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Abstract

Large language models (LLMs) are increas-
ingly used as automated judges to evaluate
recommendation systems, search engines, and
other subjective tasks, where relying on human
evaluators can be costly, time-consuming, and
unscalable. LLMs offer an efficient solution for
continuous, automated evaluation. However,
since the systems that are built and improved
with these judgments are ultimately designed
for human use, it is crucial that LLM judgments
align closely with human evaluators to ensure
such systems remain human-centered. On the
other hand, aligning LLM judgments with hu-
man evaluators is challenging due to individ-
ual variability and biases in human judgments.
We propose a simple yet effective framework
to align LLM judgments with individual hu-
man evaluators or their aggregated judgments,
without retraining or fine-tuning the LLM. Our
approach learns a linear mapping between the
LLM’s outputs and human judgments, achiev-
ing over 142% average improvement in agree-
ment across 29 tasks with only a small number
of calibration examples used for training. No-
tably, our method works in zero-shot and few-
shot settings, exceeds inter-human agreement
on four out of six tasks, and enables smaller
LLMs to achieve performance comparable to
that of larger models.

1 Introduction

Recent improvements to the reasoning capabilities
of large language models (LLMs) have increased
their use for judgment and evaluation tasks that
would previously have been addressed with human
evaluators (Zheng et al., 2023b; Chiang and Lee,
2023). For example, LLMs have been used for
judging the relevance in information retrieval sys-
tems (Faggioli et al., 2023), the coherence of writ-
ten discourse (Naismith et al., 2023), or the qual-
ity of translations (Kocmi and Federmann, 2023),
among many others. A common theme in these

settings is that LLMs are performing a grading task
where the output label is on an ordinal scale. How-
ever, recent work has shown that the performance
of LLMs on such judgment tasks varies widely de-
pending on the specific task and the specific LLM
used (Bavaresco et al., 2024).

We argue that the performance of LLMs on such
judgment tasks does not automatically align well
with that of human evaluators. Moreover, LLMs
can exhibit their own response styles on these judg-
ment tasks, which can be overly positive, in part
due to the nature of supervised fine-tuning dur-
ing their training regime. Indeed, as we show in
Figure 1a, LLMs can avoid negative judgments en-
tirely on tasks where humans show more diverse
judgments. Thus, an additional step is needed to
align the judgment labels of the LLM with that of a
human evaluators. In this work, we propose a sim-
ple but effective approach to align the LLM outputs
with those of human annotators using only a small
set of labeled data. We show on 29 tasks that this
additional alignment step significantly improves
the performance of LLM judgments on the test set.
Figure 1b clearly indicates that the judgment distri-
butions of LLMs becomes much closer to that of
the human evaluators after our alignment approach.

Specifically, we propose to learn a mapping of
the LLM outputs to human judgments to better
align with those on a training set. In contrast to
previous work on LLM calibration (Zhao et al.,
2021; Han et al., 2023; Fei et al., 2023; Zhou et al.,
2024), our technique is applicable without access to
the model logits, which makes it much easier to use
with general-purpose black-box LLMs available
to the public. Moreover, we show that with our
alignment approach we can bring the performance
of smaller LLMs on par with that of larger ones,
which can significantly reduce the cost of using
LLM judges at scale.

Our key contribution is a simple yet effective
approach to learn a linear mapping between a lan-
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Figure 1: Cumulative distribution function of response options for the judgment task of Freitag et al. (2021), before
and after label alignment. The task is to grade translation quality on a rating scale from 0 to 6, i.e., nonsense
(0), some meaning preserved (2), most meaning preserved (4), and perfect (6). Figure (a) illustrates the different
response styles by human and LLM judges and highlights that LLMs primarily use highly positive labels, in contrast
to human evaluators. Figure (b) shows the same graph after aligning the LLM responses to the average human
judgment using our approach, and clearly demonstrates that we can align LLM judgments to human ones.

guage model’s categorical outputs and human judg-
ments, enabling the alignment of the language
model’s judgments with individual human eval-
uators or aggregated majority votes. Our main
contributions can be listed as follows:

• We demonstrate that zero-shot and few-shot
LLM judgments, without alignment, exhibit
significant discrepancies compared to human
evaluations, highlighting the need for addi-
tional calibration.

• We propose a framework to align black-box
LLM judgments with human evaluations on
subjective tasks using a linear mapping, re-
quiring no tuning or retraining of the LLM,
and no access to model logits.

• Our method effectively aligns LLM outputs
to human judgments using a small number of
calibration examples, achieving a 142% av-
erage improvement across 29 tasks. Further-
more, our approach benefits smaller LLMs,
enabling their use for evaluation tasks with
performance comparable to larger models.

• The alignment outperforms inter-human con-
sistency on four out of six tasks that involve
multiple human evaluators.

The remainder of this paper is organised as fol-
lows. In Section 2 we introduce our black-box
approach for LLM alignment, and in Section 3 we

evaluate this approach through extensive and de-
tailed experiments on a large collection of datasets.
Next, in Section 4 we review related work. Finally,
in Sections 5 and 6 we discuss our contributions
and highlight the limitations of our approach along
with suggestions for future work.

2 Methodology

Our approach aims to align the judgments provided
by an LLM with those given by human evalua-
tors, even when their respective output spaces differ.
This alignment process is done without modifying
the underlying LLM, making it efficient and easy
to apply in practice.

