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Abstract
Extracting insights from text columns can be
challenging and time-intensive. Existing meth-
ods for topic modeling and feature extraction
are based on syntactic features and often over-
look the semantics. We introduce the semantic
text column featurization problem, and present
a scalable approach for automatically solving
it. We extract a small sample smartly, use a
large language model (LLM) to label only the
sample, and then lift the labeling to the whole
column using text embeddings. We evaluate
our approach by turning existing text classi-
fication benchmarks into semantic categoriza-
tion benchmarks. Our approach performs bet-
ter than baselines and naive use of LLMs.

1 Introduction

Text columns appear commonly in tables; for ex-
ample, a column of product reviews or user feed-
back appears as a text column. A common task
is to generate insights from such textual data. For
doing that, typically, the free-form text is mapped
into some kind of structured text, or features, to
facilitate downstream analysis. One particularly
useful class of features are obtained by perform-
ing categorization or classification of the textual
data and assigning a label or category to each data
point. Here, the categories or labels are taken from
some finite set. For example, product reviews can
be assigned labels indicating their sentiment, or
they could be assigned labels indicating the prod-
uct category (toys, furniture, etc.) they mention.

Assigning meaningful semantic labels to a large
text column is tedious work. There is little au-
tomated support in popular tabular data process-
ing tools for helping with this job. In this paper,
we introduce the semantic text column featuriza-
tion problem, or semantic categorization in short.
We then present several variants of the problem
that arise in pragmatic settings. We also present
a scalable approach for extracting semantic fea-
tures from text columns. Our approach samples

a diverse set, uses an LLM to label the sample,
and extends that labeling to the whole column us-
ing embeddings. The cost of using LLM is accept-
able since the work would have to be done man-
ually otherwise. Moreover, our approach uses the
LLM sparingly compared to a naive application of
LLM to every cell of the table. The semantic cat-
egorization problem is reminiscent of topic mod-
eling (Blei et al., 2003b,a); however, here we are
interested in semantic labels that need not be the
topics mentioned directly in the text.

2 Semantic Categorization

We start with the problem definition. We define a
general class of problems, parameterized by infor-
mation I that is available at the time of perform-
ing semantic categorization. Thereafter, we will
present specific choices for the parameter I.

Definition 1 (Semantic Categorization Problem)
Given a column of textual data D, which is an
array of strings, and some additional information
I in the form of a constraint ϕI , the semantic
categorization problem seeks to generate a finite
set of labels L, and a mapping M : D 7→ L such that
(a) L and M are consistent with I; that is, ϕI(L, M)
evaluates to true, and
(b) there exists some fixed semantic relation R

such that for every i, the relation R holds between
the text D[i] and the label M(D[i]) assigned to it;
that is, R(D[i], M(D[i])) is true.

A key feature of the semantic categorization
problem is that the relation R is not known a-priori,
and moreover, we may not have access to (train-
ing) examples for R. The relation R becomes ev-
ident from the natural language semantics of the
text in D and the labels L assigned to that text.

Example 1 Consider the text column in Table 1.
The semantic categorization problem seeks to gen-
erate the labels shown in Column “Label” for the
text data given in Column “Text”.
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Row Text Label

1. The food was good. Restaurant
2. The dishes were delicious. Restaurant
3. Appetizers were awesome. Restaurant
4. The teddy bear was poor quality. Toys
5. The toy didn’t work. Toys
6. Had to fix the broken doll. Toys
7. . . . [other 20 reviews about toys] . . .

Table 1: Given the Column “Text”, the goal is to generate
the labels in Column ”Label”.

The above problem definition is parameterized
by I and the constraint ϕI . We now instanti-
ate these parameters by specific values to ob-
tain different variants of the semantic categoriza-
tion problem. These variants arise naturally when
building an advanced “suggestions” tool for a data
analyst working on text columns.

