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Abstract

Predicting program behavior and reasoning
about code execution remain significant chal-
lenges in software engineering, particularly
for large language models (LLMs) designed
for code analysis. While these models ex-
cel at understanding static syntax, they often
struggle with dynamic reasoning tasks. We
introduce VISUALCODER, a simple yet effec-
tive approach that enhances code reasoning
by integrating multimodal Chain-of-Thought
(CoT) reasoning with a visual Control Flow
Graph (CFG). By aligning code snippets with
their corresponding CFGs, VISUALCODER pro-
vides deeper insights into execution flows. We
address challenges in multimodal CoT inte-
gration through a reference mechanism, en-
suring consistency between code and its ex-
ecution path, thereby improving performance
in program behavior prediction, error detec-
tion, and output generation. Our implemen-
tations are available at https://github.com/
FSoft-AI4Code/VisualCoder.

1 Introduction

Recent advances in Code-related Large Language
Models (LLMs) (Hui et al., 2024; Rozière et al.,
2024; Wang et al., 2023; Bui et al., 2021; Nijkamp
et al., 2023; Lozhkov et al., 2024; Stallone et al.,
2024; To et al., 2023; Guo et al., 2024; Wei et al.,
2024c; Manh et al., 2024; Huang et al., 2024; Muen-
nighoff et al., 2023) have pushed the boundaries
of complex reasoning tasks, extending to the do-
mains that require an understanding of code and
its intricacies. There are diverse approaches aimed
at enhancing LLMs’ ability. LLMs, while excel-
lent at capturing static patterns and syntax from
large code corpora, primarily rely on learned asso-
ciations rather than direct interaction with the pro-
gram’s execution environment. They struggle with
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tasks involving dynamic behaviors of programs,
such as predicting execution traces, variable val-
ues, or runtime errors, because these tasks require
precise understanding of runtime context and pro-
gram states change during execution. They do not
inherently simulate code execution, which is neces-
sary for understanding how variables’ values vary
along program’s execution flow. Moreover, LLMs
lack the ability to track mutable state or anticipate
runtime conditions, leading to difficulties in pre-
dicting dynamic behaviors that depends on context-
sensitive execution paths.

Recent work has been proposed to enhance the
capability of the models in understanding code exe-
cution by incorporating Control Flow Graph (CFG)
in their reasoning step (Le et al., 2024; Bieber et al.,
2020, 2023). It demonstrates that incorporating
CFG of given code can significantly improve per-
formance on the code coverage prediction task.
However, it utilizes CFGs through graph neural
networks rather than directly integrating them into
LLM-based reasoning. Despite these advances,
the state-of-the-art approaches focus on a single-
modality input (i.e., plain code) and has yet to ex-
plore the potential of multimodal frameworks for
code execution reasoning. While code can be read
in a linear fashion, understanding its behavior re-
quires focusing on the non-linear flow of execution,
which is visualized more clearly via a CFG.

In recent years, Vision Language Large Models
(VLLMs) (OpenAI et al., 2024; Chen et al., 2024;
Liu et al., 2024), have made significant progress,
showing their potential across a wide range of tasks
that involve both visual and textual inputs. These
models, which integrate information from multiple
modalities, have been successfully applied to tasks
like image captioning, visual question answering,
and multimodal retrieval. Recent advances in mul-
timodal LLMs, such as Flamingo (Alayrac et al.,
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2024), CLIP (Radford et al., 2021), and BLIP-2 (Li
et al., 2023), highlight the benefits of combining
visual and textual inputs for enhanced reasoning.
Models like LLaVA (Liu et al., 2023) and MiniGPT-
4 (Zhu et al., 2024) show improved performance
in multimodal tasks by integrating both visual and
textual inputs. Studies have shown that combin-
ing visual representations with text significantly
improves reasoning, especially in tasks involving
complex structures (Wei et al., 2024b).

In this work, we propose enhancing the pro-
gram execution reasoning of LLMs by leverag-
ing multimodal reasoning, combining plain code
with visual representations of the corresponding
CFG. In our experiments, simply presenting the
plain code alongside textual or visual representa-
tions of the CFG has poor performance for program
execution-related tasks (Section 5). Recent work
by (Zhang et al., 2023) focuses on improving mul-
timodal reasoning in LLMs using the prominent
Chain-of-Thought prompting (Wei et al., 2024a)
with two separate steps: rationale generation and
reasoning to produce answers. However, when ap-
plied to our multimodal setup of plain code and
CFG, that approach suffers from cascading errors,
where inaccuracies in rationale generation nega-
tively impact the reasoning and final answers.

We introduce VISUALCODER, a simple yet ef-
fective Reference CoT prompting technique that
explicitly links individual lines of code to their cor-
responding visual elements in the CFG. By making
these detailed references, our approach encourages
the model to focus on specific connections between
the code and its execution flow during multimodal
reasoning process. This technique is expected to
improve the LLM’s performance by guiding it to
reason more effectively and grounding its reason-
ing process with more intuitive and informative
representation of code graph via imaging, utilizing
both the code structure and its execution dynamics.

2 Related Work

2.1 Code Large Language Models

Large Language Models (LLMs) have been widely
applied to various code-related tasks, including
code understanding, reasoning, and analysis (Chen
et al., 2021a; Li et al.; Jiang et al., 2024; Tou-
vron et al., 2023; Rozière et al., 2024; Xu et al.,
2022; Allal et al.; Nijkamp et al., 2022; Phan
et al., 2024a; To et al., 2023; Manh et al., 2024;
Phan et al., 2024b). Early benchmarks (Yin et al.,

2018; Iyer et al., 2018; Nguyen et al., 2023; Chen
et al., 2021a; Austin et al., 2021; Hendrycks et al.,
2021) primarily assessed model performance using
match-based similarity metrics, which fail to cap-
ture deeper reasoning and functional correctness
(Chen et al., 2021a). Some benchmarks empha-
size domain diversity (Yin et al., 2018; Iyer et al.,
2018; Nguyen et al., 2023), while others, such as
HumanEval (Chen et al., 2021a), MBPP (Austin
et al., 2021), and APPS (Hendrycks et al., 2021),
focus on specific tasks like function completion
or competitive programming. More recent efforts
have sought to expand the scope of evaluation, such
as ExeDS (Huang et al., 2022), which targets data
science workflows, and ODEX (Wang et al., 2022),
an open-domain evaluation suite. However, these
benchmarks primarily assess static code properties
and standalone function reasoning, with limited
emphasis on execution flow analysis and dynamic
behavior prediction—critical aspects for improving
LLMs’ ability to reason about code execution.