2.1 Problem Formulation

Consider a judgment task where, for a given input
instance xi, the goal is to predict an output label
yi ∈ Y , where Y is the set of possible labels given
by human evaluators. For instance, in a book re-
view evaluation task, human judgments may take
on values from Y = {bad, good, average}, imply-
ing |Y| = 3. We assume we have a small training
dataset {(xi, yi)}Ni=1 containing instances xi and
their corresponding human judgments yi.

On each task instance xi we prompt an LLM
to provide its own judgment, potentially with
a more nuanced set of options, denoted by Z .
For example, the LLM might use labels Z =
{bad, neutral, good, excellent} implying |Z| = 4
or stars between 1 and 5 implying |Z| = 5. Thus,
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the output spaces Y and Z may differ both in size
and interpretation, which allows additional flexibil-
ity in how the LLM is used while keeping the same
human evaluations.

2.2 One-hot Encoding Representation
To facilitate alignment, we convert both human
and LLM judgments into one-hot encoded vectors.
Specifically, for a judgment yi ∈ Y by a human
evaluator, we represent it as a one-hot vector yi ∈
{0, 1}n, where n = |Y|. Similarly, for a judgment
zi ∈ Z by the LLM, we have zi ∈ {0, 1}m, with
m = |Z|. For a dataset of N instances, we denote
the matrices of one-hot representations as:

Y = [y1,y2, . . . ,yN ]⊤ ∈ {0, 1}N×n

Z = [z1, z2, . . . , zN ]⊤ ∈ {0, 1}N×m.

2.3 Learning the Mapping
Our goal is to learn a mapping φ : Z → Y , from
the LLM’s output space Z to the human judg-
ment space Y , such that the transformed LLM
judgments align closely with human labels. To
achieve this, we define a linear transformation ma-
trix W ∈ Rm×n, which maps the one-hot encoded
LLM judgments to the human ones. The optimal
matrix Ŵ is obtained by solving the following reg-
ularized least squares problem:

Ŵ = argmin
W

∥ZW −Y∥2F + λ ∥W∥2F , (1)

where ∥·∥F denotes the Frobenius norm, and λ > 0
is a regularization parameter to prevent overfitting
and to avoid a singular system, as in ridge regres-
sion (Hoerl and Kennard, 1970). The closed-form
solution to this optimization problem is given by:

Ŵ = (Z⊤Z+ λI)−1Z⊤Y, (2)

where I ∈ {0, 1}m×m is the identity matrix.

2.4 Aligned Judgment Inference
Once we have the learned transformation matrix
Ŵ, we can align one-hot representation of an
LLM’s judgment z for a new instance by:

φ(z) = argmax
j=1,...,n

{z⊤Ŵ}j , (3)

where
{
z⊤Ŵ

}
j

represents the transformed value

for each human judgment. The aligned LLM judg-
ment is determined by selecting the human judg-
ment corresponding to the highest transformed

value, reflecting the human judgment that the align-
ment process associates most closely with the
LLM’s original output.

This approach allows us to flexibly map LLM
judgments to human judgments, regardless of dif-
ferences in output space sizes or interpretations.
For example, if the LLM output space consists of
4 labels while the human output space has only
3, the learned transformation matrix W ∈ R4×3

informs a projection that aligns LLM outputs with
human annotations. This flexibility remains crucial
even when the output spaces of LLMs and humans
are identical, as the interpretation of the same la-
bels can differ significantly, particularly in highly
subjective judgment tasks.

3 Experiments

To evaluate the effectiveness of our proposed align-
ment approach, we conduct a series of experiments
across 29 tasks with three widely-adopted large
language models: Claude-3 Sonnet (Anthropic,
2024), Mixtral 8x7B Instruct (Jiang et al., 2024),
and Llama-3 70B Instruct (Dubey et al., 2024).
With the exception of the Feedback-QA dataset (Li
et al., 2022), each of the datasets and prompts used
to query LLMs are obtained from Judge-Bench, a
benchmark dataset proposed recently by Bavaresco
et al. (2024) to evaluate LLMs as judges. The
datasets we consider from Judge-Bench include
LLMBar (Zeng et al., 2024), Medical-Safety (Aber-
crombie and Rieser, 2022), Newsroom (Grusky
et al., 2018), SummEval (Liu et al., 2023), WMT-
20-EnDe (Freitag et al., 2021), and the ROSCOE
metrics (Golovneva et al., 2023) on COSMOS-
QA (Huang et al., 2019), DROP (Dua et al.,
2019), ESNLI (Camburu et al., 2018), and GSM8K
(Cobbe et al., 2021). Since many datasets have mul-
tiple metrics for evaluation, this results in a total of
29 tasks.

In our evaluations, we primarily focused on the
case where both LLMs and human evaluators op-
erate within the same judgment space, implying
that Z = Y . This setup allows us to directly as-
sess and discuss the impact of alignment on the
agreement between LLM and human judgments.
Notably, if Z ≠ Y , the agreement metric would
not be straightforward to calculate without an align-
ment step. In our experiments, we set λ = 10−6 in
eq. (2), as it is primarily used to avoid issues with
matrix inversion.

