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Abstract

Healthcare professionals increasingly include
Language Models (LMs) in clinical practice.
However, LMs have been shown to exhibit and
amplify stereotypical biases that can cause life-
threatening harm in a medical context. This
study aims to evaluate gender biases in auto-
matically generated clinical cases in French, on
ten disorders. Using seven LMs fine-tuned for
clinical case generation and an automatic lin-
guistic gender detection tool, we measure the
associations between disorders and gender. We
unveil that LMs over-generate cases describing
male patients, creating synthetic corpora that
are not consistent with documented prevalence
for these disorders. For instance, when prompts
do not specify a gender, LMs generate eight
times more clinical cases describing male (vs.
female patients) for heart attack. We discuss
the ideal synthetic clinical case corpus and es-
tablish that explicitly mentioning demographic
information in generation instructions appears
to be the fairest strategy. In conclusion, we
argue that the presence of gender biases in syn-
thetic text raises concerns about LM-induced
harm, especially for women and transgender
people.

1 Introduction

Healthcare is a field that is particularly exposed
to societal and stereotypical biases. Studies docu-
ment the presence and impact of biases carried out
by healthcare professionals and clinical research
(FitzGerald and Hurst, 2017). Biases are linked to
patients’ gender (Dwass, 2019), race (Williams and
Wryatt, 2015), weight (Lawrence et al., 2021), sex-
ual orientation (Albuquerque et al., 2016), gender
identity (Drabish and Theeke, 2022), age (Chrisler
et al., 2016), or socio-economic status (Arpey et al.,
2017). These biases lead to underdiagnosis, serial
misdiagnosis, and mistreatment of some disorders
for patient categories that do not fit the "stereotypi-
cal patient" profile for the disorder in question.

Language models (LMs) are increasingly used
in healthcare for preconsultation, clinical decision
support, medication counseling, and jargon simpli-
fication, but also to help recruit patients for clinical
trials or to train students in medical schools (Yang
et al., 2023). LMs may also be used for synthetic
text generation to support secondary use of health
data. In this context, synthetic clinical cases are a
source of shareable corpora that preserve patient
confidentiality. However, the LMs used to produce
synthetic texts contain, propagate, and even am-
plify stereotypical biases (Kirk et al., 2021). Thus,
they create a risk of reinforcing stereotypes and
harms. Generated biases could even feed health
professionals’ stereotypes (Adam et al., 2022) as
biased systems influence users durably after expo-
sure (Vicente and Matute, 2023). Real-world bi-
ases in data are one source of biases in LMs (Hovy
and Prabhumoye, 2021) that can be reinforced by
model biases.

In this study, we aim to characterize the pres-
ence of gender biases in generated clinical cases
in French, addressing 10 common disorders — in-
cluding some notable for gender stereotypes and
biases. We distinguish between societal biases (e.g.,
women’s heart conditions are often disregarded
or mistaken for anxiety (Banks, 2008)) and medi-
cal prevalence (e.g., prostate cancer is more often
found in men vs. women because the majority of
people with a prostate are men).

Our contributions are the following:

* The fine-tuning of 7 LMs for controlled gen-
eration of synthetic clinical cases in French.

* A method leveraging morpho-syntactic gender
markers for the automatic extraction of patient
gender information from clinical cases.

* An evaluation of gender bias in 21,000 syn-
thetic clinical cases addressing 10 disorders
with various male/female prevalence.
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* Recommendations for mitigation of biases
in clinical case generation and an easy-to-
implement mitigation strategy: the use of gen-
dered prompts.

All data and code (including fine-tuned models,
gender detection system, generated cases, and man-
ually annotated cases) are freely available.! We
find that LMs generate uneven proportions of mas-
culine and feminine cases, favoring male patients.
Further, these disparities do not mirror real-world
gender prevalence: the proportion of masculine
is increased for all disorders except prostate can-
cer. Interestingly, models generate fewer texts with
male patients for stereotypically? feminine disor-
ders (breast or ovarian cancer) when prompted to,
than texts with female patients for stereotypically
masculine disorders (prostate cancer). Finally, we
discuss what an ideal, unbiased LM would output,
taking into account real-world biases.