2.2 ML-based Fault Localization

Recent deep learning-based fault localization
(FL) techniques like GRACE (Lou et al., 2021),
DeepFL (Li et al., 2019), CNNFL (Zhang et al.,
2019), and DeepRL4FL (Li et al., 2021) have
significantly advanced FL. GRACE uses a graph-
based representation to rank faulty methods ef-
fectively. Earlier ML-based FL approaches re-
lied heavily on test coverage (Zheng et al., 2016),
but struggled to differentiate between failed tests
and faulty ones (Li and Zhang, 2017). Advanced
methods like TRANSFER (Meng et al., 2022) and
FixLocator (Li et al., 2022) address this by lever-
aging semantic features and co-fixing detection.
CodeT5-DLR (Bui et al., 2022) uses LLMs for
end-to-end bug detection, localization, and repair.

2.3 Reasoning about Program Execution

Research into program execution reasoning has
advanced through various approaches. They use
execution states from constructed programs (Chen
et al., 2021b; Ni et al., 2024; Shin et al., 2018) or
predict intermediate subgoals to improve search
strategies in sequence-to-sequence models (Shi
et al., 2024). Another approach trains neural net-
works to simulate execution, acting as learned inter-
preters (Bieber et al., 2020, 2023; Le et al., 2024),
often relying on specialized architectures to model
flows and dependencies. Other works like Scratch-
pad and Self-Debugging explored LLM-generated
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reasoning chains, while NExT (Ni et al., 2024) uses
runtime traces for task-specific rationales.

3 Motivation

Recent advances in Large Language Models
(LLMs) have shown promise in tasks like program
execution prediction, especially with Chain-of-
Thought (CoT) reasoning (Dhulipala et al., 2024).
However, LLMs still struggle with understand-
ing complex execution flows, such as iterations
and conditions. Our results in Table 1 (see de-
tails later) demonstrate that incorporating Control
Flow Graphs (CFG) with source code signifi-
cantly boosts performance. CFG images provide
a visual structure of execution flow, capturing key
control structures like branches and loops. This
helps LLMs better understand non-linear execution
paths, improving program behavior reasoning.

Choosing the right data representation for CFGs
is crucial for helping LLMs understand code ex-
ecution. To support the use of visual represen-
tations, we conducted an experiment comparing
the effectiveness of textual vs. visual CFGs. As
highlighted in Table 2 on our experimental results,
the models that utilized visual CFG images con-
sistently outperformed those relying on text-based
CFG representation. Our results demonstrate that
when models are exposed to CFG images rather
than text-based descriptions, their reasoning and
prediction accuracy improves substantially.

Since text-based representations only provide a
linear and sequential description of control flow in
textual format, they often fall short in capturing
the structural complexity of code execution which
requires forward-backward reasoning continuously.
In contrast, the visual modality provides an addi-
tional layer of information, allowing the model to
better comprehend non-linear code flows, such as
loops and branches, which are harder to grasp
through sequential textual descriptions alone. This
result is also consistent with the research by Wei
et al. (Wei et al., 2024b), which emphasizes that
incorporating visual representations significantly
enhances the reasoning capabilities of multimodal
LLMs. Importantly, this result motivates us on
the adopting of visual representations that requires
deep, non-linear flow of execution reasoning.

Despite the advantages of CFG images, we
found that incorporating CoT reasoning into multi-
modal models is not trivial and introduces new chal-
lenges. Surprisingly, our results in Table 3 show

that adding CoT reasoning alongside CFG images
often leads to performance degradation. As seen in
Table 3, when CoT reasoning was applied to tasks
like bug detection, performance dropped for mod-
els such as Sonnet 3.5 and InternVL2-26B. The
models suffer hallucinations, leading to incorrect
reasoning steps. Existing methods, such as the two-
stage multimodal Chain-of-Thought (multimodal-
CoT) by (Zhang et al., 2023), attempt to separate
rationale generation from answer inference but fail
to reason execution on complex code structures.

Let us use an example for illustration. As shown
in Figure 1, the CFG + CoT approach fails to
capture the critical point in reasoning. As with
this approach (see red section), the model incor-
rectly identifies the termination point within the
else block (G += 1), missing the fact that this
branch is unreachable. Since X is always even, the
else block will never be executed.

We hypothesize that the key issue is the model’s
inability to align the code with its corresponding
CFG image during reasoning. Without proper
alignment with the CFG, the model misinterprets
this unreachable path as a valid termination point,
focusing on an irrelevant error. Therefore, we guide
the model to refer to each line of code to the corre-
sponding element in the CFG as shown in Figure 1
(highlighted in green). Let us call it CFG + CoT
+ Reference approach, which correctly identifies
the unreachable node and termination point. Our
results (Section 5) also show that the two-stage
multimodal-CoT approach in (Zhang et al., 2023)
is also insufficient for complex coding tasks that
involve intricate execution flows.

As illustrated in Figure 1, the CFG + CoT + Ref-
erence approach (green section) allows the LLM to
correctly identify the critical point: the unreachable
nature of the else branch. By explicitly referenc-
ing the CFG during reasoning, the model avoids
errors in unreachable branches and focuses on the
actual critical error—the float N being used in the
range() function. This reference mechanism helps
the model maintain proper alignment between the
visual CFG and the code, leading to more accurate
reasoning on program execution at runtime.