By-Label semantic categorization. In this vari-
ant, the extra information, I, is a set L′ of labels,
and the constraint, ϕI , simply checks that the set
of labels L returned in a solution is exactly equal
to the set L′ given in I. Specifically,

I := L′ ϕI(L, M) := (L′ == L)

By-Example semantic categorization. In this
variant, the extra information, I, contains a set of
pairs in the relation R such that all desired labels
appear in this set. The constraint, ϕI , checks that
the labels assigned to these texts in the solution ex-
actly match the labels assigned to them in I, and
that the solution uses no more labels than what are
provided in I. Specifically,

I := {(t, l) | t ∈ D, l ∈ L} ⊂ R

ϕI(L, M) :=
∧

(t,l)∈I
(M(t) == l) ∧ L = I|L,

where I|L denotes the set of all labels that appear
in I.

By-ColumnName semantic categorization. In
this variant, the extra information, I, contains the
column name for the new column; that is, I is a
string describing the attribute or feature of the tex-
tual data that is expected to be captured using the
labels. The constraint, ϕI , checks that the labels L
generated in the solution are reasonable values for
the attribute given in I.

Unsupervised semantic categorization. In this
variant, the extra information, I, is empty, and the
constraint, ϕI , is True . Note that this variant does

Algorithm 1: TECOFES: High-Level Approach
Input: Column data D, information I
Output: Mapping M from D to L

1: Compute embeddings De for text strings in D

2: D′ ← SmartSample(D, De)
3: Use an LLM to construct M′ : D′ 7→ L′ using I

and D′

4: M← ExtendMapping(M′, D, D′)
5: return M

not put any additional restrictions on the labels or
the mapping, apart from the correctness require-
ment (b) in Definition 1.

3 The TECOFES Approach

The information I in the different variants eventu-
ally comes from the user. Since we want to mini-
mize the work of the user, we focus on the unsu-
pervised and the By-columnName semantic cate-
gorization problems.

Algorithm 1 presents our high-level approach
TECOFES. Using the text column D and any op-
tional information I, we first calculate embed-
dings (Salton et al., 1975; Bengio et al., 2000;
Neelakantan et al., 2022) for every text in D, and
then perform 3 steps: (1) use these embeddings to
sample D′ from D using a method SmartSample,
(2) use a large language model (LLM) to label D′

using additional information I, and (3) extend the
labeling of D′ to a labeling of the full column D

using the method ExtendMapping. Figure 1 illus-
trates our overall approach. We next provide de-
tails for Steps (1)-(3).

Example 2 In the first step of our approach for
solving the problem instance in Example 1, we
sample from Table 1 to get a diverse set. Our smart
sampling approaches are more likely to include
one of Rows 1,2,3 and one of Rows 4,5,6,. . ., even
if the data is skewed heavily to the toys. Say we
picked Rows 1,4 as a sample set. Next, we ask the
LLM to label these two rows, and say the LLM
gives the labels shown in Table 1 for these 2 rows.
In the last step, we extend the labeling of Rows 1
and 4 to label all remaining rows.

3.1 Smart Sampling

The goal of the smart sampling step is to pick a
small set D′ that exhibits all the “diversity” present
in D. We want D′ to be small because we use ex-
pensive LLM calls to label D′. We propose three
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Figure 1: A workflow diagram showing different steps in the TECOFES approach.

implementations for SmartSample:

I.A We use a standard clustering algorithm,
namely Agglomerative Clustering (Gordon,
1999), on the embeddings De to get n/2 clusters
of D, and then we randomly sample 2 elements
from each cluster to get D′.

I.B We get D′ by sampling n elements uniformly
over the distance of an embedding from the cen-
troid of De. Here the intuition is that we want
points far away from the centroid (outliers) to be
equally likely to be sampled as points close to the
centroid.

I.C We compute n/2 principal components of
De (using principal component analysis (Abdi and
Williams, 2010)), transform De into the result-
ing n/2-dimensional space, and then pick points
achieving extreme (largest and smallest) values in
each component (to get n elements in D′).