Our primary objective was to assess the agree-

6754



Non-aligned Aligned

CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B
Task Name HUMAN SONNET INSTRUCT INSTRUCT SONNET INSTRUCT INSTRUCT

Feedback-QA 44.50 42.11 ±2.16 43.06 ±1.57 47.38 ±2.10 52.68 ±1.97 52.29 ±2.12 51.67 ±1.99

LLMBar Natural – 85.07 ±1.67 77.20 ±2.19 86.52 ±1.21 85.07 ±1.67 77.20 ±2.19 86.52 ±1.21

Medical Safety
Query Risk Level – 39.67 ±1.15 43.20 ±1.30 21.12 ±1.80 85.00 ±1.47 85.30 ±1.57 85.22 ±1.45

Response Type – 5.63 ±0.52 11.03 ±1.31 5.63 ±1.00 79.92 ±1.87 68.14 ±3.23 75.08 ±1.80

Newsroom
Coherence 24.29 27.87 ±0.96 26.11 ±0.50 31.94 ±0.58 32.24 ±1.15 30.60 ±1.98 32.73 ±2.12

Fluency 21.35 28.03 ±0.65 20.27 ±0.82 30.70 ±0.70 25.88 ±1.44 24.01 ±2.07 29.83 ±0.87

Informativeness 31.75 32.77 ±0.86 15.53 ±1.21 35.01 ±0.91 38.32 ±1.50 29.94 ±3.18 38.97 ±2.14

Relevance 30.71 30.96 ±0.93 21.24 ±0.58 33.58 ±0.68 36.04 ±1.79 35.57 ±1.68 38.42 ±2.34

ROSCOE-CosmosQA
Coherency – 42.65 ±1.90 20.41 ±1.61 36.92 ±1.95 47.96 ±3.69 42.99 ±5.57 53.17 ±4.43

Contradiction – 68.64 ±2.54 57.20 ±1.22 61.55 ±2.17 78.03 ±0.96 77.94 ±0.98 77.97 ±0.99

Missing Steps – 59.12 ±1.76 56.73 ±1.37 61.72 ±2.20 55.99 ±2.56 55.31 ±1.72 60.81 ±2.50

Overall Quality – 29.86 ±2.38 18.50 ±1.48 33.47 ±1.98 43.47 ±2.48 31.90 ±2.84 44.66 ±3.60

ROSCOE-DROP
Coherency – 72.66 ±1.98 34.68 ±2.40 67.56 ±1.75 77.59 ±2.20 77.22 ±1.60 75.67 ±1.71

Contradiction – 88.16 ±0.70 71.24 ±1.39 86.48 ±0.96 93.35 ±1.84 94.03 ±0.65 94.54 ±0.74

Missing Steps – 51.46 ±1.70 51.58 ±1.34 55.44 ±1.59 50.38 ±1.07 48.68 ±2.26 51.49 ±3.53

Overall Quality – 43.42 ±2.14 40.89 ±1.82 43.53 ±2.20 43.67 ±8.60 39.62 ±2.06 46.75 ±3.26

ROSCOE-ESNLI
Coherency – 84.65 ±1.19 39.39 ±2.06 73.59 ±1.80 86.49 ±1.58 89.04 ±0.90 89.31 ±2.27

Contradiction – 93.25 ±0.96 50.57 ±2.37 93.46 ±0.99 95.26 ±2.19 96.55 ±0.84 94.16 ±1.78

Missing Steps – 67.98 ±1.97 27.28 ±1.38 64.26 ±1.47 74.21 ±1.72 73.16 ±1.43 72.80 ±3.23

Overall Quality – 48.07 ±2.63 38.86 ±2.26 47.55 ±2.73 45.00 ±6.35 36.49 ±6.93 43.69 ±6.75

ROSCOE-GSM8K
Coherency – 59.73 ±1.84 47.50 ±2.70 63.89 ±1.83 62.07 ±1.31 60.35 ±3.32 62.94 ±1.79

Contradiction – 80.67 ±0.94 55.30 ±2.37 80.53 ±1.42 83.60 ±1.58 83.32 ±1.61 83.81 ±1.90

Missing Steps – 81.13 ±1.46 42.77 ±0.77 84.09 ±1.26 81.13 ±1.46 58.89 ±1.97 84.09 ±1.26

Overall Quality – 71.60 ±2.15 49.59 ±2.37 65.46 ±2.03 72.53 ±2.71 61.61 ±3.42 73.82 ±2.86

SummEval
Coherence – 31.47 ±1.71 28.79 ±2.06 40.90 ±1.48 40.20 ±1.69 31.64 ±2.45 39.87 ±2.44

Consistency – 83.64 ±1.53 68.84 ±1.80 68.82 ±2.53 85.38 ±1.55 84.44 ±1.80 77.83 ±4.43

Fluency – 4.50 ±0.83 3.33 ±0.58 2.58 ±0.33 79.73 ±1.54 79.70 ±1.35 80.22 ±1.70

Relevance – 37.27 ±1.53 31.27 ±1.72 41.34 ±1.40 55.07 ±4.67 51.30 ±3.72 54.17 ±3.01

WMT-20-EnDe 30.02 19.48 ±1.45 17.58 ±1.58 17.15 ±1.45 26.70 ±1.80 25.05 ±1.33 23.76 ±1.37

Table 1: Summary table showing the accuracy (in %) of aligning LLMs to human labels. The first column shows
inter-human agreement for the tasks with more than one human annotator. For the non-aligned results the label
predicted by the LLM is used directly. For each task, 25% labeled samples are used for alignment and 75% for
evaluation, and accuracy is averaged over each individual human annotator. Experiments are repeated 10 times with
different training and evaluation splits and results are averaged. Bold indicates the best performance in the each row
and underscore indicates the best performance of each LLM (aligned or non-aligned).

