oHEE &

oy | B o | | B
) ..ﬁ% ces | @ ...
o HHM -5 o NN -1

Step 0 Iteration 1

Iteration 2

Iteration 3 Iteration N

Figure 1: The Subspace Identification Process. The process begins by randomly initializing the model weights and
then freezing them. Then an iterative process of unfreezing, training, and refreezing each layer occurs. This results
in a set of matrices that capture an accurate representation for that task.

2N

Figure 2: Bottleneck architecture of layer [with interior
dimension k < n

in this method ensures the most reliable identifica-
tion of the tasks.

3.2 Subspace Discrimination

Once a task-dependent subspace has been identi-
fied, it could be removed by subtracting it from
the entire weight space (layer-by-layer). While
this may be effective at removing the task of in-
terest, it leads to performance loss when similar
tasks are also evaluated, i.e. ones that occupy sim-
ilar subspaces. Therefore, a method is required
that maintains the mutual information between
these two subspaces, only removing the informa-
tion unique to the task of interest. We call this
subspace discrimination.

To achieve subspace discrimination, we utilize
a variation of the Gram-Schmidt process. Gram-
Schmidt is used to orthogonalize a set of vectors
in an inner product space. Given the subspace
U spanned by vectors uq, - ,uy, we can find
the orthogonal subspace to a vector vy with the
following:

A proof that v;_ is orthogonal to all u; is offered in
Appendix A. For our application, we compute:

L SV(T:) - SV;(Ty) SV(T)

SVi(T7) = 2 SVi(To) - SV;(T,)

SVA(T) =3 S

where T; represents the identified subspace to be

removed, Ty, represents a similar task, and SV, (7))
represents the k-th singular vector of matrix 7; for
one of the Transformer layers /. When applied to
two tasks, every pair of weight matrices is decom-
posed and separated in this manner. For three or
more tasks, the other task matrices; T, 1, 152, - - -,
T, n, are added into one T, matrix, then the above
equation is applied. We chose to use Euclidean in-
ner products, inspired by the original LoRA paper
(Hu et al., 2021), which demonstrated that effi-
cient training could be achieved with linear rank
decompositions. While neural network parameter
spaces are non-Euclidean, the practical success of
the LoRA method justified our approach.

Initially, the similarity of tasks was determined
subjectively. However, this subspace discrimina-
tion method allows us to quantify task similarity,
as there will be more overlap in the weight space
of two similar sets of matrices. For two dissimi-
lar tasks, the discrimination process will have no
effect, as they are already orthogonal.

Subspace discrimination is essential to the
UNLEARN algorithm, allowing for the precise sep-
aration of task-specific information within shared
weight spaces and ensuring that the removal of one
task does not undesirably impact the performance
on similar tasks. Consequently, subspace discrim-
ination enhances the algorithm’s adaptability and
robustness.

3.3 Task Removal

The final step removes the task subspace. To
achieve this, our approach uses SVD reconstruc-
tion to reconstitute the modified task matrix, Ti’
from the singular values of 7; and singular vectors
SV (T}) above. We can directly subtract the modi-
fied task 77, from W', or, more generally, subtract
a linear smoothing of the task subspaces 77 and T;

W' =W —aoT] — (1 - a)T;

7275

where o € [0, 1] governs the relative strength of
the two UNLEARN matrices (with and without dis-
crimination). By including the smoothing factor,
we can balance the impact of removal on the tar-
geted task while mitigating unwanted degradation
on the similar task.

4 [Experiments

All experiments in this section use the same setup,
with Llama-2-70b serving as the LLM. For the
training step in the subspace identification method
(Section 3.1) as illustrated in Figure 2, we used
the Python package LORALIB (Hu et al., 2021)
but, rather than training a fine-tuning adapter, we
modified it to train the bottleneck in Figure 2 from
scratch. We used a rank of £ = 16. Only the
attention matrices were modified during training.
This was inspired by the original LoRA paper (Hu
et al., 2021), where they only adapted the attention
weights.

4.1 Datasets

A diverse selection of benchmarks is essential
to evaluate performance degradation across sim-
ilar tasks when modifying task-specific subspaces
within LLLMs. This study used two signification
collections of benchmarks: Holistic Evaluation
of Language Models (HELM; et al., 2023c) and
the Beyond-the-Imitation-Game Benchmark (BIG-
Bench; et al., 2023a).

HELM evaluates a wide range of use cases and
metrics, encompassing general language abilities
to simple question-answering settings. This bench-
mark evaluates models across multiple metrics—
accuracy, fairness, robustness, efficiency, and more—
providing a detailed view into the general language
capabilities of models.