3.2 Using LLMs to label Samples
The prompt used to label the sampled data consists
of three parts. The first part contains the following
task description.
Your task is to label the given sentences. These
sentences are sampled from a dataset. It is pos-
sible that there are sentences that share a label.
Treat it like a multi-class classification task and
come up with labels for the sentences. I will pro-
vide the sentences starting with a “-” and a line
break in between them.

The second part of the prompt contains a de-
scription of the optional additional information I
available. This is absent for the unsupervised case
and takes the following form for other cases:

By-Example: You are also provided with a few
examples of labeled sentences, which you can take
inspiration from, for further labeling other sen-
tences.

By-Label: You are also provided with a set of
possible labels that you can use to label each sen-
tence.

By-ColumnName: You are also provided with
a user intent/column name which briefly describes
underlying intent of the classification and can help
you pick suitable labels.

The last part of the prompt includes the addi-
tional information promised above and the unla-
beled sentences that the model needs to label.

3.3 Extending the Mapping

The ExtendMapping method solves the by-
example semantic categorization problem; that is,
the goal is to extend a mapping M : D′ 7→ L from
D′ to a mapping from D (to L). We propose three
implementations for ExtendMapping:

II.A We use an LLM to expand each label l ∈ L

into text, expanded(l), containing words, phrases
and sentences that are semantically similar to the
label l (Carpineto and Romano, 2012). We then
compute an embedding of the expanded label
and assign each unmapped text in D to the la-
bel whose expanded form is closest to it in the
embedding space; that is, M(t) = l where l =
argmaxl∈L cos(t

e, expanded(l)e).

II.B For every unmapped text t in D, we find
the closest mapped text (closest in the embed-
ding space) and assign t to the label of the clos-
est mapped text; that is, M(t) = M(t′) where t′ =
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argmaxt′∈D′ cos(t
e, t′e).

II.C In this version, we do not expand the labels,
but simply use the raw labels and their embeddings
to find the closest label to an unmapped text(in the
embedding space); that is, M(t) = l where l =
argmaxl∈L cos(t

e, le).
Note that the implementations II.A and II.C for

ExtendMapping only assume access to the labels
L and do not require a partial mapping from D′ to L.
Thus, they can be viewed as approaches for solv-
ing the by-label semantic categorization problem.
The procedure II.B solves the by-example seman-
tic categorization problem.

The idea behind expanding the label in II.A is
similar to that in query rewriting and expansion
used in information retrieval (Carpineto and Ro-
mano, 2012). However, here we are expanding the
labels, which are more like the corpus in the infor-
mation retrieval analogy.

4 Evaluation

We apply TECOFES approach on publicly avail-
able classification datasets by turning them to
different variants of the semantic categorization
problem by hiding information.

Datasets. For detailed performance analysis, we
picked multi-class and multi-label classification
datasets from kaggle; details in Appendix A. We
do a stratified sampling across each class which
leaves us with 200 to 2000 datapoints based on the
number of classes present. We target having about
50 representative samples from each class.

Experimental Setup. In all experiments, we
used OpenAI Ada-text-002 embedding model
to compute embeddings for text (Neelakantan
et al., 2022). The LLM steps were performed us-
ing GPT4o model (Ying et al., 2024) with temper-
ature 0 and n=1 to get deterministic behavior. The
only exception was when we generated synonyms
in Approach II.A, where we used temperature 0.7
and n=50 to ensure diversity in the generated syn-
onyms.

Baseline. To the best of our knowledge, there is
no fully automated system for semantic feature ex-
traction. The only natural baseline was to use an
LLM to generate semantic feature labels by mak-
ing one call for each row of the given dataset. We
also use Latent Dirichlet Allocation (LDA) from
topic modeling as the second baseline.

Metrics. We measure the performance of
TECOFES using Partition Match and Semantic
Match metrics. Given a textual Column D with n
values, let P be the predicted labels {p1, . . . , pn}
and let G be the ground truth labels {g1, . . . , gn}.