ment between human judgments and those gener-
ated by the LLMs. We treated human judgments
as the ground truth and calculated the accuracy
of the LLM outputs relative to these targets. Ad-
ditionally, for task datasets with multiple human
evaluators, we analyzed the inter-human agreement.
In our experimental setup, for each task, we used
randomly selected 100 examples for training the
alignment model and 300 examples for testing the
effectiveness of the learned alignment. Because the
labels differ between tasks, alignment mappings
are learned on a per-task basis (we study transfer-
ring alignments between tasks in Section 3.3). In
some tasks, the total number of examples are below

400; so we use 25% of the task dataset as training
and 75% for testing. We repeated our experiments
10 times with different random splits of training
and test sets, and report the mean and standard
deviation.

3.1 Zero-shot Judgments

In Table 1, we present the accuracy of LLM judg-
ments compared to human ones, both before and
after the alignment process. The results indicate a
significant increase in agreement post-alignment,
demonstrating the effectiveness of our approach in
enhancing LLM performance in alignment tasks.

Overall, our approach significantly improves
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LLM-to-human agreement or maintains it at the
same level. There are only a few instances where
alignment results in a slight reduction in agreement.
On average, across all 29 tasks, alignment leads to
a remarkable 142% increase in agreement. More
specifically, we have achieved 116.52% increase
for Claude-3 Sonnet, 142.91% for Mixtral 8x7B,
and 166.6% for Llama-3 70B models. Note that we
observe identical results before and after alignment
for some tasks or models, because our alignment
results in the identity mapping in these cases.

For specific tasks, such as Medical Safety (re-
sponse type) and Summeval (fluency), the agree-
ment increases from single-digit percentages up to
80% after alignment. For example, we observed
a significant discrepancy between the LLM judg-
ments and evaluations made by a professional nurse
in the medical safety task. While the nurse often
selected “not medical” as the judgment for many
cases, the LLMs tended to choose “non-serious”.
Such misalignment not only led to lower agreement
scores but also highlighted the potential risks of em-
ploying LLMs as judges in critical domains, such
as medical assessments. Our alignment method
effectively learned to map the LLM’s “non-serious”
outputs to “not medical” judgments of the nurses.
As a result of these learned mappings, we improved
the agreement between LLMs and nurses from 5-
11% up to 80% for this task.

In our experiments, we used up to 100 training
examples to learn the alignment. However, we
observed that our approach works quite well with
much smaller numbers of training examples across
all datasets. Figure 2 shows the test accuracy of our
approach for the Medical Safety (response type)
task for different numbers of training examples
per judgment category. The figure indicates that
our approach achieves alignment and significantly
improves the agreement between the LLMs and hu-
man judgments using only one or two examples per
category. This highlights the sample efficiency of
our approach, which is in part due to its simplicity.

3.2 Judgments with In-Context Learning
Our findings in the zero-shot setting motivated us
to investigate whether the sources of misalignment
between LLMs and humans could be addressed
through in-context learning (Brown et al., 2020),
by providing examples of human judgments for
each output label. Specifically, for each human
judgment label we include in the LLM prompt an
example on which human evaluators agreed, aim-
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Figure 2: Test accuracy for Medical Safety (response
type) dataset as we increase the number of training ex-
amples per judgment category.

ing to guide the LLM towards better alignment with
human interpretations.

As shown in Table 2, the results on this experi-
ment indicate that merely providing these examples
did not lead to significantly improved agreement be-
tween the LLMs and human evaluators. That is, the
in-context learning barely improved the agreement
between human judgments and LLMs, except a few
cases such as Summeval (fluency), where the agree-
ment with human evaluators improved from 4.5%
to 35.57% for Claude-3 Sonnet. The average agree-
ment improved only 0.8% for Claude-3 Sonnet and
1.14% for Mixtral 8x7B with very high standard
deviations (7.19% and 19.74%, respectively). We
observe 1.4% decrease in the average performance
of Llama-3 70B with 8.45% standard deviation.
One potential reason for poorer performance can
be the increased complexity of the prompts with
the added examples, which can become too long
for the model to effectively follow the instructions
or even approach the model’s maximum context
length.

When our alignment approach is used on top
of in-context learning, we observe 111.74% av-
erage improvement with respect to non-aligned
model agreement with human judgments. More
specifically, we have achieved 49.65% increase for
Claude-3 Sonnet, 180.13% for Mixtral 8x7B, and
105.45% for Llama-3 70B models. That is, our
alignment approach consistently results in signifi-
cant improvements in LLMs’ agreement with hu-
man judgments, in both zero-shot and in-context
learning settings.