Complementing HEL.M, BIG-Bench focuses on
more specific and niche tasks that probe the bound-
aries of current LLM capabilities. With 204 tasks
contributed from experts across fields, BIG-Bench
was invaluable for testing specific tasks that were
beyond the domain of HELM. Importantly, BIG-
Bench provided niche tasks that have little overlap
with other tasks, offering an unbiased perspective
on subspace removal.

Together, these datasets facilitate a comprehen-
sive analysis of the influence of subspace removal
on LLM performance across a spectrum of tasks.
By integrating the thorough evaluation of HELM
for general language abilities with the specialized

tasks from BIG-Bench, this study explores how ma-
nipulation of tasks affects both broad and targeted
model capabilities. This sheds light on the ability
of UNLEARN to remove a task without affecting
adjacent tasks.

4.2 Task Removal without Discrimination

The first experiment evaluated the UNLEARN
method using only subspace identification (Sec-
tion 3.1) and task removal without the subspace
discrimination method (v = 0 in Section 3.3). In
these experiments, a single task was removed and
performance across a set of tasks was observed.

Table 1 shows the performance of UNLEARN
where the math word problem dataset GSM8K
(Cobbe et al., 2021) was removed. Referring to
the row with o« = 0, the first six evaluation tasks
ranging from question-answering (NarrativeQA;
Kocisky et al., 2017) to more general benchmarks
like (MMLU; Hendrycks et al., 2021) were chosen
because they are very different tasks from GSM8K.
Because these tasks are dissimilar, they theoreti-
cally have little overlap in their weight subspaces.
Evaluating the six chosen benchmarks on both the
base model and UNLEARN (a = 0) shows our ap-
proach successfully forgets (dropped performance)
by 96.5% on the desired GSMS8K task. In contrast,
all other tasks had minimal degradation (less than
2.5%).

Referring to the last column of Table 1, an addi-
tional benchmark was added called arithmetic from
BIG-Bench. The addition of this task examines
the performance of UNLEARN when the goal is
to remove one task, GSM8K, while preserving a
highly related task, arithmetic. In this case, while
UNLEARN without task discrimination (o« = 0)
successfully removed the targeted task, GSM8k, by
96%, it also adversely affected the arithmetic task
(down 33%).

This outcome underscores the challenges with
task-specific subspace removal when dealing with
closely aligned tasks. The performance decline on
the second task suggests that the extracted subspace
on the first task contains features shared by the
second’s subspace, highlighting the need for the
subspace discrimination technique of Section 3.2.

4.3 Task Removal with Discrimination

The last row of Table 1 with a = 1 corresponds to
the UNLEARN method with the Task Discrimina-
tion method of Section 3.2. With GSMS8K as the
targeted task to be removed, the knowledge from

7276

Table 1: Performance of UNLEARN when targeting GSM8K for removal and preserving NarrativeQA (NQA),
NaturalQuestions (NQ), Massive Multitask Language Understanding (MMLU), IMDB sentiment analysis in movies
(IMDB), Real-world Annotated Few-Shot (RAFT), Grade School Math 8K (GSMS8K), and arithmetic.

Evaluation Tasks

IMDB | RAFT | GSMS8K | arithmetic

0.952 | 0.719 0.483 0.991

«
NQA | NQ | MMLU

Base Model | 0.778 | 0.680 | 0.583
0 0.758 | 0.681 | 0.577
0.25 0.755 | 0.681 | 0.566
0.5 0.768 | 0.670 | 0.571
0.75 0.749 | 0.664 | 0.579
1 0.772 | 0.674 | 0.582

0.949 | 0.715 0.017 0.633
0.951 | 0.712 0.041 0.692
0.932 | 0.706 0.046 0.781
0.946 | 0.708 0.045 0.878
0.946 | 0.723 0.087 0.956

the six unrelated tasks (first six) was once again
preserved with a reduction in the GSMS8K task by
82%. While the removal of the targeted task was
not as pronounced when using the task discrimina-
tion method, the related arithmetic task was much
less adversely affected with only a 3.5% reduction
versus 33% when o = 0.

To explore the dynamics of the subspace discrim-
ination process, we varied the smoothing factor «
introduced in Section 3.3. Again, GSM8K was
the targeted task to remove. As shown in Table
1, while we see forgetting of GSM8K degrade as
« increases, the preservation of the adjacent task,
and arithmetic improves at a much faster rate. For
example, with o = 0.75 in the table and as shown
in Figure 3, we find a balanced tradeoff with the
UNLEARN method matching the best forgetting of
GSMEK of previous methods, Knowledge Unlearn-
ing (KU), with a 91% reduction while significantly
outperforming KU and the others in preserving the
arithmetic task with only an 11% reduction (versus
a 50% reduction with KU).

