
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 6339–6358

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Weight-based Analysis of Detokenization in Language Models:
Understanding the First Stage of Inference Without Inference

Go Kamoda1 Benjamin Heinzerling2, 1 Tatsuro Inaba3 Keito Kudo1

Keisuke Sakaguchi1, 2 Kentaro Inui4, 1, 2

1Tohoku University 2RIKEN 3Kyoto University 4MBZUAI
Correspondence: go.kamoda@dc.tohoku.ac.jp

Abstract

According to the stages-of-inference hypothe-
sis, early layers of language models map their
subword-tokenized input, which does not nec-
essarily correspond to a linguistically mean-
ingful segmentation, to more meaningful rep-
resentations that form the model’s “inner vo-
cabulary”. Prior analysis of this detokeniza-
tion stage has predominantly relied on probing
and interventions such as path patching, which
involve selecting particular inputs, choosing
a subset of components that will be patched,
and then observing changes in model behavior.
Here, we show that several important aspects
of the detokenization stage can be understood
purely by analyzing model weights, without
performing any model inference steps. Specifi-
cally, we introduce an analytical decomposition
of first-layer attention in GPT-2. Our decompo-
sition yields interpretable terms that quantify
the relative contributions of position-related,
token-related, and mixed effects. By focusing
on terms in this decomposition, we discover
weight-based explanations of attention bias to-
ward close tokens and attention for detokeniza-
tion.

github.com/gokamoda/lm-detokenization

1 Introduction

Language models (LMs) (Vaswani et al., 2017;
Radford et al., 2019; Brown et al., 2020; Dubey
et al., 2024; Gemma Team, 2024) operate on se-
quences of subword tokens (Kudo, 2018; Sennrich
et al., 2016). Consequently, LMs encounter many
words and names, e.g., “Libertarian”, not in their
natural form but split into parts such as “Liber” and
“tarian”. Since such subword sequences are not nec-
essarily linguistically meaningful, it is believed that
a core function of early LM layers is to detokenize
(Elhage et al., 2022) sequences of subword tokens
into more meaningful representations of words and
names that, taken together, form the LM’s inner

vocabulary (Kaplan et al., 2024). This inner vocab-
ulary contains the basic meaning representations
on which subsequent stages of inference operate
(Lad et al., 2024). However, evidence for the detok-
enization hypothesis has so far only been collected
from empirical experiments that require selecting
specific inputs and/or training probes in order to
localize layers showing behavior consistent with
detokenization (Gurnee et al., 2023; Kaplan et al.,
2024). Here, we take an alternative approach. By
developing a new decomposition of first-layer at-
tention in GPT-2, we show that several important
aspects of detokenization can be understood from
model weights alone, without training probes or
performing any inference steps (Fig. 1).

A crucial part of detokenization is attention to
tokens that, taken together, comprise a word or
phrase. Prior work has analyzed this n-gram atten-
tion aspect of detokenization (Gurnee et al., 2023;
Kaplan et al., 2024). However, these analyses did
not disentangle token content effects from posi-
tional biases. Although not in the context of detok-
enization, Dar et al. (2023) and Elhage et al. (2021)
analyze the interaction between pairs of vocabu-
laries in the attention layer of GPT-2 and newly-
trained model, respectively. However, they do not
take into account the effect of LayerNorm. Go-
ing beyond prior work, we analyze the effect of
token representation without positional informa-
tion on attention weights while fully considering
LayerNorm.

While such token-deriving attention is an im-
portant aspect, it is not sufficient for performing
detokenization. Another important aspect is atten-
tion to close tokens. We conduct weight-based
analysis and show that higher attention is assigned
to positionally close tokens in the first layer of
GPT-2 (Radford et al., 2019), regardless of the in-
put token (Sections 5.1 to 5.3). In particular, we
identify two components in the learned absolute
position embeddings The first component can be

6339

mailto:go.kamoda@dc.tohoku.ac.jp
https://github.com/gokamoda/lm-detokenization

Figure 1: Focusing on the token/position embeddings, first LayerNorm layer, and the first attention layer, we conduct
weight analyses and show high attention scores are assigned to close (top middle; Sections 5.1 to 5.3) and related
(top right; Section 4), supporting the detokenization hypothesis. We also show that the high attention score to the
first token derives from LayerNorm (bottom middle; Section 6.4). Regarding token embedding, we also discuss the
relationship between token frequency and LayerNorm (bottom right; Section 6.3).

seen as a linear bias component, similar to AL-
iBi (Press et al., 2022). The second component has
a sinusoidal shape, which is reminiscent of sinu-
soidal (Vaswani et al., 2017) and rotary (Su et al.,
2024) position encoding. In superposition, these
two components induce an attention bias towards
close tokens.

In summary, we analyze the first attention layer
in GPT-2, separating computations deriving from
position embedding and token embedding. As a
whole, our results comprehensively explain and
support the mechanism of detokenization in that
attention layers attend to related tokens that are
positioned close.

More broadly, we worked on the internal under-
standing of the model inference without selecting
prompts and running inference. This paper shows
the first findings in this view, providing more theo-
retical proof of underlying mechanisms.

2 Background

Early layers of LMs are hypothesized to de-
tokenize over-segmented words and phrases. In
this section, we briefly provide the necessary back-
ground on the detokenization hypothesis. We also
discuss relevant positional encoding schemes since
positional information plays an important role dur-
ing detokenization.

2.1 Detokenization

Elhage et al. (2022) introduce de-tokenization to
explain that initial layers of the language model
they trained contribute to mapping multi-token or
compound words to a “semantic representation”.

For example, they found neurons responding to
“Libertarian”, which was tokenized into “Libert”
and “arian”. Lad et al. (2024) use this term as
the name of the hypothesis (“detokenization hy-
pothesis”) for the first stage of inference where
language models “integrate local context to convert
raw token representations into coherent entities”.
Based on the detokenization hypothesis, Kaplan
et al. (2024) collect multi-token words, input them
to a model, and use patch scope technique (Ghande-
harioun et al., 2024) to inspect if original tokens can
be recovered from a single hidden state between
intermediate layers. Gurnee et al. (2023), focusing
on MLP neuron activations, train probes that distin-
guish n-grams, finding “compound word neurons”.
Geva et al. (2023), although they do not mention
“detokenization”, report that language models build
multi-token subject representations, such as “Beats
Music”, from raw token representations in the early
layers.

