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Abstract

The advancement of Large Language Models
(LLMs) has greatly improved our ability to pro-
cess complex language. However, accurately
detecting logical fallacies remains a significant
challenge. This study presents a novel and ef-
fective prompt formulation approach for logi-
cal fallacy detection, applicable in both super-
vised (fine-tuned) and unsupervised (zero-shot)
settings. Our method enriches input text in-
corporating implicit contextual information—
counterarguments, explanations, and goals—
which we query for validity within the context
of the argument. We then rank these queries
based on confidence scores to inform classifica-
tion. We evaluate our approach across multiple
datasets from 5 domains, covering 29 distinct
fallacy types, using models from the GPT and
LLaMA series. The results show substantial im-
provements over state-of-the-art models, with
F1 score increases of up to 0.60 in zero-shot
settings and up to 0.45 in fine-tuned models.
Extensive analyses further illustrate why and
how our method excels.

1 Introduction

Logical fallacies are flawed arguments resulting
from faulty reasoning (Clark, 1971). For example,
consider the statement: “Annie must like Starbucks
because all girls like Starbucks.” This exemplifies
the logical fallacy known as faulty generalization,
as it assumes that all girls universally share a prefer-
ence for Starbucks—an overly broad generalization.
Recognizing logical fallacies is essential for both
humans and Al It enables us to avoid being misled
by faulty arguments, improves communication by
minimizing errors, prevents misleading or decep-
tive misinformation, and strengthens convincing
arguments (Woods, 2004; Tindale, 2007).

Despite this importance, logical fallacy detec-
tion remains in its early stage in natural language
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Counterargument
R :Itis not fair to make assumptions about someone based on their
gender.
Q1 :How does the Counterargument refute the idea that all girls like
Starbucks?

Explanation
R, : This text generalizes that all girls like Starbucks and assumes Annie,
being a girl, must like Starbucks without evidence.
Q5 : How does this text perpetuate harmful gender stereotypes and
restrict individual expressions?

Goal
R : The goal is to make a generalization about girls liking Starbucks
based on the assumption that Annie is a girl.
Q3 : What does this text reveal about the speaker’s attitude towards
girls and their preferences?

Figure 1: Prompt formulation: x represents the input
text to classify. R; denotes the contextual augmentation
generated from the input text using specific instructions
for Counterargument (CG), Explanation (EX), and Goal
(GO). Q; denotes the reformulated queries created from
each augmentation to analyze the input text.

processing. Recent large language models (LLMs)
have demonstrated challenges not only in general
reasoning (Naveed et al., 2023; Chen et al., 2024)
but also in detecting logical fallacies. For exam-
ple, Jin et al. (2022) showed that both zero-shot
and fine-tuning results of BERT-based models are
suboptimal. More recently, Hong et al. (2024) high-
lighted that most LLMs continue to struggle in this
area. To the best of our knowledge, there has been
no attempt to address this issue through prompting
engineering or other unsupervised methods.

To address this gap, we investigate whether in-
corporating implicit information from multiple per-
spectives on arguments into prompts can improve
LLM performance in logical fallacy detection. We
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propose a novel two-step prompt formulation pro-
cess that leverages implicit contextual information
(See Figure 1), applicable in both supervised (fine-
tuned) and unsupervised (zero-shot) settings. In-
spired by Sourati et al. (2023), we leverage three
key types of implicit information relevant to argu-
ments: Counterargument, Explanation, and Goal.
We hypothesize that this implicit information pro-
vides additional context for identifying logical fal-
lacies.

To operationalize this idea, we augment input
text in the prompt with this implicit contextual in-
formation. Specifically, we begin by generating
statements summarizing the relevant background
(counterargument, explanation, and goal), followed
by queries that assess the validity of this informa-
tion within the argument’s context. These queries
are then ranked using a prompt ranking method
based on confidence scores. Then, this ranking in-
formation is integrated into the input prompts. No-
tably, all steps of this process are automatically gen-
erated, requiring no manual prompt adjustments.

We evaluate our approach on five publicly avail-
able datasets, covering 29 distinct fallacy types,
using models from the GPT and LLaMA series.
Our experiments show that this approach substan-
tially outperforms baselines and state-of-the-art
models in both unsupervised and supervised set-
tings. Specifically, compared to state-of-the-art
models, we achieve up to an improvement of 0.60
in Macro-F1 score in zero-shot settings and 0.45 in
fine-tuned models. Although Sourati et al. (2023)
pioneered the use of this type of information, how
we extract and use the information differs sub-
stantially, resulting in superior performance. We
also perform extensive analyses to explore why
and how our method excels, including examin-
ing the impact of our prompt ranking method,
performing calibration analysis, and conducting
error analysis. Our code is available at https:
//github.com/jw9603/Logical_Fallacy.

Our contributions can be summarized in three
ways. (1) We introduce a structured prompt de-
sign for logical fallacy detection that effectively
integrates three types of implicit contextual infor-
mation. This goes beyond previous methods by
using a confidence-based prompt ranking system,
which incorporates diverse information to enhance
the model’s analysis. (2) We perform extensive
evaluation across five datasets, demonstrating the
effectiveness of our approach across various do-
mains. (3) We conduct extensive in-depth analyses

to validate our methodology, examining the effec-
tiveness of each component in design.

2 Related Work

2.1 Logical Fallcy Detection

Previous research explored computational methods
for logical fallacy detection in various contexts, in-
cluding dialogues (Habernal et al., 2017), argument
sufficiency (Stab and Gurevych, 2017; Wachsmuth
etal., 2017), Reddit discussions (Sahai et al., 2021),
misinformation (Musi et al., 2022), and educational
materials (Jin et al., 2022). These studies focused
on single datasets, limiting their ability to demon-
strate generalizability across diverse domains with
varying argument structures, which is crucial for
robust fallacy detection in real-world scenarios.
Most recent approaches aimed to address this
issue by tackling multiple datasets. For instance,
Alhindi et al. (2022) enhanced fallacy detection
performance across multiple datasets by employ-
ing a T5 model (Raffel et al., 2020) with multi-
task instruction-based prompting, outperforming
single-dataset models. Sourati et al. (2023) pro-
posed a Case-Based Reasoning method, enriching
cases with implicit information, including coun-
terarguments, goals, explanations, and structure,
to retrieve similar cases. While both approaches
demonstrated effectiveness, they rely on supervised
methods which require large datasets.
Furthermore, Hong et al. (2024) evaluated vari-
ous LL.Ms using prompting techniques. They ex-
perimented with providing definitions of logical
fallacies within sentences and without, but found
little improvement in performance. This study re-
vealed that LL.Ms exhibit limited performance in
fallacy detection, emphasizing the need for special-
ized reasoning methods tailored to the task.
Similar to prior research, our study aims to de-
tect logical fallacies across multiple datasets, but it
is differentiated by its focus on leveraging LLMs
more effectively in both supervised and unsuper-
vised settings. We build on the idea of using im-
plicit contextual information, counterarguments,
goals, and explanations, introduced by Sourati et al.
(2023). While our results corroborate their findings
on the value of such information for the task, our
work diverges significantly from theirs by focusing
on prompt engineering rather than case-based re-
trieval. Although they demonstrated the utility of
the implicit information for logical fallacy detec-
tion, their work does not explore how LLMs can
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generate or utilize this information. In contrast, our
research systematically integrates these contextual
elements into LLMs’ reasoning process, thereby
improving classification accuracy without requir-
ing extensive labeled data. This shift is crucial, as
it moves the focus from manual case-based reason-
ing to an automated, scalable solution leveraging
LLMs’ in-context learning capabilities.