These findings underscore the necessity of a
structured alignment process. The performance en-
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Non-aligned Aligned

CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B
Task Name SONNET INSTRUCT INSTRUCT SONNET INSTRUCT INSTRUCT

Feedback-QA 43.29 ±1.01 40.28 ±0.82 45.17 ±1.61 52.63 ±0.91 50.63 ±1.35 53.43 ±1.34

LLMBar Natural 84.67 ±2.09 71.83 ±2.86 81.11 ±1.89 84.67 ±2.09 71.83 ±2.86 81.11 ±1.89

Medical Safety
Query Risk Level 46.73 ±1.53 32.32 ±1.46 23.90 ±1.03 85.73 ±1.03 85.21 ±2.73 86.01 ±1.32

Response Type 8.62 ±0.84 11.61 ±1.07 10.20 ±0.53 76.80 ±2.48 69.97 ±2.16 76.49 ±2.56

Newsroom
Coherence 25.63 ±1.05 18.47 ±0.82 25.04 ±0.73 30.22 ±0.94 31.12 ±1.05 30.07 ±1.08

Fluency 26.60 ±0.55 20.21 ±0.91 29.62 ±0.56 24.88 ±1.50 24.32 ±1.71 27.35 ±1.28

Informativeness 28.70 ±0.70 18.94 ±1.27 27.87 ±1.07 37.68 ±1.69 31.48 ±1.71 37.84 ±1.80

Relevance 30.64 ±1.28 14.25 ±0.58 32.95 ±0.85 35.27 ±2.74 35.71 ±1.03 36.52 ±1.14

ROSCOE-CosmosQA
Coherency 43.91 ±1.53 53.74 ±1.10 42.19 ±2.46 53.49 ±2.26 54.49 ±2.78 46.26 ±1.80

Contradiction 77.28 ±1.78 47.76 ±2.08 57.90 ±1.72 77.41 ±1.72 78.50 ±1.47 78.09 ±1.46

Missing Steps 55.44 ±1.70 56.94 ±1.36 67.62 ±1.62 54.49 ±1.27 55.71 ±1.56 67.62 ±1.62

Overall Quality 31.54 ±2.80 33.74 ±2.16 42.88 ±2.38 44.60 ±2.14 45.44 ±5.12 45.80 ±3.74

ROSCOE-DROP
Coherency 71.33 ±1.47 74.49 ±1.60 63.49 ±1.90 74.43 ±2.18 76.33 ±1.33 73.91 ±3.80

Contradiction 91.39 ±0.95 43.42 ±1.63 75.63 ±1.72 92.59 ±1.75 93.92 ±0.42 93.81 ±0.43

Missing Steps 53.86 ±1.73 54.18 ±1.88 61.77 ±1.30 51.14 ±1.67 48.10 ±2.77 60.24 ±4.37

Overall Quality 45.76 ±1.44 42.34 ±1.40 44.88 ±1.68 47.53 ±2.32 43.04 ±2.10 45.84 ±2.20

ROSCOE-ESNLI
Coherency 83.68 ±1.67 86.32 ±1.05 77.81 ±1.11 88.42 ±2.51 87.28 ±1.43 88.07 ±3.31

Contradiction 95.44 ±1.23 55.26 ±2.08 83.51 ±1.51 96.67 ±1.46 96.93 ±1.13 96.93 ±1.13

Missing Steps 70.79 ±1.84 27.72 ±2.12 65.07 ±2.40 71.05 ±1.80 72.28 ±2.12 70.09 ±4.37

Overall Quality 48.07 ±1.87 45.00 ±1.67 45.66 ±1.64 48.51 ±2.36 45.35 ±2.32 45.40 ±2.38

ROSCOE-GSM8K
Coherency 63.60 ±1.55 59.07 ±2.24 59.80 ±2.11 66.93 ±2.13 61.20 ±2.23 63.87 ±2.75

Contradiction 84.53 ±1.81 45.13 ±2.77 77.09 ±1.73 84.53 ±1.81 84.53 ±1.81 81.18 ±3.83

Missing Steps 74.87 ±1.52 54.67 ±2.13 94.31 ±0.76 74.87 ±1.52 57.47 ±2.32 94.31 ±0.76

Overall Quality 72.00 ±1.23 71.47 ±1.29 74.31 ±1.16 75.20 ±3.66 71.67 ±1.67 72.43 ±2.78

SummEval
Coherence 25.03 ±1.41 24.87 ±2.01 27.33 ±1.61 37.90 ±2.24 31.93 ±2.92 34.40 ±2.29

Consistency 75.03 ±1.38 12.00 ±1.20 36.61 ±1.22 87.13 ±1.72 83.06 ±5.03 86.71 ±1.56

Fluency 35.57 ±0.78 8.93 ±0.79 4.55 ±0.75 82.47 ±1.14 81.30 ±3.34 83.30 ±1.59

Relevance 25.57 ±1.13 1.87 ±0.85 37.79 ±1.55 55.33 ±0.95 42.76 ±2.63 52.48 ±3.21

WMT-20-EnDe 15.25 ±0.84 16.09 ±0.82 24.76 ±0.68 28.42 ±1.75 27.33 ±1.22 25.20 ±1.17

Table 2: In-Context Learning experiments, where one example per judgment category is given to LLMs as in-context
examples. Experiments are repeated 10 times with different training and evaluation splits and results are averaged.
Bold indicates the best performance in the each row and underscore indicates the best performance of each LLM
(aligned or non-aligned).

Zero-shot In-Context Learning

Claude-3 Sonnet 79.31% 79.31%
Mixtral 8x7B Instruct 82.75% 89.65%
Llama-3 70B Instruct 72.41% 75.86%

Table 3: Percentage of tasks in which the proposed ap-
proach improves the agreement with human judgments.

hancements achieved through our proposed method
surpass those observed with traditional in-context
learning strategies. This suggests that while in-
context examples can provide useful context for
LLMs, in our experiments they do not substitute
for a dedicated alignment mechanism to effectively
bridge the gap between LLM judgments and human
evaluations.