Next, we will provide a detailed explanation
of our proposed method, demonstrating how the
combination of Control Flow Graphs, Chain-of-
Thought reasoning, and a Reference Mechanism
(CFG + CoT + Reference) addresses these chal-
lenges and significantly improves code execution
reasoning. We formulate our solution in Section 4.
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X=1024
  N=X/500 
  for i in range(10): 
      if X%2==0: 
          N+=1 
      else: 
          G+=1 
  for i in range(0, N): 
      X+=100 
  print(X)

Let's analyze this code step by step, using both the provided code snippet and the 

control flow graph (CFG):

1. X = 1024: 

   This initializes X correctly.

2. N = X / 500: 

   This calculates N as a float (2.048).

3. The outer for loop runs 10 times.

4. The if condition checks if X is even, which it is initially.

5. If X is even, N is incremented. If odd, G is incremented.

6. There's an inner for loop that should run N times, incrementing X by 100 each 

time.

7. Finally, X is printed.

Now, let's consider potential issues:

1. N is a float, which might cause issues in the range() function of the second loop.

2. G is used without being initialized.

3. The first loop modifies N, which affects the second loop's range.

The most critical error that would cause immediate termination is the use of G 

without initialization. This occurs in the else clause of the first loop.

Therefore, the answer is: G+=1

Let's analyze the code step by step, referencing the CFG:

1. X = 1024 (Node 1 in CFG): 

    This is correct and initializes X.

2. N = X / 500 (Node 2 in CFG): 

    This calculates N as a float (2.048). No error here, but it might cause issues later.

3. for i in range(10): (Node 3 in CFG): 

    This starts the outer loop. No error.

4. if X % 2 == 0: (Node 4 in CFG): 

    This checks if X is even. No error.

5. N += 1 (Node 5 in CFG, True branch): 

    This increments N. No error, but N becomes a float.

6. else: G += 1 (Node 6 in CFG, False branch): 

    This is where we encounter our first error. G is not defined before this line.

7. for i in range(0, N): (Node 7 in CFG)

    This tries to use N (a float) as the end of a range, which is not allowed in Python.

8. X += 100 (Node 8 in CFG, True branch)

    This would increment X if the loop ran. No error in this line itself.

9. print(X) (Node 9 in CFG)

    This would print X if reached. No error in this line.

The first error that would cause termination is on line 6, where G is used before 

being defined. However, this line wouldn't be reached in the current code because X 

is always even. The second error, which would be encountered first in this specific 

code, is on line 7, where a float is used in range().

Therefore, the answer is: for i in range(0, N):

CFG

Prompt:

You are an expert Python programmer.

Analyze the following Python code snippet, which contains error(s) when executing:

 

{code}

 

You will also be provided with a control flow graph {CFG} image of this code. As you analyze each line:

1. Examine each line of code sequentially using both code and CFG .

2. Reference the CFG to identify which node corresponds to the line you're currently analyzing.

3. Use this understanding between code and CFG to support your reasoning about the code's logic and errors.

 

Think through your analysis step by step, considering both the code and its representation in the CFG.

After your analysis, respond with the problematic line of code that causes termination.

Answer: The answer is: for i in range(0, N):

CFG+CoT CFG+CoT w Reference

CFG + CoT + with/without Reference

Code

Figure 1: Comparison of Program Execution Reasoning: CFG + CoT w/o Reference vs. CFG + CoT with Reference.
With reference, LLM correctly identifies the unreachable node and critical termination point (highlighted in orange).

4 VISUALCODER: Reference Mechanism

We propose a method that combines Control Flow
Graphs (CFG) with Chain-of-Thought (CoT)
reasoning, augmented by a Reference Mecha-
nism, to enhance reasoning on program execution.
This approach enables step-by-step evaluation of
the code while also cross-referencing control flow
points, thereby improving error detection and iden-
tifying unreachable or erroneous code paths.

Let the given Python code snippet be represented
as a sequence of lines of code:

Code = {C1, C2, . . . , Cn} (1)

where Ci represents the i-th line or block of code.
Along the code, we provide the corresponding Con-
trol Flow Graph (CFG), which is defined as:

CFG = (N,E) (2)

where N = {N1, N2, . . . , Nm} is the set of nodes,
each corresponding to a specific code block, and

E ⊆ N ×N is the set of directed edges represent-
ing control flow between nodes.

The goal is to condition the Vision Large Lan-
guage Model that semantically maps each line Ci

of the code to its node Ni in the CFG, and utilize
this to perform stepwise reasoning.

4.1 Chain-of-Thought Reasoning (CoT)
Chain-of-Thought reasoning is implemented by an-
alyzing each instruction on Ci while considering its
logical dependencies and its corresponding control
flow in the CFG. We define the reasoning process
as a recursive function:

R(Ci) = f(Ci, {C1, C2, . . . , Ci−1}, Nj) (3)

where f is a function that takes the current line of
code, its execution context, and its corresponding
CFG node Nj .

4.2 Reference Mechanism
The Reference Mechanism enhances CoT reason-
ing by mapping each line of code Ci to its corre-
sponding CFG node, expressed as M : Ci 7→ Nj ,
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where Ci is represented by node Nj in the CFG.
To establish this mapping, we guide the model to
focus on the relevant CFG node while reasoning
about each line of code. This is achieved by rein-
forcing attention on the corresponding node in the
CFG image whenever the model processes its asso-
ciated code line, as demonstrated in Section 7. By
aligning each line of code with its node in the con-
trol flow representation, this mechanism improves
the model’s understanding of execution paths, tran-
sitions, and dependencies across statements and
blocks, rather than treating lines in isolation.