2.2 Prompting Method for Contextual
Augmentation

There has been similar work using prompts for
contextual augmentation and query reformulation.
Shen et al. (2024) refine queries using retrieved
results to improve search performance. Yang et al.
(2023) propose Question-Driven Visual Explo-
ration (QVix), generating exploratory questions to
enhance Large Vision-Language Models (LVLMs)’
ability to analyze visual content. While both ap-
proaches leverage LLMs to enhance query formu-
lation or reasoning, they focus on retrieval op-
timization or visual understanding, respectively,
rather than logical analysis. Unlike these prior
approaches, our method constructs structured rea-
soning prompts specifically designed to facilitate
logical fallacy classification, ensuring that LLMs
engage in systematic argument evaluation.
Additionally, it is worth noting that our use of
the term “query” differs from its role in information
retrieval. In our context, “query” represents a ques-
tion designed to guide logical fallacy classification,
rather than a search input for document retrieval.

3 Our Approach

Our approach consists of four main steps to gener-
ate structured prompts. As shown in Figure 1, we
first use the LLM to create contextual augmenta-
tions, and based on these augmentations and the
input text, we generate context-informed queries.
Next, we classify logical fallacies using the gener-
ated queries, and finally, we rank the queries based
on their confidence scores, incorporating this rank-
ing information into the final classification.

We focus on three types of implicit information
related to arguments for augmenting input text:
Counterargument, Explanation, and Goal. This
contextual information provides diverse insights
into logical fallacies, as demonstrated by Sourati
et al. (2023). Counterarguments present alternative
viewpoints (Nussbaum et al., 2005), explanations
dissect the logic and reasoning (Hempel and Op-

Data N C Genre Domain
PROPAGANDA 12,267 167 News Politics
ARGOTARIO 1,338  6¢ Dialogue General
LOGIC 2,449 13 Dialogue Education
COVID-19 154 11t  SocMed/News Covid-19
CLIMATE 685  11% News Climate

Table 1: Summary of five fallacy datasets. N: # of
samples, C: # of classes. {: No-Fallacy class included.

penheim, 1948), and goals evaluate whether the
argument supports its conclusion (Tracy, 2013).

Step 1: Generate Contextual Augmentation
First, we use LLMs to generate three types of
implicit information, i.e., Counterargument, Ex-
planation, and Goal. Each type of information is
denoted by an index ¢, representing the specific in-
struction applied (Z* for Counterargument, Z? for
Explanation, and Z* for Goal). These instructions
guide the LLM to generate contextual augmenta-
tions R;. By applying specific instructions Z* to
gpt-3.5-turbo-instruct, we generate a contex-
tual augmentation:

R; = LLM(z,T"). (1)

For instance, for the statement x = “Annie must
like Starbucks because all girls like Starbucks,’ the
Goal perspective prompt is “Express the goal of the
text,” leading to R; = “The goal of this text is to
make a generalization about girls liking Starbucks
based on the assumption that Annie is a girl.” This
contextually augmented text is used for generating
a query.

Step 2: Generate Reformulated Queries To
generate context-informed queries, we design a
tailored query generation method using the LLM
instruction: “Create one query for each text to ana-
lyze the text based on its goal rather than directly
asking what a logical fallacy is.” This process
yields Q; = “What does this text reveal about the
speaker’s attitude towards girls and their prefer-
ences?” Such queries enable a nuanced understand-
ing of the underlying assumptions and biases in
arguments:

Step 3: Calculate Confidence Scores for Queries
In this step, we calculate the confidence scores
for predicting the probability pra of the fallacy’s
class label (/) with each contextual augmentation ¢
for an input text x:
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conf(Q;) = max Z log pLm(l|x, Qi),

tokens

where L denotes a set of logical fallacy labels.
Here, conf(Q;) represents the highest confidence
score derived from the log probabilities of the pre-
dicted tokens, indicating how confidently the model
predicts the most probable class based on the spe-
cific query type. The reformulated queries and
their respective confidence scores will later be used
in the following step to finalize the classification
through ranking-based methods.

Step 4: Prompt Ranking-Based Classification
To predict a final label considering all contexts, we
use the confidence scores calculated in the previous
step. Specifically, the confidence scores conf(Q;)
for each query are sorted in descending order and
incorporated into the final prompt as ranking infor-
mation as follows:

U= af% max prim (! 2, Qau, Rank(Qar)),
el

where Qq = {Q;, Vi}. Here, Q; contains the ac-
tual content of each query (e.g., Counterargument,
Explanation, Goal). The function, Rank(Q ;) =
Sorted({conf(Q;), Vi}), ranks the queries based on
their respective confidence scores. This ranking is
then converted into text and included as part of the
prompt. Both the content and the ranking informa-
tion are utilized for enhancing classification perfor-
mance. Further details on the prompting methods
and examples can be found in Appendix B.2.

4 Evaluation

To evaluate our method, we conduct experiments
on multi-class classification to identify specific
types of logical fallacies.

4.1 Datasets

We experiment with the five fallacy datasets: PRO-
PAGANDA (Da San Martino et al., 2019), AR-
GOTARIO (Habernal et al., 2017), LOGIC (Jin
et al., 2022), COVID-19 (Musi et al., 2022), and
CLIMATE (Alhindi et al., 2022).

These datasets cover 5 different domains and 29
unique fallacy types, as shown in Table 1. This
breadth allows us to assess the generalizability of
our method.

4.2 Baselines

We compare our method against several baselines
in both unsupervised and supervised settings. In
the unsupervised setting, we first use a baseline
zero-shot approach that detects logical fallacies in a
given text without using any additional information.
We also compare our model against previous work,
including Zero-shot CoT (ZCoT) (Kojima et al.,
2022), which utilizes a Chain of Thought approach,
and DEF (Hong et al., 2024), which provides the
model with fallacy definitions. Further details on
ZCoT and DEF are in Appendix B.1.

In the supervised setting, we compare our
method against state-of-the-art models proposed
by Jin et al. (2022), Sourati et al. (2023), and Al-
hindi et al. (2022). Sourati et al. (2023) employ
contextual augmentations within a case-based rea-
soning framework, while Alhindi et al. (2022) ap-
ply multi-task learning for fallacy detection. Jin
et al. (2022) employs a structure-aware classifier
that leverages additional coreference annotations
to learn structural patterns in arguments, which is
only applicable to the LOGIC dataset. We report
the results from the original papers for (Jin et al.,
2022) and (Alhindi et al., 2022), and run the code
provided by Sourati et al. (2023) to obtain their
results.

