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Abstract

Simultaneous speech translation (SimulST) sys-
tems must balance translation quality with re-
sponse time, making latency measurement cru-
cial for evaluating their real-world performance.
However, there has been a longstanding belief
that current metrics yield unrealistically high
latency measurements in unsegmented stream-
ing settings. In this paper, we investigate this
phenomenon, revealing its root cause in a fun-
damental misconception underlying existing la-
tency evaluation approaches. We demonstrate
that this issue affects not only streaming but
also segment-level latency evaluation across
different metrics. Furthermore, we propose a
modification to correctly measure computation-
aware latency for SimulST systems, addressing
the limitations present in existing metrics.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
(Ma et al., 2020b) focuses on a real-time, low-
latency scenario where the model starts generating
the textual translation before the entire audio input
is processed. Achieving high-quality translations
with minimal latency is the primary objective of
SimulST systems, with time constraints varying
by scenario(Anastasopoulos et al., 2022; Agarwal
et al., 2023; Ahmad et al., 2024). These constraints
are typically quantified as latency, often defined as
the average time delay between when a word is spo-
ken and when its translation is generated. Accurate
latency measurement is thus critical for evaluating
system performance.

Various metrics have been introduced to mea-
sure SimulST system’s latency, including Aver-
age Proportion (AP) (Cho and Esipova, 2016), Av-
erage Lagging (AL) (Ma et al., 2019), Differen-
tiable Average Lagging (DAL) (Cherry and Fos-
ter, 2019), and Length Adaptive Average Lagging
(LAAL)(Papi et al., 2022) and Average Token De-
lay (ATD)(Kano et al., 2022). Recent studies (Papi
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Figure 1: Computation-aware latency metrics tend to
produce unrealistically high scores as speech duration
increases. We segmented the original tst-:COMMON
dataset into 25s speech segments, then duplicated and
concatenated them to create 50s, 75s, and 100s speech
durations. The system used for evaluation is a wait-k-
stride-n model, where n=3 and k=4, with each speech
segment spanning 250 ms.

etal., 2023a,b; Ahmad et al., 2024; Xu et al., 2024)
have emphasized computation-aware latency as
a more realistic way to evaluate SimulST perfor-
mance in real-time scenarios where computation
time cannot be ignored.

As the performance of SimulST systems im-
proves, researchers are motivated to apply them to
unsegmented streaming long speech(Polédk, 2023;
Ouyang et al., 2024; Papi et al., 2024; Iranzo-
Sénchez et al., 2021), which better represents real-
world scenarios such as interpreting and lecture
transcription. However, computation-aware latency
scores reported by existing metrics have been ob-
served to be unrealistically high, hindering progress
in this area.

As illustrated in Figure 1, the computation-aware
AL and LAAL metrics show drastic increases as
the length of streaming speech increases. Specifi-
cally, the computation-aware LAAL increases from
6850 ms when the speech length is 25 seconds to
23460 ms when the speech length increased to 100
seconds. In contrast, the theoretical computation
unaware LAAL remains mostly consistent, at 8181
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Figure 2: Computation unaware and aware d; with the
corresponding oracle delay d*, where the intersection
represents 7/ (|X|). (For illustration purposes, we plot
only one token for three tokens in the stride-3 SimulST
system.) After conversion, the latency AL_CA only
considers the first 46 outputs against the oracle, resulting
from the unreliable calculation of computation elapsed,
while AL_CU considers all outputs until the last speech
segment.

ms.

This paper aims to uncover the root causes of
the unrealistic computation aware latency measure-
ments and to present our proposed solution for cor-
recting them. Section 2 describes the current la-
tency metrics in detail, while Section 3 outlines
the misconceptions underlying these inconsisten-
cies. Our proposed solution is introduced in Sec-
tion 4, where we address the limitations of exist-
ing evaluation methods and provide a refined ap-
proach to computation-aware latency measurement.
In Section 5, we exemplify our proposed calcu-
lation aligned with a real-time setting, and show
that this miscalculation also impacts pre-segmented
speech.