4.3 CFG + CoT (Without Reference)
In the CFG + CoT approach, the model reasons
about the logic purely based on the sequential struc-
ture of the plain code. It analyzes each line and
attempts to infer potential errors based solely on the
textual content, without actively cross-referencing
the CFG. This reasoning process can be defined as:

pno-ref(Y |C1, . . . , Cn,CFG)

=

n∏

i=1

P(Yi|C1, . . . , Ci,CFG)

=

n∏

i=1

P(Yi|C1, . . . , Ci, (N1, . . . , Nm), E) (4)

Here, the probability of generating the correct
reasoning Y for the code is determined by the
cumulative probabilities of the reasoning steps
at each line of code. However, this method is
prone to inefficiency, as it includes all CFG nodes
(N1, N2, . . . , Nm) in each reasoning step, even
when many of those nodes are not directly rele-
vant to the current line of code.

4.4 CFG + CoT + Reference
In contrast, the CFG + CoT + Reference approach
introduces a structured reference to the CFG during
each reasoning step. The reasoning at each line Ci

is conditioned not only on the previous code lines
but also on the corresponding node in the CFG:

pref(Y |C1, . . . , Cn,CFG)

=
n∏

i=1

P(Yi|(C1,M(C1)), . . . , (Ci,M(Ci)), E)

(5)

Where M(Ci) is the mapped node in the CFG cor-
responding to the current line Ci. By analyzing and
referencing the corresponding CFG block for every

line of code, the model can maintain consistency
between the CFG and the source code.

4.5 VISUALCODER

There are several ways to achieve the behavior out-
lined in the CFG + CoT + Reference process, such
as fine-tuning, one-shot or few-shot prompting, and
more. In our current implementation, we propose
a straightforward yet effective approach that can
be integrated into any Chain-of-Thought frame-
work without the need for fine-tuning. By intro-
ducing a simple instruction, as shown in Figure 1
(green line in the prompt), we expect to guide Vi-
sion Language Models to follow the formulation
described in Equation 5. This approach ensures
that the model focuses its reasoning on the relevant
CFG node for each line of code, thereby improving
its alignment with the control flow. The experimen-
tal results in Section 5, along with the qualitative
analysis in Section 6 and attention heat map in Sec-
tion 7, demonstrate the effectiveness of our method
in enhancing program execution reasoning.

5 Empirical Evaluation

5.1 Better Code Execution Understanding
with Control Flow Graph Images

In this experiment, we aimed to show that pro-
viding the LLM with CFG images (no references)
improves its code execution reasoning. Using the
CRUXEval benchmark (Gu et al., 2024), we tested
models on predicting execution outputs. We com-
pared the accuracies of three state-of-the-art VLM
models—Claude 3.5 Sonnet (Anthropic, 2024),
Gemini-1.5-Flash (Reid et al., 2024), and InterVL2-
8B (Chen et al., 2024)—in two settings: 1) plain
code, and 2) plain code with its CFG image. The
task involved both output prediction (predicting
the execution’s result) and input prediction (pre-
dicting the inputs leading to a specific output).

For direct comparison with prior work, we used
the same prompt format from the original CRUXE-
val paper (Gu et al., 2024). The prompt provided
the code and, when applicable, a visual CFG, guid-
ing step-by-step reasoning. Performance was mea-
sured using the pass@1 metric, indicating if the
models’ first predictions were correct.

The results in Table 1 show that incorporating a
CFG image improves model accuracy in two set-
tings. This improvement is consistent across mod-
els, showing that CFG enhances the LLMs’ ability
to reason about execution flow and predict program

6647



Task Settings Models pass@1

Plain code Claude 3.5 Sonnet 79.6
Plain code + CFG image Claude 3.5 Sonnet 82.3
Plain code Gemini 1.5 Flash 68.5

Output Pred. Plain code + CFG image Gemini 1.5 Flash 70.0
Plain code InterVL2-8B 40.8
Plain code + CFG image InterVL2-8B 44.0

Plain code Claude 3.5 Sonnet 75.2
Plain code + CFG image Claude 3.5 Sonnet 84.0
Plain code Gemini 1.5 Flash 58.4

Input Pred. Plain code + CFG image Gemini 1.5 Flash 68.4
Plain code InterVL2-8B 43.6
Plain code + CFG image InterVL2-8B 44.4

Table 1: Execution Prediction Performance Comparison

behaviors more accurately. This result is consistent
with the one reported by Le et al. (Le et al., 2024)
in which incorporating CFG of given code can im-
prove performance on code coverage prediction.

5.2 CFG Images vs Text-Based Descriptions

Model CFG (Text) CFG (Image)

Claude 3.5 Sonet 60.5 74.0
Gemini 1.5 Flash 65.3 74.1
InternVL2-8B 23.2 36.4

Table 2: Comparison of pass@1 results for CFG in text-
based description vs. CFG as Image.

To assess the impact of visual representations in
coding tasks, specifically in Code Execution Pre-
diction, we conducted an experiment where LLM
models were provided with either Mermaid-format
(text-based) (see one example of Mermaid-format
in A.1) or image-based CFGs, along with the input,
and tasked with predicting the code’s output. The
prompt remained the same as the previous exper-
iment, but the models received CFGs as images
instead of as texts. Results in Table 2 show that
CFG images significantly boost performance in rea-
soning tasks, underscoring the value of visual aids
in enhancing Multimodal LLMs’ reasoning.

5.3 VISUALCODER Multi-modal Reasoning

Experimental Setting. This experiment involved
two tasks: Program Repair and Fault Localiza-
tion (further details are provided in Section A.3).
For Program Repair, we generated a dataset from
LiveCodeBench (Jain et al., 2024), selecting 400
instances to avoid the saturation seen in simpler
benchmarks like MBPP-S (Austin et al., 2021).
We sampled six solutions for each instance using
Claude 3.5 Sonnet and Haiku with a 3:1 ratio, en-
suring varied difficulty levels. After filtering out
fully correct solutions (those passing all test cases)

and completely incorrect ones (those failing all test
cases), we retained solutions that have the correct
direction—passing a subset of test cases but con-
taining some errors. We finalized 384 solutions for
173 problems. For Fault Localization, we used the
FixEval dataset (Anjum Haque et al., 2023), which
has about 210 programs with various runtime er-
rors. The prompt used was listed in Section A.4.