When arithmetic was the targeted task, the re-
sults had deleterious effects on GSMS8K as well>.
Varying values of « (i.e. making the discrimina-
tion process more aggresive) had the unintended
effect of reducing the unlearning impact on both
tasks. This suggests these tasks’ subspaces entirely
overlap, preventing the successful discrimination
of the two.

4.4 Optimal Rank

We explore the impact of varying the rank of the
rank-deficient matrices during subspace identifica-
tion, as shown in Figure 2. As seen in Table 2 with
the NQA as the targeted task to be removed, we
vary the rank from k =1,2,4,8,16,32. The perfor-
mance is not hindered for k£ values above 4 but

3Detailed results are shown in the Appendix in Table 4.

%
% = - ‘
. \
. \
53 ° ‘
, }
. \
. \ II 1
0% m
RAF

NQA NQ MMLU IMDB AFT GSMSK arithmetic

® Gradient Ascent BKGA 8 KU BUNLEARN (0=0) ®UNLEARN (0=0.75) ®mUNLEARN (o=1)

Figure 3: Performance degradation for each task when
GSMSK is the targeted task. The plot shows the percent-
age of performance retained for each task across four
different models compared to the base model: Gradient
Ascent, Knowledge Gap Alignment (KGA), Knowledge
Unlearning (KU), and UNLEARN (a0 = 0.75).

there is a slight degradation of performance on the
task of interest for the lower-rank experiments; the
task of interest was not forgotten as effectively, and
the similar tasks (NQ and MMLU) experienced
greater performance degradation. This result can
be attributed to the subspace identification step not
capturing the subspaces for those tasks as accu-
rately when the rank is lower.

These results suggest that the rank can be sig-
nificantly reduced with minimal performance loss.
This is reasonable given that the subspaces of in-
terest were quite small compared to the overall di-
mensions of the weight matrices. In Llama-2-70B,
with dimension N = 5120, removing a single task
subspace would result in a 0.16% reduction in pa-
rameters, assuming an intrinsic rank of £ = 4. Fur-
thermore, this reduction scales almost linearly with
the number of tasks removed, especially when the
tasks are highly orthogonal. Reducing the parame-
ter count by 10% only requires the removal of 66
orthogonal task subspaces. This adaptability makes
the method highly suitable for resource-constrained
environments, where minimizing the model’s pa-
rameter count without sacrificing performance is
critical.

72717

Table 2: Performance of UNLEARN when the rank
(k) is modified and the Targeted Task to be removed is
Narrative QA (NQA). Detailed results are shown in the
Appendix in Table 5.

k Evaluation Tasks
NQA NQ MMLU
Base Model | 0.778 0.68 0.583
1 0.167 0.599 0.58
2 0.151 0.609 0.564
4 0.128 0.624 0.568
8 0.136 0.627 0.58
16 0.135 0.628 0.581
32 0.134 0.619 0.579

4.5 Using UNLEARN to LEARN

4.5.1 LEARN methodology

The UNLEARN methodology, initially designed
for the selective removal of task-specific informa-
tion from LLMs, also presents a versatile frame-
work that can be adapted for the enhancement of
model performance on particular tasks. This sec-
tion explores ‘LEARN,’ the application of our ear-
lier UNLEARN algorithm for training on new in-
formation. This method aims to add knowledge
and/or amplify the representation of a given task
within the model, leading to improved performance
on that task.

The LEARN approach uses the same principles
as UNLEARN but inverts the application to focus
on task enhancement. Specifically, the method
involves identifying the subspace associated with
a desired task using the approach in Section 3.1;
this step is identical to UNLEARN. The difference
comes with task addition instead of task removal;
the only necessary change is flipping the equation
for task removal from Section 3.3:

W =W+1T]

This addition should bolster performance on a new
task, as the 7 sits on top of the existing weight ma-
trix, similar to the function of most LLM adapters.
In addtion, due to subspace discrimination (Section
3.2), adding the new knowledge should have mini-
mal adverse effects on other knowledge already in
the LLM.