2 Latency Metrics

An evaluation corpus for a speech translation task
contains one or more instances, each consisting of
a source speech sequence X = [1, ..., 7|x|] and a
reference text sequence Y* = [y], ..., y‘*Y|] The
system to be evaluated takes X as input and gener-
ates Y = [y1, ..., y|y}] as the target language’s text
translation incrementally.

In the simultaneous speech translation task, the
system starts generating a hypothesis with only
partial input. It alternates between reading a new
source speech segment or writing a new target text
segment. Assuming X; = [z1,...,z;], j < |X]
has been read when generating y;, where x; rep-
resents a raw audio segment of duration 7. The
Computation Aware (CA) and Computation Un-
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Figure 3: In practice, a SimulST system alternates
between reading and writing actions while receiving
speech input in a continuous stream. The existing ap-
proach implicitly assumes that the time spent on gen-
erating text and processing streaming speech occurs
sequentially. As a result, this can lead to unreliable ac-
cumulation of delay calculations.

aware (CU) delay of a token y; are defined as:

S Tk, CU

d/L‘ pu— .
Zi:l T.+C;, CA
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where C; is the elapsed time when generating the
i-th token, as recorded by SimulEval (Ma et al.,
2020a) after generating this token.

The latency metrics are calculated using a nor-
malization function, which takes the sequence
of delays, D = [dy,...,dy|], from SimulEval,
along with a corresponding set of oracle delays,
D* =[dj,... 7d|*Y\]' This process can be formal-
ized as follows:

' (1X])

do(di—d), @

i=1

Latency = W

where 7/(|X|) = min{i|d; = 321X, 7;} and d;
represents the oracle delays. Ma et al. (2020a)

X|
1) . 2215 migie

suggests using df = (i — Vel

gate potential under-generation in Average Lagging
(AL) measures. To correct the bias towards over-
generation, Papi et al. (2022) recommends substi-
tuting |'Y*| with the larger value between | Y*| and

|'Y| when computing oracle delays.

3 The Problem of current CA

In practice, the system receives new speech input
while generating text translations. However, as
shown in Figure 3, the CA delay > 7 _, Ti + C;
treats a parallel reading and writing process sequen-
tially, assuming the system alternates between read-
ing and writing actions. As a result, the CA delay
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Figure 4: Previous generation time exceeding the current segment x; introduces additional delay for generating
tokens in the current frame. For the given example, if generating each token takes 1 second, after reading 1 second
of speech, the system takes 2 seconds to generate "ein Mississippi’, resulting in 3; being 1 second. The delay for I;
would be the sum of the previous speech duration, §;, and I;. If there is no buffer, later tokens are not affected.

accumulates the computation cost at each step and
deviates from the real-world computation-aware de-
lay, which in turn makes the latency measurement
in Equation 2 unreliable.

To illustrate this more concretely, let us consider
an example. Suppose we have a source sequence
consisting of three segments, each representing
the phrase "one Mississippi," which takes approxi-
mately one second to say. Thus, X = [z1, 22, 23]
consists of three speech segments, each lasting one
second (11 = To = T3 = 1's). The system decides
to generate output after processing x1, and it takes
0.5 second to generate each token. For an English-
to-German translation, the system generates the
translation "ein" at the timestamp of 1.5 seconds
and "Mississippi” at 2 seconds.

Intuitively, after processing all the source seg-
ments, the total delay for generating the subsequent
tokens y5 and yg should be 22:1 T, +05=3.5
seconds and 4 seconds, respectively. However, with
the current method, the computation timestamps
C; for the third segment are calculated with accu-
mulated computation costs at previous steps. The
generation times C; for the fifth and sixth tokens
would be 2.5 seconds and 3 seconds, resulting in
delays of 5.5 seconds (3+42.5) and 6 seconds (3+3)
for the two tokens.

4 Method

We propose a revised way of calculating CA delay
to fix this problem. We define the inference time I;
as the elapsed time since processing the previous
source segment x; 1. Formally, this is expressed
as:

I; = C; — Cry, 3)

where C; is the computation timestamp when
generating token y;, and C~ ;) is the computation
timestamp associated with the reference token y.(;).
The index 7(j) represents the last token generated
before processing the current source segment x;,
defined as:

j—1
T(j)—max{i]diSZTk}. 4)
k=1

Here, d; is the theoretical computatlon unaware
delay at token 3;, and > 7 - Tk is the cumulative
duration of the source segments up to x;_1.