Unlike the previous sections, we selected models
with stronger code reasoning abilities to handle the
increased complexity of Program Repair and Fault
Localization task. Specifically, Claude 3.5 Sonnet
was retained for its robust performance, GPT-4o
replaced Gemini 1.5 Flash due to its superior capa-
bilities and wider adoption, and InterVL2-26B re-
placed its 8B version, which struggled with coding
tasks, often producing generic or incorrect answers.

We evaluated the models in several configura-
tions: plain code (with/without CoT reasoning),
plain code with CFGs (with/without CoT), plain
code with execution in-line comments (NeXT (Ni
et al., 2024)), the two-stage Multimodal-CoT
method from (Zhang et al., 2023), and VISUAL-
CODER. To assess our method’s adaptability and
efficiency, we integrated it with Multimodal-CoT
in the first stage of Rationale Generation. The sec-
ond stage, Answer Inference, remained unchanged.
NeXT is excluded from the Fault Localization task,
as it relies on code execution, unsuitable for tasks
requiring bug detection without execution.
Experimental Results. Table 3 provides a de-
tailed comparison of VISUALCODER with other
baseline methods across multiple settings. Chain-
of-Thought (CoT) reasoning generally improved
model performance, as seen in the Program Repair
task where GPT-4o improved from 38.7% (plain
code) to 40.1% (with CoT), and InternVL2 in-
creased from 0.4% to 4.0%. However, combin-
ing CoT with CFG images caused a notable per-
formance drop across all models. For instance,
Claude 3.5 Sonnet’s accuracy dropped from 63.0%
to 55.5%, GPT-4o fell from 40.1% to 37.6%, and
InternVL2-26B dropped from 4.0% to 2.1%. Simi-
lar declines occurred in the Fault Localization task.
This suggests that while CFGs offer structural in-
sights, integrating them with CoT without proper
schemes can confuse the models and reduce accu-
racy, a finding consistent with (Zhang et al., 2023).

In the Program Repair task, which relies more
on logical reasoning than execution-heavy tasks,
CFGs proved less useful. Although our method
didn’t outperform the highest-performing settings
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Tasks Settings Claude GPT-4o InternVL2
3.5 Sonet 26B

Plain code w/o CoT 64.1 38.7 0.4
Plain code w/ CoT 63.0 40.1 4.0
Plain code + CFG w/o CoT 61.2 36.5 0.9

Program Repair Plain code + CFG w/ CoT 55.5 37.6 2.1
NeXT 57.3 40.7 0.0
Multimodal-CoT 58.7 35.1 8.2
VISUALCODER 62.9 41.2 6.3
Multimodal-CoT + VISUALCODER 60.1 38.2 10.7

Plain code w/o CoT 90.4 87.1 37.0
Plain code w/ CoT 90.0 89.5 26.1
Plain code + CFG w/o CoT 86.1 79.4 22.3

Fault Localization Plain code + CFG w/ CoT 88.0 85.6 41.0
Multimodal-CoT 90.9 87.6 52.1
VISUALCODER 91.4 90.4 47.4
Multimodal-CoT + VISUALCODER 92.8 91.9 53.6

Table 3: Performance Comparison on Program Repair
and Fault Localization Tasks

(e.g., plain code without CoT for Claude at 64.1%),
it significantly boosted performance over the plain
code + CFG w/ CoT setting. It raised Claude 3.5
Sonnet from 55.5% to 62.9%, and GPT-4o from
37.6% to 41.2%. InternVL2-26B, which struggled
with CFG + CoT (2.1%), improved to 6.3% with
VISUALCODER and 10.7% when combined with
Multimodal-CoT. In some cases, it outperformed
methods like NeXT and Multimodal-CoT, with
Claude 3.5 Sonnet achieving 62.9% with VISUAL-
CODER, compared to 57.3% with NeXT and 58.7%
with Multimodal-CoT, showing its capability, even
in tasks where CFGs are less central.

In the Fault Localization task, improvements
were consistent across settings. In the plain code
w/o CoT setting, Claude reached 90.4%, GPT-4o
87.1%, and InternVL2 37.0%. Introducing CoT im-
proved GPT-4o to 89.5%, while Claude remained
at 90.0%. Adding CFGs led to varied results:
Claude dropped to 86.1%, GPT-4o to 79.4%, and
InternVL2 to 22.3%. These mixed outcomes sug-
gest that while providing structural insights, CFGs
complicate reasoning without proper integration.

As shown in Table 3, VISUALCODER achieved
the highest accuracy for both Claude 3.5 Son-
net (91.4%) and GPT-4o (90.4%). When com-
bined with Multimodal-CoT, performance further
improved, with Claude reaching 92.8% and GPT-
4o 91.9%. The biggest gain was for InternVL2-
26B, which increased from 41.0% (CoT with CFG)
to 53.6% with VISUALCODER and Multimodal-
CoT. These results show that integrating CFGs
with CoT reasoning and the Reference Mechanism
boosts fault localization, especially when paired
with Multimodal-CoT. This also highlights the ef-
fectiveness of generating rationale that efficiently
leverages both plain code and CFG images.
VISUALCODER with Complex Java Reposito-

ries. To further evaluate VISUALCODER ’s ef-
fectiveness on more complex, real-world software
defects, we extended our experiments to the De-
fects4J v1.0 (Just et al., 2014) benchmark. De-
fects4J comprises 245 real-world Java bugs from
five open-source projects: Chart, Closure, Lang,
Math, and Time. For this setting, we used GPT-4o
and evaluated its fault localization performance us-
ing the acc@k metric, which quantifies the number
of bugs where the actual buggy location appears
among the top k predictions generated by a tool.
Table 4 presents the results, comparing Plain Code
(Vanilla), Plain Code + CFG, and Plain Code +
CFG + Reference Mechanism as VISUALCODER.

