
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 7045–7061

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Reinforcement Learning for Aligning Large Language Models Agents with
Interactive Environments: Quantifying and Mitigating Prompt Overfitting

Mohamed Salim Aissi1, Clement Romac2,3, Thomas Carta3, Sylvain Lamprier4,
Pierre-Yves Oudeyer3, Olivier Sigaud1, Laure Soulier 1, Nicolas Thome 1

1Sorbonne Université, CNRS, ISIR, F-75005 Paris, France 2Hugging Face
3Inria (Flowers), University of Bordeaux, France 4Univ Angers, LERIA, Angers, France

{salim.aissi, laures.soulier, olivier.sigaud, nicolas.thome}@isir.upmc.fr
{clement.romac, thomas.carta, pierre-yves.oudeyer}@inria.fr

{sylvain.lamprier}@univ-angers.fr
Abstract

Reinforcement learning (RL) is a promising
approach for aligning large language models
(LLMs) knowledge with sequential decision-
making tasks. However, few studies have thor-
oughly investigated the impact on LLM agents
capabilities of fine-tuning them with RL in a
specific environment. In this paper, we propose
a novel framework to analyze the sensitivity
of LLMs to prompt formulations following RL
training in a textual environment. Our find-
ings reveal that the performance of LLMs de-
grades when faced with prompt formulations
different from those used during the RL train-
ing phase. Besides, we analyze the source of
this sensitivity by examining the model’s inter-
nal representations and salient tokens. Finally,
we propose to use a contrastive loss to mitigate
this sensitivity and improve the robustness and
generalization capabilities of LLMs.

1 Introduction

LLMs have demonstrated emergent abilities in
tasks like summarization, translation or chain-of-
thought reasoning (Singhal et al., 2023; Yao et al.,
2024; Wei et al., 2022). Their versatility suggests
they possess some common sense knowledge and
reasoning capabilities (Li et al., 2021; Huang and
Chang, 2022), making them potential agents for
tasks such as sequential decision-making (Zeng
et al., 2023; Zhao et al., 2024; Yao et al., 2022).
In this context, LLMs predict actions based on a
prompt, i.e., a textual description of the agent’s
goal and of the environment, e.g., the agent’s state
and its possible actions (see Figure 1).
However, LLMs often face grounding issues, i.e.
they suggest actions that may be unsuitable in the
current situation. This is mainly due to the inade-
quacy of the common knowledge embedded in the
LLM to the components or dynamics of the environ-
ment at hand (Ahn et al., 2022; Huang et al., 2023).
Solutions to this challenge include combining lan-

Figure 1: Sequential decision making with LLMs.
An LLM agent interacts with an environment by means
of a prompt, i.e., a textual representation of the scene
contextualizing its goal, state description, and possible
actions. Depending on the prompt, the LLM agent might
choose different actions. In this paper, we show that
LLMs fine-tuned with reinforcement learning tend to
overfit to the specific prompts they have been trained
on, and propose solutions to mitigate this effect.

guage with other modalities into multimodal mod-
els (Jiang et al., 2022; Driess et al., 2023; Li et al.,
2023), using dedicated grounding modules (Huang
et al., 2023; Yang et al., 2023), or employing in-
context learning (ICL) to correct prompts after spot-
ting mistakes (Shinn et al., 2023; Yao et al., 2023).
To explicitly integrate the specificities of the en-
vironment into the LLM itself, an emerging strat-
egy involves using reinforcement learning (RL) to
fine-tune LLMs and integrate knowledge from exe-
cuting actions (Carta et al., 2023; Tan et al., 2024).
While those methods improve agent performance,
it remains unclear how RL impacts the inherent
knowledge of the LLM and whether the model
gains generalization capabilities.
In this paper1, we study the sensitivity of LLMs to
prompt formulations and its impact on knowledge
acquisition. We define a set of different prompt
formulations to evaluate LLM performance when
prompts are changed, and also analyze how the
LLM represents these prompts. Our findings reveal
that the performance of LLMs is highly sensitive

1Code can be found here

7045

https://github.com/sal1717lim/Reinforcement-Learning-for-Aligning-Large-Language-Models-Agents-with-Interactive-Environments

to prompt variations, suggesting that fine-tuning
only induces superficial updates and fails to im-
prove the acquisition of new knowledge about the
environment. By analogy with observational over-
fitting in RL (Song et al., 2019), we refer to this
phenomenon as prompt overfitting. With this in
mind, our paper proposes two main contributions:
• We design experiments to measure prompt over-
fitting issues of LLMs in interactive environments.
The study reveals that fine-tuned LLMs heavily
depend on the training prompts, exhibiting a signif-
icant drop in "zero-shot" performance when using
new prompt formulations. To further analyze this
behavior, we thoroughly analyze latent representa-
tions and salient tokens in LLMs, both showing a
strong bias towards the prompt formulation.
• We propose a solution for mitigating prompt over-
fitting with a contrastive regularization loss that
makes the latent representation of the LLM invari-
ant to prompt formulations. This solution signifi-
cantly improves the zero-shot performance and the
robustness to prompt variations, as well as the ac-
quisition of new knowledge about the environment.
Altogether, our work contributes to a better under-
standing of the obstacles one must face when lever-
aging RL to improve the abilities of LLM agents
to act appropriately in interactive environments.

2 Related work

Grounding LLMs for sequential decision-
making. When solving sequential decision-
making tasks, an LLM acting as an agent must
leverage its common sense knowledge and adapt
to the environment it interacts with. Several ap-
proaches have been explored to align the LLM
with its environment. A first approach, called Say-
Can (Ahn et al., 2022) filters out inefficient actions,
depending on affordances captured from interac-
tions. The resulting agents can solve sequential
decision-making problems, but the involved LLM
does not benefit from interaction feedback. Alterna-
tively, research has focused on functionally ground-
ing LLMs in interactive environments using online
RL to align text processing with external dynam-
ics (Carta et al., 2023; Tan et al., 2024; Wen et al.,
2024; Zhou et al., 2024; Abdulhai et al., 2023).
For instance, the pioneering GLAM method (Carta
et al., 2023) enables LLM agents to learn policies
through environmental interactions. Similarly, Szot
et al. (2024) apply RL with Visual Language Mod-
els (VLMs) to solve embodied tasks but do not

directly ground the VLM. Instead, they train ran-
domly initialized neural networks on top of the
VLM. Parallel to these, several works (Wang et al.,
2023c,a,b) leverage prompting methods to inform
the LLM about the consequences of its actions
in the environment or even mix RL and prompt-
ing (Yan et al., 2023). Finally, in Xiang et al.
(2023), an LLM agent collects embodied exper-
iments in an environment to enhance its model-
ing abilities such as counting and tracking objects,
proposing plans, etc. However, most existing works
only employ a single prompt formulation, assum-
ing that the LLM will adapt to the given format.
In contrast, our study evaluates LLM performance
across multiple prompts, aiming to understand how
the model handles variations in formulation.

LLMs’ Prompt Sensitivity. LLMs have shown
remarkable capabilities to generate text and solve
tasks in zero-shot and few-shot scenarios. To en-
hance their performance and consistency, various
prompting methods have been developed (Pengfei
et al., 2021). In addition, multiple studies have
highlighted the sensitivity of LLMs to minor pertur-
bations in the prompt, leading to substantially dif-
ferent outputs (Zhao et al., 2021; Sclar et al., 2023;
Salinas and Morstatter, 2024). This sensitivity im-
pairs the reliability and robustness of these mod-
els. Indeed, certain input-agnostic sequences could
trigger specific outputs, further illustrating the brit-
tleness of LLMs to prompt modifications (Wallace
et al., 2019). The sensitivity of LLMs persists re-
gardless of model size, the number of examples,
or the type of instruction provided (Sclar et al.,
2023; Zhao et al., 2021; Loya et al., 2023). These
studies also reveal poor performance consistency
across models using the same prompt. To improve
the LLM outputs, a recalibration can estimate and
adjust for the model’s biases with additional param-
eters, which mitigates the effects of prompt sensi-
tivity (Zhao et al., 2021). Our work extends this
research by evaluating the performance of LLM
agents across various prompt formulations and by
mitigating prompt overfitting to preserve semantic
consistency in interactive environments.