In this work, we show some aspects of the detok-
enization process that can be understood just from
the weights of the target LM alone, without running
a single forward or backward pass.

2.2 Positional Encoding

Transformer-based language models explicitly use
architectures that catch positional information.
Vaswani et al. (2017) originally employed “posi-
tional encoding” defined by sine and cosine func-
tions of different frequencies and added a vector
representing the absolute token position at the em-
bedding layer. Models like BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) use simi-

6340

lar architecture, except the position embeddings
are learned through pre-training. Yamamoto and
Matsuzaki (2023) report that RoBERTa, an en-
coder model, learns sinusoidal position embedding
through training, which contributes to assigning
high attention scores to close tokens. GPT-2 (Rad-
ford et al., 2019) also uses learned absolute position
embedding, but they leave analyses of causal mod-
els, which showed different trends from encoder-
decoder models in their analyses, to future work.

As another method for positional encoding,
ALiBi “biases query-key attention scores with a
penalty that is proportional to their distance” (Press
et al., 2022). We show in Section 5.1 that GPT-2
learns both the sinusoidal position bias, which re-
lates with Yamamoto and Matsuzaki (2023) and
the linear bias which relates with ALiBi.

3 Decomposing the First Attention Layer

In this study, we select GPT-2 as our model of
analysis, following prior work (Lad et al., 2024;
Dar et al., 2023), which investigates detokenization
and/or attention trends. GPT-2 is also a model that
is often analyzed in prior works focusing on model
interpretability in general (Geva et al., 2023; Hanna
et al., 2023; Conmy et al., 2023).

Before conducting weight analyses, we rede-
fine some of the weights to make analyses simple.
Specifically, focusing on LayerNorm and attention,
we fold in multiple linear transformations into a
single linear transformation and ignore terms that
can be ignored. We describe our analysis settings
in the following subsections, showing it is mathe-
matically equivalent to the original computation in
the GPT-2 model.1

3.1 Embedding

In GPT-2’s Embedding layer, the initial hidden
state is computed based on the Token ID and the
absolute position of the token. Let the Token ID
of the i-th token be denoted as IDi, and the Token
Embedding Matrix as E ∈ R|V |×d, where |V | is
the size of the vocabulary, and d is the embedding
dimension. Additionally, GPT-2 employs absolute
position embeddings, with the position embedding
matrix denoted as P ∈ RL×d, where L is the max-
imum sequence length. The output of the Embed-
ding layer at position i, xi, is thus represented as

1We provide the detailed notation and decomposition in
Appendices A and B

follows:
xi = eIDi + pi (1)

3.2 Layer Normalization
The Transformer architecture applies layer normal-
ization at various points. The specific form of layer
normalization used in GPT-2, namely LayerNorm
can be expressed 2 as follows:

LN(x) :=
x

σ(x)

(
I − 1

d
1⊤1

)
diag(γ) + β

(2)

σ(x) :=
√
Var(x) + ϵ (3)

where ϵ is a small constant added to prevent di-
vision by zero, and γ,β ∈ Rd are learnable pa-
rameters. Thus, once division by σ(x) has been
computed, LayerNorm is simply an affine trans-
formation. Originally introduced to stabilize and
speed up model training (Ba et al., 2016), from
the perspective of interpretability, this component
is mainly viewed as a nuisance factor that compli-
cates analysis due to the appearance of the variance
term Var(x) taken over the hidden state x. While
interpretability work has dealt with LayerNorm by
“folding” the affine transformation part into other
components (Nanda, 2023), ignoring it (Dar et al.,
2023), or removing it altogether (Heimersheim,
2024), we will show that the LayerNorm variance
plays an important role by in effect acting as an
if-then condition on token positions.

3.3 Attention
The role of attention is to dynamically mix con-
textual information into the representation of the
current token. In a causal model, given current
position i and the context information X , the at-
tention layer with H heads performs the following
computation:

ATTN(i,X) :=

H∑

h=1

i∑

j=1

αi,j,hvh(xj)W
O
h + bO

(4)
where vh(xj) is the value vector of dimension
d′ = d/H associated with token representation
xj , matrix WO and vector bO are the weight and
bias of the affine output transformation, and the
attention weights αi,j,h from token position i to j
in head h with

∑
j αi,j,h = 1 are given by:

αi,j,h := softmax
xj∈X,j≤i

(
si,j,h/

√
d′
)

(5)

2We underline symbols from the original formulation to
distinguish them from symbols in our reformulation in 3.4

6341

Here, si,j,h are unnormalized attention scores:

si,j,h := qh(xi)kh(xj)
⊤ (6)

where qh and kh are affine transformation from an
input x to a query vector and key vector:

qh(x) := xWQ
h + bQh (7)

kh(x) := xWK
h + bKh (8)

3.4 Reformulating LayerNorm and Attention
From Eqs. 4 and 5, it can be observed that in the
computation of ATTN, input x are always first sub-
jected to an affine transformation. Because the
input to ATTN is the output of LN, the linear part
of LN can be absorbed into the affine transforma-
tions for the qh, kh and vh functions in ATTN.
Therefore, instead of Eq. 2, we redefine LN:

LN(x) := x/σ(x) (9)

We also redefine the affine transformation that is
applied to qh in Eq. 7, with analogous redifintions
for kh and vh:

WQ
h :=

(
I − 1

d
1⊤1

)
diag(γ)WQ

h (10)

bQh := βWQ
h + bQh (11)

Next, we reformulate the unnormalized attention
scores si,j,h defined in Eq. 6:

si,j,h = qh(xi)W
K⊤
h x⊤

j + qh(xi)b
K⊤
h (12)

Note that in Eq. 5, the softmax is applied over token
positions j, while the second term in Eq. 12 does
not depend on j, i.e., when computing the attention
from token position i to other tokens, this term is
a constant. Since the softmax is invariant to the
addition of a constant, this term can be ignored in
analysis, and by extension, this means that the bias
bKh is actually completely meaningless. By further
expanding Eq. 12, we obtain:

si,j,h := xiW
QK
h x⊤

j + bQK
h x⊤

j (13)

with

WQK
h := WQ

h WK⊤
h (14)

bQK
h := bQhW

K⊤
h (15)

This reformulation of the attention score computa-
tion is the basis for our decomposition, which we
will perform following subsection.