4.5.2 LEARN evaluation

To evaluate the effect of the LEARN method, exper-
iments were conducted on tasks where pre-trained
models showed suboptimal performance but had
the potential to perform well if fine-tuned. Identify-
ing tasks that meets these criteria for larger LLMs

Table 3: Performance of LEARN and LoRA on Legal-
Bench

Task Base Model LEARN LoRA
Issue 50.1 73.4 72.9
Rule 42.7 61.8 63.1
Conclusion 53.9 69.3 69.6
Interpretation 48.1 68.1 67.4
Rhetorical 454 62.5 61.2
Average 48.0 67.0 66.8

(50 B+ parameter) is challenging because they are
trained on such extensive datasets that it is more
difficult to find data not included in the training
set. Therefore, by restricting the size of the LLM,
we limit the total learning capacity of the model,
allowing us to squeeze out additional learning that
the LLM should be able to handle.

These experiments used a similar setting to be-
fore, with the exception of using Llama-2-7b. The
dataset of interest is LegalBench, a benchmark built
by a collaboration between lawyers and ML engi-
neers to measure legal reasoning in LLMs (et al.,
2023b). Llama-2-7b performs between 30-50%
across all tasks, leaving room for improvement.

When the LEARN algorithm was applied to the
model for LegalBench, it showed marked improve-
ment across all tasks. Table 3 shows the consistent
improvement across tasks and a 40% boost to the
average performance of the system compared to the
base LLM. Training with LEARN is shown relative
to traditional LoRA fine-tuning. Only the two tasks
of interest were shown in Table 3 because there was
a similar lack of impact on the other tasks. LEARN
matches the performance of LoRA. By systemati-
cally adding task-specific subspaces, LEARN fine-
tunes the model’s performance on a selected task
and minimizes any degradation of other capabil-
ities due to the subspace discrimination method.
The dual capability of UNLEARN/LEARN under-
scores its main value: the ability to use the same
training runs for both forgetting and learning.

5 Comparison to Existing Methods

This section presents a comparative analysis of the
UNLEARN/LEARN methodology against existing
methods, with a focus on generality and task per-
formance.

5.1 Generality and Efficiency

A key advantage of UNLEARN/LEARN is its oper-
ational flexibility. It offers a generalized framework

7278

that can be applied to full fine-tuning or any PEFT
method for fine-tuning. UNLEARN/LEARN ap-
plies the same underlying principles in any setting—
either adding or subtracting task-specific matrices
from the model’s weight matrices—to both enhance
(LEARN) and diminish (UNLEARN) the model’s
performance on specific tasks. Because the same
set of matrices are being used regardless of algo-
rithm, this simplifies model management and re-
duces the computational and storage overhead.

5.2 Task Performance

In scenarios involving similar tasks, the differences
between UNLEARN/LEARN and existing meth-
ods become even more pronounced. In the LEARN
setting of Table 3, both methods show comparable
improvements in task performance, demonstrating
their efficacy for bolstering model performance. In
the forgetting setting, the UNLEARN algorithm
is able to successfully discriminate between two
similar tasks and only remove the task of interest.

We compared UNLEARN to the current state-
of-the-art algorithms: Gradient Ascent (Yao et al.,
2024), Knowledge Gap Alignment (KGA; Wang
et al., 2023), and Knowledge Unlearning (KU Jang
et al., 2022). As seen in Table 4, these state-of-the-
art methods are unable to discriminate effectively
between tasks, leading to performance degradation
in closely related tasks. For example, when Narra-
tiveQA is the task of interest, UNLEARN success-
fully degrades that task (down from 0.778 to 0.135)
while maintaing the performance on NaturalQues-
tions (from 0.680 to 0.628). All three state-of-the-
art algorithms successfully degrade NarrativeQA:
GA degrades the task to 0.094, KGA to 0.183, and
KU to 0.163. However, they all show significantly
diminished performance on NaturalQuestions: GA
degrades the task to 0.415, KGA to 0.229, and KU
to 0.329. These state-of-the-art methods lack the
discrimination ability to target the knowledge they
seek to remove without unwanted performance ef-
fects on secondary tasks.

Conversely, with its precise subspace manipu-
lation, the UNLEARN method allows for the se-
lective removal of task influences without nega-
tively impacting the performance of related tasks.
This specificity is particularly beneficial in multi-
task learning/unlearning environments where tasks
share overlapping features (similar weight sub-
spaces). As such, UNLEARN is better suited for
forgetting tasks while preserving similar tasks.

6 Future Works

This paper has laid the groundwork for several in-
triguing avenues for future research. First, while
our initial work focused on removing broad domain
knowledge, future efforts will extend this method-
ology to the removal of specific knowledge and
facts. We are currently collecting datasets that will
facilitate this extension, particularly in scenarios
involving private or harmful information.