2 Related Work
2.1 Use of LMs in healthcare

LMs are increasingly used in healthcare to assist
with a range of text-processing tasks including text
classification, information extraction, or decision
support (Hager et al., 2024), and specialized mod-
els were developed for the medical domain (Luo
et al., 2022; Chen et al., 2023; Garcia-Ferrero et al.,
2024; Labrak et al., 2024b; Li et al., 2024).

Many applications aim at assisting health profes-
sionals with summarization tasks such as writing
discharge summaries (Xu et al., 2024) and clin-
ical notes (Nair et al., 2023; Ben Abacha et al.,
2023a,b). Generative LMs are also used for patient
interactions (Chowdhury et al., 2023).

In a more secondary use of healthcare data, LMs
are used to create, augment, and share medical cor-
pora to compensate for the limited availability of
such resources (Ive et al., 2020; Amin-Nejad et al.,
2020). Meoni et al. (2024) and Boulanger et al.
(2024) use clinical keywords to guide the gener-
ation of synthetic clinical documents in English

ISee: https://github.com/FannyDucel/ClinicalCaseBias/

>Throughout the paper, we refer to gender and not sex.
Thus, when we mention that some disorders, e.g., prostate
cancer, is "a (more) masculine disorder”, we mean to say that
the majority of patients are men (because most people with
a prostate are men) but acknowledge that some (transgender)
women, intersex and non-binary people can also suffer from
it (since they also have a prostate). However, we only focus
on the two binary genders as in the medical corpora we used,
only these two genders are mentioned.

and French, while Hiebel et al. (2023) showed that
automatically generated clinical cases in French
can be used as an alternative to real clinical cases
for training clinical entity recognition models with
comparable performance.

2.2 Stereotypical biases

Biases in Natural Language Processing tools are
defined as "skewed and undesirable association[s]
in language representations which ha[ve] the po-
tential to cause representational or allocational
harms" (Barocas et al., 2017). Allocational harms
occur when "[systems] allocate or withhold certain
groups an opportunity or a resource", whereas rep-
resentational harms occur when the depiction of
members of certain groups is discriminatory and
"reinforce subordination" (Barocas et al., 2017).
As our focus is on stereotypical biases, they orig-
inate from "beliefs about the characteristics, at-
tributes, and behaviors of members of certain
groups" (Hilton and von Hippel, 1996), i.e., stereo-
types.

In the context of LMs, a model can be defined as
biased if it exhibits different, uneven behavior when
one variable changes in the prompt (e.g., patient’s
gender), and/or if it does not replicate real-world
data (e.g., gender prevalence for a given disorder).

Many research efforts show that LMs encap-
sulate and amplify stereotypical biases, both up-
stream — in the internal representations of the
model (Choenni et al., 2021; Cao et al., 2022),
and downstream — in real-world applications (Kirk
et al., 2021; Wan et al., 2023; Kumar et al., 2024).
Our work is contributing to recent studies exploring
biases in the health sector (Kim et al., 2023; Zhang
et al., 2024; Zack et al., 2024). However, to our
knowledge, our study is the first to focus on biases
in clinical case generation and more generally, on
biases in medical texts in the French language.

3 Experimental Setup
3.1 Language models

This work focuses on French and 7 auto-regressive
LMs of various sizes, from 4 families: BioMistral-
7b-SLERP (Labrak et al., 2024b), BLOOM-1bl1,
BLOOM-7b1 (Le Scao et al., 2023), vigogne-2-7b,
vigogne-2-13b (Huang, 2023), Llama-3.1-8B, and
Llama-3.1-8B-Instruct (Al@Meta, 2024).

* BioMistral models are a series of open-source
Mistral-based LMs, further pre-trained on
medical corpora from PubMed Central Open
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E3C CAS DIAMED Total
Clinical cases (#) 1,069 646 333 2,048
Mean tokens 354.6 3934 363.8 368.3
Mean constraints 252  27.2 24.3 25.7
% of feminine 51 42 51 48
% of masculine 48 58 47 51
% of undefined 1 0 2 1

Table 1: Statistics of the training corpus.

Access, primarily in English (98.75% of the
corpus). It is the only model in our study that
is adapted to the medical domain.

* BLOOM is an open-source, multilingual LM
developed by the BigScience collective. It was
trained on 46 languages, including French.

* Vigogne-2-Instruct is a "LLaMA model fine-
tuned to follow French instructions".

* Llama-3.1 models are multilingual LMs
trained on 8 languages, including French. The
-Instruct version of the model was optimized
to follow instructions in a dialogue setting.