Partition Match: Define an indicator function
δ(x, y) which returns 1 if x = y and 0 otherwise.
The Partition Match metric can be rewritten as:

Partition Match =
1(
n
2

)
∑

i<j

δ(δ(pi, pj), δ(gi, gj))

where the summation is over all pairs (i, j) with
1 ≤ i < j ≤ n. Partition Match is higher when
the labelings P and G both agree on which pairs
of elements they deem equal (and which unequal).

Semantic Match: Labels are unknown in the Un-
supervised and By-ColumnName variants of se-
mantic categorization problem. Consequently, the
labels generated by TECOFES may not syntacti-
cally match the ground-truth labels. Hence, we de-
fine Semantic Match which matches labels seman-
tically.

Semantic Match =
1

n

∑

i

LLM Call(p̂i, ĝi)

where LLM call(p̂i, ĝi) is a function that checks
if the predicted label is semantically similar to the
ground truth label using a prompt. See Appendix B
for the prompt and additional metrics based on ap-
proximate syntactic label matches.

5 Results

5.1 Comparing TECOFES variants
By picking one of the 3 variants for sampling
and one of the 3 variants for extending the partial
mapping, we get a total of 9 different TECOFES
procedures. Figure 2 shows the performance (y-
axis) on different metrics (colors) of the 9 dif-
ferent procedures (x-axis) aggregated across all
benchmarks and across all variants of the seman-
tic categorization problem. The version I.C-II.C,
which uses PCA-based sampling (I.C) and label-
similarity-based (II.C) labeling, performs the best
on the metric that combines all metrics (rightmost
bar in each set). A mildly surprising finding is
that comparing the text embedding with embed-
dings of the labels (II.C) is better than comparing
it with embedding of text (II.B). A possible reason
is that matching with text is error prone because
text often contains much more irrelevant informa-
tion, which can cause spurious matches.
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Figure 2: Performance of the 9 variants aggregated over
benchmarks and problem variants. The rightmost bar in each
group is the aggregation over all metrics.

Figure 3: Performance of best TECOFES (I.C-II.C) variant
across the different semantic categorization problem types.

5.2 Comparing problem variants

Let us fix the approach to I.C-II.C. Let us now con-
sider the four problem variants of semantic cat-
egorization, and how I.C-II.C performs on these
variants. Figure 3 presents the scores (y-axis) for
different metrics (x-axis) achieved by I.C-II.C on
different problem variants (colors). We observe
that the unsupervised variant is the hardest, as ex-
pected, followed by by-ColumnName, and finally
by-example and by-label. This is consistent across
all metrics. The mildly surprising observation here
was that by-example was not easier than by-label
even though it has more information. This is pos-
sibly because the extra information in by-example
is already available to an LLM.

5.3 Comparing TECOFES and Baselines

We compared our approach with two baselines
for unsupervised learning methods. The first is an
LLM baseline, where we use the LLM to label

Figure 4: Performance of LLM Baseline, LDA compared
against two best performing variants of TECOFES (I.C-II.C
and I.A-II.C) using different metrics across all benchmark
dataset on the unsupervised variant. Missing bars indicate a 0
score.

each row. The second baseline uses Latent Dirich-
let Allocation (LDA) from topic modeling. Fig-
ure 4 shows the comparision between TECOFES
variants I.A-II.C and I.C-II.C and the two base-
lines. Here we only compare on the unsupervised
problem variant. Since LDA is a syntactic ap-
proach, it does not generate good semantic labels,
but it is able to map text to (some representation
of) its underlying ”topic”. Hence, the labeling gen-
erated by LDA has a reasonable partition match,
but performs poorly on other metrics. The LLM
baseline approach has a better Semantic Match
score, but I.C-II.C does better on other metrics.
Note that the LLM performs Semantic Match by
saying “yes” or “no” when presented with a pre-
diction text and the ground truth. This metric is
higher for the LLM baseline, as the LLM gener-
ates verbose labels, making the evaluation LLM
more likely to deem it a success.