3.5 Decomposition

The first term in Eq. 13 depends on the hidden state
of the present token xi and the hidden state of the
past token xj . That is, this term becomes large
when the two hidden states xi and xj are similar
under the linear projection WQK

h , which is why
we will call this term the “comparison term”. The
second term in Eq. 13 depends only on the hidden
state of the past token xj and is independent of
the present token i. A large bQK

h x⊤
j value means,

figuratively, that token j self-asserts its relevance
regardless of context, which is why call this term
the “self-assertion term”.

So far we have ignored positional encoding. The
input to the first attention layer consists of the token
embedding eIDi and position embedding pi:

xi :=
eIDi + pi

σ(eIDi + pi)
(16)

By plugging Eq. 16 into Eq. 13 and expanding, we
obtain a decomposition of the first layer’s attention
scores into six terms:

si,j,h =

T ee
i,j,h

eIDiW
QK
h e⊤IDj

σiσj
+

T
pp
i,j,h

piW
QK
h p⊤

j

σiσj

+

T
pe
i,j,h

piW
QK
h e⊤IDj

σiσj
+

T
ep
i,j,h

eIDiW
QK
h p⊤

j

σiσj

+

T e
j,h

bQK
h e⊤IDj

σj
+

T
p
j,h

bQK
h p⊤

j

σj

(17)

where σi := σ(eIDi + pi). For brevity, we will
refer to each of the six terms in Eq. 17 using the
underset blue alias.

With this decomposition in place, we are now
ready to analyze specific terms. Starting with the to-
ken comparison term T ee, we will show that it can
be understood as representing token-token affini-
ties and use it to identfy detokenization heads (Sec-
tion 4). Then we show how the two purely position-
related terms T p and T pp contribute to detokeniza-
tion by biasing attention towards preceding tokens
(Section 5). Finally, we analyze the remaining three
terms, which are not directly related to detokeniza-
tion, in Section 6.

6342

修⼠論⽂予備審査 5

DetokenizationToken 𝑗 (rank)Token 𝑖Head
_sapiens_sap (1)iens4
_Sapiens_Sap (3)iens4
_sapiens_sap (1)iens7
AliensAl (2)iens7
_aliens_al (5)iens7
LibertarianLiber (1)tarian4
_Libertarin_Liber (2)tarian4
_Peter_Jackson_Peter (1)_Jackson7
_Jesse_Jackson_Jesse (2)_Jackson7
_Michael_Jackson_Michael (3)_Jackson7
Michael_JacksonMichael (4)_Jackson7
Peter_JacksonPeter (5)_Jackson7

AUROCHead
0.887
0.8111
0.796
0.730
0.694
0.633
0.6210
0.552
0.448
0.401
0.409
0.295

A B

C

D

Figure 2: A: Examples of support for detokenization. When the current position token is “iens”, the past token that
yields the largest T ee value (=Rank 1) is “_sap” in head#4 and head#7. B: Heatmap of T ee for head#7 and head#1.
Tokens are randomly sampled from the vocabulary for visualization. C: ROC of head#7 and head#1 when token i
is “iens”. D: Average AUROC for each head. Heads with high AUROC values contribute to the reconstruction of
bi-grams, consequently contributing to detokenization.

4 Detokenization and Token Affinity

The token comparison term T ee is highly rel-
evant to detokenization because its numerator
eIDiW

QK
h e⊤IDj

compares the embedding of the cur-
rent token eIDi and the past token eIDj through the
linear transformation WQK

h . A large T ee value
means that the source token is biased to pay high
attention to the target token.

In this section, we show examples of detokeniza-
tion performed by T ee (Section 4.1) and investigate
which heads actually contribute to detokenization
(Section 4.2).

4.1 Examples of Detokenization
Here, we show some examples of detokenization,
where attention heads assign high T ee value to to-
kens that form words or two-token entities together
with source (i.e. current) token.

First, we compiled some words or entities that
are split into two tokens by the GPT-2 tokenizer
(e.g., “sapiens”). For each instance, we fix the
second token (“iens”) id as IDi and compute T ee

against all IDj in vocabulary V in all heads. In
Fig. 2-A, we show pairs of IDj and IDi with high
T ee that together form meaningful sequences. For
example, when IDi is “iens”, token “_sap” and “Al”
yields the two largest T ee scores among 50,257
subwords in head#7, detokenizing “_sapiens” and
“Aliens”. In Appendix Table 1, we show other ex-
amples of T ee contributing to detokenizing words,

people’s names, or chemical substances.

4.2 Which Heads Perform Detokenization?

Before conducting a detailed analysis, we visualize
the T ee matrix for each of the 12 attention heads as
a heatmap to gain an overview (Fig. 2-B, Fig. 12).
This visualization reveals that the heads can be
broadly divided into two categories: those with
diagonal lines in the heatmap and those without.
Head#1, with scores in the range (-47, 127), has
a clear diagonal line, indicating that the attention
score deriving from T ee is the highest when the
target token is identical to the current past token.
Head#7 on the other hand, does not show such a
diagonal line. Instead, scores in range (-35, 31) are
distributed across the heatmap.

What do these two trends suggest? Detokeniza-
tion typically requires attending to different tokens
– for example, paying attention from “iens” to “sap”
to reconstruct the word “sapiens,” rather than at-
tending from “iens” to “iens.” Therefore, heads that
exhibit clear diagonal lines, such as head#1, are less
likely to contribute to detokenization compared to
heads with more dispersed attention patterns, such
as head#7.

Next, we investigate the degree to which each
attention head contributes to detokenization by in-
specting the relationship between the scores of T ee

and bi-gram frequency.
For a fixed token at position i, we first compute

6343

A B C D E

Figure 3: A: T p
j for all context token position j for head#1 (top) and #7 (bottom). The shaded area represents the

variance of the term deriving from eIDi Y-axis titles in this, and subsequent figures are inset for readability. B:
T pp
500,j= piW

QK
h p⊤

j /σiσj for context token position j ≤ 500. The blue, green, and orange lines show scores with
mean, maximum, and minimum standard deviation for σj : σj = 1

|V |
∑

ID σ(eID + pj), σj = maxIDσ(eID + pj),
and σj = minIDσ(eID + pj), respectively. C,D: Sum of T pp

500,j and T p
j and its result after taking softmax with a

temperature of
√
d′. E: Empirical attention weights aggregated over texts in OpenWebText Corpus when present

token position i = 500 focusing on the last few j positions. The red line and area show the empirically observed
weights and the blue line corresponds with the blue lines in D.