We aimed to ensure all models had baseline train-
ing on clinical cases in French by fine-tuning them
on our corpus. To our knowledge, it is not pos-
sible to have precise control over the fine-tuning
conditions of API-based models for a comparable
study. Therefore, we did not include any API-based
models in this study.

3.2 Fine-tuning language models

Models are fine-tuned to generate clinical cases
based on constraints that define clinical profiles.
We build a corpus for instruction tuning of clinical
cases in French, based on patients’ demographic
information and clinical elements. The corpus
includes clinical cases from 3 different sources:
CAS (Grabar et al., 2018) and DIAMED (Labrak
et al., 2024a) — 2 French corpora of de-identified
clinical cases — as well as the French documents of
E3C (Magnini et al., 2020) — a multilingual corpus
of de-identified clinical cases. Out-of-scope docu-
ments, i.e., nonclinical cases or forensic cases, are
filtered out after manual inspection of the whole
corpus.

We use the same methodology as Boulanger et al.
(2024) to build an instruction corpus with a "clini-
cal profile" comprising patients’ demographic in-
formation and automatically extract clinical ele-

ments used as input (prompt) and the correspond-
ing clinical case as expected output. More pre-
cisely, we manually annotate the gender and age of
each patient when not available, and we automati-
cally extract clinical elements using a BERT model
fine-tuned on clinical annotations. From these an-
notations, we automatically select those that align
with clinicians’ definition of "salient" elements, pri-
marily procedures and symptoms. An example of
input is provided in Table 2.

Table 1 presents statistics about the training cor-
pus. It consists of 2,048 clinical cases, each asso-
ciated with a set of constraints. Even though the
prevalence of male patients is higher (51%), there
is no significant difference with a balanced gender
distribution (exact binomial test, p-value = 0.2304).

We fine-tune each model on this instruction cor-
pus using LoRA? trainable matrices on the keys,
queries, and values of the transformer layers while
the rest of the model is frozen (Hu et al., 2022).

3.3 Disorder selection and synthetic corpus
generation

The fine-tuned LMs are then used for generat-
ing clinical cases in French for 10 different dis-
orders: bladder cancer, breast cancer, colon cancer,
COVID-19, depression, heart attack, osteoporo-
sis, ovarian cancer, prostate cancer, and sickle-cell
anaemia. These disorders were chosen because
they evoke either societal biases and/or a medi-
cal gender imbalance. Specifically, ovarian can-
cer, breast cancer, depression, and osteoporosis are
more feminine disorders whereas prostate cancer
and bladder cancer are overwhelmingly present in
male patients, and COVID-19, and heart attacks,
slightly so. Colon cancer and sickle-cell anaemia
seem neutral, as it affects an equivalent number of
male and female patients (see Table 3). Further,
some of these disorders are known to lead to the
under-diagnosis of one gender over the other (see
Section 6).

We find clinical cases associated with these disor-
ders either in the 3 corpora described in Section 3.2
or by searching clinical cases in PubMed for the
disorders that we did not find in the 3 corpora. Clin-
ical cases in the test set were manually annotated
with the salient elements as described in Boulanger
et al. (2024) to ensure the relevance of the chosen
constraints.

3For the fine-tuning with LoRa, we used the following
parameters: r=8, alpha=16, and dropout=0.1.
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Prompt (input)

Generated clinical case (output)

FR  Ecris un cas clinique pour le profil pa-
tient suivant : Age : 45 ; Il doit con-
tenir les éléments suivants : douleurs
périombilicale intenses ; vomisse-
ments ; empatement sus-ombilical ;
anémie a 9g/dl d’hémoglobine ; hypo
albuminémie a 28g/1 [...]

Un homme &agé de 45 ans, s’est présenté pour
douleurs périombilicale intenses avec des vomissements
spontanés, évoluant depuis 1 an. L’examen clinique a
trouvé un patient maigre, alerte et stable sur le plan
hémodynamique, avec un empatement sus-ombilical
et une perte d’appétit. Les examens de laboratoire
ont montré une anémie a 9g/dl d’hémoglobine et une
hypo albuminémie a 28g/1. L’immunoglobuline  anti-
transglutaminase a été positive. [...]