3 Problem Statement and Methods

3.1 Problem statement
To investigate the impact of RL on the knowledge
of LLM agents in interactive environments, we op-
erate in a textual RL setting. Given a vocabulary
of tokens V , our experimental framework can be

7046

<

Goal g:
Clean the kitchen

Observation :
You can see a

fridge....

Pick up the mug from the floorput the kettle in the fridge.

 Possible actions of the agent: close
the fridge, Put the dirty plate in the fridge ...

 Goal: Clean the Kitchen
 Observation: You can see a fridge....

 Inventory: You are carrying
Next action of the agent:

 <Begin Possible actions> close the fridge, Put the
dirty plate in the fridge... <Close Possible actions>
 <Begin Goal> Clean the Kitchen <End Goal>
 <Begin Observation> You can see a fridge....<End
Observation>
<Begin Inventory>You are carrying...<End Inventory>
 Next action of the agent:

Figure 2: The fine-tuning framework: we use an LLM
as an agent policy in a textual environment Env. The
Env provides a fixed goal description g for the current
episode, a description of the agent’s observation o, and a
scalar reward R(o, g) for the current step. The goal and
observation are formatted using a prompt formulation
Pi. Our experiments reveal that an LLM fine-tuned on
Pi succeeds with prompts formatted with Pi but fails
with prompts formatted with Pj ̸= Pi.

conceptualized as a partially observable Markov de-
cision process M = (S,A, T,R,G,O, γ) with S
the state space, A ⊂ V N the action space, G ⊂
V N the goal space, T : S × A 7→ S the
transition function, R : S × G 7→ S the
goal-conditioned reward function, Obs : S 7→
V N ≡ O the observation function that maps
a state s to a textual description and γ the dis-
count factor. For a trajectory also called rollout
in RL τ = (s1, a1, . . . , sH , aH) of length H , we
note Rg(τ) =

∑H
t=1 γ

tR(o, g) its cumulative dis-
counted reward given a goal g ∈ G. The optimal
policy is π∗ = argmaxπ Eg∈G,τ∼π(τ |g)[Rg(τ)],
with π(τ |g) the probability of τ following π. On
top of the above framework, we study the im-
pact of prompt formulations P = {Pi}i∈{1,··· ,n},
where Pi : O × G 7→ P⊂ V N formats text en-
tries from observations and goals as prompt in-
puts. We assume that all formulations from P pre-
serve information, i.e. any optimal policy π∗

i us-
ing the prompt formulation Pi from P can obtain
the same amount of rewards as an optimal pol-
icy π∗ acting on original observations and goals:
∀g ∈ G, ∀i ∈ {1, · · · , n},Eτ∼π∗

i (τ |g)[Rg(τ)] =
Eτ∼π∗(τ |g)[Rg(τ)].

Based on this, we analyze the sensitivity of the
policy π to variations in prompt formulation com-
pared to the one used during training. We define
prompt overfitting as a scenario where, for a given
policy π trained using a specific formulation Pi,
there exists a prompt formulation Pj ∈ P such that
the expected reward for π on Pi is significantly
higher than the expected reward for π on Pj .

3.2 Fine-tuning LLM agents with RL

First, we define a policy π, based on an LLM for
solving tasks in M , given any prompt formulation
Pi ∈P . For any goal g ∈ G and observation o ∈ O,
we note PLLM (wk|po,gi , w<k) the probability of to-
ken wk for prompt po,gi generated by the prompt
formulation Pi and the decoding history w<k. We
also define PLLM (a|po,gi) = Π

|a|
k=0PLLM (wk|po,gi

, w<k) the decoding probability of the sequence
corresponding to action a ∈ A given prompt po,gi .
Following (Tan et al., 2024), we use a nor-
malized decoding probability Pnorm

LLM (a|po,gi) =

PLLM (a|po,gi)
1
|a| to better balance actions of

various sizes. From these quantities, we build
the policy as π(a|po,gi) = Pnorm

LLM (a|po,gi)/Zo,g
i ,

where Zo,g
i =

∑
a∈A Pnorm

LLM (a|po,gi) is the par-
tition function. Then, we follow the recent tex-
tual RL works for sequential decision-making of
Carta et al. (2023) and Tan et al. (2024) to train our
LLM agents using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). Given a subset of
prompt formulations Pppo ⊆ P , we note πPppo an
LLM agent of parameters θ trained by minimizing
the PPO loss PPOloss(θ, Pppo) from rollouts using
prompt formulations Pppo. Each rollout τ is ob-
tained for a given prompt formulation Pi ∈ Pppo

uniformly sampled from Pppo, and is used by the
agent during training.

3.3 Mitigating Prompt Overfitting with
Contrastive Learning

After analyzing prompt overfitting within the pro-
posed framework, we add a contrastive loss to
bring closer the latent representations zθ(p

o,g
i) and

zθ(p
o,g
j) of the same observation-goal pair (o, g)

across prompts po,gi and po,gj , compared to latent

representations zθ(p
o′,g′
i) of other observations and

goals (o′, g′) of prompt po
′,g′

i . That is, we aim to
minimize:

C(i,j)(θ) = E
(o,g)∼d

πPppo

(o′,g′)∼d
πPppo

max
(
∆(zθ(p

o,g
i), zθ(p

o,g
j))

−∆(zθ(p
o,g
i), zθ(p

o′,g′
i)) + 1), 0

)
(1)

where zθ(p
o,g
i) is the latent representation of textual

prompt po,gi produced by prompt formulation Pi ap-
plied to the observation-goal pair (o, g), ∆(z, z′) =
||(z) − (z′)||22 is the Euclidean distance between
two latent representations z and z′, and dπPppo is
the joint stationary observation-goal distribution
of a policy using Pppo. In practice, we sample

7047

pairs (o, g) from the PPO rollouts, supposed to fol-
low dπPppo .
Our final loss L jointly optimizes PPOloss with
the contrastive loss C(i,j)(θ) as follows:

L(θ, Pppo, Pc) = PPOloss(θ, Pppo) (2)

+
α

|Pc|2
∑

Pi,Pj∈P2
c

C(i,j)(θ)

where α is a parameter regulating the impact of
C(i,j), Pppo represents the set of prompts used for
fine-tuning the LLM policy with the PPO loss, and
Pc represents the set of prompts used for the con-
trastive regularization C(i,j). Following (Ni et al.,
2022), C(i,j) is only applied to the representation of
the first token of the prompt. Appendix C provides
implementation details about contrastive regular-
ization.

4 Experimental Protocol

In this section, we introduce an evaluation method-
ology for analyzing the impact of fine-tuning LLMs
with RL in textual environments. Our experiments
aim to address three research questions:
• Q1: Prompt sensitivity: Are LLMs sensitive
to different prompt formulations, and how does
this sensitivity influence their ability to generalize
across various prompt formulations?
• Q2: State representation: How do LLMs en-
code the state space in their hidden representation,
and what is the topology of the latent space?
• Q3: Impact of prompt information on action
choice: After fine-tuning with various prompts,
on which parts of the prompt does the LLM agent
focus for task completion?

4.1 Environments
We conduct our experiments in two textual environ-
ments: 1) BabyAI-Text, a mini-grid environment
used in (Carta et al., 2023) where an agent navi-
gates through limited actions, and 2) the Medium
difficulty TWC Environment, proposed in (Muruge-
san et al., 2021) (noted TWC-Medium), targeted
to solve household tasks getting a scene descrip-
tion and a list of possible actions. These two en-
vironments assess complementary skills in terms
of semantics: BabyAI-Text requires exploring and
understanding the arrangement of objects, whereas
TWC-Medium requires common sense knowledge
and reasoning. See Appendix A for more details.