T ee against all 50,257 tokens in the vocabulary
for GPT-2. Using bi-gram counts of OpenWeb-
Text Corpus (Gokaslan et al., 2019), we compute
AUROC with True Positive Rate defined as the pro-
portion of bi-gram counts with T ee above a thresh-
old. Fig. 2-C shows the Recall curve for head#7
and head#1 when the token at position i is fixed to
“iens” or “Jackson”. High AUC (Area Under Curve)
indicates that T ee with high scores are likely to re-
construct frequent bi-grams. By computing AUC
for all position i tokens and taking the average,
we quantify how each attention head contributes
to reconstructing bi-grams. Fig. 2-D shows the re-
sult, showing largest AUROC in head#7 which was
also observed in Fig. 2-A and Table 1, supporting
contribution to detokenization.

5 Detokenization and Token Positions

Another important aspect is attention to close to-
kens. We conduct weight-based analysis on T p

(Section 5.1) and T pp (Section 5.2) and identify
two different trends: one linear and one sinusoidal.
Then we show in Section 5.3 show that the sum of
the two components biases attention to positionally
close tokens. Finally, we verify the positional bias
empirically in Section 5.4.

5.1 Linear Self-assertion Term (T p)
We visualize the position-deriving self-assertion
term T p for head#1 and head#7 in Fig. 3-A 3. Since
GPT-2 is a causal model, the causal mask ensures

3Results for other heads are in appendix Fig. 8.

that no context after the present token is referenced.
For example, when i = 200, the part of Fig. 3-A
to the right of j = 200 is ignored. In the range
0 ≤ j ≤ 200, since the self-assertion term is mono-
tonically increasing with respect to j, we can ob-
serve that high attention scores are assigned to to-
kens that are relatively positionally close. The same
applies for almost all i, thereby constituting a bias
towards high attention scores to nearby tokens. 4

5.2 Sinusoidal Comparison Term (T pp)
We visualize the position-deriving comparison term
T pp for head#1 and head#7 in Fig. 3-B when i =
5005. A notable difference from Fig. 3-A is that
this term exhibits undulating patterns, which could
be related to the observations by Yamamoto and
Matsuzaki (2023). However, what is similar is
that this term also assigns high attention scores to
close tokens, contributing to high attention score
on nearby tokens.

5.3 Sum of T pp and T p

Fig. 3-C shows the sum of the two terms deriving
from position embedding6. The combination of the
monotonic increase in the T p and the sinusoidal
component from the T pp leads to high attention
scores being assigned to tokens positioned nearby.

The result after applying softmax function to the
sum of the two terms, is shown in Fig. 3-D. It in-

4We show analyses of the exceptional behavior shown in
the first and last few positions in Section 6.4.

5Results for other heads and i are in appendix Fig. 9.
6Results for other heads and i are in Appendix Fig. 10

6344

𝐶!,# 𝐶!,$

𝐶%%
𝐶%

𝐶&&
𝐶&

𝐶%&
𝐶&%

Figure 4: Contribution of the 6 terms in Eq. 17 for each
current token position i for head#1 and #7

dicates that the attention weight is concentrated on
nearby tokens, and the sinusoidal component origi-
nating from the T pp is almost entirely suppressed.

5.4 Empirical Verification
To verify whether the observations through the
weight analyses hold true empirically, we use
natural language texts from OpenWebText Cor-
pus (Gokaslan et al., 2019) and obtain αi,j,h from
the first attention layer. Fig. 3-E shows the results
when i = 500. Head#7 shows a pattern similar
to the plot in Fig. 3-D (also shown in blue line),
with high attention to the nearest tokens. In con-
trast, head#1 predominantly attends to itself (Blue
line, j = 500), which differs from the red line
(also shown in Fig. 10). The discrepancy can be
attributed to the dominance of T ee. We showed in
Fig. 2-B that head#1 assigns high attention scores
to the identical token, with scores in range (-50,
100). Furthermore, from Fig. 3-B, it can be ob-
served that head#1 assigns scores within a narrower
range (-40, 0) across broad positions.

6 Followup Experiments

6.1 Contribution of the Six Terms to
Attention Weights

In Sections 4 and 5, we conducted weight analyses
of T ee, T p, and T pp. Here, we inspect the contri-
bution of all 6 terms in Eq. 17 to check if we are
missing any crucial terms. We use KL-Divergence
as a metric. For example, we define the contribu-
tion of the T ee, cee as follows:

cee
i,h = DKL(Pi,h||Qi,h) (18)

Qi,h =
[
αi,0,h · · · αi,i,h

]
(19)

Pi,h =
[
α′
i,0,h · · · α′

i,i,h

]
(20)

α′
i,j,h = softmax

xj∈X,j≤i

(
si,j,h − T ee

i,j,h√
d′

)
(21)

Fig. 4 shows that the three terms analyzed in
Sections 4 and 5 have relatively high contributions

Figure 5: Relation between token frequency and T e for
head#1 and head#7.

Figure 6: Left: Relationship between the variance of
each token embedding and their corpus counts. Right:
Variance of all first 10 (top), and last 10 (bottom) posi-
tion embeddings.

to the attention weight computation. From the
three remaining terms, T pe and T ep, contribute less.
However, T e shows a high contribution. We ana-
lyze this term in the following section.

6.2 Token Self-assertion Term (T e)

T e could be interpreted as a bias term for which to-
ken to attend to. Here, we use token frequency
as a proxy for the informativeness of a token
and plot the relationship between token count and
T e in Fig. 57. We used the OpenWebText Cor-
pus (Gokaslan et al., 2019) to get token counts.
The results show that several heads exhibit a high
correlation with token frequency. For example, the
Spearman correlation coefficient between T e and
token frequency for head#7 is −0.68, while for
head#1, it is −0.31.

6.3 Variance of token embeddings

The variance of token embeddings plays a critical
role in LayerNorm (Eq. 9). Fig. 6-left shows the re-
lationship between token count and variance of the
corresponding embedding vector. The Spearman
correlation coefficient of this relation is −0.63, in-
dicating the variance of rare tokens is high. The
variance of the norm of each token embedding vec-
tor is 0.19. After dividing by the root of the vari-
ance, the variance becomes 0.00. That is, when

7We show the results for other heads in Fig. 11.

6345

applying LayerNorm directly to the token embed-
dings it has the effect of equalizing the norms of
all token embeddings8. Oyama et al. (2023) shows
that the norm of word embedding encodes informa-
tion gain. However, as shown in Fig. 5, even after
passing through LayerNorm, information on token
count can be extracted. Though it may depend on
the definition of information gain, we speculate
that something akin to information gain is encoded
in places other than the norm.