There are some scalability concerns if UN-
LEARN is applied to a large number of tasks.
While the current work targets the selective re-
moval of a small number of unwanted tasks, future
research will investigate strategies to efficiently
handle discrimination between larger sets of simi-
lar tasks.

Our current approach was largely inspired by the
original LoRA paper (Hu et al., 2021), which was
our motivation for only manipulating the attention
weights. Subsequent research into LoRA revealed
the effectiveness of manipulating the other layers
within an LLM. Future works will explore the adap-
tion of other layers to enhance the flexibility and
performance of UNLEARN.

7 Conclusion

This paper introduces UNLEARN, a novel ap-
proach for selectively forgetting knowledge in
Large Language Models. This method relies on
subspace identification for tasks and subspace dis-
crimination between similar tasks. Compared
to state-of-the-art methods like Gradient Ascent,
UNLEARN offers substantial advantages in terms
of simplicity, generality, efficiency, precision, and
overall effectiveness. The experimental results
demonstrate significant performance gains, high-
lighting the effectiveness of UNLEARN in remov-
ing unwanted knowledge without causing signifi-
cant degradation on related tasks that are not fully
contained within the targeted task. The method’s
ability to accurately isolate and remove specific
subspaces within the model ensures precise un-
learning, making it a valuable tool for managing
the complexities of task forgetting.

This paper also showed that UNLEARN can
be easily reconfigured to learn new tasks. This
complementary method, LEARN, is an approach
for targeted knowledge addition that achieves fine-
tuning accuracy comparable to Low-Rank Adapta-
tion (LoRA) without degrading related task perfor-
mance.

7279

Limitations

Although UNLEARN enhances the abilities of
LLMs to forget knowledge, certain limitations still
need to be addressed. One limitation is when tasks
completely overlap, as observed with arithmetic
and GSM8K. When a subspace is entirely con-
tained within another, as arithmetic was within
GSMBK, it becomes challenging to discriminate
between these two tasks. This highlights the dis-
tinction between knowledge and the metrics that
measure knowledge, which we will explore this
distinction in future works.

Another limitation of this paper that will be ad-
dressed in future work is to more fully leverage the
experimental insights to optimize the efficiency of
the UNLEARN method.

Ethics Statement
Acknowledgements

This work was supported by CoCoSys, one of seven
centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

References

Shengnan An, Yifei Li, Zeqi Lin, Qian Liu, Bei Chen,
Qiang Fu, Weizhu Chen, Nanning Zheng, and Jian-
Guang Lou. 2022. Input-tuning: Adapting unfamiliar
inputs to frozen pretrained models.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A.
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2021. Ma-
chine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 141-159.

Jiaao Chen and Diyi Yang. 2023. Unlearn what you
want to forget: Efficient unlearning for llms.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Ronen Eldan and Mark Russinovich. 2023. Who’s harry
potter? approximate unlearning in llms.

Aarohi Srivastava et al. 2023a. Beyond the imitation
game: Quantifying and extrapolating the capabilities
of language models.

Neel Guha et al. 2023b. Legalbench: A collaboratively
built benchmark for measuring legal reasoning in
large language models.

Percy Liang et al. 2023c. Holistic evaluation of lan-
guage models.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong,
Dennis Wei, and Sijia Liu. 2024. Salun: Empower-
ing machine unlearning via gradient-based weight
saliency in both image classification and generation.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-
Kaufman, and David Bau. 2023. Erasing concepts
from diffusion models.

Michelle Goddard. 2017. The eu general data pro-
tection regulation (gdpr): European regulation that
has a global impact. International Journal of Market
Research, 59(6):703-705.

Eric Goldman. 2020. An introduction to the califor-
nia consumer privacy act (ccpa). Santa Clara Univ.
Legal Studies Research Paper.

Varun Gupta, Christopher Jung, Seth Neel, Aaron
Roth, Saeed Sharifi-Malvajerdi, and Chris Waites.
2021. Adaptive machine unlearning. In Advances in
Neural Information Processing Systems, volume 34,
pages 16319-16330. Curran Associates, Inc.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models.

Gabriel IlTharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2023. Editing
models with task arithmetic.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks
for natural language understanding. arXiv preprint
arXiv:1604.00117.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2022. Knowledge unlearning for mitigating
privacy risks in language models.

Tomas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gdbor Melis, and Ed-
ward Grefenstette. 2017. The narrativeqa reading
comprehension challenge.