To represent the accumulated delay effect caused
by discrepancies between computation time and
source segment durations, we introduce the a buffer
B; corresponding to the source segment x;:

Bi=max{0,8_1+ L — T}, (5

where 3;_; is the buffer from the previous
source segment x ;1 that affects the accumulation
status while processing segment x;, and 7} is the
duration of the current source segment x;. The
buffer accumulates any excess inference time that
is not covered by the source segment durations.

Finally, the computation-aware delay d; for to-
ken y; can be defined as:

J
di=Bi+1i+ > Tk, (6)

k=1
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which is calculated by combining the accumula-
tion status buffer 3, the inference time I, and the
cumulative source segment duration.

5 Experiment

To assess the effectiveness of our proposed modifi-
cation in aligning with the real-world performance
of SimulST systems, we simulated a streaming
speech translation task using a 25-second input.
The average completion time was 27,020 ms'. The
SimulEval recorded last token’s CA* delay calcu-
lated by our proposed method was 26,311 ms, re-
sulting in a difference within 2%. In contrast, the
last token CA delay without our modification was
39,602 ms, resulting in a difference of 46.6 % .

FRAME 2 6 10 12

CU 1256 1668 2144 2582
CA 1897 2317 2874 3391
CA* 1617 2008 2551 3063

Table 1: AL in ms, we use AlignAtt as SimulST sys-
tem’s policy and set the frame to 2, 6, 10, 12 to represent
different latency setting.

FRAME 2 6 10 12

CU 951 1459 1983 2448
CA 1675 2167 2763 3306
CA* 1346 1823 2411 2950

Table 2: LAAL in ms, we use AlignAtt as SimulST
system’s policy and set the frame to 2, 6, 10, 12 to
represent different latency setting.

Effects on Pre-Segmented Speech Due to the
incorrect calculation of computation-aware delay,
the computation-aware latency deviates from the
real latency, and this deviation increases as speech
length increases, as shown in Figure 1. However,
even on pre-segmented short speeches, the devia-
tion caused by CA delay is still large.

We wuse the MuST-C v1.0 En-De tst-
COMMON (Di Gangi et al., 2019) to examine
such effects. We utilize a Conformer-based
encoder-decoder offline ST model combined with
the AlignAtt policy (Papi et al., 2023a), which
relies on cross-attention to determine whether

'We built the service based on Gradio and measured the
finish time by detecting the EOS token. The experiment
was run five times, employing a wait-k stride-n policy and
a Conformer-based encoder-decoder offline ST model.

to emit translated words or wait for additional
information.

We identify severe CA computation issues with
input lengths of 25 seconds. As illustrated in Tables
1 and 2, even for pre-segmented speech averaging
5 seconds in length, the discrepancies in both Av-
erage Lagging (AL) and Length-Adaptive Average
Lagging (LAAL) are greater than 300 ms.

6 Conclusion

In this work, we investigated the shortcomings
of current latency evaluation metrics for SimulST
systems, focusing on the discrepancies caused
by computation-aware delay miscalculations. We
demonstrated that these inaccuracies lead to unre-
alistic latency estimates, not only in long stream-
ing speech translation but also in pre-segmented
speech. Our proposed modification addresses these
misconceptions and aligns the latency calculations
more accurately with the SimulST system’s real
behavior, leading to a more reliable evaluation for
both SimulST and StreamingST systems.

Limitations

This work introduces CA* to improve the accu-
racy of latency evaluation for SimulST systems
by addressing computation-aware delay. However,
other limitations remain. Notably, oracle delay
approximations may inaccurate, especially for un-
segmented streaming speech, which includes long
pauses and varied segments. Future work should
refine these approximations to reduce errors.
Furthermore, this study focused on AL and
LAAL. Although CA* can be generalized to other
metrics, additional evaluation is required to confirm
its effectiveness across various latency measures.
We also used ChatGPT for grammar revisions.
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