6.4 Variance of Position Embeddings
We visualize the variance of the position embed-
dings, which plays a critical role in LayerNorm
when visualizing over context position j as sug-
gested by Eqs. 3 and 9 and Section 3.5, in Fig. 6-
right. For most positions, the variance remains
constant. However, there are two exceptions: the
variance for the first token is exceptionally high,
and the variance for the last token is significantly
low. As a result, the variance of the position em-
beddings takes the shape of a step function.

The large variance at position 0, combined with
the negative attention score without LayerNorm
at j = 0, leads to an exceptionally high attention
score. It creates a non-linear function implement-
ing an “if-then” condition: if the attention is di-
rected towards the first token of the context, the
attention weight is amplified. We discuss why such
“switch” is implemented and why the variance of
the last position takes exceptional value in Sec-
tion 6.4.

Exceptionally High Variance at First Position
Gurnee et al. (2024) reports that the norm of the
value vector for the BOS token of GPT-2-medium
is 19.4 times smaller than the average for other
tokens and looks for neurons that may utilize the
BOS token as attention sink (Xiao et al., 2023)
via ablation studies. We propose an alternative
interpretation of these findings: by exceptionally
increasing the variance of the first position embed-
ding, the first token is used as an attention sink.
However, the attention sink may not be used de-
pending on the context length and the head. In
fact, while Fig. 3-A has a high attention score as-
signed to the first token, Fig. 3-D has the score
suppressed9. It can be interpreted that the mecha-

8Constant variance of position embedding (Section 6.4)
and small mean absolute covariance of position embedding
and token embedding (46 times smaller than the mean variance
of token embedding) supports the validity of this observation.

9Refer to Fig. 10 for other variations.

0 200 400 600 800 1000
Past token position (j)

0.25
0.00
0.25

piWQK
0 pj 1019

1020
1021
1022
1023

Figure 7: T pp
i,j,0 without LayerNorm for 1019 ≤ i ≤

1023. When the current position i is 1023, the maxi-
mum input length of GPT-2, the attention scores show a
distinct outlier behavior.

nism is embedded in the LayerNorm term common
to all heads and all current positions i because, as
the context length increases, the scores for nearby
tokens, mainly due to T p, exceed the scores for
the first token, rendering the attention sink possibly
unnecessary and ignorable by the softmax function.

Exceptionally Low Variance at Last Position
A plausible explanation for the irregularity ob-
served at the last position in Fig. 6-bottom-right
is undertraining. Fig. 7 visualizes the T pp without
LayerNorm for the final positions, specifically for
1019 ≤ i ≤ 1023. While the plots largely overlap
for 1019 ≤ i ≤ 1022, a distinct deviation can be
seen at i = 1023, where the score remains con-
sistently flat around zero (black line). We suspect
that this phenomenon occurs because the maximum
length for prompts accepted by GPT-2 is 1024 to-
kens, and the model was not trained with the loss
for the 1025th token.

7 Conclusions

We analyzed the first attention layer of GPT-2 to
investigate the detokenization mechanism. Consid-
ering detokenization to be a phenomenon that oc-
curs when deeply related tokens are close together,
we conducted analyses that separate token embed-
ding and position embedding to provide multiple
theoretical supports for detokenization. First, we
showed that the self-assertion attention term and
comparison term derived from position embedding
contribute to assigning high attention to relatively
close tokens. Furthermore, we suggested that posi-
tion embedding and LayerNorm are deeply related
to the phenomenon of high attention being assigned
to the first token. Regarding the relevance between
tokens, we showed that the comparison term deriv-
ing from token embedding contributes to this, and
obtained results that are generally consistent with
existing research.

6346

Limitations

In this study, we analyzed the weights learned by
the first layer of GPT-2.

The detokenization mechanism itself does not
occur only in the first layer, thus further analysis
of other early layers may be necessary for a deeper
analysis. However, by analyzing a small version of
GPT-2, a 12-layer model, we may have captured
the main mechanism of detokenization even with
only one layer.

The analysis we conducted, which separates the
attention weight calculation into token embedding
and position embedding, was possible and mean-
ingful because GPT-2 adopts Learned Absolute
Position Embedding. For other models that use
ALiBi or Rotary Position Embedding, it may be
apparent that models attend to close tokens as the
parameters in these methods are defined prior to
training. We believe our contribution lies in that
we show that even without an explicit design of
position bias, models can learn to attend to close
tokens and contribute to detokenization from the
first layer.

Furthermore, the self-assertion term is a term
that appears because the transformation for cal-
culating the key and query vectors is an affine
transformation with a bias. However, recent mod-
els such as Llama 3 (Dubey et al., 2024) and
Gemma 2 (Gemma Team, 2024) do not use bias
terms in linear layers. While this means analyses
breaking down attention into self-assertion terms
and comparison terms cannot be done on such mod-
els, we believe that our results also raise the ques-
tion of whether bias terms can really be eliminated.

Regarding the choice of subject model for analy-
sis, our ultimate goal is to gain insights into robust
and efficient models. Therefore, we believe that
while the subject model must achieve a certain level
of performance, it is not necessary to analyze only
the SOTA models. In addition, we believe that
designing and analyzing models that are easier to
interpret is one direction to take in the context of
the recent discussion on the reliability of language
models.

Another limitation is that our analysis explains
only a part of the detokenization process. Detok-
enization is not just attending to close preceding
tokens, but selectively doing so, since single-token
words do not require detokenization. So the “attend
to close preceding tokens” mechanism should be
“switched off” for these tokens, and it is one of the

future works to offer a weight-based explanation
of how and where this “switch” is implemented.

Ethics Statement

Our analyses involved a pretrained language model,
GPT-2 (Radford et al., 2019) (124M parameter
model from Hugging Face10, MIT License), and
corpus, OpenWebText, which may be characterized
by various forms of social biases. We analyze how
GPT-2 processes natural language inputs, which is
within the scope of its intended usage.

Acknowledgements

This work was supported by JST/CREST
(JPMJCR20D2) and JST/BOOST (JPMJBS2421)．
We would also like to thank the members of
TohokuNLP for their frequent participation in dis-
cussions during the course of this research.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer Normalization. arXiv [stat.ML].

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, and others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso.
2023. Towards Automated Circuit Discovery for
Mechanistic Interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352.

