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Abstract
In this paper, we introduce a learning analyt-
ics framework to analyze the in-context learn-
ing (ICL) behavior of large language models
(LLMs) through the lens of the Zone of Proxi-
mal Development (ZPD), an established theory
in educational psychology. ZPD delineates the
the space between what a learner is capable of
doing unsupported and what the learner cannot
do even with support. We adapt this concept
to ICL, measuring the ZPD of LLMs based on
model performance on individual examples be-
fore and after ICL. Furthermore, we propose
an item response theory (IRT) model to predict
the distribution of zones for LLMs. Our find-
ings reveal a series of intricate and multifaceted
behaviors of ICL, providing new insights into
understanding and leveraging this technique.
Finally, we demonstrate how our framework
can enhance LLM in both inference and fine-
tuning scenarios: (1) By predicting a model’s
zone of proximal development, we selectively
apply ICL to queries that are most likely to ben-
efit from demonstrations, achieving a better bal-
ance between inference cost and performance;
(2) We propose a human-like curriculum for
fine-tuning, which prioritizes examples within
the model’s ZPD. The curriculum results in
improved performance, and we explain its ef-
fectiveness through an analysis of the training
dynamics of LLMs.1

1 Introduction

Human learning is a dynamic and progressive pro-
cess where learners integrate new information into
their knowledge base through interactions with
the environment (Piaget, 1977). Research in ed-
ucation and learning sciences has extensively ex-
plored what makes learning most effective and effi-
cient. Among them, the Zone of Proximal Devel-
opment (ZPD) emphasizes the alignment between
the learner’s capability and the problem’s difficulty
(Vygotsky, 1978). Specifically, ZPD refers to the

1Code is available at https://github.com/nlpcui/llm-zpd

Current ability

What a learner can 
do independently

ZPD: what a learner 
can  do with guidance

what a learner cannot 
do even with guidance

Learning Potential

Figure 1: We conceptualize an LLM’s Zone of Proximal
Development (ZPD) for ICL as the set of queries on
which the model’s performance can be improved with
demonstrations. We introduce a framework to measure
and predict this zone and explore its applications.

range of problems that a learner can solve with
appropriate scaffolding but cannot tackle indepen-
dently. This concept is essential in education as it
identifies knowledge that is valuable for learning,
feasible to acquire, and not yet mastered. There-
fore, learning within ZPD is believed to foster more
effective cognitive development (Chaiklin et al.,
2003; Tharp and Gallimore, 1991).

In this paper, we propose a learning analytics
framework to study the learning behavior of lan-
guage models through the lens of ZPD. In partic-
ular, we focus on in-context learning (ICL), an
emerging ability of LLMs that allows them to learn
from a few demonstrations (Brown et al., 2020;
Wei et al., 2022). Previous studies have primar-
ily focused on strategies for demonstration opti-
mization (Liu et al., 2021; Qin et al., 2023; Rubin
et al., 2021; Ye et al., 2023). However, even with
high-quality demonstrations, the performance of
ICL still varies significantly across tasks and data
(Srivastava et al., 2024). This variability calls for
a more comprehensive examination of the inher-
ent in-context learnability of LLMs on individual
queries.

We first formalize the concept of ZPD in ICL.
Drawing on the parallel between ICL and human
learning from worked examples, we view LLMs as
learners and in-context demonstrations as a form
of scaffolding. Then, based on the model’s prior
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knowledge and its response to ICL, a query set
can be divided into three zones (Z): (1) The first
zone, denoted as Z✓, consists of queries that
can be solved by the model via direct prompting,
representing the model’s prior knowledge; (2) The
second zone, denoted as Z✗→✓, includes queries
that can be solved by the model only with ICL,
representing the model’s ZPD; and (3) The third
zone, denoted as Z✗→✗, contains queries that the
model cannot solve even with ICL, representing
the knowledge beyond the model’s reach. Figure
1 illustrates this conceptualization. This catego-
rization provides a granular look at the model’s
capability, limitations, and interaction with specific
interventions.

We begin by measuring the task-specific zones of
various models (§ 3). Since the ICL performance
is sensitive to the choice of demonstrations and
the ground-truth demonstrations are not available,
it is non-trivial to determine whether a problem
can potentially benefit from ICL. To address this,
we employ a greedy algorithm to construct Ora-
cle demonstrations for each query and use them
to approximate the zone distribution empirically.
Then, we propose to predict the zones of unseen
queries using the item Response theory (IRT; San-
tor and Ramsay (1998)), which jointly captures the
latent traits of the model and query (e.g., ability,
difficulty). In particular, we introduce a variant
of IRT that further takes into account the model’s
in-context learnability to capture the performance
changes with or without ICL (§ 4). We find that
the ICL behavior of LLMs is generally predictable
even without demonstration information, although
the degree of predictability varies across different
datasets and tasks.