4.3 Model Implementation Details

For the unsupervised setting, we use LLMs
from the GPT and LLaMA series with different
sizes: gpt-3.5-turbo!, gpt-42, Llama2-7b-hf,
Llama2-13b-hf, and L1ama3-8B.

For the supervised setting, we implement our ap-
proach by fine-tuning a roberta-base model (Liu,
2019) for fallacy classification. We concatenate the
input text with each query as input to the model.
The prompt ranking process is excluded in this set-
ting, as it relies on confidence scores from LLMs
like gpt-3.5-turbo. We train the roberta-base
model using the AdamW optimizer (Loshchilov
and Hutter, 2019) on two NVIDIA RTX A6000
GPUs, which takes ~30 minutes. The batch size
is chosen from {4, 8, 16, 32, 64} and the learning
rate from {1e-5, 2e-5}. These hyperparameters are
tuned using the development set.

'We use gpt-3.5-turbo-0125.
2We use gpt-4-0613.
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LM Supervised Method PROPAGANDA ARGOTARIO LOGIC  COVID-19 CLIMATE
ACC F1 ACC F1 ACC Fl1 ACC Fl1 ACC F1
(Jin et al., 2022) — — — — 048 059 — — — —
Fine-tuned LM. y (Sourati et al., 2023) 095 091 071 071 076 071 036 0.18 048 029
1ne-tuned LMs (Alhindi et al., 2022) 073 056 064 064 070 066 029 028 025 020
roberta-base + EX (Ours) 0.91 0.84 0.81 0.80 0.80 0.79 036 0.17 0.84 0.74
Zero-shot 012 007 050 041 039 025 029 0.4 018 0.3
-3 5-turbo y ZCoT (Kojimaetal.,2022)  0.14 008 048 039 039 023 029 011 020 0.13
gpL=s. DEF (Hong et al., 2024) 023 011 050 048 040 022 029 011 016 0.09
Prompt Ranking (Ours) 0.35 0.17 0.84 0.69 045 032 071 0.56 0.63 0.58
Zero-shot 032 019 060 050 040 028 036 025 018 0.11
- y ZCoT (Kojimaetal.,2022) 031 020 056 047 041 028 043 033 0.7 0.12
&p DEF (Hong et al., 2024) 034 017 060 052 040 028 043 029 0.18 0.14
Prompt Ranking (Ours) 0.40 0.20 084 083 049 037 086 076 0.78 0.71
Zero-shot 013 005 021 013 025 0.3 007 002 014 008
L Lana3-g8 y ZCoT (Kojimaetal.,2022) 023 004 019 0.3 020 009 007 007 0.3 0.06
DEF (Hong et al., 2024) 028 006 025 013 023 011 007 003 014 007
Prompt Ranking (Ours) 0.22 0.09 0.30 0.29 038 036 036 0.25 033 040

Table 2: Multi-class fallacy classification performance. Bold: the highest score for each base model. Bold: the

highest score across all methods for each dataset in the unsupervised setting. Results for (Jin et al., 2022) and
(Alhindi et al., 2022) are taken from their original papers, with the same test splits used for comparison. —: The
model requires additional annotations to run. roberta-base + EX (Ours) refers to our supervised approach using
Explanation (EX) queries, which show the best performance among our proposed query types.

4.4 Results

Overall Performance Table 2 shows the accu-
racy and Macro-F1 scores for multi-class fallacy
classification across all datasets. The table includes
the best-performing LLaMA model for the un-
supervised setting in addition to two GPT mod-
els, and the best-performing supervised model
(roberta-base + EX) among our three queries.
For comprehensive results, refer to Appendix D
and Figure 2.

Our prompt ranking method overall outperforms
other approaches in unsupervised settings. For in-
stance, gpt-4 with prompt ranking achieves the
highest scores on the PROPAGANDA dataset (ac-
curacy: 0.40, Macro-F1: 0.20). In the supervised
settings, roberta-base with Explanation queries
shows the best performance on the CLIMATE
dataset, achieving an accuracy of 0.84 and a Macro-
F1 score of 0.74.

Performance per Query Type Figure 2 shows
the overall performance of each query type. A con-
sistent trend is observed across datasets and mod-
els: Explanation (EX) queries yield the best overall
performance, excelling across diverse datasets and
achieving highest scores in both accuracy and F1
metrics. Goal (GO) queries also perform well, par-
ticularly in datasets like PROPAGANDA, where
the content often has a clear objective or hidden
intent, making the GO queries effective at identify-
ing the underlying purpose behind persuasive argu-
ments. However, Counterargument (CG) queries
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Figure 2: Multi-class classification results based on
query types for all datasets using gpt-3.5-turbo,
gpt-4, and roberta-base from top to bottom. CG:
Counterargument, EX: Explanation, GO: Goal, and PR:
Prompt Ranking. Base: the method that uses only logi-
cal fallacy sentences without any queries.

consistently underperform relative to EX and GO
queries. While CG queries contribute to detection
performance, their overall effectiveness is lower,
particularly when compared to the stronger results
achieved with EX and GO queries.

Figure 3 shows the rankings of each query type
across 29 fallacy classes. EX queries consistently
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Figure 3: Performance comparison of base (without
queries) and all query types across various fallacy
classes using the gpt-3.5-turbo model. The y-axis
represents the average rank of each method across
datasets. Lower ranks indicate better performance.
BWF: Black and White Fallacy, RAH: Reductio Ad
Hitlerum, T.T. Cliches: Thought Terminating Cliches.

perform best, followed by GO queries, with CG
queries ranking lowest. EX queries excel in falla-
cies requiring detailed reasoning, like False Anal-
ogy and Evading the Burden of Proof, while GO
queries perform well in intent-driven fallacies, such
as Appeal to Emotion and Intentional Fallacy. CG
queries, though generally less effective, are suited
for simpler logical fallacies like Ad Populum and
Strawman.

Some exceptions stand out. In the Slogans fal-
lacy, the Base method outperforms all query types,
possibly because its simplicity is more effective for
direct and emotionally charged statements. Simi-
larly, in the Flag Waving fallacy, EX queries out-
perform GO, suggesting that identifying logical
inconsistencies may sometimes be more effective
than focusing on emotional intent. Overall, the
queries consistently outperform the Base method,
demonstrating their value in fallacy detection.

5 Further Analyses

5.1 Performance Based on Confidence Scores

We further investigate how the model’s perfor-
mance with each individual query type varies based
on different confidence scores, which refer to the
probability assigned by the LLM when generating
tokens in the query, prior to the prompt ranking step.

ARGOTARIO LOGIC

0.8 /\

W s 0.6
0.4
0.2 0.2

0060 02 04 06 08
Confidence Score

Micro F1
Micro-F1

0060 02 04 06 08
Confidence Score

—8— Base —l— Counterargument —&— Explanation Goal

Figure 4: Relationship between confidence scores and
performance with/without queries for two datasets using
the gpt-3.5-turbo model.