Guy Dar, Mor Geva, Ankit Gupta, and Jonathan Berant.
2023. Analyzing transformers in embedding space.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 16124–16170. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North, pages 4171–4186. Association for Com-
putational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, and others. 2024. The Llama 3 herd
of models. arXiv [cs.AI].

Nelson Elhage, Tristan Hume, Catherine Olsson,
Neel Nanda, Tom Henighan, Scott Johnston, Sheer

10https://huggingface.co/openai-community/gpt2

6347

http://arxiv.org/abs/1607.06450
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.893
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2407.21783
https://huggingface.co/openai-community/gpt2

El Showk, and others. 2022. Softmax Lin-
ear Units. https://transformer-circuits.pub/
2022/solu/index.html.

Nelson Elhage, Neel Nanda, Catherine Olsson,
Tom Henighan, Nicholas Joseph, Mann Ben,
Amanda Askell, and others. 2021. A Mathe-
matical Framework for Transformer Circuits.
https://transformer-circuits.pub/2021/
framework/index.html.

Gemma Team. 2024. Gemma 2: Improving open lan-
guage models at a practical size. arXiv [cs.CL].

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 12216–12235.
Association for Computational Linguistics.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
unifying framework for inspecting hidden representa-
tions of language models. In Forty-first International
Conference on Machine Learning.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-
fanie Tellex. 2019. OpenWebText Corpus. http:
//Skylion007.github.io/OpenWebTextCorpus.

Wes Gurnee, Theo Horsley, Zifan Carl Guo, Tara Rezaei
Kheirkhah, Qinyi Sun, Will Hathaway, Neel Nanda,
and Dimitris Bertsimas. 2024. Universal neurons in
GPT2 language models. Transactions on Machine
Learning Research, 2024.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case stud-
ies with sparse probing. Transactions on Machine
Learning Research.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does GPT-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. In Thirty-seventh Conference on Neu-
ral Information Processing Systems.

Stefan Heimersheim. 2024. You can remove GPT2’s
LayerNorm by fine-tuning. arXiv [cs.CL].

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy
Schwartz. 2024. From tokens to words: On the inner
lexicon of LLMs. In The Thirteenth International
Conference on Learning Representations.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75.

Vedang Lad, Wes Gurnee, and Max Tegmark. 2024.
The Remarkable Robustness of LLMs: Stages of
Inference? In ICML 2024 Workshop on Mechanistic
Interpretability.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv [cs.CL].

Neel Nanda. 2023. TransformerLens: A library for
mechanistic interpretability of GPT-style language
models.

Momose Oyama, Sho Yokoi, and Hidetoshi Shimodaira.
2023. Norm of word embedding encodes information
gain. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2108–2130. Association for Computational
Linguistics.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
Short, Test Long: Attention with Linear Biases En-
ables Input Length Extrapolation. In International
Conference on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and Others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAI blog, 1(8):9.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. RoFormer: En-
hanced transformer with Rotary Position Embedding.
Neurocomputing, 568(127063):127063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. Advances in Neural Information Process-
ing Systems, 30.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient Streaming Lan-
guage Models with Attention Sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Yuji Yamamoto and Takuya Matsuzaki. 2023. Absolute
position embedding learns sinusoid-like waves for
attention based on relative position. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing, pages 15–28. Association
for Computational Linguistics.

6348

https://transformer-circuits.pub/2022/solu/index.html
https://transformer-circuits.pub/2022/solu/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://arxiv.org/abs/2408.00118
http://arxiv.org/abs/2408.00118
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2401.06102
https://arxiv.org/abs/2401.06102
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=ZeI104QZ8I
https://openreview.net/forum?id=ZeI104QZ8I
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/forum?id=JYs1R9IMJr
https://openreview.net/pdf?id=p4PckNQR8k
https://openreview.net/pdf?id=p4PckNQR8k
https://openreview.net/pdf?id=p4PckNQR8k
http://arxiv.org/abs/2409.13710
http://arxiv.org/abs/2409.13710
https://openreview.net/forum?id=328vch6tRs
https://openreview.net/forum?id=328vch6tRs
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://openreview.net/pdf?id=R5unwb9KPc
https://openreview.net/pdf?id=R5unwb9KPc
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens
https://doi.org/10.18653/v1/2023.emnlp-main.131
https://doi.org/10.18653/v1/2023.emnlp-main.131
https://openreview.net/pdf?id=R8sQPpGCv0
https://openreview.net/pdf?id=R8sQPpGCv0
https://openreview.net/pdf?id=R8sQPpGCv0
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/pdf?id=NG7sS51zVF
https://openreview.net/pdf?id=NG7sS51zVF
https://doi.org/10.18653/v1/2023.emnlp-main.2
https://doi.org/10.18653/v1/2023.emnlp-main.2
https://doi.org/10.18653/v1/2023.emnlp-main.2

A Notation

E :=




e1
...

e|V |


 ∈R|V |×d (22)

P :=



p1
...
pL


 ∈RL×d (23)

X :=



x1
...
xn


 ∈Rn×d (24)

WO :=



WO

1
...

WO
H


 ∈Rd×d (25)

WQ :=
[
WQ

1 · · · WQ
H

]
∈Rd×d (26)

WK :=
[
WK

1 · · · WK
H

]
∈Rd×d (27)

W V :=
[
W V

1 · · · W V
H

]
∈Rd×d (28)

bQ :=
[
bQ1 · · · bQH

]
∈Rd (29)

bK :=
[
bK1 · · · bKH

]
∈Rd (30)

bV :=
[
bV1 · · · bVH

]
∈Rd (31)

I :=




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 ∈Rd×d (32)

1 :=
[
1 · · · 1

]
∈Rd (33)

(34)

B Decomposing the First Attention Layer

B.1 Layer Normalizaion

Layer Normalization can be expressed as follows:

LN(x):=
x− µ(x)

σ(x)
⊙ γ + β ∈Rd (35)

x :=
[
x(1) · · · x(d)

]
∈Rd (36)

µ(x) := m(x)1 ∈Rd (37)

m(x) :=
1

d

∑

k

x(k) ∈R (38)

σ(x) :=

√√√√1

d

d∑

k=1

(
x(k) −m(x)

)2
+ ϵ ∈R (39)

6349

Now, µ(x) can be reformulated as follows:

µ(x) = m(x)1 (40)

=

(
1

d

d∑

k=1

x(k)

)
1 (41)

=

(
1

d
x1⊤

)
1 (42)

= x

(
1

d
1⊤1

)
(43)

Thus LN can be reformulated as follows.