Finally, we showcase how our framework en-
hances LLMs in both inference and fine-tuning sce-
narios (§ 5.3). For inference, we propose a selective
ICL strategy, which first predicts the zone of input
queries and then applies ICL only to queries that
are most likely to benefit from ICL (i.e., within the
model’s ZPD Z✗→✓). Experimental results show
this approach achieves competitive or even bet-
ter performance with reduced inference cost. For
fine-tuning, we propose a ZPD-based curriculum
that prioritizes challenging yet learnable training
examples. We find such a curriculum improves
fine-tuning outcomes. Upon further analysis of
training dynamics, we find LLMs exhibit consis-
tent learnability under both ICL and fine-tuning

settings. This consistency explains the effective-
ness of our ZPD-based curriculum and suggests
potential connections between these two learning
paradigms.

In summary, our contributions are threefold:

• We conceptualize the ZPD framework for
LLMs, which provides a new perspective on
analyzing their ICL behavior.

• We introduce a novel IRT variant that cap-
tures LLMs’ in-context learnability and pre-
dicts their performance with or without ICL.

• We showcase two applications of our frame-
work: a selective ICL strategy and a ZPD-
based curriculum, demonstrating its potential
to enhance both LLM training and inference.

2 Related Work

In-Context Learning (Brown et al., 2020) has be-
come a popular paradigm for enhancing the capa-
bilities of LLMs across a wide range of tasks. Pre-
vious work has extensively focused on optimizing
demonstrations, particularly through the selection
(Liu et al., 2022; Rubin et al., 2022; Li et al., 2023)
and ranking (Zhao et al., 2021a; Lu et al., 2022)
of in-context examples. In this paper, we shift
the focus from demonstration optimization to the
LLM and the target query themselves, highlight-
ing the inherent in-context learnability of LLMs on
individual queries. Our study complements these
works, contributing to a holistic understanding of
what makes ICL (un)successful. Another line of
research explores how the ICL capability emerges
and functions, with various hypotheses proposed,
such as task recognition (Xie et al., 2022; Wang
et al., 2024), composition (Li et al., 2024), meta-
gradient learning (Garg et al., 2022; Akyürek et al.,
2023). This paper also aims to understand ICL
but from an empirical perspective by collecting,
analyzing, and predicting ICL behaviors.

Adoption of IRT in NLP. IRT is a set of statistical
models used in educational assessments to measure
the latent abilities of individuals through standard-
ized testing (Lord and Novick, 2008; Santor and
Ramsay, 1998). In recent years, it has become
increasingly popular in NLP. Byrd and Srivastava
(2022) uses IRT to estimate question difficulty and
model skills. Gor et al. (2024) proposes a content-
aware and identifiable IRT to analyze human-AI
complementarity. Polo et al. (2024) argues for the
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adoption of IRT to build benchmarks for efficient
evaluation. In this work, we use IRT to predict
LLM in-context learnability on individual queries
(conceptualized as ZPD) by capturing the behavior
of LLMs before and after (in-context) learning.

Curriculum Learning (Bengio et al., 2009) is the
approach that organizes the training examples such
that the model converges faster and better, which
has been successfully applied in various NLP tasks
(Tay et al., 2019; Platanios et al., 2019; Sachan
and Xing, 2016). Typically, curriculum learning
algorithms organize training examples in increas-
ing order of difficulty. Conversely, there is another
line of research that works in the opposite way to
start with hard examples, namely Hard Example
Mining (Shrivastava et al., 2016; Jin et al., 2018).
In this paper, we propose a ZPD-based curriculum
that strikes a middle point between the two tech-
niques: prioritizing training examples that are chal-
lenging and yet learnable (i.e., within the model’s
ZPD). Similar strategies have been proven effec-
tive in various scenarios (Mindermann et al., 2022).
However, this paper proposes a new framework for
discovering such desired examples, which can be
incorporated into existing approaches.

3 Measuring ZPD of LLMs

3.1 Preliminaries

Let D = {(x1, y1), ..., (xn, yn)} be a dataset
where xi is a query and yi is the ground-truth an-
swer. We define the ZPD ( Z✗→✓) of a model
M on D as a subset of examples on which the
model’s performance can be improved through a
learning trial. In this study, we focus on the ICL
setting and measure learning outcomes by compar-
ing the model’s performance with and without ICL.
Specifically, let c = {(x1, y1)...(xk, yk)∣xj ∈ D}
be a set of demonstrations for x (x ∉ c), we define
Z✗→✓ as:

Z✗→✓ ≜ {x∣F(y∅) < τ,F(yc) > τ}, (1)

where F is a scoring function and τ is a threshold
deciding whether the predicted answer is accept-
able. y∅ and y

c represent the model’s output with
direct prompting and with in-context demonstra-
tions, respectively:

y
∅ = M(T (x)), yc = M(T (c1)⊕ ...⊕ T (x)).