4.2 Prompt Design
To use LLMs as policies, we define four distinct
prompt formulations to gather several pieces of in-

formation from the environment: the goal, possible
actions, an inventory and textual observations. The
first prompt formulation P0 follows a format where
pieces of information are separated by line breaks
in the following order: possible actions, goal, ob-
servation, and inventory. P1 is similar to P0 but
switches the order of the information. P2 employs
a more rigid syntax with delimiter tags, similar to
an XML file. Finally, P3 removes all rigidity in
syntax and follows a natural language format, para-
phrased by a prompt writer. Examples of P0 and P2

in TWC-Medium can be found in Figure 2 and de-
tailed descriptions of all prompt formulations are
provided in Appendix A.3.

4.3 Training and Evaluation Details

Training: We consider several LLMs includ-
ing encoder-decoder architectures (Flan-T5 78M,
780M, and 2.7B) (Chung et al., 2022) and
decoder-only architectures (GPT-Neo 1.3B, LLama
7B) (Black et al., 2022; Touvron et al., 2023). We
present in the main paper the results obtained by
Flan-T5 78M and 780M also used in (Carta et al.,
2023) and GPT-Neo 1.3B. Additional results on
other LLMs are presented in Appendix B.1. We
consider different fine-tuning scenarios denoted as
σPc
Pppo

. For brievity, we omit to specify Pc if no con-
trastive regularization is applied. Also, we denote
as σzs the zero-shot scenario, that corresponds to
the pre-trained LLM agent without any fine-tuning
(i.e., both Pc and Pppo are empty). Three scenarios
are mainly considered for fine-tuning LLM agents
in our experiments: 1) the one prompt scenario σ0
where the LLM is fine-tuned by PPO on prompt P0

only, 2) the multiple prompt scenario σ0:3 where
the LLM is fine-tuned by PPO on prompts P0 to P3,
and 3) the contrastive scenario σ0:3

0 where the LLM
is fine-tuned by PPO with P0 only, but using an ad-
ditional contrastive loss considering prompts P0

to P3. Fine-tuning is performed in both environ-
ments for 500k steps across 5 seeds.

Evaluation: We evaluate the zero-shot scenario
σzs and the fine-tuned LLMs (σPc

Pppo
) to assess the

performance on both seen and unseen prompts dur-
ing training. In addition, for the scenarios σ0:3 and
σ0:3
0 , we define a new prompt formulation P4 to an-

alyze generalization to unseen prompts. P4 follows
a different template with changes to the section’s
names, reordering, and an additional context tag
(details about this prompt in Appendix A.3).

7048

4.4 Metrics
We assess LLM agents around four axes:
• Performance Related to Training Task: We
define a success of an LLM agent in the environ-
ment as a case where a trajectory is successful if
it reaches its goal g. We deduce two metrics: 1)
(SR): the success rate of the agent and 2) (SR): the
mean success rate across all prompt formulations
and episodes.
• Exploring Hidden Representations: To delin-
eate the disparities between prompt formulations,
we compute the cosine similarity of their latent rep-
resentations pre and post fine-tuning. Given a set
of observation-goal pairs Γ = {(o, g)}2, the similar-
ity between representations using different inputs
formatted by a single prompt formulation P0 is
defined as

Intra(Pi) =
1

|Γ|2 − |Γ|
∑

(o,g)∈Γ
(o′,g′)∈Γ\{o,g}

cos
(
zo,gi , zo

′,g′
i

)
.

Besides, we assess the similarity between repre-
sentations from different prompt formulations as:

Inter(Pi, Pj) =
1

|Γ|
∑

(o,s)∈Γ
cos

(
zo,gi , zo,gj

)
.

Finally, to visualize the topology of the latent space,
we utilize UMAP (McInnes et al., 2018) to gener-
ate a 2D projection of the hidden state space and
visualize its structure.
• Relevance of Parts of Prompt Information:

We study the relationship between inputs and pre-
dictions using gradients attribution methods to gen-
erate saliency scores for each element of the in-
put (Madsen et al., 2021). For each scenario σ
and each prompt formulation Pi, we compute
the averaged saliency of prompt tokens for ev-
ery observation-goal pair (o, g) from Γ. Saliency
scores are computed using the Inseq toolkit (Sarti
et al., 2023), as the Integrated Gradient of the out-
put probability of the policy π(a∗|po,gi) with re-
spect to the tokens of the prompt po,gi , with a∗ the
most likely action regarding the observation-goal
o, g. To enhance interpretability, saliency scores
for each prompt tokens are finally aggregated de-
pending on the part of the prompt they belong to,
among {possible actions, goal, observation, inven-
tory}. We do so after filtering out the top 5% most
significant tokens from each section to eliminate
perturbations caused by irrelevant tokens.

2In our experiments, Γ is built from rollouts of σ0 to infer
actions. Similar results were observed with other distributions.

• Knowledge acquired by the LLM about the
environment: To analyze what the LLM learned
about the environment, we measure the accuracy
in question-answering (QA) tasks related to TWC-
Medium that include object counting (TWC OC)
and task-related questions (TWC QA). We fol-
low the (Xiang et al., 2023) methodology for con-
structing the set of questions based on the opti-
mal successful trajectory of TWC-Medium. For
task-related questions, we generate multiple-choice
questions regarding the best object from a given set
to accomplish a task. For the object counting task,
we present to the LLM a trajectory in the environ-
ment and prompt it to count the number of objects
in a specific location.

5 Quantifying overfitting

We now focus on the impact of fine-tuning LLMs
in interactive environments according to our three
main research questions. We leave the impact of the
contrastive learning scenario on task achievement
and question answering for Section 6.

5.1 Q1: Prompt sensitivity

We evaluate the LLM performance in solving tasks
with different prompt formulations in both environ-
ments. Figure 3 shows the SR values for Flan-T5
78M, 780M, and Gpt-Neo 1.3B obtained accord-
ing to the different evaluation scenarios: σzs, σ0,
and σ0:3. Results of training with other formula-
tions and models are available in Appendix B.1.

First, we see that LLM performance in σzs is
50% lower than that of models fine-tuned via PPO.
This underscores the necessity for LLM special-
ization in interactive environments to efficiently
achieve goals. Conversely, while the 78M model
and GPT-Neo 1.3B exhibit heterogeneous results
across both environments in σzs, the Flan T5 780M
model demonstrates more consistent performance.
Second, fine-tuning the LLM with a single prompt
formulation, notably P0, enhances the SR value for
the training prompt, revealing that the LLM learns
to effectively achieve tasks and capture the dynam-
ics of interactive environments. For more details,
the training curves are provided in Appendix A.4.
For instance, in the TWC-Medium environment,
both the Flan T5 78M and 780M models achieve
success rates exceeding 90% (compared to a max-
imum of 45% with σzs) and approach the 85%
success rate of the GPT-Neo 1.3B (compared to at
most 20% with σzs). However, a notable decline