EN Write a clinical case for the follow-
ing patient profile: Age : 45 ; The
following elements must be included:
intense periumbilical pain; vomiting;
supraumbilical swelling; anemia at
9g/dl hemoglobin; hypoalbuminemia

A 45-year-old man presented with intense periumbilical pain
with spontaneous vomiting, which he has been experi-
encing for the past year. Clinical examination revealed
a lean, alert, and hemodynamically stable patient with
supraumbilical swelling and loss of appetite. Lab tests showed
anemia at 9g/dl hemoglobin and hypo albuminemia at 28g/1.

at 28¢/1[...]

Anti-transglutaminase immunoglobulin was positive. [...]

Table 2: Truncated neutral prompt and matching generated clinical case (the EN text is a translation of the original
FR text using DeepL and manual post-edition) from Llama-3.1-8B-Instruct, for colon cancer. Note that the prompt
does not contain patient gender although gender information is present in the generated text (corresponding words
are bolded — describing a male patient in this text). Clinical constraints supplied in the prompt are underlined.

During generation, the same decoding parame-
ters are used for every model: a standard value of
0.9 for top-p and a temperature of 1 (in order to use
the natural token distribution of the models).

We generate samples for each of the test set
triplets (model, disorder, gender) and filter out gen-
erated texts containing multiple clinical cases or
repetitions of 4-grams more than 15 times (the num-
ber was set heuristically to identify loops) until 100
valid texts are obtained for each triplet.

The resulting corpus contains 21,000 synthetic
clinical cases (10 disorders x 7 LMs x 3 gender
views x 100 generations), including 1/3 obtained
with a masculine prompt, 1/3 obtained with a fem-
inine prompt, and 1/3 obtained with a gender neu-
tral prompt. A sample neutral prompt and gener-
ated clinical case are provided in Table 2.

3.4 Automatic gender bias detection

To automatically detect gender biases, we adapt
a system developed by Ducel et al. (2024). This
hybrid system relies on linguistic rules, French lex-
ical resources, and machine-learning techniques®
to classify a text as "masculine", "feminine", "neu-

tral", or "ambiguous" according to the morpho-

*The system uses SpaCy (Honnibal and Johnson, 2015)
with its French transformer pipeline, which is based
on CamemBERT (Martin et al., 2020), French Sequoia
(Candito and Seddah, 2012) and Universal Dependencies
(Candito et al., 2014).

syntactic gender that is the most present in the
text, i.e., in the present study, the gender of the
described patient. With the use of linguistic clues,
we detect gender, as opposed to biological sex or
assigned-at-birth sex. Biological features are not
taken into account (e.g., genitals are not attributed
to one gender over the other), which allows for
greater accuracy and inclusiveness as biology does
not define gender. As this approach is based on gen-
der inflections, the presented work could be easily
adapted to other inflected languages (e.g. Spanish,
Italian, German, Hindi. . .).

For characterizing gender biases, we rely on
two measures defined in (Ducel et al., 2024): Gen-
der Gap and Gender Shift. Gender Gap is the
difference between proportions of documents an-
notated as masculine (p™), and as feminine (p/):
GenderGap = p™ — pf. Gender Shift (GS) is
used to analyze gendered prompts. When a gener-
ated text is labeled as ambiguous or as the gender
opposite to the prompted one, the generated text
has a GS of 1. If the generated text is labeled as
neutral, or as the same gender as the prompted one,
the GS is of 0. Then, the number of positive GS is
divided by the total number of generated texts.

To evaluate the performance of gender detec-
tion, one author manually annotated a sample of
350 generated clinical cases. To ensure corpus rep-
resentativity, 5 texts per disorder and per model
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were randomly selected (5 texts x 10 disorders
x 7 LMs). The overall accuracy was 98% (7 er-
rors/350 texts’). This performance is higher than
the 92.8% accuracy reported by Ducel et al. (2024).
The text genre and the use of the third person singu-
lar result in more gender markers (e.g., in French
the noun "patient” is gendered so each occurrence
carries gender information). In the absence of a
formal evaluation of clinical case quality, the man-
ual examination of the 350 cases suggests that the
texts are grammatically reasonable and consistent
with the clinical profile of the prompt. Besides, the
manual evaluation of clinical cases presents some
specific difficulties as the texts are long and techni-
cal. Moreover, exposure to content about death and
disorder can be psychologically and emotionally
challenging.