(2)

where T is a template function and ⊕ denotes
string concatenation. Due to the potential interfer-
ence between instruction and demonstration (Sri-
vastava et al., 2024), we adopted a simple prompt
template with minimal instruction to focus on the
effect of demonstration (See Appendix Table 4).

Similarly, we can define the other two subsets as
follows:

Z✓ ≜ {x∣F(y∅) > τ}, (3)

Z✗→✗ ≜ {x∣F(y∅) < τ,F(yc) < τ}, (4)

representing queries that can be solved by M with
direct prompting, and queries that cannot be solved
even with ICL.

This formalization is flexible and can be applied
to other settings. For example, future work could
replace ICL with other prompting strategies or ana-
lyze fine-tuning behaviors by examining the perfor-
mance across different epochs.

3.2 Approximating Z✗→✓ and Z✗→✗

While Z✓ is deterministic from the model’s base
performance {y∅1 , y∅2 , ...}, Z✗→✓ and Z✗→✗

depend on the choice of demonstrations c. In this
paper, we aim to investigate the ideal ICL behav-
ior of LLMs with optimal demonstrations. This is
because our goal is to understand the model’s in-
herent in-context learnability on individual queries
rather than the behavior of a specific ICL strategy.
Since optimal demonstrations for each query are
unavailable, precise measurements of Z✗→✓ and
Z✗→✗ are infeasible. To address this, we first

create Oracle demonstrations—the best demonstra-
tions achievable in a practical setting (with a lim-
ited demonstration pool and restricted computation
resources). Then, we use them to approximate
Z✗→✓ and Z✗→✗.
In concrete, we adopt a retrieve and rank method

to construct Oracle demonstrations. Firstly, we
retrieve a candidate set C for each query. The com-
mon belief is that demonstrations that are similar to
the query are most likely to enhance performance
(Liu et al., 2022). Following previous work (Rubin
et al., 2022), we employ BM25 (Robertson et al.,
2009), a sparse retriever based on surface features,
and SBERT (Reimers, 2019), which is based on
dense sentence encoding. For the two retrievers,
we calculate similarities based on both the (x, y)
pair and the ground-truth answer y only, result-
ing in 2 × 2 × K candidates. However, similarity
may not be the only criterion for demonstration
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selection. To further enrich the candidate set and
recall effective but dissimilar demonstrations, we
randomly sample K candidates from the bottom
50 percentile of the retrieving results, doubling the
candidate size.

Next, we select Oracle demonstrations c using a
greedy scoring approach:

ci = argmax
C\{c1,..,ci−1}ProbM(y∣c1 ⊕ ...ci ⊕ x), (5)

where ci is the i
th selected demonstration and

ProbM(⋅) is the probability from the model M.
In other words, we greedily choose demonstrations
that can maximize the likelihood of the ground-
truth answer. With these demonstrations, the result-
ing Z✗→✓ is a subset of the actual ZPD while
Z✗→✗ is a superset of the actual one. In the rest

of the paper, we use Z✗→✓ and Z✗→✗ to de-
note for the approximated zones unless otherwise
specified.

4 Zone Prediction

In this section, we attempt to build a model to pre-
dict an LLM’s zone distribution on unseen queries.
Essentially, the goal is to predict the model’s perfor-
mance, i.e., whether it can solve a query directly (
Z✓) or with ICL ( Z✗→✓), or not at all ( Z✗→✗).

We propose a novel variant of item response theory
(IRT) to capture the latent traits of the LLM and the
queries. A graphic view of our model is shown in
Figure 2.

4.1 Background of IRT

IRT is a statistical model that predicts the probabil-
ity of individual respondents correctly answering
a set of queries (or items). In this work, we take
a collection of LLMs {M1,M2, ...,Mm} as re-
spondents. The basic 1 Parameter Logistic (1PL)
IRT is defined as:

P (ri,j = 1∣Mi, xj) = σ(θi − dj), (6)

where ri,j is the binary correctness label of M’s
prediction on xi. σ is the sigmoid function. θi
and dj are latent variables (scalars) to be estimated,
representing the ability of the ith model Mi and
the difficulty of the jth query xj . Simply put, IRT

predicts the correctness label based on the gap be-
tween model ability and query difficulty.

The 1PL IRT assumes the monotonic relation-
ship between item difficulty and respondent ability.

𝜃 𝜃! 𝛼 𝛼! 𝑑
Model-wise Query-wise

Observed
Performance w/ ICLw/o ICL

Latent
Traits

𝑦∅ 𝑦"

Figure 2: We assume that a model’s performance on
a given query, yc (with ICL) or y∅ (without ICL), is
determined by latent traits (shadowed nodes, bottom)
of both the model and the query, including the model’s
skill θ, ICL skill θc, the query’s discrimination α, ICL
discrimination α

c, and overall difficulty d.