We measure Micro-F1 scores to assess overall per-
formance across all classes, rather than focusing on
class-level performance, using the gpt-3.5-turbo
model. Figure 4 illustrates the results for the AR-
GOTARIO and LOGIC datasets. The performance
trends are consistent across other datasets.

The results indicate that incorporating queries
consistently improves F1 scores across different
confidence scores in all datasets. In particular,
at lower confidence scores, the performance gap
between our model and the baseline is more pro-
nounced. This suggests that queries provide valu-
able contextual information, helping to clarify the
underlying logic of the text.

5.2 Calibration Analysis for Prompt Ranking

We aim to show that the Prompt Ranking (PR)
method achieves better calibration compared to
the Base method, which does not use queries, by
evaluating both methods using the gpt-3.5-turbo
model. Calibration is assessed using the Reliabil-
ity Diagram (Guo et al., 2017), which compares
predicted confidence with observed accuracy, re-
vealing deviations from perfect calibration, such
as overconfidence or underconfidence. The cali-
bration results for the ARGOTARIO and LOGIC
datasets are presented in Figure 5.

Overall, while our PR demonstrates better cali-
bration compared to the Base method, the LLMs
still show some degree of overconfidence, con-
sistent with findings from previous studies (Yin
et al., 2023; Ren et al., 2025). This trend is
observed across other datasets such as PROPA-
GANDA, COVID-19, and CLIMATE, where PR
consistently outperforms the Base method, further
underscoring its effectiveness in leveraging mul-
tiple context-informed queries to provide a more
nuanced interpretation of the input text and reduce
confidence biases. Since the final prediction is
made by ranking the three confidence scores, our
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Figure 5: Reliability diagrams comparing the calibration
of the base method (without queries) and ours (prompt
ranking) using the gpt-3.5-turbo model across two
datasets.
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Figure 6: Impact of word change ratio on accuracy and
Macro-F1 score for each query type.

model demonstrates high accuracy even when con-
fidence scores are low.

5.3 Impact of Ranking Information

To investigate the factors behind the success of our
prompt ranking method, we conduct experiments
to determine whether providing the ranking infor-
mation is essential for performance gains. In the
None setting, all three queries—Counterargument,
Explanation, and Goal—are presented without any
ranking, meaning the ranking information is not
provided to the model. In the Random setting, the
queries are randomly shuffled, disregarding their
confidence scores, and this randomized ranking
information is provided.

Table 3 shows that Prompt Ranking consistently
outperforms both Random and None settings, un-
derscoring the importance of confidence-based
ranking in improving performance. For example,
in the CLIMATE dataset, gpt-4 with prompt rank-
ing achieves an accuracy of 0.78 and an F1 score
of 0.71, while Random Ranking results in a signifi-
cant drop in the F1 score, highlighting the value of
explicitly including the ranking information.

5.4 Impact of Query Structure

This analysis aims to determine whether the per-
formance gains of our model in fallacy detection
come from the specific structure of our queries (i.e.,
counterargument, explanation, and goal) or sim-
ply from adding extra information, regardless of
accuracy or relevance. To test this, we compare
our structured queries to randomly generated ones.
We hypothesize that if our queries significantly out-
perform random ones, it would confirm that their
structure is key to the observed performance gains.
By replacing words in the reformulated queries
with arbitrarily similar words, we assess the impact
on logical reasoning.

For the analysis, we randomly select 100 sam-
ples from the validation sets of five datasets. To
maximize diversity, we repeat the randomization
process five times and choose the set with the high-
est number of unique fallacy classes, resulting in
100 samples representing 18 distinct fallacy types.

To generate random queries, we replace content
words in the structured queries with semantically
related words obtained from ConceptNet (Speer
et al., 2017), by selecting the nearest neighbors of
each target word. This approach generates queries
that are topically relevant but lack the counterar-
gument, explanation, and goal structure. We opt
for topically relevant replacements rather than en-
tirely random words to ensure a fair comparison.
Although other resources like WordNet (Miller,
1995) could be used, ConceptNet is chosen for its
broader range of semantic relationships, though
we believe the choice of resource would not sig-
nificantly affect the analysis. Figure 6 shows that
performance declines as the word change rate in-
creases. This demonstrates that the effect of our
method relies on structured logical reasoning, not
merely the addition of some information.

5.5 Impact of Our Approach for Leveraging
Implicit Information

To investigate the effect of our approach for lever-
aging implicit information, we compare it to the
method used by Sourati et al. (2023), which also
incorporates implicit information. The details of
the previous method are provided in Appendix B.1.
We generate implicit information using both our
prompts and theirs and compare the performance
of using the information generated by each. We use
the gpt-3.5-turbo-instruct model to generate
contextual augmentations and queries.
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LLM Method PROPAGANDA ARGOTARIO LOGIC COVID-19 CLIMATE
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

gpt-3.5-turbo None 0.33 0.16 0.71 0.67 0.44 0.30 0.64 0.56 0.61 0.53
Random 0.334001 0171001 0.764002 0.631006 041i001 0291001 0.584005 0431006 0.31i003 0251003
Prompt Ranking (Ours) 0.35 0.17 0.84 0.69 045 0.32 0.71 0.56 0.63 0.58

gpt-4 None 0.39 0.19 0.81 0.80 0.48 0.36 0.93 0.85 0.72 0.59
Random 0404001 0191002 0.834001 0771006 0481001 0361001 0.794003 0.71:006 0.31i003 0.25:0.01
Prompt Ranking (Ours) 0.40 0.20 0.84 0.83 0.49 0.37 0.86 0.76 0.78 0.71

Table 3: Impact of ranking information from our prompt ranking method across five datasets. None: not providing
ranking information explicitly, Random: providing the randomized order of the three queries as ranking information,
and results for this method are averaged over five runs (seeds O to 4), ACC: accuracy, F1: Macro-F1 score, Bold:
the highest score for each model, Bold: the highest score across all models for each dataset.

Method Acc P R F1

Base 0.12 0.20 0.13
Contextual Augmentations (Sourati et al., 2023)

0.07

+ Counterargument 0.13 0.12 0.11 0.08

+ Explanation 0.23 0.14 0.18 0.11

+ Goal 0.19 0.16 0.17 0.11

Reformulated Query based on Sourati et al. (2023)

+ Counterargument 0.12 0.11 0.13 0.07

+ Explanation 0.21 0.15 0.14 0.09

+ Goal 0.16 0.13 0.12 0.08
Contextual Augmentations (Ours)

+ Counterargument 0.19 0.15 0.12 0.11

+ Explanation 0.20 0.13 0.15 0.10

+ Goal 0.28 0.16 0.18 0.14
Reformulated Query from (Ours)

+ Counterargument 0.24 0.19 0.16 0.12

+ Explanation 0.33 0.17 0.19 0.15

+ Goal 0.33 0.20 0.20 0.16

Table 4: Performance comparison based on different
contextual augmentation prompt methods and their re-
sulting queries on the PROPAGANDA dataset using the
gpt-3.5-turbo model. Acc: Accuracy, P: precision,
R: recall, and F1: Macro-F1 score.