7049

21 3 21 3
ZS

SR= 0 .29
0

SR= 0 .7 8
0 : 3

SR= 0 .8 7
0 : 3
0

SR = 0 .9 4

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .1 1

0 .9 3
0 .8 5

0 .9 7

0 .4 0

0 .8 0
0 .8 6 0 .9 1

0 .4 4

0 .8 3 0 .8 8
0 .9 5

0 .2 0

0 .5 9

0 .9 0 0 .9 3

* *
Fla n T5 7 8 M

ZS
SR= 0 .3 8

0
SR= 0 .8 3

0 : 3
SR= 0 .8 5

0 : 3
0

SR = 0 .9

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .3 5

0 .9 8

0 .8 3
0 .9 7

0 .4 3

0 .8 7 0 .8 5 0 .8 9

0 .3 9

0 .7 7
0 .8 5 0 .9 0

0 .3 6

0 .7 0

0 .8 7 0 .8 3

* *

*

Fla n T5 7 8 0 M

ZS
SR= 0 .1 9

0
SR= 0 .7 2

0 : 3
SR= 0 .6 7

0 : 3
0

SR = 0 .8 1

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .1 8

0 .8 0
0 .6 9

0 .8 5

0 .2 4

0 .6 9 0 .6 6
0 .7 8

0 .1 4

0 .7 7
0 .6 7

0 .8 0

0 .1 9

0 .6 5 0 .6 6

0 .8 1

* *
GPT-Ne o 1 .3 B

P0

P1

P2

P3

ZS
SR= 0 .2 5

0
SR= 0 .3 4

0 : 3
SR= 0 .4 8

0 : 3
0

SR = 0 .5 2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .3 9

0 .5 9 0 .5 9
0 .7 0

0 .3 0 0 .3 2 0 .3 7

0 .5 6

0 .0 4
0 .1 9

0 .4 9
0 .5 6

0 .2 9 0 .2 7

0 .5 2

0 .2 5

ZS
SR= 0 .4 1

0
SR= 0 .6 9

0 : 3
SR = 0 .8 5

0 : 3
0

SR = 0 .8 2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .3 9

0 .8 3 0 .8 5 0 .8 5

0 .4 4

0 .7 4
0 .8 2 0 .7 8

0 .4 2
0 .5 1

0 .8 4
0 .7 8

0 .4 1

0 .7 0

0 .9 2 0 .8 7

* *

*

ZS
SR= 0 .2 0

0
SR= 0 .6 5

0 : 3
SR= 0 .6 6

0 : 3
0

SR = 0 .7 7

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

SR

0 .2 3

0 .7 9
0 .6 6

0 .8 6

0 .1 4

0 .6 3 0 .6 8

0 .8 4

0 .3 2

0 .6 9 0 .6 7
0 .7 8

0 .1 0

0 .5 1
0 .6 6 0 .6 0

* *

TWC
Medium

BabyAI
Text

Figure 3: Success Rate (SR) in BabyAI-Text and TWC-Medium. The x-axis indicates the training scenario, while
colors represent the prompt formulation used to format inputs during rollouts. The asterisk (*) indicates instances
where the chi-squared test exceeds the homogeneity threshold (p-value > 0.05). Bolded values in SR represent the
best results in the evaluation. Results show that the LLM exhibits heterogeneous performance when the prompt
formulation used during training is changed, with a drop in success rate of up to 30% in certain scenarios.

in performance is observed when using another
prompt formulation at test time, with a decrease of
over 30% from using the original P0 to the P3 varia-
tion in TWC-Medium and more than 30% from P0

to P2 in BabyAI-Text. This drop outlines prompt
overfitting in LLMs. The trend is similar for larger
models (Flan T5 2.7B and LLama 7B) as detailed in
Appendix B.1. We also observe that, for both σzs
and fine-tuned models, encoder-decoder models
outperform decoder-only architectures, even when
the decoder-only models have a larger parameter
size. Finally, results obtained with σ0:3 indicate
that training with all prompts maintains the LLM’s
performance more consistently across prompt vari-
ations. However, the LLM does not achieve the
peak of performance observed when trained on a
single prompt formulation. This is likely due to
the higher difficulty for the LLM to adapt to multi-
ple formulations than to a single formulation. By
comparing environments, we observe that the Flan
T5 78M model struggles in learning appropriate
policies in BabyAI-Text. This might be attributed
to its exploratory nature and reduced reliance on
common sense knowledge, due to the small portion
of exploited vocabulary.

5.2 Q2: State representation

To further analyze prompt overfitting, we investi-
gate the latent representation of states formatted
with different prompt formulations. We compare
in Table 1 the intra-prompt and inter-prompt simi-
larities to measure the topology of the latent repre-
sentations of states according to our different sce-

narios (σzs, σ0, and σ0:3), averaged over any pair
of prompt formulations used to format inputs. The
most striking result is that LLMs tend to cluster
prompts formulated with the same prompt formu-
lation (Intra ≃ 1), even when they correspond to
different goal-observation pairs. In contrast, the
same pair formulated with different prompt formu-
lations exhibits low similarity (Inter < 0.5).

Models σzs σ0 σ0:3 σ0:3
0

78M
Intra

0.992
± 0.003

0.991
± 0.003

0.991
± 0.003

0.907
± 0.017

Inter
0.376
± 0.019

0.382
± 0.020

0.371
± 0.020

0.806
± 0.029

780M
Intra

0.998
± 0.001

0.997
± 0.001

0.998
± 0.001

0.939
± 0.017

Inter
0.469
± 0.462

0.458
± 0.449

0.47
± 0.461

0.812
± 0.06

1.3B
Intra

0.995
± 0.001

0.994
± 0.001

0.997
± 0.001

0.994
± 0.017

Inter
0.552
± 0.03

0.539
± 0.01

0.501
± 0.05

0.94
± 0.009

Table 1: Inter and intra-similarity comparison for
Flan T5 78M, 780M and GPT-Neo 1.3B models on
TWC-Medium on our different scenarios. For all mod-
els, we observe that Intra approaches 1, while Inter
is consistently below 0.5. This indicates that the LLMs
tend to cluster prompts based on their formulation
rather than on content. A similar trend is observed
for both σ0:3 and σ0 scenarios.

The low similarity between prompts and the high
similarity within prompts suggest that LLMs cap-
ture more about the prompt formulation than about
the content itself. This reinforces the previous ob-
servation about Q1 highlighting prompt overfitting.
Figure 4 depicts the embedding of prompts using

7050

0 5
x

(a)

2

4

6

8

y

ZS

10 15 20
x

(b)

4

6

8

10

12

y

0

0 5 10
x

(c)

2

4

6

y

0 : 3

0 10
x

(d)

0

2

4

y

0 : 3
0

P0
P1
P2
P3

Figure 4: UMAP visualization of hidden representations in GPT-Neo 1.3B across 100 states of TWC-Medium
using four prompt formulations demonstrating clustering based on prompt formulation over semantic state
similarity in both σzs and fine-tuned models σ0 and σ0:3. Additional results for fine-tuning on other prompts can be
found in Appendix B.3.

Pos s ib le Act ion s

Goa l

Ob s e rva t ion

In ve n tory
0 .2

0 .5

0 .8

1

Ze ro s h o t
Pos s ib le Act ion s

Goa l

Ob s e rva t ion

In ve n tory
0 .2

0 .5

0 .8

1

P0
Pos s ib le Act ion s

Goa l

Ob s e rva t ion

In ve n tory
0 .2

0 .5

0 .8

1

PALL
Pos s ib le Act ion s

Goa l

Ob s e rva t ion

In ve n tory
0 .2

0 .5

0 .8

1

Con t ra s t ive P0 P0
P1
P2
P3

(a) (b) (c) (d)

Figure 5: Saliency maps of the Flan-T5 78M model across scenarios on TWC-Medium, highlighting various
parts of the prompts. The maps show that the LLM focuses on different sections of the prompt depending on the
prompt formulation. This variation in focus is linked with performance changes when the prompt formulation is
altered. The phenomenon is observed in σzs, σ0 and σ0:3 scenarios.

the UMAP visualization and also corroborates this
hypothesis. We see that there is no overlap between
clusters of prompt formulations in σzs, and fine-
tuning with σ0 does not change this. Interestingly,
using σ0:3 does not mitigate this, highlighting the
need for methods tackling overfitting in both task
efficiency (Q1) and state representation (Q2).

5.3 Q3: Usefulness of Prompt Information

We then analyze which parts of the prompts (goal,
possible actions, observation, and inventory) are
used by LLMs to predict the best action. Figure 5
depicts the saliency scores of prompt parts obtained
using the Integrated Gradients algorithm (Madsen
et al., 2021). We observe that the importance of the
parts of the prompt varies regarding the different
prompt formulations and scenarios. For instance,
in σzs, LLMs prioritize Inventory when P1 is used,
whereas switching to P0 and P2 shifts the focus to
Possible Actions, with quite similar saliency scores
for both. This can be explained by the fact that
P0 and P2 follow the same order of information
(see Appendix A.3), so LLMs find possible actions
in the same relative position. Fine-tuning LLMs
alters the saliency scores compared to σzs, with
LLMs prioritizing the goal over possible actions

when using P0. However, LLMs still focus on dif-
ferent parts of the prompt when changing prompt
formulation to the others. Using σ0:3 also results
in heterogeneous saliency maps across prompt for-
mulations, showing that LLMs continue to process
the prompts differently despite being fine-tuned
with multiple prompt formulations. This strength-
ens the findings of Q2, highlighting the influence
of prompt formulation on the behavior of LLMs.
Additional results for fine-tuning on other prompts
can be found in Appendix B.3.