To relax this, we employ the multi-dimensional IRT
(MIRT, Reckase (2006)), which is defined as:

P (ri,j = 1∣Mi, xj) = σ(θT
i αj − dj), (7)

where the model’s ability is represented as a skill
vector θj ∈ RH. Correspondingly, an item-wise
discrimination vector αi ∈ RH is introduced to
represent its latent traits. A closer alignment be-
tween θi and αj indicates a higher likelihood of a
correct response.

The training objective of IRT is defined as:

LIRT =
M

∑
i=1

N

∑
j=1

CE(P (ri,j), yj), (8)

where CE(⋅) stands for the cross-entropy loss be-
tween predicted probability and the groud-truth
label.

4.2 Content-Aware MIRT

A limitation of MIRT is that it relies on the response
data to infer item traits αi. Therefore, it cannot
generalize to unseen queries during inference. To
overcome this limitation, we use a lightweight neu-
ral network to parameterize item traits based on
their text features. Specifically, for a given query
xj , we first use an embedding model to obtain its
representation ej . Then, we compute its traits by:

dj = f(Wdej + bd);αj = f(Wαej + bα) (9)

where Wd,Wα,bd,bα are learnable weights,
trained together with the IRT model, and f is the
Relu function.

4.3 Adapting MIRT to Learning Dynamics
While the above model can predict the model’s per-
formance on an unseen query, it cannot predict one
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query’s correctness label under two settings and
thus cannot predict three zones simultaneously. We
propose a variant that incorporates the dynamics of
ICL. Concretely, we introduce an additional ICL
skill vector θc for the model and similarly an ICL
discrimination vector αc for the item:

P (ri,j = 1∣Mi, xj) = σ(θT
i αj − dj + θ

cT
i α

c
j),
(10)

where the alignment between θ
c
i and α

c
j represents

the in-context learnability of Mi with respect to
xj . Similar to d and α, αc

j is computed based on
the embedding of x:

α
c
j = f(Wc

αej + b
c
α). (11)

Combining Eq. 7, and 10, we have:

P (r{∅,c}
i,j = 1) = σ(θiαj − dj + g

{∅,c}
θ
c
iα

c
j),
(12)

where r
∅ and r

c are the correctness labels under
direct prompting and ICL. {g∅ = 0, g

c = 1} is a
gating parameter in align with r to ensure that θciα

c
j

are only enabled in the ICL setting. In doing this,
the latent factors are learned such that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ
T
α > d,θ

T
α + θ

cT
α

c > d, if r
∅ = 1,

θ
T
α < d,θ

T
α + θ

cT
α

c > d, if r
∅ = 0, r

c = 1,

θ
T
α < d,θ

T
α + θ

c
Tα

c < d, if r
∅ = 0, r

c = 0.

(13)

The above three situations correspond to Z✓,
Z✗→✓, and Z✗→✗, respectively. We refer to the

proposed model as MIRTICL.
From a multi-task learning perspective, our

model can be seen as jointly training two IRT mod-
els, each with its own ability (θ, θc) and discrimina-
tion (α, αc) parameters, while sharing the overall
item difficulty (d). This allows the model to better
capture the relationships between LM behaviors
across the two settings.

5 Experiments

We experiment with 8 LLaMA models (Touvron
et al., 2023; Dubey et al., 2024) of various
sizes, including LLaMA-2-7B, LLaMA-2-7B-chat,
LLaMA-2-13B, LLaMA-2-13B-chat, LLaMA-3-8B,
LLaMA-3-8B-Instruct, LLaMA-3-70B, and
LLaMA-3-70B-Instruct. In particular, we con-
sider both instruction-tuned (IT) (-chat/Instruct

Figure 3: Zone distribution of various LLMs on the two
datasets. Yellow lines represent the accuracy of KATE.

models) or non-IT versions to examine the influ-
ence of instruction tuning on the model’s ZPD. In
this study, we focus on the mathematical reasoning
and text understanding abilities of LLMs, using
the MathQA dataset GSM8K (Cobbe et al., 2021)
and the Stance detection (Favor, Neutral, Against)
dataset EZStance (Zhao and Caragea, 2023) for
stance detection. Detailed experiment setup can be
found in Appendix A.

We first present and analyze the zone distribu-
tion of various LLaMA models (§ 5.1). Then, we
evaluate the performance of IRT models on zone
prediction (§ 5.2). Finally, we demonstrate two
applications of our framework (§ 5.3).

5.1 Zone Distribution Analysis

We measure the three zones of LLaMA models on
the test set of GSM8K and the validation set of
EZStance. Our observations are as follows.

• The potential of ICL remains largely untapped.
In Figure 3, we present the zone distributions of
various models. Ideally, the accuracy of ICL should
be the combined proportion of Z✓ and Z✗→✓,
which highlights the great potential of ICL. For
instance, on the GSM8K dataset, the 8B-Instruct
model, with the help of Oracle demonstrations, can
achieve competitive performance compared to the
two 70B models.