As shown in Table 4, our queries outperform
theirs on the PROPAGANDA dataset. For example,
when using our queries based on Explanation and
Goal, the classification accuracy is 0.33, compared
to 0.23 when using their method. The same trend
is observed across other datasets, confirming that
our approach for generating contextual augmenta-
tions and queries consistently outperforms theirs in
detecting logical fallacies.

5.6 Illustrative Examples of Query Impact

Table 5 provides examples illustrating how differ-
ent query types (Counterargument (CG), Explana-
tion (EX), Goal (GO)) affect the model’s perfor-
mance compared to the Base method, which does
not use any queries.

The first example illustrates a situation where
the Base method fails to detect the fallacy, but all
three query types successfully guide the model to

the correct classification. Specifically, CG focuses
on evaluating judgments about the speaker’s work
ethic, EX examines how personal attacks shift at-
tention away from the main argument, and GO
highlights how these personal attacks detract from
the discussion of television effectiveness on chil-
dren’s minds. This shows how queries can help the
model focus on the relevant reasoning behind the
argument and accurately identify the fallacy.

In contrast, the next two examples highlight
cases where the Base method correctly identifies
logical fallacies but fails when queries are applied.
In these cases, both EX and GO queries only con-
firm the presence of a fallacy without challenging
the logic behind it, while the CG queries introduce
unrelated topics, such as societal stereotypes or
regional differences, further distracting the model
from identifying the correct fallacy.

These findings suggest that queries can hinder
and improve model performance, depending on
how well queries align with the intricate logical
structure of the argument. When queries fail to di-
rect the model to analyze the core logic or introduce
extraneous information, as seen with CG queries
in the second and third examples—they can impair
performance. Conversely, when queries focus the
model on critical aspects of the argument, as in
the first example, they can improve performance.
Therefore, the effectiveness of each query type de-
pends on its alignment with the underlying logic
of the argument, which merits further exploration
to determine whether this can be achieved through
zero-shot prompting in future work.

6 Conclusion

In this paper, we presented a simple yet powerful
prompt formulation approach for logical fallacy
detection. We demonstrated the value of incorpo-
rating additional contextual information structured
as counterarguments, explanations, and goals, com-
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Example

Prediction

[Base] Question: Is television an effective tool in building the minds of children?, Answer: You want to sit around and
watch tv? Better get a job.

Red Herring (X )

[CG] How do judgments about a person’s work ethic affect the argument about television being an effective tool for
developing children’s minds?

Ad Hominem (/)

[EX] Does the speaker’s personal attack distract from the important question being posed and avoid addressing it?

Ad Hominem (/)

[GO] How does the use of personal attacks in this response detract from the discussion about the effectiveness of
television on children’ s minds?

Ad Hominem (/)

[Base] Why would you lend money to some who looks like they don’t have a job?

Ad Hominem (\/)

[CG] How can we combat the harmful and inaccurate societal stereotype that someone’s appearance is a reliable
indicator of their financial situation?

Faulty Generalization

X)

[EX] What is the flaw in the argument presented in this statement?

Faulty Generalization

X)

[GO] Can you identify any logical fallacies in this text and explain how they affect the overall argument?

Faulty Generalization

X)

[Base] There’s no trend in global droughts. Cold snaps in the U.S. are down but, unexpectedly, so are heatwaves.

False Causality /)

[CG] How might regional differences or potential data manipulation impact the conclusion that there is no trend in

Cherry Picking (X))

global droughts?

[EX] What is the logical fallacy in this text and why is it problematic?

Cherry Picking (X))

[GO] What is the logical fallacy present in this text and what is the author’s goal in pointing it out?

Cherry Picking (X )

Table 5: Ilustrative examples of query impact on gpt-4 performance. Base: the method without using any queries,

CG: Counterargument, EX: Explanation, GO: Goal.

bined with prompt ranking based on confidence
scores. Our extensive experiments consistently
showed improvements over baselines and state-of-
the-art models in both unsupervised and supervised
settings, highlighting the robustness and adaptabil-
ity of our approach.

7 Limitations

While this study demonstrates promising advance-
ments in leveraging Large Language Models
(LLMs) like GPT-4 for detecting and classifying
logical fallacies through a novel prompt formula-
tion approach, we acknowledge several limitations.

First, the five datasets used in our evaluation
may not fully capture the diversity and complexity
of real-world scenarios, such as logical reasoning
in fields like medicine and science. Additionally,
there are fallacies beyond the 29 types we explored.
For instance, the type-token fallacy, which occurs
when a word can refer to either a type (an abstract
descriptive concept) or a token (an object that in-
stantiates a concept) and is used ambiguously, was
not included in our analysis.

Furthermore, our method’s reliance on specific
models (gpt-3.5-turbo, gpt-4, L1lama2-7b-hf,
Llama2-13b-hf, and L1ama3-8B) may limit its ap-
plicability to other LLMs or future iterations, poten-
tially impacting scalability and cost-effectiveness
due to the computational resources required for

prompt reformulation.

In addition, while the improvements in Macro-
F1 scores are significant, further research is needed
to enhance the interpretability and transparency of
the reformulation process to ensure broader appli-
cability in real-world settings.

Lastly, variations in query performance across
fallacy classes may stem from differences in
dataset-specific definitions and class imbalance.
For instance, in the datasets for our experiments,
more prevalent classes like Loaded Language al-
lowed for clearer evaluations, while underrepre-
sented classes like Strawman limited meaningful
comparisons. This underscores the need to address
class imbalance to ensure more consistent evalua-
tions in future studies.

8 [Ethics Statement

Our methodology aims to enhance logical fallacy
detection by employing contextual augmentations
and structured prompt reformulation. We do not
utilize any external knowledge or information that
might bias the evaluation of our model. However,
while our approach improves model performance
in identifying logical fallacies, it may inadvertently
amplify existing biases present in the training data
of LLMs. We acknowledge this limitation and
recommend further research to mitigate potential
biases in logical reasoning tasks.
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A  Overview

In this appendix, we provide detailed explanations
and additional results related to the methods used
in the main study. Section B introduces the prompt
techniques, including ZCoT, DEF, and the contex-
tual augmentation method, along with examples
of our four-step prompt technique. Section C out-
lines the grouping of similar fallacy classes across
datasets, as well as the dataset splits for super-
vised and unsupervised settings. Section D presents
multi-class classification results for LLaMA mod-
els. Finally, Section E provides additional infor-
mation on calibration results across five datasets
for Base, Ours (Prompt Ranking), ZCoT (Kojima
et al., 2022), DEF (Hong et al., 2024), and individ-
ual queries.