6 Mitigating Overfitting with Contrastive
Learning Regularization

We now evaluate the impact of the contrastive loss
proposed in Section 3.3 with the aim to help the
LLMs focus more on the content in prompts so as
to mitigate prompt overfitting.
Performance and prompt overfitting: Figure 3 re-
ports the SR and prompt homogeneity across both
environments and three model sizes. In most cases,
the SR of σ0:3

0 surpasses the σzs, σ0 and σ0:3 (ex-
cept for the 780M model on BabyAi-Text, where
σ0:3
0 underperforms by 3%). This is noticeable

since σ0:3
0 learns the matching between prompt for-

mulations while σ0:3 learns each prompt indepen-

7051

σ0:3 σ0:3
0

78 M 0.77 ± 0.11 (3%) 0.92 ± 0.02 (97%)
780 M 0.80 ± 0.06 (4.7%) 0.86 ± 0.05 (91%)
1.3 B 0.66 ± 0.02 (99%) 0.76 ± 0.03 (98%)

Table 2: Success Rate (SR) in TWC-Medium using
prompt formulation P4 unseen during training. The val-
ues in parentheses represent the χ2 homogeneity test
results, red indicates heterogeneity (p-value < 5%) and
green indicates homogeneity (p-value > 5%). σ0:3

0 sce-
nario demonstrates superior performance in terms of SR
and homogeneity compared to σ0:3 across all models.

dently. In terms of homogeneity, both σ0:3
0 and σ0:3

scenarios yield consistent results (marked with an
asterisk (*) in Figure 3) for all TWC-medium eval-
uations. However, as mentioned in Section 5.1, the
78M model struggles in BabyAI-Text with both
task-solving and achieving homogeneity across
prompts for σ0:3

0 and σ0:3. For the GPT-Neo 1.3B
model, σ0:3

0 achieves homogeneity across prompts
P0 to P2 but its performance drops with P3. This is
likely because the environment involves extensive
exploration, making it difficult to maintain seman-
tic consistency with paraphrased text. Nevertheless,
the SR for σ0:3

0 remains higher than that of σ0:3.
We also evaluate in Table 2 the generalization capa-
bilities of σ0:3

0 compared to σ0:3 using the prompt
formulation P4, which was not seen during train-
ing in either scenario. The results indicate that the
mean success rate on P4 is higher for σ0:3

0 than
for σ0:3, indicating superior generalization capa-
bilities across all three model sizes. To validate
these findings, we conduct a χ2 test to verify the
homogeneity of P4 results compared to the mean
results obtained from the training prompts. The val-
ues in parentheses summarize the results, showing
that for all σ0:3

0 models, the success rates on the un-
seen prompt P4 follow the same distribution as the
training success rates. This indicates robust gen-
eralization to unseen prompts, in contrast to σ0:3,
where the 78M and 780M models do not exhibit the
same distribution of results as during training. This
finding supports the conclusion that regularization
helps mitigate overfitting.
State representation: The last column of Table 1
shows a significant increase in the inter-prompt
proximity for the 78M, 780M and 1.3B models,
confirming our intuition that applying the con-
trastive loss can help disregard the prompt formu-
lation at the benefit of its content. The scatter plot
in Figure 4(d) indicates that the topology of the
latent space changed. The latent vectors are no
longer clustered by formulation and now overlap,

TWC QA TWC OC
σzs 0.4866 * 0.0876 ***
σ0 0.4901 * 0.1340 ***
σ0:3 0.5019 * 0.2526 *
σ0:3
0 0.6322 0.5155

Table 3: Impact on knowledge of the LLM about the
environment on TWC QA and TWC OC datasets. *
and *** correspond to the p-value (resp. < 0.05 and
< 0.001) of Welch’s t-test to compare the performance
between σ0:3

0 and other scenarios. We observe a signifi-
cant improvement with σ0:3

0 scanerio compared to σzs,
σ0, and σ0:3 scenarios across both datasets.

suggesting that the model has learned to match be-
tween states. Further details regarding distances
and visualizations can be found in Appendix B.2.

Saliency of prompt information: Figure 5(d)
shows that contrastive loss homogenizes saliency
maps across prompts, as it impacts their perfor-
mance. Indeed, we see more homogeneous results
in the salient prompt parts across prompt formula-
tions, unlike when training on multiple prompts.

Knowledge acquired by the LLM about the en-
vironment. We measure the accuracy of the LLM
in TWC QA and TWC OC datasets before and
after fine-tuning over all training scenarios in Ta-
ble 3. Before fine-tuning, the LLM struggles to
answer environment-related questions, exhibiting
poor performance across both QA datasets. Fol-
lowing fine-tuning with σ0 or σ0:3, the accuracy
shows only superficial improvement for the TWC
QA, and minor enhancements are observed in the
TWC OC compared to the σzs setting. This indi-
cates that fine-tuning in these scenarios leads to
superficial updates. However, fine-tuning with the
σ0:3
0 scenario results in a more substantial improve-

ment compared to other scenarios, with at least a
13% increase in TWC QA accuracy, and respec-
tive gains of 25%, 35%, and 43% for the σ0:3, σ0,
and σzs scenarios. These findings highlight that
not only enhances robustness to prompt variations
but also improves the LLM’s understanding of the
environment.

Altogether, these results highlight the effectiveness
of our contrastive method to mitigate prompt over-
fitting according to different criteria: 1) the impact
of prompt sensitivity on performance, 2) leverag-
ing state description rather than prompt formatting,
3) giving importance to the same information in
the prompt and 4) have better knowledge about the
environment. It is worth noting that this is achieved
with the benefit of better generalization, without

7052

sacrificing performance compared to a scenario that
leverages multiple prompts simultaneously during
fine-tuning.

7 Conclusion and future work

In this work, we studied the sensitivity of LLMs
to prompt formulation during RL fine-tuning. We
introduced an evaluation protocol to assess prompt
overfitting, considering Success Rate, and the role
of internal mechanisms such as embeddings and
saliency. We evaluated three models of varying
sizes (Flan T5 78M and 780M, and GPT-Neo
1.3B) across two environments (BabyAI-text and
TWC-medium). The results revealed the impact
of prompt overfitting, which increased the model’s
sensitivity to variations in prompt formulation. To
address this, we proposed a contrastive regular-
ization method and demonstrated its effectiveness.
However, this study has limitations. We focus
on solutions where LLM interacts with the world
solely through text, and requires detailed descrip-
tions at each step. Evaluating other modalities (like
images) will be addressed in future work.

Acknowledgments

Experiments presented in this paper were car-
ried out using the HPC resources of IDRIS un-
der the allocation 2024-[A0151013011] made by
GENCI. This work was supported by the Euro-
pean Commission’s Horizon Europe Framework
Programme under grant No 101070381 (PILLAR-
robots) and by PEPR Sharp (ANR-23-PEIA-0008,
ANR, FRANCE 2030).

Limitations

Our evaluation relies on fine-tuning LLMs, which
is computationally intensive and time-consuming.
Furthermore, using RL further slows down the
training process due to the need for interactions
with the environment and RL optimization. For in-
stance, training a Flan T5 78M model requires four
NVIDIA V100-32GB GPUs, while a 780M model
necessitates four NVIDIA A100-80GB GPUs and
GPT-Neo 1.3B necessitates eight NVIDIA A100-
80GB. Consequently, fine-tuning larger models is
challenging given our available computational re-
sources.