4 Analysis of Gender Biases in Synthetic
Clinical Cases

4.1 LMs default to male patients

As mentioned in Section 2.2, bias can be defined
as an imbalance between genders. According to
one such definition, an ideal, unbiased, LM should
follow gender information provided in the prompt
and default to random when no gender information
is provided. Thus, we analyze bias in LMs by
comparing gender distributions in generated text
with prompted gender information (see Figure 1).

Feminine and masculine prompts lead to equiv-
alent proportions of expected genders (resp. 87.9
and 87.5%). This implies that 12% of texts gen-
erated from a gendered prompt are not consistent
with the prompted gender. These tendencies to
override the gender supplied in the prompt differ
depending on the disorder and the LM (see Sec-
tions 5.1 and 5.2).

However, gender distributions are noticeably
more uneven with neutral prompts: 1.9 times more
clinical cases about male vs. female patients, with
a Gender Gap of 30.9 (vs. expected 0). In other
words, LMs seem to default to male patients when
not explicitly prompted with gender. This behavior
is not consistent with the gender distribution ob-
served in the clinical case training corpus, suggest-
ing that LMs are biased towards generating descrip-
tions of male rather than female patients. These
observations can be connected to the concept of
"masculine defaults" (Cheryan and Markus, 2020),

5The classification report is provided in Appendix A.

Disorder Men (%) Women (%)
Prostate cancer 100 0
Bladder cancer 80.2 19.8
COVID-19 62.2 37.8
Heart attack 60 40
Colon cancer 50.2 49.5
Sickle-cell anaemia 46.9 53.1
Depression 33 66
Osteoporosis 30 70
Breast cancer 0.7 99.3
Ovarian cancer 0 100

Table 3: Estimated real-world gender prevalence from a
French hospital information system or from the litera-
ture when too few patients were represented.

as masculine is "regarded as standard, normal, neu-
tral", and feminine is viewed as specific, mainly
associated with disorders that are related to majori-
tarily feminine organs (see Section 5.1).

4.2 LMs amplify real-world prevalence

We established that LMs do not generate even num-
bers of feminine vs. masculine texts overall. An-
other approach and definition of bias is that the
ideal LM should be representative of real-world
gender prevalence in disorders. In this section, we
use real-world statistics on gender distributions for
the selected disorders (see Table 3) and compare
them with the distributions in generated texts.

Figure 2 shows that, except for prostate cancer,
synthetic texts have a higher proportion of male
patients than real-world distributions. The increase
of masculine sometimes leads to the inversion of
the majority gender. According to real-world data,
osteoporosis and depression affect more women
than men but, in our study, lead to more masculine
than feminine generations when the prompts are
neutral. Bladder, ovarian, breast, and prostate can-
cers have relatively close generated and real gender
prevalence.

In conclusion, LMs are also biased as they do
not represent real-world statistics but amplify sta-
tistical differences by increasing the proportion of
male patients. However, representing real-world
statistics is not ideal as these statistics also reflect
some stereotypes and human biases (see Section 6).
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Figure 1: Distributions of generated gender w.r.t. the gender given in the prompt. The red line indicates 50%.

100

80

60

Percentage

40

20

Generated Masculine
Generated Feminine
Real Masculine
Real Feminine

Figure 2: Gender distribution in generated cases (using neutral prompts) vs. real corpora. The arrows represent
the distance between generated vs. real masculine distributions (i.e., an arrow going up means that the generated
distribution of masculine is higher than real-world masculine distribution).

S Further Analyses of Gender Biases

5.1 Disorders impact gender biases

Gender Gaps differ a lot depending on the
prompted disorder (see Figure 3). With gendered
prompts, all disorders but ovarian, breast, and
prostate cancers exhibit rather low bias (at most
1.3x more masculine than feminine texts). Depres-
sion slightly leans towards feminine while, in as-
cending order of bias, osteoporosis, colon, bladder,
heart attack, COVID-19, and sickle-cell anaemia
are biased towards masculine. Amplified but sim-
ilar trends can be observed with neutral prompts,
with two exceptions: depression is biased towards
masculine instead of feminine (1.8x more mascu-
line vs. feminine) and, more surprisingly, heart
attack is the most biased disorder, even slightly
more than prostate cancer (8.1x more male vs. fe-

male patients). With neutral prompts, sickle-cell
anaemia, bladder cancer, COVID-19, and colon
cancer are also highly biased towards masculine:
resp. 6.5%, 5%, 3.7x, and 3.2x more male patients.
Prostate cancer is highly biased in favor of mas-
culine (8x more male vs. female patients with neu-
tral prompts), even with gendered prompts (then,
1.5x more male patients). Similarly, ovarian and
breast cancers are highly biased in favor of femi-
nine, leading to respectively 6.75x and 8.15x more
female than male patients with neutral prompts,
1.7x and 2x more female than male patients with
gendered prompts. However, these 3 disorders are
tied to an organ (prostate, breast, or ovary) that is
mostly present in one gender over the other (see
Section 4.2). The model is expected to default to
one gender for these disorders when the prompt
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Disorder GS