Note that, however, this is only a lower bound
of ideal ICL performance, as the Oracle demon-
strations are still sub-optimal. Nevertheless, the
current method still falls short of fully utilizing
even this lower bound. For reference, we high-
light the accuracy (yellow line) of KATE (Liu et al.,
2021), a similarity-based demonstration selection
strategy (with paraphrase-mpnet-base-v2). On
average, it lags by around 20% on the two datasets.
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Figure 4: Increased and decreased accuracy by KATE
on GSM8K (left) and EZStance (right).

• In-context demonstrations can be harmful. In
Section § 3, we divide a query set into three zones
according to the model’s performance difference
with and without ICL. However, sometimes, ICL
can also degrade the performance. We denote the
collection of such queries as Z✓→✗. We do not
frame Z✓→✗ into our formalization (§ 3.1) but
merge it into Z✓ because we focus on the ideal
ICL behavior given Oracle demonstrations. How-
ever, this negative effect of ICL is non-negligible
in a practical setting.

With KATE as a case study, we compare its in-
creased accuracy (i.e., the proportion of recalled
ZPD ( Z✗→✓) examples) and decreased accuracy
(i.e., the proportion of Z✓→✗ examples) in Fig-
ure 4. The sum of the two is the overall perfor-
mance of KATE. We can see Z✓→✗ can reduce
up to 14% and 18% accuracy on GSM8K and EZS-
tance. Besides, this negative effect is also model-
dependent. For example, LLaMA-2-7B-chat and
LLaMA-2-13B-chat are particularly vulnerable to
harmful demonstrations, and this negative effect
even overwhelms the benefit for LLaMA-3-70B.
This granular look at the ICL performance provides
a new perspective to improve ICL strategy: recall-
ing examples in Z✓ while minimizing Z✓→✗.
Previous work mainly focused on the first direc-
tion and we will showcase how our IRT model can
enhance ICL through the second way in § 5.3.1.

Zones GSM8K EZStance

Max Min Avg Max Min Avg

Z✓ 0.89 0.74 0.84 0.91 0.46 0.70
Z✗→✓ 0.74 0.21 0.58 0.78 0.34 0.58
Z✗→✗ 0.58 0.20 0.42 0.87 0.32 0.53

Table 1: Pairwise overlap coefficients among zones of
different LLMs.

Model GSM8K EZStance

DP ICL Overall DP ICL Overall

IRT1PL 0.808 0.769 0.748 0.736 0.617 0.644
IRT2PL 0.788 0.740 0.728 0.739 0.631 0.651
MIRT 0.837 0.770 0.743 0.760 0.608 0.799
MIRTICL 0.833 0.821 0.862 0.770 0.662 0.799

Table 2: Performance (AUC) of various IRT models on
the two datasets. The best results are in bold. Results
of Accuracy can be found in Appendix Table 5.

• ZPD ( Z✗→✓) of LLMs differ significantly. We
measure the overlap between zones of different
models by calculating their averaged pairwise Over-
lap Coefficient, defined as:

OVERLAP(A,B) = ∣A ∩B∣
min(∣A∣, ∣B∣) , (14)

where A and B are the zones to compare. The
results are shown in Table 1, where we can see
examples in Z✓ are largely shared across various
models, while examples in Z✗→✓ and Z✗→✗

do not highly overlap, indicating each LLM has its
own ZPD. This suggests that ICL strategies should
take into account both the data aspect (e.g., similar-
ity) and the model, corroborating the conclusion of
Peng et al. (2024).

5.2 Zone Prediction Evaluation
We compare our proposed IRT model MIRTICL (Eq.
12) with the following baselines: i) 1PL model
(IRT1PL, Eq. 6), ii) 2PL model, which is simi-
lar to Eq. 7 but with θ and α as scalars, and iii)
Multi-Dimensional IRT MIRT (Eq. 7). We evalu-
ate their ability to predict LLM performance under
both direct prompting (DP) and ICL, using AUC
as the primary metric. See Appendix A.2 for the
implementation details. Note that aside from our
MIRTICL, other baseline models are trained solely
on DP data. Nevertheless, we can assess their gen-
eralization ability to the ICL setting: since AUC
assesses the relative ranking of predicted probabili-
ties, these models should also achieve good AUC
if the LLM’s probabilities of correctly answering
individual queries are consistent across both set-
tings.

• ICL behavior is, to varying degrees, predictable
without demonstrations. We present the AUC
results in Table 2. As a demonstration-agnostic
model, MIRT ICL achieves reasonably decent perfor-
mance GSM8K but comparatively weaker results
on EZStance. We interpret the difference through
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L2-7B L2-13B L3-8B L3-70B
base chat base chat base instr. base instr.