Ethical Considerations

In our research, we investigate the sensitivity of
LLMs to prompts and propose solutions to mitigate

this issue. We believe that our efforts to reduce
sensitivity and align LLM outputs with human in-
tentions will be beneficial for the application of
LLMs in real-world tasks, and represent a step for-
ward for the implementation of LLMs in robotics
tasks and beyond.

References
Marwa Abdulhai, Isadora White, Charlie Victor Snell,

Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. 2023. LMRL gym: Benchmarks
for multi-turn reinforcement learning with language
models. Technical report, Berkeley’s AI Research
lab.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. ArXiv preprint,
abs/2204.01691.

Sid Black, Stella Biderman, Eric Hallahan, Quentin G.
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Martin Pieler, USVSN Sai Prashanth, Shiv-
anshu Purohit, Laria Reynolds, Jonathan Tow, Benqi
Wang, and Samuel Weinbach. 2022. Gpt-neox-
20b: An open-source autoregressive language model.
ArXiv, abs/2204.06745.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
In International Conference on Machine Learning,
pages 3676–3713. PMLR.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
arXiv preprint.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
2023. PALM-E: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess,
Andy Zeng, Yao Lu, Pete Florence, Igor Mor-
datch, Sergey Levine, Karol Hausman, et al. 2023.

7053

https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://api.semanticscholar.org/CorpusID:248177957
https://api.semanticscholar.org/CorpusID:248177957
https://doi.org/10.48550/ARXIV.2210.11416

Grounded decoding: Guiding text generation with
grounded models for robot control. ArXiv preprint,
abs/2303.00855.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, An-
ima Anandkumar, Yuke Zhu, and Linxi Fan. 2022.
Vima: General robot manipulation with multimodal
prompts. arXiv.

Jiachen Li, Qiaozi Gao, Michael Johnston, Xiaofeng
Gao, Xuehai He, Suhaila Shakiah, Hangjie Shi, Reza
Ghanadan, and William Yang Wang. 2023. Mas-
tering robot manipulation with multimodal prompts
through pretraining and multi-task fine-tuning. arXiv
preprint arXiv:2310.09676.

Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoff-
mann, Cyprien de Masson d’Autume, Phil Blunsom,
and Aida Nematzadeh. 2021. A systematic investiga-
tion of commonsense knowledge in large language
models. arXiv preprint arXiv:2111.00607.

Manikanta Loya, Divya Sinha, and Richard Futrell.
2023. Exploring the sensitivity of llms’ decision-
making capabilities: Insights from prompt variations
and hyperparameters. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023.
Association for Computational Linguistics.

Andreas Madsen, Siva Reddy, and A. P. Sarath Chandar.
2021. Post-hoc interpretability for neural nlp: A
survey. ACM Computing Surveys, 55:1 – 42.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas
Großberger. 2018. Umap: Uniform manifold ap-
proximation and projection. Journal of Open Source
Software, 3(29):861.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,
and Murray Campbell. 2021. Text-based rl agents
with commonsense knowledge: New challenges,
environments and baselines. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 9018–9027.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant,
Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. 2022.
Sentence-t5: Scalable sentence encoders from pre-
trained text-to-text models. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1864–1874, Dublin, Ireland. Association for
Computational Linguistics.

Liu Pengfei, Yuan Weizhe, Fu Jinlan, Jiang Zhengbao,
Hayashi Hiroaki, and Neubig Graham. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Abel Salinas and Fred Morstatter. 2024. The butterfly
effect of altering prompts: How small changes and
jailbreaks affect large language model performance.
arXiv preprint arXiv:2401.03729.

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, Oskar
van der Wal, Malvina Nissim, and Arianna Bisazza.
2023. Inseq: An interpretability toolkit for se-
quence generation models. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), pages 21–435, Toronto, Canada. Association
for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.
2023. Towards expert-level medical question an-
swering with large language models. arXiv preprint
arXiv:2305.09617.

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du,
and Behnam Neyshabur. 2019. Observational over-
fitting in reinforcement learning. arXiv preprint
arXiv:1912.02975.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan
Mazoure, Walter Talbott, Katherine Metcalf, Natalie
Mackraz, Devon Hjelm, and Alexander Toshev. 2024.
Large language models as generalizable policies for
embodied tasks. arXiv:2310.17722.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao
Zheng, Xinrun Wang, and Bo An. 2024. True knowl-
edge comes from practice: Aligning llms with embod-
ied environments via reinforcement learning. arXiv
preprint arXiv:2401.14151.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

7054

https://arxiv.org/abs/2303.00855
https://arxiv.org/abs/2303.00855
https://doi.org/10.18653/v1/2023.findings-emnlp.241
https://doi.org/10.18653/v1/2023.findings-emnlp.241
https://doi.org/10.18653/v1/2023.findings-emnlp.241
https://api.semanticscholar.org/CorpusID:236976388
https://api.semanticscholar.org/CorpusID:236976388
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.48550/arXiv.2310.17722
https://doi.org/10.48550/arXiv.2310.17722
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An open-
ended embodied agent with large language models.
arXiv:2305.16291.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng He,
Zilong Zheng, Yaodong Yang, Xiaojian Ma, and Yi-
tao Liang. 2023b. JARVIS-1: Open-world multi-
task agents with memory-augmented multimodal lan-
guage models. arXiv preprint arXiv:2311.05997.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and
Yitao Liang. 2023c. Describe, explain, plan and se-
lect: Interactive planning with large language mod-
els enables open-world multi-task agents. ArXiv
preprint, abs/2302.01560.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Muning Wen, Cheng Deng, Jun Wang, Weinan Zhang,
and Ying Wen. 2024. Entropy-regularized token-
level policy optimization for large language models.
arXiv preprint arXiv:2402.06700.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui
Wang, Zichao Yang, and Zhiting Hu. 2023. Lan-
guage models meet world models: Embodied expe-
riences enhance language models. ArXiv preprint,
abs/2305.10626.

Xue Yan, Yan Song, Xinyu Cui, Filippos Christianos,
Haifeng Zhang, David Henry Mguni, and Jun Wang.
2023. Ask more, know better: Reinforce-learned
prompt questions for decision making with large lan-
guage models. arXiv preprint arXiv:2310.18127.

Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil
Madaan, Madhavan Iyengar, David F Fouhey, and
Joyce Chai. 2023. Llm-grounder: Open-vocabulary
3d visual grounding with large language model as an
agent. arXiv preprint arXiv:2309.12311.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al.
2023. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv
preprint arXiv:2308.02151.

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning
Liu, and Philip S Yu. 2023. Large language
models for robotics: A survey. arXiv preprint
arXiv:2311.07226.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. arXiv
preprint arXiv:2102.09690.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. Large
language models as commonsense knowledge for
large-scale task planning. Advances in Neural Infor-
mation Processing Systems, 36.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024. ArCHer: Training language
model agents via hierarchical multi-turn RL. arXiv.

7055

http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.16291
https://doi.org/10.48550/arXiv.2311.05997
https://doi.org/10.48550/arXiv.2311.05997
https://doi.org/10.48550/arXiv.2311.05997
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2302.01560
https://arxiv.org/abs/2305.10626
https://arxiv.org/abs/2305.10626
https://arxiv.org/abs/2305.10626
https://doi.org/10.48550/arXiv.2402.19446
https://doi.org/10.48550/arXiv.2402.19446

Appendix

A Experimental setup

A.1 Environments
The BabyAI-Text environment (Carta et al., 2023)
encapsulates BabyAI, a simple mini-grid environ-
ment where an agent navigates and interacts with
objects through a limited action space of six com-
mands: turn left, turn right, go forward, pick up,
drop, and toggle. BabyAI-Text describes each ob-
servation with sentences instead of using a sym-
bolic representation. A textual description consists
of a list of template descriptions with the following
structure:

• "You see a <object> <location>" if the object
is a key, a ball, a box or a wall

• "You see a(n) open/closed door <location>",
if the agent sees a door.

• "You carry a <object>", if the agent carries an
object.