The LLM baseline is not cost and time effec-
tive as each row of the corpus is passed through an
LLM call which increases the latency along with
cost. The cost for such a baseline approach will
scale linearly as the number of data-points in the
corpus increases. Table 2 points out the cost and
the latency info.

Techniques Cost($) Time(sec)

Baseline 7.41 68.04
I.A-II.C 0.17 1.38
I.C-II.C 0.20 1.28

Table 2: Cost and Time effectiveness between the baseline
and the TECOFES variants for Unsupervised semantic col-
umn featurization problem
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6 Limitations

The main limitation of the work is that there is no
guarantee that the assigned labels correctly match
their corresponding text. LLMs are prone to hallu-
cinations and wrong answers, and we use LLMs to
label a small diverse sample (before it is extended
to a labeling of the full dataset). A possible mit-
igation is to have the user check the labels gen-
erated by the LLM for the small sample. Another
mitigation would be to design techniques to auto-
matically detect labels that may be incorrect and
in need of inspection by the user.

A second limitation is that the unsupervised se-
mantic categorization problem suffers from severe
underspecification. Several different kinds of se-
mantic labels could be used to cluster a text col-
umn, and the unsupervised version offers no hint
on which one is desired. Again, a mitigation here
would be to engage with the user and ask the user
to confirm the target labels before proceeding.

A third limitation is that our technique is based
on using LLMs, which are costly to run and not
deterministic. Our approach is designed to mini-
mize the use of LLMs, but it still depends on it
critically. One of our metrics, namely Semantic
Match, used for evaluation is LLM-based and not
completely reliable. We mitigated that risk by us-
ing other syntactic metrics in conjunction with the
Semantic Match metric.
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A Evaluation DataSets

For detailed performance analysis we picked 5
datasets from kaggle, out of which two are multi-
label and the other three are multi-class. Following
are the datasets and their brief description:

• IMDB Genre dataset: It is a multi-class
classification dataset comprising of a textual
column with movie description and a label
column. There are four classes in the dataset;
Action, Comedy, Romance, and Horror.

• Twitter dataset: It is a multi-class classifica-
tion dataset comprising of a textual column
comprising of tweets and Comments from
twitter and Reddit. There are three classes in
the dataset; Positive, Negative and Neural.

• Academic Classification Dataset: It is a
multi-label classification dataset comprising
of a text heavy abstract column along with six
different labels (Computer Science, Physics,
Mathematics, Statistics, Quantitative Biol-
ogy, Quantitative Finance).

• Wikipedia promotional Dataset: It is a
multi-label classification dataset with 6 labels
classifying the article text picked up from
wikipedia. The classification labels are ad-
vert, coi, favpov, pr, resume.

• News Categories Dataset: Comprises of
news article spread across following classes;
Entertainment,Food, Economy, Sports, Inter-
national relations etc.

B Metrics

Apart from Semantic Match and Partition Match,
we also computed metrics based on syntactic or
approximate syntactic matches. Semantic Match
requires LLM calls and can be noisy. We, there-
fore, complemented it with syntactic Label Match
metrics. Since labels may not be exactly syntacti-
cally equal, we used approximate match. In par-
ticular, we used Label Match Precision as defined
by

Precision =
1

n

∑

i

sub match(p̂i, ĝi)

wherep̂i, ĝi are normalized versions of labels
(pi, gi) obtained by removing any articles and
stemming. The sub match(p̂i, ĝi) is a function that

checks if the normalized predicted label p̂i is a
substring of the normalized ground truth label ĝi.
If prediction is a set of labels, then we can ex-
tend the above in the standard way to define Label
Match Precision and Label Match Recall. These
standard notions were used in our work.

Semantic Matching of Labels Following is the
prompt template that we use to compute semantic
match between the predicted label and the ground
truth label.

Figure 5: Prompt Template used for Semantic Match-
ing of Labels Metric.
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