B Prompt Details

B.1 Prompt Techniques: ZCoT, DEF, and
Contextual Augmentations

Table 8 compares the prompt methods used for
multi-class classification. The ZCoT (Kojima et al.,
2022) method adds the phrase "Let’s think step by
step” to guide inference, applying a straightforward
prompt that detects labels directly in multi-class
settings. In the original DEF (Hong et al., 2024)
method, when a fallacy sentence is given, the model
is provided with the fallacy class to which the sen-
tence belongs, along with the definition of that
class, and is then tasked with determining whether
the sentence contains a fallacy. This approach is de-
signed for binary classification. However, for multi-
class classification, providing all fallacy classes and
definitions upfront can result in a form of cheating,
so it cannot be directly applied. To address this,
we modify the prompt for multi-class classification
by providing all the logical fallacy classes in the
dataset along with their definitions, instructing the
model to classify the type of fallacy present in the
sentence.

Additionally, Sourati et al. (2023)’s approach
uses ChatGPT to generate multiple variations of
each contextual augmentation (e.g., counterargu-
ment, explanation, and goal), which are manu-
ally revised, while our fully automated method
employs gpt-3.5-turbo-instruct to generate a
single output without manual adjustment. Their
prompts solely focus on these three perspectives
(counterargument, explanation, goal), whereas ours
not only incorporates these perspectives but also
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explicitly includes fallacy classes, leading to more
effective logical fallacy detection (see Table 9).

B.2 Example about Our Four-Step Prompts

B.2.1 Contextual Augmentation Prompts

These prompts are utilized to generate counterar-
guments, explanations, and goals directly from the
LLM, forming the contextual augmentation texts
(R;(x)) as outlined in Equation 1. This founda-
tional step, represented by R;(z) = LLM(x, T%),
allows us to delve deeper into the logical structure
and validity of the argument presented in the text.
Here, = represents the input text and Z° signifies
the instruction for generating the counterargument
(T"), explanation (Z?), or goal (Z3) of z. Fallacy
classes refer to the labels assigned to each dataset
that categorize the specific types of logical fallacies.
Consider the [TEXT]: "Annie must like Starbucks
because all girls like Starbucks."”

* Counterargument
» I’ll give you some texts. The texts can
be question and answer pairs or sentences.
The text contains one of the following logi-
cal fallacies:{fallacy classes}. Represent the
counterargument to the text.
» Text: [TEXT]
» Counterargument (Example): "Not all
girls like Starbucks, as personal preferences
vary among individuals. Even if Annie is a
girl, it does not automatically mean that she
likes Starbucks. She may prefer a different
type of coffee or may not like coffee at all. It is
not fair to make assumptions about someone
based on their gender."

* Explanation
» D’ll give you some texts. The texts can
be question and answer pairs or sentences.
The text contains one of the following logi-
cal fallacies:{fallacy classes}. Analyze the
text.
» Text: [TEXT]
» Explanation (Example): "This text sug-
gests a generalization about girls and their
preferences for Starbucks, assuming that An-
nie, as a girl, must also like Starbucks without
evidence. This could be seen as stereotyping,
making unfounded assumptions based on gen-
der; reinforcing harmful stereotypes."

* Goal
» D’ll give you some texts. The texts can

be question and answer pairs or sentences.
The text contains one of the following log-
ical fallacies:{fallacy classes}. Express the
goal of the text.

» Text: [TEXT]

» Goal (Example): "The goal is to make
a generalization about girls liking Starbucks
based on the assumption that Annie is a girl."”

B.2.2 Reformulated Query Prompts

Following the generation of augmented texts, these
prompts are employed to craft queries that delve
deeper into the logical structure and validity of the
arguments presented in the texts, as denoted by
the equation Q; = LLM(z, R;). In this equa-
tion, R; represents the contextual augmentation
obtained from the input text z, These generated
queries are intended to enhance the depth of analy-
sis of z, improving the detection of logical fallacies.
The indices ¢ = 1, 2, 3 correspond to the different
aspects of queries: Counterargument (Q1), Expla-
nation (Q5s), and Goal (Q3). Below are the detailed
prompts for generating these queries based on the
augmented texts:

* Query Generation for Counterargument
Text
» I’ll give you some texts and their coun-
terarguments. The texts can be question
and answer pairs or sentences. Create one
query for each text to analyze the text based
on its counterarguments.
» Text: [TEXT]
» Counterargument: [COUNTERARGU-
MENT]
» Query (Example): "How does the coun-
terargument challenge the assumption that all
girls like Starbucks?"

* Query Generation for Explanation Text
» I’ll give you some texts and their expla-
nations. The texts can be question and an-
swer pairs or sentences. Create one query
for each text to analyze the text based on
its explanations.
» Text: [TEXT]
» Explanation: [EXPLANATION]
» Query (Example): "How does this text
perpetuate harmful gender stereotypes and
restrict individual expression?"

* Query Generation for Goal Text
» I’ll give you some texts and their goals.
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The texts can be question and answer pairs
or sentences. Create one query for each
text to analyze the text based on its goal.
» Text: [TEXT]

» Goal: [GOAL]

» Query (Example): "What does this text
reveal about the speaker’s attitude towards
girls and their preferences?"

B.2.3 Confidence Score Calculation for
Queries

In our experiments aimed at classifying logical fal-
lacies, we calculate the confidence scores for each
query as described in Step 3. This process evalu-
ates the probability pr M of a fallacy’s class label
() for a given input text « based on the generated
query Q;. The confidence score for each query is
computed by summing the log probabilities of the
predicted tokens, which indicates how confidently
the model predicts the most probable class based
on the query type. These scores are then used for
ranking and classification in subsequent steps.

Each formulated prompt involves one of three
query types: Counterargument, Explanation, and
Goal. Below, we provide a detailed explanation of
the prompts used in this analysis:

* Logical Fallacy Multi-Class Classification
» Your task is to classify the type of fal-
lacy in the Text. The label can be ‘Appeal
to Emotion’, ‘Faulty Generalization’, ‘Red
Herring’, ‘Ad Hominem’, and ‘Irrelevant
Authority’. Please classify the type of fal-
lacy in the Text based on the Query.

» Text: [TEXT]

» Formulated Prompt: [ONE OF THREE
QUERIES]

» Label:

B.2.4 Prompt Ranking-Based Classification

To implement prompt ranking, we append the fol-
lowing instruction to the logical fallacy classifi-
cation prompt: "Return only the name of the la-
bel, and nothing else. MAKE SURE your out-
put is one of the { n_labels}3labels stated." This
instruction ensures concise outputs, preventing
unnecessary information that could reduce the
confidence score. We calculate the confidence
scores of the results from each generated query

3{n_labels} represents the number of labels specific to the
dataset.

by using the log probabilities of the tokens out-
putted by LLMs (e.g., gpt-3.5-turbo, gpt-4,
Llama2-7b-hf, L1ama2-13b-hf, and L1ama3-8B).
These confidence scores are then used to rank
queries in descending order, prioritizing those with
higher confidence.

For example, in the Ranking Information pro-
vided below, the order of query names is based
on their confidence scores: Explanation Query,
Goal Query, and Counterargument Query. In this
case, the Explanation Query has the highest confi-
dence score, contributing most to the final classi-
fication. While the content of each query (Q;) is
used in the model’s input, the ranking information,
which is derived by sorting the confidence scores of
these queries, is incorporated into the final prompt,
thereby improve the overall reliability of the fallacy
classification process.