The TWC environment (Murugesan et al., 2021)
is notably more complex than BabyAI-Text regard-
ing objects and actions and more amenable to com-
mon sense knowledge. TWC agents should achieve
a series of household tasks, such as "picking up an
apple and placing it in an appropriate location".
The agent receives a description of a scene and a
list of plausible actions. It must then decide which
action to take given the current game state. Suc-
cessful actions are rewarded with points.

TWC games are categorized into easy, medium,
and hard difficulties. As difficulty increases, the
number of target objects and rooms to clean up also
increases, as detailed in Table 4.

Objects Targets Rooms
Easy 1 1 1
Medium 2-3 1-3 1
Hard 6-7 5-7 1-2

Table 4: Number of objects, target objects and rooms in
TWC games per difficulty level.

To choose a difficulty level, we first conducted
a σzs evaluation on TWC-Easy using different
prompt formulations. The results, summarized in
Table 5, indicate that the LLM does not encounter
significant difficulties in solving tasks in σzs. This
is why we also performed training and evaluation
on TWC-Medium, where the LLM struggles in σzs,
to better analyze its performance and adaptation.

P0 P1 P2 P3

78M 0.73 0.81 0.75 0.83
780M 0.83 0.9 0.86 0.88

Table 5: LLM evaluation in zero-shot on TWC-Easy

A.2 Grounding Evaluation

In this section, we provide details on the dataset
used for grounding evaluation, following the
methodology of (Xiang et al., 2023). The eval-
uation consists of two tasks:

(1) QA task, where the model is asked to identify
the relevant object needed to complete a household
activity. Example: "Question: To wash clothes,
a possibly related item could be. Possible an-
swer: ["highlighter", "crackers", "laundry deter-
gent", "cupcake"] Answer:

(2) Object counting task, where the model must
determine the number of objects in a specific lo-
cation. Example: "you opened a cooking pot and
grabbed an apple. Next, you pulled out a dish bowl
and scrubbed another apple. He found a bookshelf
and put the first apple on it. Then, you opened a
clothes pile and washed it before putting it on the
same bookshelf. He grabbed another dish bowl
and plate and put the cutlets on the bookshelf. He
moved the clothes pile, grabbed the first apple and
moved it back to its original spot on the bookshelf.
Finally, you put the second dish bowl on the book-
shelf. How many items are there on the bookshelf?"

A.3 Models and Prompt Variations

In this section, we detail the prompt formulations
and provide examples of trajectories performed by
the agent.

Figure 7 shows an example of the initial state s1

in TWC-Medium, formatted with different prompt
formulations. Similarly, Figure 8 presents the same
for BabyAI-Text.

A.4 Training

In this section, we present success rate curves for
models trained on σ0, σ0:3, and σ0:3

0 (see Figure 9).
All training scanrios converge, exceeding a 90%
success rate. This indicates that the policy effec-
tively learned to solve the required tasks. The mod-
els are trained for an identical number of steps to
ensure a fair performance comparison.

7056

Figure 6: Complementary results of success rates for both the 78M and 780M models in two environments across
prompt formulations P0 to P3.

Figure 9: Evolution of the Success Rate (SR) during
training in TWC-Medium.

B Quantifying overfitting

In this section, we present additional results on the
three questions studied in the main paper.

B.1 Q1: Prompt sensitivity

First, we perform the same success rates analysis
for LLMs trained with different prompt formula-
tions in two environments. Figure 6 displays these
results. Prompt overfitting is also evident when
fine-tuning with P1, P2, and P3, further supporting
our findings. Additionally, we note that the 78M
model struggles with BabyAI-Text but shows ex-
cellent performance when trained on P3, indicating
that the LLM can better adapt to certain prompt
formulations.

We also evaluate larger models like Flan T5
2.7B (Chung et al., 2022) and LLama 7B (Tou-
vron et al., 2023). Table 6 summarizes the re-

sults, demonstrating that prompt overfitting is also
present in larger models. Due to the computational
cost of fine-tuning such large LLMs, this evaluation
was performed exclusively on the TWC environ-
ment with σ0 scenario.

Models P0 P1 P2 P3

Llama 7B fine-tuned with σ0 0.9 0.72 0.75 0.79
Flan T5 XL 2.7B fine-tuned on σ0 0.93 0.89 0.84 0.74

Table 6: Success Rate (SR) for LLaMA and T5-XL
fine-tuned on a single prompt in the TWC environment
shows a similar trend of prompt overfitting, even in
larger models.

7057

Figure 7: Example of a state described using different
prompt formulations in TWC-Medium.

 P0:
Possible actions of the agent: turn left, turn right, go forward, pick up, drop,toggle
Goal of the agent: go to the purple box
Observation: You see a wall 2 steps forward, You see a purple box 2 steps left, You
see a purple ball 1 step right and 1 step forward, You
see a grey key 2 steps right
Next action :

 P2:
 <Begin.Possible actions>turn left, turn right, go forward, pick up, drop, toggle <End
Possible actions>
<Begin Goal> go to a grey box<End Goal>
<Begin Current Observation>
Observation: You see a wall 3 steps forward, You see a wall 2 steps
left, You see a grey ball 1 step right and 1 step forward, You see a
grey box 2 steps right and 1 step forward, You see a grey box 3 steps
right and 1 step forward<End Current Observation>
Next action :
 P3 :
you are on a maze and you have to solve a task, what you can do is: turn left, turn
right, go forward, pick up, drop, toggle your task is to go to a grey box, what you see
now: You see a wall 3 steps forward, You see a wall 2 steps
left, You see a grey ball 1 step right and 1 step forward, You see a grey box 2 steps
right and 1 step forward, You see a grey box 3 steps right and 1 step forward
and you next action is to

 P1:
Goal of the agent: go to the purple box
Possible actions of the agent: turn left, turn right, go forward, pick up, drop, toggle
Observation: You see a wall 2 steps forward, You see a purple box 2 steps left, You
see a purple ball 1 step right and 1 step forward, You
see a grey key 2 steps right
Next action :

Figure 8: Example of a state described using different
prompt formulations in BabyAi-Text.

x4

LLM Trained on

insert dirty brown
shirt into washing

machine

take dirty purple
skirt

insert dirty purple
skirt into laundry

basket

insert dirty brown
shirt into washing

machine

take dirty purple
skirt

take dirty brown
shirt from

washing machine

insert dirty brown
shirt into washing

machine

insert dirty purple
skirt into laundry

basket

insert dirty brown
shirt into washing

machine

take dirty brown
shirt from

washing machine

insert dirty brown
shirt into laundry

basket

take dirty brown
shirt from laundry

basket

take dirty purple
skirt

insert dirty purple
skirt into laundry

basket

insert dirty brown
shirt into laundry

basket

take dirty brown
shirt from laundry

basket

insert dirty brown
shirt into laundry

basket

take dirty purple
skirt

close laundry
basket

insert dirty purple
skirt into washing

machine

Succes!

Figure 10: Trajectories of the 780M Agent Trained
with σ0 and queried using prompts P0 to P0: each verti-
cal line represents a trajectory with the prompt formatted
using a specific formulation P, and each step denotes
the successive actions taken by the LLM until the goal
is achieved.

Indeed, fine-tuning with a single prompt formu-
lation yields good results when evaluated on that
same prompt, but there is a significant drop in per-

7058

formance when evaluated on different prompt for-
mulations. Another key point is the episode length
of successful episodes when changing prompt for-
mulations. Figure 10 shows an example of four
trajectories of the 780 model trained with σ0 and
evaluated across P0, P1, P2 andP3. The minimal
number of actions is observed when formatted with
the formulation used during training, i.e. P0. By
contrast, changing the prompt formulation results
in irrelevant actions. For instance, when format-
ted with P2, the LLM loops four times between
two actions before moving to the correct actions
to achieve the goal. This further corroborates the
impact of prompt overfitting.

B.2 Q2: State representation

While Table 1 displays the mean intra and inter-
prompt similarities for LLMs in σzs, σ0, σ0:3, and
with σ0:3

0 , Table 7 provides an individual break-
down of these similarities.