LN(x) =
x− µ(x)

σ(x)
⊙ γ + β (44)

=
1

σ(x)

(
x− x

(
1

d
1⊤1

))
diag γ + β (45)

=
x

σ(x)

(
I − 1

d
1⊤1

)
diag γ + β (46)

B.2 Attention
Let query, key, value transformations of each head h be expressed as follows:

qh(x) := xWQ
h + bQh (47)

kh(x) := xWK
h + bKh (48)

vh(x) := xW V
h + bVh (49)

The output of Attention layer of an causal model at position i can be expressed as follows:

ATTN(i,X) := [head1(i,X) · · · headH(i,X)]WO + bO (50)

=
H∑

h=1

headh(i,X)WO
h + bO (51)

=

H∑

h=1




i∑

j=1

αi,j,hvh(xj)


WO

h + bO (52)

=
H∑

h=1




i∑

j=1

αi,j,hxjW
V
h + bVh


WO

h + bO (53)

=
H∑

h=1

i∑

j=1

αi,j,hxjW
V
h WO

h + bV WO + bO (54)

=
H∑

h=1

i∑

j=1

αi,j,hxjW
V O
h + bV O (55)

where, α represents the attention weights αi,j,h from token position i to j in head h, which satisfy∑
j αi,j,h = 1 and is defined by:

αi,j,h := softmax
xj∈X,j≤i

si,j,h

qh(xi)kh(xj)
⊤

√
d′

(56)

with si,j,h representing unnormalized attention scores.

6350

B.3 Reformulating LayerNorm and Attention

Because the softmax function is invariant to the addition of a constant, the computation of attention score
si,j,h can be simplified:

αi,j,h := softmax
xj∈X,j≤i

si,j,h

qh(xi)kh(xj)
⊤

√
d′

(57)

= softmax
xj∈X,j≤i

qh(xi)W
K⊤
h x⊤

j + qh(xi)b
K⊤
h√

d′
(58)

= softmax
xj∈X,j≤i

qh(xi)W
K⊤
h x⊤

j√
d′

(59)

= softmax
xj∈X,j≤i

xiW
Q
h WK⊤

h x⊤
j + bQhW

K⊤
h x⊤

j√
d′

(60)

= softmax
xj∈X,j≤i

si,j,h

xiW
QK
h x⊤

j + bQK
h x⊤

j
√
d′

(61)

Meanwhile, in GPT-2, the output of a LayerNorm is fed to the corresponding Attention layer, and
inputs (x) are always first subjected to an affine transformation, either qh(x),kh(x), or vh(x). Com-
bining the LayerNorm and affine transformations, we redefine LN, and the weights and biases of affine
transformations qh, with analogous redifintions for kh and vh:

qh (LN(x)) = LN(x)WQ
h + bQh (62)

=

(
x

σ(x)

(
I − 1

d
1⊤1

)
diag γ + β

)
WQ

h + bQh (63)

=
x

σ(x)

(
I − 1

d
1⊤1

)
(diag γ)WQ

h + βWQ
h + bQh (64)

= LN(x) WQ
h + bQh (65)

B.4 Decomposition of Attention Scores for the First Layer.

At position i, the input to the first LayerNorm before the first Attention layer (xi) is the sum of the
token embedding eIDi and position embedding pi. Therefore, si,j,h for the first Attention layer can be
decomposed as follows.

si,j,h = LN(xi)W
QK
h (LN(xj))

⊤ + bQK
h (LN(xj))

⊤ (66)

=
eIDi + pi

σ(xi)
WQK

h

(
eIDj + pj

σ(xj)

)⊤
+ bQK

h

(
eIDj + pj

σ(xj)

)⊤
(67)

=

T ee
i,j,h

eIDiW
QK
h e⊤IDj

σ(xi)σ(xj)
+

T
ep
i,j,h

eIDiW
QK
h p⊤

j

σ(xi)σ(xj)
+

T
pe
i,j,h

piW
QK
h e⊤IDj

σ(xi)σ(xj)
+

T
pp
i,j,h

piW
QK
h p⊤

j

σ(xi)σ(xj)

+

T e
j,h

bQK
h e⊤IDj

σ(xj)
+

T
p
j,h

bQK
h p⊤

j

σ(xj)

(68)

6351

C Qualitative Analysis of Detokenization

We show other examples of detokenization observed from T ee in Table 1.

D Visualizations for all heads

We show visualizations in Fig. 2-B, Fig. 3-A,B,D and Fig. 4 for all heads in Figs. 8 to 13.

6352

head query token key token (rank) Resulting sequence

3 yo Tok (1) Tokyo
3 yo _Tok (2) _Tokyo
4 yo Tok (6) Tokyo
7 yo Tok (1) Tokyo
4 _Korea _North (1) North_Korea
7 _Korea _North (1) _North_Korea
7 _Korea North (2) North_Korea
7 _Korea _South (3) _South_Korea
7 _Korea South (4) _South_Korea
1 _Obama _Barack (3) _Barack_Obama
1 _Obama President (8) _President_Obama
4 _Obama _Barack (3) _Barack_Obama
5 _Obama _Barack (5) _Barack_Obama
7 _Obama _President (2) _President_Obama
7 _Obama _Michelle (3) _Michelle_Obama
7 _Einstein _Albert (1) _Albert_Einstein
7 _Einstein Albert (2) Albert_Einstein
7 _Jackson _Michael (1) _Michael_Jackson
7 _Jackson _Peter (2) _Peter_Jackson
7 _Jackson Michael (3) Michael_Jackson
7 _Jackson _Jesse (4) _Jesse_Jackson
7 _Jackson Peter (5) Peter_Jackson
7 _Jackson _Janet (6) _Janet_Jackson
7 _chloride _aluminum (1) _aluminum_chloride
7 _chloride _copper (3) _copper_chloride
7 _chloride _vinyl (6) _vinyl_chloride
7 _chloride _sodium (7) _sodium_chloride
7 _chloride _platinum (8) _platinum_chloride
10 _chloride _potassium (2) _potassium_chloride
10 _chloride _sodium (3) _sodium_chloride
3 _century _19 (1) _19_century
3 _century _nineteenth (7) _nineteenth_century
7 _century _21 (1) _21_century
7 _century _twentieth (6) _nineteenth_century

Table 1: Exerpt of analysis on T ee which support detokenization.