7280

http://arxiv.org/abs/2203.03131
http://arxiv.org/abs/2203.03131
https://doi.org/10.1109/SP40001.2021.00019
https://doi.org/10.1109/SP40001.2021.00019
http://arxiv.org/abs/2310.20150
http://arxiv.org/abs/2310.20150
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2310.02238
http://arxiv.org/abs/2310.02238
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2206.04615
http://arxiv.org/abs/2308.11462
http://arxiv.org/abs/2308.11462
http://arxiv.org/abs/2308.11462
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2310.12508
http://arxiv.org/abs/2310.12508
http://arxiv.org/abs/2310.12508
http://arxiv.org/abs/2303.07345
http://arxiv.org/abs/2303.07345
https://doi.org/10.2501/IJMR-2017-050
https://doi.org/10.2501/IJMR-2017-050
https://doi.org/10.2501/IJMR-2017-050
https://proceedings.neurips.cc/paper_files/paper/2021/file/87f7ee4fdb57bdfd52179947211b7ebb-Paper.pdf
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/1902.00751
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2212.04089
http://arxiv.org/abs/2212.04089
http://arxiv.org/abs/2210.01504
http://arxiv.org/abs/2210.01504
http://arxiv.org/abs/1712.07040
http://arxiv.org/abs/1712.07040

Nupur Kumari, Bingliang Zhang, Sheng-Yu Wang, Eli
Shechtman, Richard Zhang, and Jun-Yan Zhu. 2023.
Ablating concepts in text-to-image diffusion models.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin Raffel.
2022a. Few-shot parameter-efficient fine-tuning is
better and cheaper than in-context learning.

Mengda Liu, Guibo Luo, and Yuesheng Zhu. 2024a.
Machine unlearning with affine hyperplane shifting
and maintaining for image classification. In Neural
Information Processing, pages 215-227, Singapore.
Springer Nature Singapore.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen
Casper, Nathalie Baracaldo, Peter Hase, Xiaojun Xu,
Yuguang Yao, Hang Li, Kush R. Varshney, Mohit
Bansal, Sanmi Koyejo, and Yang Liu. 2024b. Re-
thinking machine unlearning for large language mod-
els.

Yi Liu, Lei Xu, Xingliang Yuan, Cong Wang, and Bo Li.
2022b. The right to be forgotten in federated learning:
An efficient realization with rapid retraining. In IEEE
INFOCOM 2022 - IEEE Conference on Computer
Communications, pages 1749-1758.

Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun
Tian, and Meng Jiang. 2024c. Towards safer large
language models through machine unlearning.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers.

Pratyush Maini, Zhili Feng, Avi Schwarzschild,
Zachary C. Lipton, and J. Zico Kolter. 2024. Tofu: A
task of fictitious unlearning for llms.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2023. Locating and editing factual associa-
tions in gpt.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le
Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and
Quoc Viet Hung Nguyen. 2022. A survey of machine
unlearning.

Vaidehi Patil, Peter Hase, and Mohit Bansal. 2023. Can
sensitive information be deleted from 1lms? objec-
tives for defending against extraction attacks.

Martin Pawelczyk, Seth Neel, and Himabindu
Lakkaraju. 2024. In-context unlearning: Language
models as few shot unlearners.

Guanghui Qin and Jason Eisner. 2021. Learning how to
ask: Querying Ims with mixtures of soft prompts.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Dangi Chen, and
Luke Zettlemoyer. 2024. Detecting pretraining data
from large language models.

Pratiksha Thaker, Yash Maurya, and Virginia Smith.
2024. Guardrail baselines for unlearning in 1lms.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Lingzhi Wang, Tong Chen, Wei Yuan, Xingshan Zeng,
Kam-Fai Wong, and Hongzhi Yin. 2023. Kga: A gen-
eral machine unlearning framework based on knowl-
edge gap alignment.

Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou,
and Philip S. Yu. 2023. Machine unlearning: A sur-
vey.

Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li,
Fenghua Li, and Xiaodong Lin. 2022. Arcane: An
efficient architecture for exact machine unlearning.
In IJCAI volume 6, page 19.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. 2024. Large
language model unlearning.

Dawen Zhang, Pamela Finckenberg-Broman, Thong
Hoang, Shidong Pan, Zhenchang Xing, Mark Staples,
and Xiwei Xu. 2023a. Right to be forgotten in the era
of large language models: Implications, challenges,
and solutions.

Lefeng Zhang, Tianqing Zhu, Haibin Zhang, Ping
Xiong, and Wanlei Zhou. 2023b. Fedrecovery:
Differentially private machine unlearning for fed-
erated learning frameworks. IEEE Transactions on
Information Forensics and Security, 18:4732-4746.