GSM8K +.10 +.40 +.13∗ +.24 +.29 +.07 +.31 +.53
EZStance −.45 −.60 −.47 −.25 −.35 −.28 −.48 −.36

Table 3: Pearson Correlation between θ
T
α−d (model’s

ability to solve the query with direct prompting) and
θ
cT
α

c (the additional gain obtained by ICL). Results
with ∗ indicate p-value> 0.05.

the predictability and sensitivity of ICL: for certain
tasks and datasets, ICL performance may hinge
more on the model’s inherent ICL capacity and the
query’s difficulty. While for others, it may depend
more on the demonstrations or prompts, making
the ICL behavior less predictable without the infor-
mation of demonstrations. Existing work has been
focusing on measuring and mitigating sensitivity
(Zhao et al., 2021b). We highlight a complemen-
tary perspective: measuring and leveraging (See
§ 5.3 for applications) the predictability of ICL
behavior.

• (In)consistency between difficulty and in-context
learnability. In Eq. 12, θα − d represents the
model’s ability to solve the query with DP (or the
query’s difficulty), while θ

c
α

c captures the addi-
tional gain achieved through ICL, reflecting the
model’s in-context learnability of the query. To
examine the relationship between the two terms,
we compute their Pearson correlation. The results,
presented in Table 3, reveal that for the GSM8K
dataset, these two terms exhibit weak or moderate
positive correlations (from +0.07 to +0.53). Inter-
estingly, the correlation on EZStance is stronger but
negative, meaning difficult examples under direct
prompting (lower θT

α − d) seem to benefit more
from ICL (higher θ

cT
α

c) and vice versa. This
suggests that a query’s difficulty and its in-context
learnability are not always aligned. We attribute
this phenomenon to the differing abilities required
for direct prompting versus ICL. The former pri-
marily relies on the model’s prior knowledge of
the query, while the latter depends on its ability
to leverage contextual information. As a result,
this inconsistency could arise in certain tasks and
queries where the knowledge is missing but easy
to learn in context. A notable example is classi-
fication with flipped or semantically unrelated la-
bels (Wei et al., 2023), where an LM struggles to
solve the disrupted task in the regular setting but
can successfully learn the new mapping through
demonstrations.

5.3 Applications
In this section, we demonstrate how our framework
can improve in-context learning through a selective
ICL strategy (§ 5.3.1) and a ZPD-derived curricu-
lum for fine-tuning LLMs (§ 5.3.2).

5.3.1 Selective ICL
Approach. While ICL has demonstrated effec-
tiveness across a wide range of tasks, it costs k
times additional input tokens (k = the number of
demonstrations). Moreover, as discussed in § 5.1,
ICL sometimes results in worse performance, even
with carefully retrieved demonstrations. To address
these issues, we propose Selective ICL (SELICL).
In specific, given a query xi, we first predict its
correct probability with direct prompting p

∅
i and

the correct probability with ICL p
c
i using Eq. 12

with g = 0 and g = 1 respectively. Then, we decide
the inference prompt for xi by:

{ T (c̃1)...⊕ T (x) if p∅ < τ1 and p
c > τ2

T (x) Otherwise.
(15)

where {c̃1, ..., c̃n} are demonstrations retrieved by
a certain strategy. τ1 and τ2 are predefined thresh-
olds. A lower p∅ (< τ1) and a higher pc ( > τ2)
indicate the model is unable to solve this query
with direct prompting but is likely to solve it with
ICL. In other words, we apply ICL only to queries
within the model’s ZPD. By doing so, we aim to re-
duce unnecessary costs by avoiding ICL for either
too easy (p∅ < τ1) or too hard (pc > τ2) queries.
Furthermore, this can also potentially improve per-
formance by mitigating the negative effect of ICL
observed in Figure 4.

Result and Analysis. We compare our SELICL

with the vanilla ICL that applies demonstrations to
all queries (denoted as FULICL). Specifically, we
use KATE to retrieve demonstrations for FULICL.
However, it is worth noting that SELICL is orthog-
onal to other ICL strategies for two reasons: (1)
It focuses on determining when to apply ICL, in-
dependent of how demonstrations are selected or
organized; (2) The IRT model is trained to predict
the model’s ICL performance given Oracle demon-
strations. Consequently, pc is expected to serve as
the predicted upper bound for any ICL strategy.

To select τ1 and τ2 for SELICL, we per-
form a grid search on the IRT validation
set by varying their values within the range[0.01, 0.02, . . . , 0.99]. For each combination, we
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Figure 5: Accuracy and inference cost (number of input tokens) of different ICL strategies on the GSM8K dataset.
▼ is the performance of the baseline FULICL, which applies ICL to all the queries. ◯ and ★ are the performance
of SELICL under various thresholds τ1 and τ2 (not shown), where ★ highlights cases in which SELICL achieves
better or equal accuracy with less input tokens compared to the baseline (▼).

decide whether or not to apply ICL to each query
according to Eq. 15 and compute the overall accu-
racy and number of input tokens. Since the prompts
and model outputs are already collected when con-
structing the IRT dataset (Appendix A.2), these
results can be obtained without additional model
inference.