It is important to note that for LLaMA-based
models, the instruction "Return only the name of
the label, and nothing else. MAKE SURE your
output is one of the {n_labels} labels stated.” is
not always effectively applied. Therefore, for these
models, we extract the log probabilities correspond-
ing to the fallacy class in the generated output and
sum these values to calculate the confidence scores.

* Logical Fallacy Multi-Class Classification
» Given a sentence with a logical fallacy,
we aim to detect it using queries based
on multiple perspectives, such as coun-
terargument, explanation, and goal. The
ranking information indicates the order of
queries based on their confidence scores,
which are helpful in identifying the specific
type of logical fallacy present in the sen-
tence. The label can be ‘Appeal to Emo-
tion’, ‘Faulty Generalization’, ‘Red Her-
ring’, ‘Ad Hominem’, or ‘Irrelevant Au-
thority’. Based on the ranking information
of these queries, please reference them to
detect the fallacy in the sentence.

» Text: [TEXT]
» Formulated Prompt:

— Counterargument Query: How does
the counterargument challenge the as-
sumption that all girls like Starbucks?

— Explanation Query: How does this text
perpetuate harmful gender stereotypes
and restrict individual expression?

— Goal Query: What does this text reveal
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LLM Method PROPAGANDA ARGOTARIO LOGIC COVID-19 CLIMATE
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Zero-shot 0.08 0.04 0.20 0.16 0.14 0.07 0.07 005 023 0.10

ZCoT (Kojima et al., 2022)  0.10 0.05 0.15 0.12 0.15 0.07 0.14 0.06 0.13 0.03

Llama2-7b-hf DEF (Hong et al., 2024) 0.10 0.05 0.26 0.08 0.15 0.07 0.14 0.06 0.13 0.03

Counterargument 0.10 0.05 0.25 0.20 020 0.16 021 0.14 0.14 0.10

Explanation 0.15 0.08 0.36 0.29 037 032 029 024 041 0.32

Goal 0.13 0.07 0.35 0.29 031 026 029 0.16 034 024

Prompt Ranking (Ours) 0.21 0.06 0.26 0.20 023 0.19 029 0.13 024 0.16

Zero-shot 0.08 0.03 0.22 0.18 0.16 0.08 0.14 0.03 0.17 0.05

ZCoT (Kojima et al., 2022)  0.13 0.05 0.22 0.18 0.16 0.08 0.07 0.05 0.14 0.05

Llama2-13b-hf DEF (Hong et al., 2024) 0.29 0.05 0.27 0.17 0.18 0.05 0.07 0.02 024 0.08

Counterargument 0.14 0.07 0.25 0.19 021 0.14 029 0.15 021 0.10

Explanation 0.22 0.10 0.43 0.34 038 032 021 0.11 035 0.26

Goal 0.20 0.08 0.40 0.32 037 027 036 029 028 0.20

Prompt Ranking (Ours) 0.34 0.08 0.27 0.20 026 0.21 0.14 0.03 029 0.19

Zero-shot 0.13 0.05 0.21 0.13 025 0.13 0.07 0.02 0.14 0.08

ZCoT (Kojima et al., 2022)  0.23 0.04 0.19 0.13 020 0.09 0.07 0.07 0.13 0.06

L1ama3-8B DEF (Hong et al., 2024) 0.28 0.06 0.25 0.13 023 0.11 0.07 0.03 0.14 0.07
Counterargument 0.13 0.06 0.34 0.26 029 020 021 021 0.15 0.11

Explanation 0.20 0.09 0.51 0.42 0.54 050 036 024 041 0.37

Goal 0.20 0.09 0.53 0.41 051 045 029 021 040 033

Prompt Ranking (Ours) 0.22 0.09 0.30 0.29 038 036 036 0.25 033 040

Table 6: Accuracy and Macro-F1 scores of the Multi-class fallacy classification on all datasets. This table presents
the experimental results for three models in the LLaMA series. Bold: the highest score for each model, bold: the
highest score across all models for each dataset. ZCoT: Zero-shot Chain of Thought (Kojima et al., 2022), and
DEF: the method used by Hong et al. (2024) for providing definitions of logical fallacies.

about the speaker’s attitude towards girls
and their preferences?

» Ranking Information: Explanation Query,
Goal Query, Counterargument Query
» Label:

C Dataset Preparation

C.1 Fallacy Class

To ensure coherence in our analysis, we group sim-
ilar fallacy classes across the datasets: Hasty Gen-
eralization and Faulty Generalization into Faulty
Generalization; Fallacy of Credibility, False Au-
thority, and Appeal to Authority into Irrelevant
Authority; and False Cause, False Causality, Post
Hoc, and Causal Oversimplification into False
Causality.

C.2 Data Description

For both the supervised and unsupervised settings,
the datasets are split into training, validation, and
test sets in proportions of 65%, 15%, and 20%, re-
spectively, except for the LOGIC dataset, where
we use the predefined test set from Jin et al. (2022).
The PROPAGANDA dataset, pre-processed by Al-
hindi et al. (2022), is also shuffled and divided

into training, validation, and test sets following the
same 65%, 15%, and 20% split.

D Multi-Class Classification Results on
LLaMA Models

Table 6 presents the results of multi-class fal-
lacy classification using three LLaMA models
(Llama2-7b-hf, L1ama2-13b-hf, and L1ama3-8B
). Unlike the gpt-3.5-turbo and gpt-4 results
(Table 2), the Explanation (EX) query consistently
shows the best performance in these models, often
surpassing Prompt Ranking (PR). For example, in
the L1ama2-13b-hf and Llama3-8B models, Ex-
planation scores the highest Macro-F1 and accu-
racy in datasets like LOGIC and ARGOTARIO.
This contrasts with the larger GPT models, where
Prompt Ranking leads to the most significant im-
provements. We hypothesize that this difference
arises due to the smaller parameter sizes of the
LLaMA models we used, which may limit Prompt
Ranking’s effectiveness with complex query com-
binations. Nonetheless, PR still performs compet-
itively, especially in the PROPAGANDA dataset,
demonstrating that ranking-based methods can of-
fer considerable benefits even in smaller models.
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E Additional Calibration Results

As shown in Section 5.2, our prompt ranking
method (PR) demonstrates better calibration than
the Base method, though the individual calibration
performance of each query type is not fully de-
tailed. This section provides the calibration results
for each query type, offering further insight into
their contributions to model reliability.

Across all datasets, PR consistently shows the
greatest calibration improvements, reducing the
gap between predicted confidence and actual ac-
curacy more effectively than the Base method or
individual queries. Among the queries, Explana-
tion (EX) generally performs the best, followed by
Goal (GO) and Counterargument (CG), though they
do not match the overall improvement achieved by
PR.