In summary, our experiments highlight that
aligning LLM judgments with human assessments
is a complex task. Our proposed alignment method-
ology offers a promising solution despite its sim-
plicity, even in scenarios where in-context learning
is employed. Table 3 lists the percentage of tasks
in which our approach improves the level of agree-
ment with human judgments after alignment. It
indicates that we were able to significantly improve
agreement between LLMs and the human judments
with our approach in both zero-shot and in-context
learning settings. One of our most interesting and
important findings is that our alignment approach
has enabled smaller models like Mixtral 8x7B In-
struct to match the performance of much larger
models such as Claude-3 Sonnet. This is a signifi-
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Claude-3 Mixtral 8x7B Llama-3 70B
Sonnet Instruct Instruct

DROP 76.62 65.98 75.29
ESNLI 86.20 78.07 85.13
GSM8K 65.11 51.40 65.79

Table 4: Accuracy (in %) using an alignment learned
on the coherency task of Roscoe-Cosmos and tested
on the other Roscoe coherency tasks. As in Table 1,
25% of training data was used to learn the mapping and
results were averaged 10 times with different training
data splits.

cant result, as it opens up new opportunities to use
these smaller, more affordable and openly acces-
sible language models for evaluation tasks, while
still achieving similar performance to large, propri-
etary API-based models like those in the Claude
family.

3.3 Transferring alignments

For judgment tasks that use grading scales with
the same number of categories and the same mean-
ing it is possible to evaluate whether an alignment
learned on one task can be used on a different task.
To test this, we learn an alignment on the coherency
task of the Roscoe-Cosmos dataset, and test it on
the coherency task of the other Roscoe datasets
(each of which evaluates the coherence of GPT-3’s
response on reasoning tasks). The results in Ta-
ble 4 indicate that using the transferred alignment
gives better performance than the non-aligned LLM
judges in Table 1, and is only slightly worse than
when using a task-specific alignment.

4 Related Work

The use of large language models as automated
judges has been gaining traction due to their po-
tential for scalability and efficiency (Zheng et al.,
2023b; Bavaresco et al., 2024). However, as these
models are increasingly relied upon to evaluate rec-
ommendations, search results, and other subjective
tasks, it is crucial that their judgments align closely
with human evaluators to ensure evaluations remain
human-centered and useful.

Gilardi et al. (2023) investigated the capabili-
ties of ChatGPT compared to human annotators
across tweet annotation tasks including relevance,
stance, topics, and frame detection. The results
show that ChatGPT’s zero-shot accuracy exceeds
that of crowd workers and echoes the findings on
annotating political affiliation in tweets by Törn-

berg (2023). The cost-effectiveness of ChatGPT
underscores its potential to drastically improve the
efficiency of text classification tasks. Despite of
these promising initial results, recent work has
highlighted the challenges in relying on LLMs as
judges due to biases and inconsistencies in their
judgments (Wu and Aji, 2023; Zheng et al., 2023a;
Koo et al., 2024; Hada et al., 2024; Pavlovic and
Poesio, 2024). Wang et al. (2023) demonstrated
that the quality ranking of candidate responses can
be manipulated by altering their order of appear-
ance, allowing one model to seem superior to an-
other based on positional biases. This highlights
the susceptibility of LLM evaluations to manipula-
tion and underscores the need for effective calibra-
tion to ensure fairness and reliability.

Bavaresco et al. (2024) proposed Judge-Bench, a
benchmark consisting of over 20 NLP datasets with
human annotations, to assess the effectiveness of
LLMs as judges. Their evaluations of 11 different
LLMs, including both open-weight and proprietary
models, reveal significant variance in correlation
to human judgments across datasets. They con-
clude that LLMs, despite their growing usage in
evaluation settings, are not yet ready to system-
atically replace human judges. In this paper, we
also used the datasets provided by this benchmark
to demonstrate the effectiveness of our approach
in improving the alignment of the LLMs with the
human judgments.

The calibration of response styles has a long
history in the psychology literature, where survey
respondents can exhibit biases towards the central
or extreme categories on a rating scale (Jackson
and Messick, 1958; Paulhus, 1991). For such set-
tings with a large number of respondents and het-
erogeneous survey questions, techniques have been
developed for identifying and removing response
style bias (see, e.g., Van Rosmalen et al., 2010;
Schoonees et al., 2015). This echoes the observa-
tions reported in this work, where we have shown
that LLMs exhibit their own response styles, for
instance by preferring highly positive classes (see
Figure 1). At the same time, Huang et al. (2024)
demonstrated that on coarse-grained assessments,
such as binary assessments, ChatGPT’s evaluations
closely approximate human ones, but that it strug-
gles in fine-grained assessments. On the other hand,
Tjuatja et al. (2024) found that LLMs do not ex-
hibit human-like response style biases caused by
the wording of a prompt.

When the logits of language models are accessi-
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ble, they can be calibrated directly using gradient
descent as in model fine-tuning or low-rank adapta-
tion (Reif and Schwartz, 2024). Zhao et al. (2021)
showed that LLMs are highly sensitive to prompt
structure, resulting in inconsistent performance,
and proposed a calibration procedure involving the
use of a content-free input to estimate and adjust
for these biases. Such findings highlight the im-
portance of addressing LLM biases, especially in
contexts where alignment with human judgments is
critical. Unlike the above approaches, our method
does not require access to model weights or logits,
so it is easier to adapt to a wider range of use cases
and scenarios.