Then, we plot the Pareto curve (Deb, 2011) of
SELICL, approximated with scatter points. In multi-
objective optimization, each point on the Pareto
curve represents a Pareto-optimal solution that can-
not be further improved in one objective without
compromising the other (in our case, accuracy and
number of input tokens).

Results for GSM8K are shown in Figure 5, and
results for EZstance are available in Appendix Fig-
ure 8. Solutions that are dominated2 by others
are discarded (apart from the baseline results (▼)
for comparison). As can be seen, for 6 out of 8
models, SELICL with proper thresholds (★) can
dominate FULICL. Overall, SELICL can serve as
a tool to trade off accuracy and cost in resource-
limited scenarios. SELICL is paticularly successful
for LLaMA-2-7b-chat and LLaMA-70B-Instruct.
Combining with previous findings, both models
have relatively narrow ZPD (Figure 3) and are more
susceptible to the negative effects of ICL (Figure
4), suggesting that greater caution is needed when
applying ICL to them.

2In the context of a Pareto curve, a solution dominates
another if it is at least as good in all objectives and strictly
better in at least one objective.

Algorithm 1 ZPD-based Curriculum
Input: Training set D, model M, correct probability with

DP p
∅ and with ICL p

c, bucket k, epoch e

Output: Trained model M∗

1: D∗ ← Sort(D, pci − p
∅
i )

2: {D1, ...,Dn} ← SplitData(D∗) ; Dtrain ← ∅
3: for i = 1, i ≤ k, i++ do
4: Dtrain ← Dtrain ∪Di ▷ Update training set
5: for j = 1, j ≤ e, j++ do
6: Train(M,Dtrain);
7: end for
8: end for

5.3.2 ZPD-based Curriculum

It is generally believed that the success of ICL re-
lies on the model’s prior knowledge about the query
(Xie et al., 2022; Li et al., 2024). Therefore, we
assume that queries that can be enhanced by ICL
( Z✗→✓) are more learnable than those unsolv-
able by ICL ( Z✗→✗) but also more valuable for
learning than those already solvable by DP ( Z✓).
Motivated by this, we proposed a ZPD-based cur-
riculum learning algorithm for fine-tuning.
Approach. Typically, curriculum learning consists
of a ranking algorithm, which sorts examples ac-
cording to a certain criterion, and a scheduling al-
gorithm, which sequences examples for training. In
our approach, we rank training examples according
to p

c − p
∅ (Eq. 15), which represents the learning

gain brought by ICL. For scheduling, we employ
the baby-step algorithm (Spitkovsky et al., 2010),
which splits examples into buckets and accumula-
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Figure 6: Comparison between random and our ZPD-
based curriculum on two datasets.

tively introduces new buckets. The overall process
is outlined in Algorithm 1.

Results and Analysis. We compare our algo-
rithm against a random baseline. Although simple,
random is the most widely used baseline in prac-
tice and is not necessarily a weak one, as many
curriculum strategies fail to outperform it in lan-
guage modeling (Campos, 2021). We fine-tune
the LLaMA-8B-Instruct model separately using
the two methods with the same scheduler for 6
epochs. See experimental details in Appendix A.3.
As shown in Figure 6, our curriculum results in
faster convergence and improved performance in
most cases. To understand why it works, we ana-
lyze the training loss of examples in different zones.
Specifically, we compute the mean and variance
of each example’s loss across epochs. The two met-
rics reflect the convergence behavior of individual
examples: a higher mean indicates the example
is harder to learn, while a higher variance indi-
cates the model is ambiguous about the example
(Swayamdipta et al., 2020).

For fair analysis, we fine-tune a new
LLaMA-8B-Instruct model on the GSM8K
dataset for 5 epochs without any curriculum.
Figure 7 shows the loss information. We found
consistent learnability between in-context learning
and fine-tuning scenarios: examples in Z✗→✗ are
the hardest to learn, followed by Z✗→✓

3, and
lastly Z✓. This confirms that our curriculum
works as expected: prioritizing examples that are
learnable and informative (not yet learned). Such a
strategy has been shown effective for various tasks
and model architectures (Mindermann et al., 2022;
Fan and Jaggi, 2023), and our framework provides
a new way to discover these examples.

3(Since we use sub-optimal Oracle demonstrations, some
Z✗→✓ examples are not recalled and misclassified into
Z✗→✗. As a result, the actual loss value of Z✗→✓ data

tends to be slightly closer to Z✗→✗.)

Figure 7: Mean and variance of training loss for queries
in different zones. Results are computed over 5 epochs.

6 Conclusion

This work presents a novel framework based on the
Zone of Proximal Development (ZPD) theory to an-
alyze the ICL behaviors of LLMs. We thoroughly
discuss the formalization, measurement, prediction,
and application of ZPD in LLMs. Our framework
serves as an effective tool for understanding the
potential, limitations, and complex dynamics of
ICL. Furthermore, we demonstrate its applicability
in both inference and training scenarios.