Model acc@1 acc@4 acc@10

Plain code 47 73 90
Plain code + CFG 54 78 95
VISUALCODER 59 80 97

Table 4: Fault localization accuracy on Defects4J v1.0.

As shown in Table 4, VISUALCODER consis-
tently outperforms the baselines across all metrics,
demonstrating its effectiveness in complex fault
localization tasks. The integration of CFGs and
the Reference Mechanism significantly enhances
localization accuracy, particularly at acc@1, where
VISUALCODER correctly identifies 12 more bugs
than the baseline. These results highlight VISUAL-
CODER ’s robustness in large-scale Java projects,
reinforcing its potential for software debugging.

6 Qualitative Analysis

Figure 2 presents two examples of buggy code
alongside their corresponding CFGs and the rea-
soning outputs of Claude Sonet 3.5 under different
prompt settings: plain code with CoT, plain code
+ CFG image with CoT, and 2-stage prompt of
Multimodal-CoT in (Zhang et al., 2023).

The first three rows of Figure 2 show Claude Son-
net 3.5’s outputs under different prompt settings, all
failing to fully grasp the code’s complexity. In the
left example (a use-before-initialization error), the
model incorrectly identifies lst[0] as the issue,
missing the control flow dependencies affecting
lst’s initialization. In the right example (unreach-
able code), it highlights G += 1 but overlooks the
actual problem: using a float N in the range func-
tion. These errors highlight the limitations of plain
code reasoning, even with CFG or CoT.

The final row shows our approach’s result. In the
left side, VISUALCODER correctly identifies the
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Let's analyze this code step by step, referencing the CFG:

(1) X = 24 (First node in CFG): This is fine, X is assigned the value 

24…(10) print(lst[0]) (Last node, outside the loop): This tries to print 

the first element of lst.

The main issue is that lst is only initialized when Y is odd, which 
never happens. When i is odd and X is even (always true), the code 

tries to append to lst, but lst may not exist.

Answer: lst.append(i)

Let's analyze this Python code snippet line by line and CFG:

(1) `X = 24`: This line initializes X with 24….(10) `print(lst[0])`: This tries 

to print the first element of lst after the loop ends.

The main error occurs because the code attempts to print `lst[0]` after 

the loop, but `lst` might not be defined if the conditions for its 
initialization are never met. 

Answer: print(lst[0])

Let's analyze this code and CFG step by step:

(1) X = 24: This initializes X to 24. (Correct)...(7) After the loop, it 

attempts to print lst[0].

The main issue here is that lst is not defined in the global scope. It's 

only defined inside the loop under certain conditions. Even if lst is 
defined and populated, it will be reset to an empty list every time i is 

even and Y is odd. The error occurs when trying to access lst[0] after 

the loop, as lst may not be defined or may be empty.

Answer: print(lst[0])

Let's analyze this code step by step: 

(1) X = 24: This sets the variable X to 24…(10) print(lst[0])This tries to 

print the first element of lst.

The main issue here is that lst is only defined within the if statement on 

line 6, which is never executed because Y is always even. The code 
will raise an error when it tries to access lst[0] because lst is not 

defined in the global scope.

Answer: print(lst[0])

X = 24
Y = X**2
for i in range(1, 10):

if i % 2 == 0:
if Y %2 != 0:

lst = []
else:

if X % 2 == 0:
lst.append(i)

print(lst[0])

X=1024
N=X/500
for i in range(10):

if X%2==0:
N+=1

else:
G+=1

for i in range(0, N):
X+=100

print(X)

Let's analyze the code step by step, referencing the CFG:

(1) X = 1024 (Node 1 in CFG): This is correct and initializes X…(9) print(X) 

(Node 9 in CFG)This would print X if reached. No error in this line.

The first error that would cause termination is on line 6, where G is used 

before being defined. However, this line wouldn't be reached in the current 
code because X is always even. The second error, which would be 

encountered first in this specific code, is on line 7, where a float is used in 

range().

Answer: for i in range(0, N):

Let's analyze the code line by line with CFG provided:

(1). `X = 1024`: This corresponds to the top node in the CFG. It's correct and 

initializes X…(9) `print(X)`: This is the final node in the CFG and will execute 

if no errors occur before it.

The main error is the use of the undefined variable G in the else clause of the 
first loop. This will raise a NameError when X is odd.

Answer: G += 1

Let's analyze this code step by step, using the code snippet and CFG:

(1) X = 1024: This initializes X correctly…(7) Finally, X is printed.

Now, let's consider potential issues: N is a float, which might cause issues in 

the range() function of the second loop. G is used without being initialized. 

The first loop modifies N, which affects the second loop's range. The most 
critical error that would cause immediate termination is the use of G without 

initialization. This occurs in the else clause of the first loop.

Answer: G += 1

Let's analyze this code step by step:

(1) X=1024: This line initializes X with the value 1024…(10) print(X): This 

would print the final value of X, if the code could reach this point.

The first error that would cause the code to terminate is on line 7, where G is 

used without being defined.

Answer: G += 1
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Correct answer: lst.append(i) Correct answer: for i in range(0, N):

Figure 2: Qualitative comparison of reasoning outputs for buggy code using different prompt settings in Claude
Sonet 3.5. Red text indicates where the reasoning fails, green text highlights correctly identified critical points, and
blue text in VISUALCODER shows the referencing from the plain code to the corresponding nodes in the CFG.

error by analyzing the CFG and noting the miss-
ing connection between lst’s initialization and
lst.append(i). As a result, when the code at-
tempts to append to lst, it triggers a NameError
since lst was never initialized, highlighted in
green. Other approaches mistakenly assume lst
is reinitialized in each loop iteration, leading to
the incorrect conclusion that lst[0] raises an
IndexError. Moreover, it uses a reference mecha-
nism (highlighted in blue) to link key CFG nodes
during reasoning. This helps the model connect ex-
ecution steps to control flow nodes, a key advantage
over methods lacking this explicit referencing.