Osteoporosis 0.065
Depression 0.073
Heart attack 0.077
Colon cancer 0.086
COVID-19 0.100
Bladder cancer 0.109
Sickle-cell anaemia 0.118
Prostate cancer 0.167
Ovarian cancer 0.170
Breast cancer 0.238

Table 4: Gender Shift (GS) per disorder (sorted).

is neutral, and we argue that the implications and
harms are different from other disorders.
Nonetheless, harms are still at stake when the
gender of the prompt gets overridden because there
is an underlying implication in the world represen-
tation put forth by the LM that the disorder cannot
affect the specified gender. This is problematic and
harmful as it can lead to underdiagnosis and mis-
treatment of patients of the overridden gender. The
transgender community can also be especially im-
pacted, as overriding the prompt results in misgen-
dering the patient, e.g., always overriding feminine
in cases of prostate cancer infers that a prostate
cancer patient has to be a man. Table 4 indicates
that in over 23.8% of generations about breast can-
cer, the gender of the prompt (when explicit) gets
overridden (in the vast majority of cases, mascu-
line prompts get overridden with feminine mark-
ers). This is the case for 17% of texts about ovarian
cancer, and 16.7% of texts on prostate cancer.

5.2 LMs unevenly exhibit biases

Gender Gaps differ a lot based on whether or not
the prompt contains a gender. With gendered
prompts, most LMs exhibit slight biases toward
feminine, whereas they all exhibit (higher) bias
toward masculine with neutral prompts (see Fig-
ure 3). The bias towards feminine seems related to
strong associations between ovarian/breast cancers
and feminine (BLOOM-7b and vigogne-7b have
the lowest Gaps with gendered prompts and the
highest proportions of feminine texts for these dis-
orders). These associations are so strong that they
often lead to overriding masculine prompts (see
Table 4).

Results on gendered prompts in Table 5 indi-
cate a rather homogeneous behavior of LMs. We

LM GS

vigogne-2-13b 0.093
Llama-3.1-8B 0.104
Llama-3.1-8B-Instruct  0.105
BioMistral-7b-SLERP  0.119
BLOOM-1bl1 0.126
vigogne-2-7b 0.145
BLOOM-7bl1 0.152

Table 5: Gender Shift (GS) per LM (sorted).

still notice that the BLOOM models exhibit higher
Gender Shifts than the Llama models and that the
size of vigogne leads to different levels of bias. Fi-
nally, the very small difference between the base
Llama3.1 model and its Instruct version suggests
that the combination of instruction and alignment
does not have a significant influence here, which
is a little bit surprising. More detailed figures are
provided in Appendix B.

5.3 Quality of generated texts

Clinical case quality is assessed with two prox-
ies: redundancy and constraints respect rate (CRR).
The redundancy of a text is calculated as 1 —
”gtﬁizf;%‘:n";;# and allows us to estimate the po-
tential presence of loops and duplicated texts in
generations. More specifically, it was used to test if
texts were more repetitive when they had a major-
ity of feminine/masculine markers. Respected con-
straints are identified with exact and fuzzy string
matching. We compute the proportion of respected
constraints for each generated text, and the CRR
corresponds to the mean of these proportions. The
CRR is used to assess whether the generated texts
follow the instructions equally depending on the
generated patient’s gender.

Table 6 indicates that feminine texts are as redun-
dant as masculine texts while masculine texts seem
more consistent with the constraints compared to
feminine texts. However, we could not find any sig-
nificant correlations between gender in generated
texts and either redundancy or CRR. We can hy-
pothesize that disorders impact the aforementioned
CRR discrepancy as breast and ovarian cancers ex-
hibit the lowest CRR (resp. 43.3% and 55.4%) as
well as the highest association with feminine texts.
In these cases, it is difficult to know whether the
lower CRR for these two stereotypically feminine
disorders is related to stereotype, or if it is due to
other external reasons.
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Figure 3: Gender Gaps in generated cases per disorder (left) and LM (right) using prompts with or without gender.