5 Discussion

Our method provides a simple yet powerful frame-
work to align LLM judgments with human evalu-
ations, offering substantial improvements without
the need for model retraining or fine-tuning. By
learning linear mappings between LLM outputs
and human judgments, we achieve significant im-
provement in agreement, a result that is both sig-
nificant and practical for real-world applications
where human labeled data is scarce. Furthermore,
in four out of six tasks where there are multiple
human annotators, the LLM performance after our
alignment exceeds the inter-human agreement.

The simplicity and scalability of our approach
is a key advantage. With only minimal calibration
examples, we allow smaller models to perform at
levels comparable to much larger, more resource-
intensive LLMs. This shows that our method may
greatly extend the usefulness of smaller models in
judgment tasks, opening up opportunities for their
deployment in a wider range of applications. This
is especially valuable in resource-constrained set-
tings, where using large models may be impractical
or too costly.

Although this extension is beyond the scope of
the current paper, we note that when model logits
are available, the one-hot encoded vectors repre-
senting LLM judgments can be replaced with the
judgment probabilities derived from logits values.
This modification could enable potentially finer
alignment between LLM outputs and human eval-
uations. Furthermore, our alignment method can
be extended to integrate other supervised learning
techniques or objectives for handling more complex
tasks, or to condition alignment on model inputs
for improved performance where necessary. We

leave the exploration of these directions to future
work, as they offer promising avenues for enhanc-
ing model alignment and performance, particularly
in more complex or input-conditioned tasks.

Additionally, our approach lays the groundwork
for multi-model alignment, enabling the learned
mappings to be adapted for improving agreement
across different LLMs. This adaptation could fa-
cilitate the transfer of knowledge between models,
enhancing their reliability in judgment tasks. For in-
stance, we could explore concatenating the outputs
of multiple models and mapping them to human la-
bels, effectively combining the strengths of various
language models. Such a strategy would not only
leverage diverse insights but also improve over-
all performance in alignment tasks. Related work,
such as that proposed by Verga et al. (2024), inves-
tigates multi-model alignment strategies that could
complement and extend our findings, opening av-
enues for more robust evaluation frameworks.

Finally, our work allows LLMs to utilize differ-
ent judgment spaces than human evaluators. How-
ever, we leave the exploration of this aspect to
future work. Enabling LLMs to have judgment
spaces that differ from human evaluators offers
several advantages. We can employ prompt opti-
mization techniques to discover the optimal judg-
ment space for an LLM. This allows us to align the
model’s outputs with human judgments, thereby
achieving better agreement. In this way, we can
search for the best judgment space for the model
while preserving the human judgments as they are.

6 Limitations

While our proposed alignment approach demon-
strates significant improvements in aligning LLM
judgments with human evaluations, there are some
limitations to consider.

First, the effectiveness of our method may vary
depending on the specific characteristics of the
domain and tasks involved. Some domains may
present more complex alignment challenges and
require more complicated alignment approaches,
which may need larger number of training exam-
ples as a potential downside.

Second, while we compare our approach with
in-context learning, we did not comprehensively
explore the prompt space to see if we can improve
the agreement and alignment through prompt op-
timisation. Instead, we used the prompts provided
along with the task datasets from Judge-Bench
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(Bavaresco et al., 2024) to demonstrate the im-
provement in agreement through our approach. We
believe prompt optimisation is orthogonal to our
approach and both can be used at the same time.
Furthermore, the flexibility of our approach for
using different judgment spaces than human evalu-
ators expands the exploration space for the prompt
optimisation and may lead to better results. Al-
though we did not explicitly test these directions in
our current work, they present an exciting opportu-
nity for future research.

Despite these considerations, our findings pro-
vide a solid foundation for future research and prac-
tical applications, demonstrating the potential of
our simple alignment method to enhance LLM as a
judge performance across various domains.
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A Limited Training Examples

In Table 5, we demonstrate the performance of our
approach when the number of training examples are
limited to 20 samples while 300 samples are used
for testing. We used 25% of the dataset as training
examples if the total number of examples in the
dataset less then 320 samples. The table indicates
that our approach can also work in extremely low
data regimes.

B Prompt Example

Figure 3 shows an example of the prompt we used
in both our zero-shot and few-shot experiments for
the medical safety (response type) task.
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Non-aligned Aligned

CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B CLAUDE-3 MIXTRAL 8X7B LLAMA-3 70B
Task Name HUMAN SONNET INSTRUCT INSTRUCT SONNET INSTRUCT INSTRUCT

Feedback-QA 44.50 42.11 ±2.16 43.06 ±1.57 47.38 ±2.10 48.88 ±3.47 48.31 ±3.97 49.19 ±4.26

LLMBar Natural – 85.07 ±1.67 77.20 ±2.19 86.52 ±1.21 85.07 ±1.67 77.20 ±2.19 86.52 ±1.21

Medical Safety
Query Risk Level – 39.67 ±1.15 43.20 ±1.30 21.12 ±1.80 84.03 ±2.09 83.93 ±3.36 83.50 ±3.50

Response Type – 5.63 ±0.52 11.03 ±1.31 5.63 ±1.00 75.22 ±6.03 64.76 ±4.51 72.95 ±5.32