In the example on the right, VISUALCODER

again shows its advantage by using the CFG to
grasp the non-linear control flow. While previous
methods failed to identify the incorrect use of the

float value N in the range function, it recognizes
that the error stems from an unreachable branch of
code. The CFG reveals that the else block with G
+= 1 is never executed because X is always even,
allowing the model to pinpoint the correct error re-
lated to the float value in range. Thus, it accurately
identifies for i in range(0, N) as the solution.

These qualitative comparisons highlight our ad-
vantage. The red turning points in previous meth-
ods indicate breakdowns in reasoning, while the
green critical points in our approach’s output show
how it resolves errors by aligning code with CFG.

7 Attention Pattern Analysis

In this section, we aim to analyze to determine
whether the Vision-Language Model effectively
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Figure 3: Attention Heat Map in CFG Image for each CoT reasoning step.

Figure 4: Average Attention Score over Vision Token
in CFG Image for each CoT reasoning step.

leverages the CFG images to enhance its reasoning
or simply overlooks them during inference. Specif-
ically, we analyze the attention patterns by exam-
ining the attention matrices across all heads and
layers of the InterVL2-26B model in a specific ex-
ample (more details in A.2). Our focus lies on the
attention weights associated with the generated ra-
tionales and their interactions with visual tokens.
These weights provide valuable insights into where
and to what extent the model attends to visual to-
kens during code execution reasoning steps.

As shown in Figure 3, the attention maps reveal
key differences between the Reference CoT and
vanilla CoT approaches. With the Reference CoT,
the InterVL2-26B model consistently attends to the
relevant nodes in the CFG image at each reasoning
step. In contrast, the vanilla approach exhibits a
more diffuse attention pattern, occasionally focus-
ing on irrelevant regions, which could contribute to
poorer performance in debugging tasks. Figure 4
also shows that with Reference Mechanism, VLM

more focuses on vision tokens in CFG image for
reasoning, leading to better capturing of the align-
ment between code and CFG image. These findings
also corroborate our intuition behind Equation 5.
By incorporating reference mapping, the model
adopts a “more focused” attention mechanism for
each Chain-of-Thought step, facilitating more pre-
cise reasoning on program execution.

8 Conclusion

In conclusion, VISUALCODER enhances LLMs’
reasoning about code execution by incorporating
multimodal inputs, specifically control flow graph
(CFG) visualizations. Traditional LLMs, while ef-
fective at processing static code syntax, struggle to
capture dynamic execution behaviors, leading to in-
correct predictions and limited reasoning about pro-
gram flow. By introducing the Reference CoT tech-
nique, VISUALCODER establishes explicit connec-
tions between source code lines and CFG elements,
ensuring a structured and interpretable represen-
tation of execution logic. This approach reduces
reasoning errors, improves alignment between tex-
tual and visual execution cues, and enables more
accurate program behavior predictions. Our exper-
imental results show that augmenting LLMs with
visual CFGs significantly improves performance
over text-based CFG descriptions alone, validating
our multimodal approach.
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9 Limitations

The quality of the CFG plays a crucial role in the
performance of our method. If the CFG is incom-
plete or inaccurate, it can lead to flawed reasoning
and missed execution paths. Additionally, we have
not tested how well VISUALCODER performs when
the CFG contains a large number of nodes, which
could affect the graph’s resolution and the model’s
ability to process fine-grained details. These fac-
tors may influence the effectiveness of the reason-
ing process, particularly in complex programs with
extensive control flows.

Another limitation is the lack of clarity on which
type of code graph (e.g., CFG, abstract syntax tree,
or repository graph) is most suitable for specific
coding tasks. While our work focuses on CFGs,
other graph representations may be more effec-
tive for different types of code reasoning, such as
syntax-based analysis or structural relationships in
repositories. Identifying the optimal graph type for
each task is an area requiring further exploration.
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A Appendix

A.1 Control Flow Graph Representation

Definition 1 (Control Flow Graph - CFG)
A Control Flow Graph (CFG) is a graphical
representation of the control flow within a program.
Nodes in the CFG correspond to basic blocks of
code, which may include individual statements or
groups of statements that are executed sequentially.
The edges between nodes represent the possible
transitions or flow of control between these blocks,
typically influenced by control structures such as
loops, conditional statements (e.g., if-else), or
function calls.

In VISUALCODER, the CFG serves as a crucial
component for visualizing and reasoning about a
program’s execution flow. By aligning each code
segment with its corresponding node in the CFG,
we provide the model with a more structured and
intuitive understanding of the dynamic behavior of
the program. This enhanced alignment helps in im-
proving code execution reasoning, error detection,
and prediction of execution outcomes.

To generate the Control Flow Graphs (CFGs)
used in VISUALCODER, we adapted code from
an open-source repository by (Jiang, 2023). The
modifications made to the original code focused
on improving clarity and reducing unnecessary in-
formation in the CFG. Specifically, we removed
certain function call nodes that did not correspond
to any specific line of code, thus eliminating extra-
neous details that could distract the model. Addi-
tionally, we simplified the labels on the edges of
conditional branches by replacing the full condi-
tional statements with "T" (True) and "F" (False).