Output gender Redundancy CRR

Ambiguous 0.080 +0.10 0.650 +0.20
Feminine 0.098 +0.12 0.635 +0.18
Masculine 0.098 +0.12 0.681 +0.17
Neutral 0.092 10.10 0.681 +0.16

Table 6: Redundancy and constraints respect rates
(CRR) per generated gender. Standard deviations are
indicated in subscripts.

Other, more specific proxies could be used to
further analyze biases. With a naive approach based
on keyword matching, we detected for example
that 36.7% of texts with a majority of masculine
markers result in the death of the patient whereas
this number reaches 44.2% when the text is mostly
feminine. However, the correlations do not seem
significant.

5.4 Environmental impact of the experiments

Our experiments were conducted using an NVIDIA
A100 SXM4 80GB GPU for fine-tuning all the
models, except for BLOOM-1bl for which we
used an NVIDIA Tesla V100 SXM2 32GB GPU.
NVIDIA A100 SXM4 80GB GPUs were used for
inference, with VLLM (Kwon et al., 2023) to ac-
celerate the computation. Finally, the gender de-
tection was done on an NVIDIA GeForce GTX
1080 Ti. Using MLCA (Morand et al., 2024), we
estimate that the gender detection system emit-
ted 0.23kgCOse, fine-tuning the models emitted

0.49kgCOxqe, and the generation process emitted
1.15kgCOqe, for a total of 1.87kgCOqe.

6 Discussion: What Is the Ideal LM Like?

We evidenced two types of biases in LMs: they
neither produce balanced gender distributions nor
replicate real-world gender prevalence. However,
we discuss here what an ideal LM would be like,
and the flaws of both "ideal outputs".

First, an ideal LM that is neutral or gender-
balanced could be considered inefficient or irrele-
vant as some disorders exhibit strong gender preva-
lence because of biological attributes.

Then, we argue that an LM that replicates real-
world gender prevalence is not a viable option ei-
ther because real-world statistics and estimated gen-
der prevalence are biased as well. Healthcare pro-
fessionals have their own stereotypes and biases, es-
pecially harming women and other disadvantaged
groups (Dwass, 2019). Some disorders are known
to be stereotypically associated with a gender, to
the point that it leads to misdiagnosis, mistreat-
ment, and is a taboo for patients of the opposite
gender. It is the case for osteoporosis and depres-
sion in men (Rinonapoli et al., 2021; Van de Velde
et al., 2010), and heart attack in women (Banks,
2008). Thus, replicating real-world statistics could
reinforce these issues for patients of the opposite
gender by conveying the idea that it is not possible
that they suffer from this disorder. These problems
result in possibly incorrect real-world statistics that
underestimate the proportion of the minority, misdi-
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agnosed gender. Further, it is often unclear if these
statistics take into account gender or (assigned-at-
birth) sex. It is problematic for transgender people,
as we do not know how/if they are taken into ac-
count. As a consequence, prostate cancer is often
overlooked in transgender women (Deebel et al.,
2017). Finally, even when the gender prevalence
is faithful to reality, socio-economic factors play
arole, so the prevalence is not entirely biological:
social and economic insecurity, as well as expo-
sure to psychological and physical violence, in-
crease the risk of depression, and women are much
more affected by these situations than men (Van de
Velde et al., 2010; Gresy et al., 2020). Discrimi-
nation also impacts the health of socially disad-
vantaged populations: harassment and violence
have repercussions on people’s health (Jahnke
et al., 2019), and the wage gap between men and
women plays a role in the gendered disparity of
mood disorders (Platt et al., 2016). Moreover,
men can also be impacted by biases, e.g. men
suffering from breast cancer may face stigmati-
zation, as well as a later diagnosis than women
(Robinson et al., 2008; Midding et al., 2018).

Based on the results of the study and these facts,
we recommend that demographic bias must be
taken into account when constructing a synthetic
corpus of clinical cases. Including demographic
information in generation constraints appears to be
the best strategy, as it allows for control over the
demographic distribution of patients, and leads to
less biased distributions of digital patients (see the
differences between gendered and neutral prompts
in Figure 3).