7281

http://arxiv.org/abs/2303.13516
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2205.05638
http://arxiv.org/abs/2205.05638
http://arxiv.org/abs/2402.08787
http://arxiv.org/abs/2402.08787
http://arxiv.org/abs/2402.08787
https://doi.org/10.1109/INFOCOM48880.2022.9796721
https://doi.org/10.1109/INFOCOM48880.2022.9796721
http://arxiv.org/abs/2402.10058
http://arxiv.org/abs/2402.10058
http://arxiv.org/abs/2106.04647
http://arxiv.org/abs/2106.04647
http://arxiv.org/abs/2401.06121
http://arxiv.org/abs/2401.06121
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2202.05262
http://arxiv.org/abs/2206.06520
http://arxiv.org/abs/2206.06520
http://arxiv.org/abs/2209.02299
http://arxiv.org/abs/2209.02299
http://arxiv.org/abs/2309.17410
http://arxiv.org/abs/2309.17410
http://arxiv.org/abs/2309.17410
http://arxiv.org/abs/2310.07579
http://arxiv.org/abs/2310.07579
http://arxiv.org/abs/2104.06599
http://arxiv.org/abs/2104.06599
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2302.04761
http://arxiv.org/abs/2310.16789
http://arxiv.org/abs/2310.16789
http://arxiv.org/abs/2403.03329
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2305.06535
http://arxiv.org/abs/2305.06535
http://arxiv.org/abs/2305.06535
http://arxiv.org/abs/2306.03558
http://arxiv.org/abs/2306.03558
http://arxiv.org/abs/2310.10683
http://arxiv.org/abs/2310.10683
http://arxiv.org/abs/2307.03941
http://arxiv.org/abs/2307.03941
http://arxiv.org/abs/2307.03941
https://doi.org/10.1109/TIFS.2023.3297905
https://doi.org/10.1109/TIFS.2023.3297905
https://doi.org/10.1109/TIFS.2023.3297905

A Proof of Orthogonality of v,

We offer a quick proof that v}, is orthogonal to the
orthogonal components of U: wuqy,--- ,uy. We
begin with our orthogonality definition in an inner
product space:

u, v are orthogonal if (u,v) =0

Next, we consider vj, and arbitrary u;:

We need to show that (v, us) = 0. We proceed
with the following calculation:

N
/ _ <vkvuj>)
<Uk;7uf> - Vg _Z U] u]auf
75

= (ug, u)
N (UK, uj)
k> Uj
(Vg ug) — uj, ug
7 ; (uj,uj) 7
N (g, us)
k> Wy
= (vg, ug) — (wj,ug)
’ ; (uj,uj)
Since u1, - - - , u are orthogonal components, we

have (u;, ux) = 0 for j # k. This simplifies the
summmation as follows:

o (vk,)
<U;€,’U,g>:<vk,’u,g>—z il i <Uj,u5>

= (uj,u5)
= <Uk; Ue) — EZIZ:ZE; <Ug, ue>
- <Uk7u€> - <Ukau€>
=0

Thus, we have shown that (v;,us) = 0 for any
ug, proving that vy, is orthogonal to the orthogonal
components, ui, - -- ,un, of U.

B Detailed Results of UNLEARN method

Full results are found in Table 4 below.

C Detailed Results of the Rank Reduction

Full results are found in Table 5 below.

7282

Table 4: Performance of UNLEARN on a variety of tasks, compared to three state-of-the-art models: Gradient
Ascent (Yao et al., 2024), Knowledge Gap Alignment (KGA, Wang et al., 2023), and Knowledge Unlearning (KU,
Jang et al., 2022). Targeted Task represents the task that was 'unlearned’. The tasks of interest are NarrativeQA
(NQA), NaturalQuestions (NQ), Massive Multitask Language Understanding (MMLU), IMDB benchmark for
sentiment analysis in movies (IMDB), Real-world Annotated Few-Shot (RAFT), Grade School Math 8K (GSMS8K),
and arithmetic. The green columns represent the targeted task and the yellow columns represent the similar task.