Models similarity σzs σ0 σ0:3 σ0:3
0

78M

Intra(P0) 0.988 0.987 0.987 0.938
Intra(P1) 0.989 0.988 0.988 0.834
Intra(P2) 0.999 0.999 0.999 0.999
Intra(P3) 0.993 0.992 0.993 0.858

Inter(P0, P1) 0.384 0.388 0.390 0.853
Inter(P0, P2) 0.319 0.310 0.295 0.726
Inter(P0, P3) 0.427 0.448 0.429 0.823

780M

Intra(P0) 0.998 0.987 0.998 0.938
Intra(P1) 0.998 0.988 0.997 0.834
Intra(P2) 0.999 0.999 0.999 0.999
Intra(P3) 0.999 0.992 0.999 0.858

Inter(P0.P1) 0.623 0.388 0.624 0.853
Inter(P0.P2) 0.165 0.310 0.164 0.726
Inter(P0.P3) 0.619 0.448 0.622 0.823

Table 7: Detailed inter and intra-similarity for Flan
T5 78M and 780M models on TWC-Medium. We ob-
serve the same clustering behavior depending on the
prompt formulation when analyzing each prompt inde-
pendently.

Besides, we further examine the UMAP visual-
ization of models trained with σ0, σ1, σ2 and σ3,
for TWC-Medium to observe potential cluster sep-
aration based on prompt formulation rather than se-
mantic content. Results in Figure 11 reveal distinct
clusters corresponding to different prompt formu-
lations, aligning with the findings presented in Ta-
ble 7. Similarly, UMAP visualization with the 78M
model in BabyAI-Text (see Figure 12) underscores
the persistence of prompt overfitting across differ-
ent model sizes and environments. Notably, the
clustering tendency appears more pronounced in

BabyAI-Text, which may elucidate the challenges
encountered in implementing the contrastive solu-
tion in the 78M model variant on BabyAI-Text.

B.3 Q3: Relevance of Prompt Information in
Decision-Making

For evaluating the relevance of subparts informa-
tion of the input prompt, we assess models fine-
tuned with σ0, σ1, σ2 and σ3. Results in Figure 13,
show a variability in the importance of prompt parts
across different prompt formulations, even after
fine-tuning the LLM.

Figure 14 summarizes outcomes based on two
types of prompt formulations: when the formu-
lation P0 used during fine-tuning is equal to the
evaluation formulation Pj (Pi = Pj) and when σ0
differs from Pj .

Notably, the contrastive regularization approach
is more homogeneous, indicating consistent behav-
ior of the LLM across various prompt formulations.

C Mitigating Overfitting with Contrastive
Learning Regularization

In this section, we clarify the rationale behind the
choice of the regularization token for applying
the contrastive method and its adaptation to both
encoder-decoder and decoder-only architectures.
Two pooling methods can be employed: mean pool-
ing of token embeddings or using the first token
embedding. We conducted an evaluation (see Ta-
ble 8) on both methods and observed that applying
contrastive regularization to the mean embeddings
does not significantly affect performance, whereas
using the first token embedding yields better reg-
ularization. We interpret this as the contrastive
regularization applied to the first token influencing
the embeddings of other tokens through attention
mechanisms.

P0 P1 P2 P3

Contrastive Mean Token 0.85 0.71 0.82 0.66
Contrastive First Token 0.97 0.91 0.95 0.93

Table 8: Comparison of the effect of contrastive regu-
larization applied to the first token versus mean token
embeddings shows that using the first token provides
better regularization compared to mean token embed-
dings.

For encoder-decoder architectures, we apply reg-
ularization to the encoding of the first token in the
output of the encoders, following the work of (Ni

7059

Figure 11: UMAP visualization of the hidden representations of Flan T5 780M with σzs and fine-tuning with
σ0, σ1, σ2 and σ3 on TWC-Medium.

Figure 12: UMAP visualization of the hidden representations of Flan T5 78M with σzs and fine-tuning with
P0, P1, P2 and P3 on BabyAI-Text.

Figure 13: Complementary results of Saliency maps
of different parts of prompts for fine-tuned T5 78M
models on σ0 to σ3.

Figure 14: Saliency maps when Pi = Pj and
when Pi ̸= Pj .

et al., 2022). In contrast, for decoder-only archi-
tectures, the causal nature of these networks means
that directly applying contrastive regularization to
the first token can diminish the contrastive loss,
as the first token does not have access to future
tokens. To address this issue, we introduce a new
token, <contrastive>, positioned at the beginning of
the network, which allows bidirectional attention
exclusively for this token. This approach enables
the <contrastive> token to access the entire prompt,
thereby influencing the embeddings of future to-
kens. Figure 16 summarizes the method. Addition-
ally, we examined which layers are most effective
for applying contrastive regularization. Empiri-
cal tests conducted on the first five layers of the

7060

Layer1
model

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
 ra

te

0.85
0.78 0.80 0.81

P0
P1
P2
P3

Layer2
model

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
 ra

te

0.81
0.73 0.74 0.74

Layer3
model

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
 ra

te

0.77
0.68 0.68 0.67

Layer4
model

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
 ra

te

0.65 0.60 0.65 0.69

Layer5
model

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

 ra
te

0.67
0.60 0.62 0.65

Figure 15: Comparison of different layer choices for applying contrastive regularization on GPT-Neo 1.3B reveals
that earlier layers provide better performance. In contrast, performance declines as one moves toward the later
layers of the network.

Figure 16: Selection of a regularization token for encoder-decoder and decoder-only architectures. The regularization
token is highlighted in red. In decoder-only architectures, bidirectional attention is permitted for the regularization
token, enabling it to access the entire prompt and encode the semantics.

networks evaluated the impact of contrastive regu-
larization on performance. The results, presented
in Figure 15, indicate that applying the regulariza-
tion at the beginning of the network yields superior
performance, while subsequent layers can still be
utilized for task learning with the regularization
applied. Additionally, we found in our experiment,
that setting α = 0.5 in Equation 2 provides a better
balance between the PPO loss and the contrastive
loss.

Table 9 provides complementary results on the
differences between training on a single prompt
formulation, all prompts, and the contrastive learn-
ing scenario, by displaying the mean SR and chi-
squared results for the different models and training
scenarios.

ENV Model Metrics σzs σ0 σ0:3 σ0:3
0

TWC
78 M

SR
0.28
±0.13

0.80
± 0.12

0.88
± 0.04

0.94
±0.03

χ2 7x10−4
±6,6x10−4

1,49x10−4
±2x10−4

0.99
±0.01

0.99
±0.01

780 M
SR

0.38
± 0.03

0.83
± 0.11

0.87
± 0.03

0.89
± 0.05

χ2 0.99
±0.01

4,5x10−2

±6×10−3
0.99
±0.01

0.98
±0.01

BabyAI
78 M

SR
0.25
± 0.13

0.38
± 0.23

0.49
± 0.17

0.52
± 0.21

χ2 1x10−4

±10−4
3,09x10−4

±2x10−4
0.531
±0.21

3,1x10−3

±4x10−3

780 M
SR

0.41
± 0.01

0.63
± 0.24

0.85
± 0.12

0.82
± 0.12

χ2 0.99
±0.01

1,5x10−3

±2,1x10−4
0.99
±0.01

0.97
±0.02

Table 9: Mean success rate and chi-squared (χ2) p-
value for zero-shot models, models trained on a single
prompt σ0, models trained on all prompts (σ0:3, and
models trained with contrastive regularization.

D Training costs

We trained the Flan T5 780M and 2.7B, the GPT-
Neo 1.3B and the Llama, with eight NVIDIA A100
80GB GPUs, with each LLM instance distributed
on one GPU. For the 78M models, we employed
four NVIDIA V100 32GB GPUs. Training was
conducted with five different seeds in each scenario
and environment. In total, our experiments required
10800 GPU hours on A100 80GB and 6400 GPU
hours on V100 32GB.

7061