The additional results are shown in Figures 9 to
13, with an overall comparison between Base and
PR across all datasets in Figure 8, highlighting the
performance of Base, ZCoT (Kojima et al., 2022),
DEF (Hong et al., 2024), and individual queries.

PROPAGANDA ARGOTARIO

Micro-F1

0060 02 04 06 08 0060 02 04 06 08
Confidence Score Confidence Score
LOGIC COVID-19

Micro-F1

02 04
Confidence Score

0.4 0.
Confidence Score

—@— Base =i~ Counterargument == Explanation Goal

Figure 7: Relationship between confidence scores and
performance with/without reformulated queries for all
datasets.
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Figure 8: Reliability diagrams comparing the calibration performance of the Base method (without reformulated
queries) and Ours (Prompt Ranking) across five datasets, both using the gpt-3.5-turbo model.
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Figure 9: Reliability diagrams comparing the calibration performance of six different methods: Base, ZCoT,
DEF, and three reformulated query methods—CG (Counterargument), EX (Explanation), and GO (Goal)—on the

PROPAGANDA dataset.
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Figure 10: Reliability diagrams comparing the calibration performance of six different methods: Base, ZCoT,
DEEF, and three reformulated query methods—CG (Counterargument), EX (Explanation), and GO (Goal)—on the
ARGOTARIO dataset.
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Figure 11: Reliability diagrams comparing the calibration performance of six different methods: Base, ZCoT, DEF,
and three reformulated query methods—CG (Counterargument), EX (Explanation), and GO (Goal)—on the LOGIC

dataset.
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Figure 12: Reliability diagrams comparing the calibration performance of six different methods: Base, ZCoT,
DEEF, and three reformulated query methods—CG (Counterargument), EX (Explanation), and GO (Goal)—on the
COVID-19 dataset.
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Figure 13: Reliability diagrams comparing the calibration performance of six different methods: Base, ZCoT,
DEF, and three reformulated query methods—CG (Counterargument), EX (Explanation), and GO (Goal)—on the
CLIMATE dataset.
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Method PROPAGANDA ARGOTARIO LOGIC COVID-19 CLIMATE
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Base 0.12 0.07 0.50 0.41 039 025 029 0.14 0.18 0.13
Contextual Augmentation (Sourati et al., 2023)

+ Counterargument 0.13 0.08 0.48 0.40 035 020 021 0.13 0.12 0.07

+ Explanation 0.23 0.11 0.44 0.42 0.37 022 029 0.11 022 0.15

+ Goal 0.19 0.11 0.49 041 035 021 029 0.15 0.18 0.12

Reformulated Query based on Sourati et al. (2023)

+ Counterargument  0.12 0.07 0.45 0.37 035 021 029 0.15 020 0.13

+ Explanation 0.21 0.09 0.47 0.37 035 021 029 0.16 025 0.17

+ Goal 0.16 0.08 0.47 0.39 034 021 043 026 025 0.20
Contextual Augmentation (Ours)

+ Counterargument  0.19 0.11 0.53 0.52 0.39 022 021 0.09 023 0.15

+ Explanation 0.20 0.10 0.51 0.48 041 024 029 022 025 0.12

+ Goal 0.28 0.14 0.50 0.48 036 020 036 022 022 0.12
Reformulated Query from (Ours)

+ Counterargument 0.24 0.12 0.50 0.41 040 025 043 029 0.63 0.54

+ Explanation 0.33 0.15 0.70 0.67 046 032 057 044 0.70 0.65

+ Goal 0.33 0.16 0.74 0.72 0.44 032 064 047 0.58 0.49

Table 7: Performance comparison based on different contextual augmentation prompt methods and their resulting
reformulated queries across five datasets using the gpt-3.5-turbo model. The prompt used to generate reformulated
queries is the same for all cases. F1: Macro-F1 score.

Method Prompt

ZCoT (Kojima et al., 2022) Your task is to detect a fallacy in the Text. The label can be ‘Appeal to
Emotion’, ‘Faulty Generalization’, ‘Red Herring’, ‘Ad Hominem’, and
‘Irrelevant Authority’.
Please detect a fallacy in the Text. Let’s think step by step.

DEF (Hong et al., 2024) Your task is to detect a fallacy in the Text. The label can be ‘Appeal to
Emotion’, ‘Faulty Generalization’, ‘Red Herring’, ‘Ad Hominem’, and
‘Irrelevant Authority’.

1. Appeal to Emotion: This fallacy tries to arouse non-rational sentiments
within the intended audience in order to persuade.

2. Faulty Generalization: The argument uses a sample which is too small,
or follows falsely from a sub-part to a composite or the other way round.
3. Red Herring: This argument distracts attention to irrelevant issues away
from the thesis which is supposed to be discussed.

4. Ad Hominem: The opponent attacks a person instead of arguing against
the claims that the person has put forward.

5. Irrelevant Authority: While the use of authorities in argumentative dis-
course is not fallacious inherently, appealing to authority can be fallacious
if the authority is irrelevant to the discussed subject.

Please detect a fallacy in the Text.

Table 8: Comparison of prompt methods for fallacy classification using ZCoT (Kojima et al., 2022) and DEF (Hong
et al., 2024) approaches. For ZCoT, the prompt "Let’s think step by step" is added. DEF uses definitions for each
class, which are included in the prompt. The fallacy classes in the DEF prompt are from the ARGOTARIO dataset.
If a query is included, the last sentence should be modified to "Please detect a fallacy in the text based on the query."
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Method Perspective Prompt

CA (Sourati et al., 2023) CG Represent the counterargument to the text.
EX Analyze the text.
GO Express the goal of the text.

I’ll give you some texts. The texts can be
question and answer pairs or sentences.
CA (Ours) CG The text contains one of following logical
fallacies: {fallacy_class} . Represent the
counterargument to the text.

I’ll give you some texts. The texts can be
question and answer pairs or sentences.

EX The text contains one of following logical
fallacies: {fallacy_class}. Analyze the
text.

I’ll give you some texts. The texts can be
question and answer pairs or sentences.

GO The text contains one of following logical
fallacies: {fallacy_class}. Express the
goal of the text.

I’1l give you some texts and text’s
counterarguments. The texts can be
question and answer pairs or sentences.

Reformulated Query CG Create one question for each text that
analyzes the text based on
counterarguments rather than directly
asking what logical fallacy is.

I’ll give you some texts and text’s
explanations. The texts can be question
and answer pairs or sentences. Create one
question for each text that analyzes the
text based on explanations rather than
directly asking what a logical fallacy is.

EX

I’ll give you some texts and text’s goals.
The texts can be question and answer
pairs or sentences. Create one question
for each text that analyzes the text based
on goals rather than directly asking what a
logical fallacy is.

GO

Table 9: Comparison of prompt methods for contextual augmentations (CA) and reformulated queries, illustrating
the approaches by Sourati et al. (2023) and our method. Both CA and reformulated queries are generated using the
gpt-3.5-turbo-instruct model. CG: Counterargument, EX: Explanation, and GO: Goal. {fallacy_class} refers
to the classes in the dataset to which the sample (sentence) belongs.
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