Ta

Model Evaluation Tasks
NQA NQ MMLU IMDB RAFT GSMS8K arithmetic
Targeted Task | Base Model 0.778 0.680 0.583 0.952 0.719 0.483 0.991
Gradient Ascent 0.768 0.651 0.574 0.949 0.710 0.052 0.574
KGA 0.767 0.664 0.561 0.937 0.718 0.136 0.682
GSMSK KU 0.763 0.666 0.574 0.933 0.716 0.043 0.487
UNLEARN (a = 0) 0.758 0.681 0.577 0.949 0.715 0.017 0.633
UNLEARN (o = 0.25) | 0.755 0.681 0.566 0.951 0.712 0.041 0.692
UNLEARN (a = 0.5) 0.768 0.670 0.571 0.932 0.706 0.046 0.781
UNLEARN (o = 0.75) | 0.749 0.664 0.579 0.946 0.708 0.045 0.878
UNLEARN (o = 1.0) 0.772 0.674 0.582 0.946 0.723 0.087 0.956
Gradient Ascent 0.782 0.663 0.577 0.953 0.713 0.215 0.084
KGA 0.767 0.675 0.581 0.939 0.700 0.105 0.017
arithmetic KU 0.760 0.672 0.567 0.942 0.719 0.183 0.063
UNLEARN (a = 0) 0.757 0.680 0.578 0.949 0.716 0.087 0.028
UNLEARN (a =0.25) | 0.771 0.673 0.584 0.949 0.717 0.214 0.229
UNLEARN (o = 0.5) 0.762 0.680 0.575 0.941 0.713 0.277 0.462
UNLEARN (a =0.75) | 0.773 0.676 0.571 0.948 0.709 0.363 0.628
UNLEARN (o = 1.0) 0.771 0.681 0.569 0.955 0.712 0.461 0.825
Gradient Ascent 0.094 0415 0.573 0.945 0.709 0.469 0.978
KGA 0.183 0.229 0.581 0942 0.717 0.482 0.976
NQA KU 0.163 0.329 0.569 0.949 0.701 0.479 0.976
UNLEARN (« = 0) 0.118 0.263 0.567 0.966 0.702 0.466 0.976
UNLEARN (o = 0.25) | 0.119 0.332 0.577 0.952 0.717 0.468 0.980
UNLEARN (a = 0.5) 0.124 0.427 0.579 0.947 0.709 0.482 0.988
UNLEARN (o = 0.75) | 0.133 0.514 0.575 0.946 0.711 0.479 0.985
UNLEARN (« = 1.0) 0.135 0.628 0.581 0.969 0.723 0.460 0.989
Gradient Ascent 0483 0.184 0.554 0.940 0.693 0.477 0.963
KGA 0.501 0.243 0.557 0.946 0.697 0.479 0.989
NQ KU 0416 0.113 0.558 0.926 0.712 0.468 0.973
UNLEARN (a = 0) 0.419 0.142 0.570 0936 0.717 0.464 0.979
UNLEARN (a = 0.25) | 0487 0.141 0.571 0.950 0.714 0.481 0.984
UNLEARN (a = 0.5) 0.583 0.146 0.578 0.947 0.708 0.479 0.985
UNLEARN (a = 0.75) | 0.655 0.146 0.569 0.941 0.711 0.474 0.991
UNLEARN (a = 1.0) 0.703 0.147 0.567 0.941 0.716 0.471 0.983
ble 5: Performance of UNLEARN when the rank (k) is modified. Targeted Task represents the task that was

‘unlearned’. The tasks of interest are NarrativeQA (NQA), NaturalQuestions (NQ), Massive Multitask Language
Understanding (MMLU), IMDB benchmark for sentiment analysis in movies (IMDB), Real-world Annotated
Few-Shot (RAFT), Grade School Math 8K (GSM8K), and arithmetic. The green columns represent the targeted
task and the yellow columns represent the similar task

k Targeted Task Evaluation Tasks
NQA NQ MMLU IMDB RAFT GSMS8K arithmetic

Base Model 0.778 0.68 0.583 0952 0.719 0483 0.991
| NQA 0.167 0.599 0.58 0938 0.702 0.464 0.974
NQ 0.684 0.198 0.582 0951 0.701 0.482 0.989
) NQA 0.151 0.609 0564 0931 0.712 0479 0.987
NQ 0.688 0.173 0.58 095 0.701 0.466 0.97
4 NQA 0.128 0.624 0.568 0946 0.703 0471 0.971
NQ 0.711 0.152 0.567 0934 0.718 0.482 0.986
g NQA 0.136 0.627 0.58 0931 0.718 0475 0.99
NQ 0.701 0.152 0579 0931 0.698 0.468 0.974
16 NQA 0.135 0.628 0.581 0.969 0.723 0.46 0.989
NQ 0.703 0.147 0567 0941 0.716 0471 0.983
30 NQA 0.134 0.619 0579 0937 0.704 0.467 0.974
NQ 0.704 0.156 0.583 0933 0.696 0.483 0.98

7283