Newsroom
Coherence 24.29 27.87 ±0.96 26.11 ±0.50 31.94 ±0.58 29.22 ±3.63 25.95 ±3.16 28.74 ±3.10

Fluency 21.35 28.03 ±0.65 20.27 ±0.82 30.70 ±0.70 22.80 ±2.95 20.82 ±2.37 25.42 ±2.60

Informativeness 31.75 32.77 ±0.86 15.53 ±1.21 35.01 ±0.91 32.90 ±2.81 24.32 ±3.21 32.76 ±3.63

Relevance 30.71 30.96 ±0.93 21.24 ±0.58 33.58 ±0.68 29.90 ±1.56 26.85 ±5.01 32.26 ±3.36

ROSCOE-Cosmos
Coherency – 42.65 ±1.90 20.41 ±1.61 36.92 ±1.95 49.12 ±3.07 35.92 ±6.48 48.81 ±6.91

Contradiction – 68.64 ±2.54 57.20 ±1.22 61.55 ±2.17 76.19 ±3.87 77.94 ±0.98 74.19 ±7.63

Missing Steps – 59.12 ±1.76 56.73 ±1.37 61.72 ±2.20 56.80 ±2.57 54.08 ±4.12 59.40 ±2.40

Overall Quality – 29.86 ±2.38 18.50 ±1.48 33.47 ±1.98 39.59 ±9.34 30.41 ±4.61 41.62 ±5.83

ROSCOE-DROP
Coherency – 72.66 ±1.98 34.68 ±2.40 67.56 ±1.75 75.57 ±2.30 70.95 ±9.04 74.23 ±1.44

Contradiction – 88.16 ±0.70 71.24 ±1.39 86.48 ±0.96 92.03 ±2.96 94.03 ±0.65 93.69 ±2.79

Missing Steps – 51.46 ±1.70 51.58 ±1.34 55.44 ±1.59 50.76 ±2.23 48.55 ±2.18 48.96 ±4.60

Overall Quality – 43.42 ±2.14 40.89 ±1.82 43.53 ±2.20 42.22 ±10.60 36.20 ±8.57 42.68 ±8.48

ROSCOE-ESNLI
Coherency – 84.65 ±1.19 39.39 ±2.06 73.59 ±1.80 85.96 ±2.32 88.77 ±0.94 85.77 ±6.95

Contradiction – 93.25 ±0.96 50.57 ±2.37 93.46 ±0.99 95.09 ±1.63 96.55 ±0.84 95.05 ±2.02

Missing Steps – 67.98 ±1.97 27.28 ±1.38 64.26 ±1.47 72.11 ±2.44 72.98 ±1.46 70.68 ±4.32

Overall Quality – 48.07 ±2.63 38.86 ±2.26 47.55 ±2.73 46.84 ±2.99 39.21 ±7.92 43.63 ±5.30

ROSCOE-GSM8K
Coherency – 59.73 ±1.84 47.50 ±2.70 63.89 ±1.83 62.60 ±2.01 56.53 ±5.42 63.76 ±2.30

Contradiction – 80.67 ±0.94 55.30 ±2.37 80.53 ±1.42 82.13 ±1.60 83.32 ±1.61 83.26 ±2.32

Missing Steps – 81.13 ±1.46 42.77 ±0.77 84.09 ±1.26 81.13 ±1.46 52.66 ±10.38 84.09 ±1.26

Overall Quality – 71.60 ±2.15 49.59 ±2.37 65.46 ±2.03 71.33 ±4.00 57.02 ±5.07 70.89 ±2.52

SummEval
Coherence – 31.47 ±1.71 28.79 ±2.06 40.90 ±1.48 37.13 ±4.46 28.52 ±3.91 35.65 ±4.42

Consistency – 83.64 ±1.53 68.84 ±1.80 68.82 ±2.53 82.54 ±1.72 81.17 ±3.28 71.24 ±5.99

Fluency – 4.50 ±0.83 3.33 ±0.58 2.58 ±0.33 77.17 ±6.18 77.53 ±3.84 77.48 ±6.28

Relevance – 37.27 ±1.53 31.27 ±1.72 41.34 ±1.40 49.13 ±8.17 44.33 ±8.00 41.37 ±11.08

WMT-20-EnDe 30.02 19.48 ±1.45 17.58 ±1.58 17.15 ±1.45 25.11 ±3.03 23.29 ±2.25 20.40 ±3.10

Table 5: Repetition of the experiments in Table 1 with only 20 training examples (or 25% of the dataset if it is
smaller than 320 examples) instead of 100 training examples.
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Read the conversation , which consists of:
(1) a user query (usually to a medic), and
(2) a chatbot response.

For the chatbot response , don 't worry about whether or not the response is good ←↩
medical advice.

We are only interested in what TYPE of response it is.
Select one of the following types:

- Non -medical query
- Irrelevant or nonsensical
- No answer
- General information
- Recommendations
- Treatment or diagnosis

{{ examples }}

# Example

## Query
{{ query }}

## Response
{{ response }}

Response label:

# Example {{ icl_example_i }}:

## Query
{{ query }}

## Response
{{ response }}

Response label: {{ icl_example_label }}

Figure 3: Example (top) prompt for one of the judgment tasks (medical-safety: response type), where {{ examples
}} is included for in-context learning experiments only. The {{ examples }} placeholder is replaced with one
example for each output label following the example format (bottom) of the corresponding task.
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