Limitations

We discuss the limitations of this work from the
following aspects. First, due to the unavailability
of optimal in-context demonstrations, we can only
approximate the ZPD of LLMs, which is a lower
bound of the model’s actual in-context learnability.
This challenge is as nuanced and complex as under-
standing human learning: one can never precisely
measure the potential of human learners. Second,
we investigate the ZPD of LLMs in a simplified
scenario where we only consider demonstrations as
guidance and use basic templates without instruc-
tions to minimize confounding factors. In practice,
ICL is often combined with other prompting strate-
gies, whose influence may warrant further explo-
ration. Finally, the ZPD is a dynamic range that
evolves with the learner’s knowledge development.
Our framework is designed to measure and lever-
age an LLM’s current ZPD, but it is less suited to
modeling its developing process (e.g., across differ-
ent checkpoints during pre-training or fine-tuning).
In the future, more advanced learning analytics
approaches, such as knowledge tracing, could be
adopted to enhance our framework.
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A Experimental Setups

A.1 Inference Setting

The datasets are used under the MIT License and
with their intended use. For models, we use
LLaMA checkpoints from Hugging Face Transform-
ers (Wolf et al., 2020). We run experiments with
up to 8× RTX 4090 24G GPUs. e. Due to memory
constraints, we use Float16 precision for inference,
with each run taking around 1~4 hours, depending
on the model and data size. The prompt template
for GSM8K and EZstance are in Appendix Table 4.
For ICL, we set the number of demonstrations to 8
following (Li et al., 2023; Rubin et al., 2021).

Dataset Prompt Template

GSM8K Question: {math_problem}

Answer: {step_by_step_answer}.

EZStance
Text: {sentence}

Question: Which stance-"favor,"
"against," or "neutral"-does the above
text express toward {target} ?
Answer: {stance} .

Table 4: Prompt templates for the two datasets.
highlighted parts are inputs.

A.2 Implementation Details of IRT

Dataset Construction. The dataset for the IRT
model is built upon LLM outputs. First, we con-
struct Oracle demonstrations using the approach de-
scribed in § 3. Then, we run LLMs using prompts
in Appendix Table 4 in different settings (DP or
ICL). The outputs are represented as tuples consist-
ing of <model_id, example_id, input, output,
setting, label>. This results in total 2 (Direct
prompting or ICL setting) ×M (Number of LLMs)
× N (Number of queries) instances, where M = 8,
NGSM8K = 1319, NEZStance = 6703. We further
split them into 80% training set, 10% validation
set, and 10% test set.
Training Setup. We set the dimension of latent
traits θ,α,θ

c
, α

c to 32. Queries are encoded
with SBERT (paraphrase-mpnet-base-v2) with
an embedding size of 768. We train all the models
for 10 epochs with a learning rate of 2e − 4 and
batch size of 16. Traditionally, IRT is optimized
by marginalized maximum likelihood estimation
(Chalmers, 2012). However, this does not scale
well to large datasets (Lalor and Rodriguez, 2023).
We follow Gor et al. (2024) to use Adam (Kingma,

2014) to optimize our model. The best model is se-
lected based on the performance on the validation
set.

A.3 Details of Fine-tuning
We fine-tune LLaMA-3-8B-Instruct to evaluate
our curriculum learning algorithm (§ 5.3.2). Since
LLaMA models might already be fine-tuned on the
training set of GSM8K (Zhang et al., 2024), we
randomly sample 1,000 instances from the test set
for fine-tuning and use the remaining 319 instances
for evaluation. The EZStance dataset is curated
after the release of LLaMA-3 and, therefore, has no
such concern. We sample 5,000 examples from
the training set for fine-tuning and directly evaluate
the model on the test set. With the scheduler in
Algorithm 1, we split the dataset into 3 buckets and
fine-tune the model on each bucket for 2 epochs
with a learning rate of 1e − 5 and batch size of 4.

B Additional Results

B.1 Additional Results of IRT
The accuracy of IRT models is in Table 5. Note
that baseline models are not trained on ICL data
and therefore their accuracy is not indicative. We
report it only for the completeness of the results.

Model GSM8K EZStance

DP ICL Overall DP ICL Overall

IRT1Pl 69.1 39.6 56.7 76.1 45.6 63.1
IRT2PL 70.4 40.2 58.7 75.3 46.4 63.0
MIRT 68.9 47.2 59.8 76.6 45.9 63.5
MIRTICL 77.4 78.4 77.9 77.0 68.5 72.8

Table 5: Performance (Accuracy % ) of various IRT
models. The best results are in bold.

B.2 Additional Results of SELICL

The result of SELICL on the EZStance dataset is in
Appendix Figure 8.
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Figure 8: Results of SELICL on EZStance. See detailed explanations in Figure 5.
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