In addition to the visual representations of Con-
trol Flow Graphs (CFGs), we utilize the Mermaid
language to provide a text-based representation.
The following Mermaid code corresponds to the
CFG depicted in Figure 1:

graph TD
A["X = 1024"] --> B["N = X / 500"]
B --> C["for i in range(10):"]
C --> D["if X % 2 == 0:"]
C --> E["for i in range(0, N):"]
D --> F["N += 1"]
D --> G["G += 1"]
E --> H["X += 100"]
E --> I["print(X)"]

D -->|T| F
D -->|F| G
E -->|T| H
E -->|F| I

A.2 VLM: Patching and Vision Token

In this section, we describe how we process input
contain both text and image using VLM. We use
InternVL2-26B to handle the Control Flow Graph
(CFG) images. The images are first resized to a res-
olution of 448x448, then patched and tokenized
into 16x16 vision tokens <IMG_CONTEXT>.
These vision tokens are inserted between the lan-
guage tokens, enclosed by <img> and </img> tags,
allowing the model to incorporate the visual infor-
mation seamlessly into the multimodal input.

After generating the reasoning steps through
Chain of Thought (CoT), we map each step to its
corresponding language token. To further analyze
the model’s interaction with the visual context, we
calculate the attention scores between each reason-
ing step and the vision tokens. This process helps
us track how much attention the model allocates
to the visual tokens at each step. We then plot a
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heatmap to visualize these attention patterns and
compute the average attention score over the vision
tokens, providing insight into the model’s focus on
visual information during the reasoning process.

A.3 Coding task details
This section describes the three coding tasks used to
evaluate our approach: Input/Output Prediction,
Program Repair, and Fault Localization. These
tasks were selected to assess the model’s ability
with the help of Control Flow Graphs (CFGs).

In Input/Output Prediction, the model predicts
the output of a Python code snippet given specific
inputs, or vice versa. This task tests the model’s
understanding of execution flow, including variable
assignments, loops, and conditionals. CFGs are
crucial here as they provide a visual representation
of the control flow, helping the model trace exe-
cution paths more effectively and make accurate
predictions.

In the Program Repair task, the model is given
a buggy code and must generate a corrected version.
CFGs assist the model by highlighting the control
flow paths that lead to errors, allowing it to focus on
areas where the logic may have broken down. The
use of CFGs helps the model better understand the
code’s intended execution, leading to more accurate
fixes.

The Fault Localization task requires the model
to pinpoint the exact lines of code responsible for
failures. By leveraging CFGs, the model gains a
structured view of the execution flow, enabling it to
trace how different parts of the code are intercon-
nected. This visual representation helps the model
pinpoint problematic lines more effectively by clar-
ifying control paths and dependencies, offering a
deeper understanding of the error’s source.

A.4 Prompt
In this section, we present the different prompt
configurations used to guide the Vision-Language
Model (VLM) in analyzing Python code execu-
tion for Fault Localization task. These prompts
are designed to test different reasoning approaches,
including plain code analysis, Chain-of-Thought
(CoT) reasoning, and the integration of Control
Flow Graphs (CFGs) to enhance the model’s under-
standing of the code execution flow. The prompt
configurations range from basic setups to more
sophisticated ones, as shown in Figure 5, 6, 7, 8.
Furthermore, we implemented a prompt with the
Reference Mechanism, as shown in Figure 9, which

explicitly links the reasoning steps with correspond-
ing CFG nodes, thereby grounding the model’s
understanding of the control flow. Finally, Fig-
ure 13 demonstrates a two-stage prompt that in-
corporates the Reference Mechanism during the
Rationale Generation phase, significantly improv-
ing the model’s capability in error detection and
reasoning.
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You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

Respond with only the problematic line of code that causes termination.

Figure 5: Plain code w/o CoT prompt

You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

As you analyze each line:

1. Examine each line of code sequentially.
2. Use this understanding to support your reasoning about the code’s logic and potential errors.

Think through your analysis step by step, and then respond with only the problematic line of code
that causes termination.

Figure 6: Plain code w/ CoT prompt

You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

You will also be provided with a control flow graph (CFG) image of this code. Respond with only
the problematic line of code that causes termination.

Figure 7: Plain code + CFG w/o CoT prompt
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You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

You will also be provided with a control flow graph (CFG) image of this code. As you analyze
each line:

1. Examine each line of code sequentially.
2. Use this understanding to support your reasoning about the code’s logic and potential errors.

Think through your analysis step by step, considering both the code and its representation in
the CFG image. After your analysis, respond with only the problematic line of code that causes
termination.

Figure 8: Plain code + CFG w/ CoT prompt

You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

You will also be provided with a control flow graph (CFG) image of this code. As you analyze
each line:

1. Examine each line of code sequentially.
2. Reference the CFG to identify which node corresponds to the line you’re currently analyzing.
3. Use this alignment to support your reasoning about the code’s logic and potential errors.

Think through your analysis step by step, considering both the code and its representation in
the CFG image. After your analysis, respond with only the problematic line of code that causes
termination.

Figure 9: VisualCoder prompt
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Stage 1:

You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

You will also be provided with a control flow graph (CFG) image of this code. As you
analyze each line:

1. Examine each line of code sequentially.
3. Use this understanding to support your reasoning about the code’s logic and potential
errors.

After your analysis, provide a detailed rationale explaining what might be wrong with the
code.

Figure 10: Rationale Generation prompt

You are an expert Python programmer.
Analyze the following Python code snippet, which contains error(s) when executing:

{code}

You will also be provided with a control flow graph (CFG) image of this code. As you
analyze each line:

1. Examine each line of code sequentially.
2. Reference the CFG to identify which node corresponds to the line you’re currently
analyzing.
3. Use this alignment to support your reasoning about the code’s logic and potential errors.

After your analysis, provide a detailed rationale explaining what might be wrong with the
code.

Figure 11: Rationale Generation w/ Reference Mechanism prompt

Stage 2:

You have a Python code snippet containing error(s) and a rationale for the error(s).Code:

{code}

Rationale: {rationale}
Using this rationale, please identify the specific line of code that causes termination.
Respond with only the problematic line of code that causes termination."""

Figure 12: Answer Inference prompt

Figure 13: Multimodal-CoT two-stage prompt
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