However, the reported results and the harms they
could lead to provide clear and reliable evidence of
one noteworthy potential limitation of using LMs
in clinical contexts and should be taken into ac-
count by all stakeholders. This study reinforces the
argument that the integration of LMs in medical
practice requires caution and must be closely su-
pervised by medical experts. Even in secondary
applications of health data, such as pedagogical pur-
poses for which clinical cases are commonly used,
rigorous oversight is necessary. Exposure to biased
clinical cases could create or reinforce (implicit)
gender stereotypical biases in future healthcare pro-
fessionals’ practice and harm their patients.

7 Conclusion

In this study, we fine-tuned LMs to generate clin-
ical cases in French, on 10 disorders. We found
out that LMs generate more mentions of male than
female patients, increasing the real-world propor-
tion of men affected by a given disorder. However,
gender distributions vary a lot depending on the
prompted disorder. All disorders but ovarian and
breast cancers are tilted towards masculine genera-
tions, especially prostate cancer, heart attack, and
sickle-cell anemia. In other words, unless disor-
ders are massively feminine and related to mostly
feminine organs, LMs mostly generate male pa-
tients. More surprisingly, heart attack is the disor-
der that is the most associated with male patients
when the prompts are neutral. All LMs exhibit
biases, but in different proportions: with neutral
prompts, BLOOM-7b shows the highest Gender
Gap, whereas, with gendered prompts, vigogne-2-
13b is the most biased.

We can conclude that by under-representing fe-
male patients, LMs can harm women. It is a form
of representational harm. Moreover, by strongly
associating gender with some disorders, LMs can
participate in misdiagnosing and mistreating pa-
tients who do not match the stereotypical gender
of a given disorder. LMs can also lead to misgen-
dering transgender people and reinforce biological
essentialism by shifting the gender of the prompt,
especially for disorders associated with sex-specific
organs. These can cause allocational harms.

Perspectives. We believe that stereotypical bi-
ases should be further studied, especially in the
context of healthcare. Possible continuations of
this work include looking into the possible gaps
between medical consistency among genders and
extending the scope of studied bias types. We in-
tend to fine-tune LMs on a NER task to detect other
demographic information (nationality, skin color,
socioeconomic status...) and study intersectional-
ity, as well as the impact of explicitly mentioning
other demographic information in the prompts. We
also plan to study the impact of fine-tuning, and its
possible bias amplification.

Limitations

Our bias evaluations do not take into account the
medical consistency or plausibility of the clinical
cases, due to the lack of medical experts among
authors and the amount of texts (it is not possible
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to review them all manually). However, it would
be relevant to find a method to assess the seman-
tic and medical information, as we were already
able to spot some inconsistencies (e.g., a "virgin"
woman who just gave birth, or a person consulting
for a "burn" that occurred while "fishing parrots").
Note that the manual annotation mentioned in Sec-
tion 3.4 also served as a sanity check, and apart
from these few examples of obvious logical fail-
ures, the rest of the annotated corpus seemed sound
from a linguistic and common knowledge perspec-
tive (all medical knowledge aside). Further, the
main goal of this study is to evaluate associations
between genders and disorders, and these associ-
ations are still present, even when the text is not
semantically/medically flawless.

Besides, as the gender detection system is imper-
fect, it sometimes labels texts as neutral instead of
masculine, which leads to an underestimation of
masculine generations.

Finally, this study was only conducted on French,
and even if the methodology could easily be appli-
cable to other inflected languages, further experi-
ments are required in order to see if the results are
similar in other linguistic and cultural contexts.
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A Performance of the Gender Detection

System

Prec. Recall Fl-score N
Ambiguous 0.3333  1.0000 0.5000 1
Feminine 1.0000 0.9684 0.9839 158
Masculine 0.9793 0.9895 0.9844 191
Neutral 0.0000 0.0000 0.0000 0
Accuracy 0.9800 350
Macro avg 0.5782 0.7395 0.6171 350
Weighted avg  0.9868 0.9800 0.9828 350

Table 7: Classification report of the gender detection

system.

B Bias per Disorder and per LM

We provide on Figure 4 detailed figures that illus-
trate the proportions of generated gender per disor-
der and per LM, when the prompts are neutral.
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Figure 4: Proportions of generated gender per disorder and per LM with neutral prompts. The red dotted line

indicates 50% (even distributions).
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