6353

25
0

25
Tp

j, 0

25
0

25 Tp
j, 1

25
0

25
Tp

j, 2

0

200 Tp
j, 3

100

0

100 Tp
j, 4

0

25
Tp

j, 5

0

50 Tp
j, 6

100

0

100 Tp
j, 7

0

50 Tp
j, 8

0

50 Tp
j, 9

0 200 400 600 800 1000
Past token position (j)

25

0

25 Tp
j, 10

0 200 400 600 800 1000
Past token position (j)

0

10 Tp
j, 11

Figure 8: T p for all heads.

6354

5
10
15 Tpp

50, j, 0

10
0

Tpp
500, j, 0

20

0
Tpp

1000, j, 0

10

20
Tpp

50, j, 1

10

0
Tpp

500, j, 1

20

0
Tpp

1000, j, 1

0

10 Tpp
50, j, 2

10

0
Tpp

500, j, 2

10

0

10 Tpp
1000, j, 2

50
100
150 Tpp

50, j, 3

250

0
Tpp

500, j, 3

250

0
Tpp

1000, j, 3

50

100 Tpp
50, j, 4

200

0
Tpp

500, j, 4

100
0

100 Tpp
1000, j, 4

10
15 Tpp

50, j, 5

5

0 Tpp
500, j, 5

20

0
Tpp

1000, j, 5

10

20 Tpp
50, j, 6

20

0 Tpp
500, j, 6

20

0
Tpp

1000, j, 6

50

100 Tpp
50, j, 7

250

0
Tpp

500, j, 7

100
0

100 Tpp
1000, j, 7

0

10 Tpp
50, j, 8

20

0
Tpp

500, j, 8

20

0
Tpp

1000, j, 8

0

10
Tpp

50, j, 9

10
0

10
Tpp

500, j, 9

10
0

10 Tpp
1000, j, 9

0

20
Tpp

50, j, 10

20

0
Tpp

500, j, 10

20

0

20 Tpp
1000, j, 10

0 10 20 30 40 50
Past token position (0 j 50)

20

10 Tpp
50, j, 11

0 100 200 300 400 500
Past token position (0 j 500)

10
0

10 Tpp
500, j, 11

0 200 400 600 800 1000
Past token position (0 j 1000)

25

0

25 Tpp
1000, j, 11

Figure 9: T pp for all heads, for i ∈ {50, 500, 1000}.

6355

0.02

0.04 softmaxj
Tpp

50, j, 0 + Tp
j, 0

d ′

0.00

0.02 softmaxj
Tpp

500, j, 0 + Tp
j, 0

d ′

0.00

0.02 softmaxj
Tpp

1000, j, 0 + Tp
j, 0

d ′

0.02

0.03 softmaxj
Tpp

50, j, 1 + Tp
j, 1

d ′

0.00

0.01
softmaxj

Tpp
500, j, 1 + Tp

j, 1

d ′

0.00

0.02
softmaxj

Tpp
1000, j, 1 + Tp

j, 1

d ′

0.02

0.04 softmaxj
Tpp

50, j, 2 + Tp
j, 2

d ′

0.00

0.01
softmaxj

Tpp
500, j, 2 + Tp

j, 2

d ′

0.00

0.02 softmaxj
Tpp

1000, j, 2 + Tp
j, 2

d ′

0.00

0.25 softmaxj
Tpp

50, j, 3 + Tp
j, 3

d ′

0.0

0.2
softmaxj

Tpp
500, j, 3 + Tp

j, 3

d ′

0.00

0.25 softmaxj
Tpp

1000, j, 3 + Tp
j, 3

d ′

0.0

0.2 softmaxj
Tpp

50, j, 4 + Tp
j, 4

d ′

0.0

0.2 softmaxj
Tpp

500, j, 4 + Tp
j, 4

d ′

0.0

0.2 softmaxj
Tpp

1000, j, 4 + Tp
j, 4

d ′

0.0

0.5
softmaxj

Tpp
50, j, 5 + Tp

j, 5

d ′

0.0

0.2 softmaxj
Tpp

500, j, 5 + Tp
j, 5

d ′

0.00

0.05 softmaxj
Tpp

1000, j, 5 + Tp
j, 5

d ′

0.025

0.050 softmaxj
Tpp

50, j, 6 + Tp
j, 6

d ′

0.00

0.02 softmaxj
Tpp

500, j, 6 + Tp
j, 6

d ′

0.00

0.02 softmaxj
Tpp

1000, j, 6 + Tp
j, 6

d ′

0.0

0.2 softmaxj
Tpp

50, j, 7 + Tp
j, 7

d ′

0.0

0.2 softmaxj
Tpp

500, j, 7 + Tp
j, 7

d ′

0.0

0.2 softmaxj
Tpp

1000, j, 7 + Tp
j, 7

d ′

0.02

0.04
softmaxj

Tpp
50, j, 8 + Tp

j, 8

d ′

0.00

0.02 softmaxj
Tpp

500, j, 8 + Tp
j, 8

d ′

0.00

0.02
softmaxj

Tpp
1000, j, 8 + Tp

j, 8

d ′

0.02

0.04 softmaxj
Tpp

50, j, 9 + Tp
j, 9

d ′

0.00

0.02 softmaxj
Tpp

500, j, 9 + Tp
j, 9

d ′

0.00

0.02 softmaxj
Tpp

1000, j, 9 + Tp
j, 9

d ′

0.01
0.02
0.03 softmaxj

Tpp
50, j, 10 + Tp

j, 10

d ′

0.00

0.02 softmaxj
Tpp

500, j, 10 + Tp
j, 10

d ′

0.00

0.02 softmaxj
Tpp

1000, j, 10 + Tp
j, 10

d ′

0 10 20 30 40 50
Past token position (0 j 50)

0.025

0.050 softmaxj
Tpp

50, j, 11 + Tp
j, 11

d ′

0 100 200 300 400 500
Past token position (0 j 500)

0.00

0.01 softmaxj
Tpp

500, j, 11 + Tp
j, 11

d ′

0 200 400 600 800 1000
Past token position (0 j 1000)

0.000

0.005 softmaxj
Tpp

1000, j, 11 + Tp
j, 11

d ′

Figure 10: Sum of T pp and T p after softmax with temperature
√
d′ for all heads, for i ∈ {50, 500, 100}.

6356

Figure 11: Relation between token frequency and T e for all heads.

Figure 12: Heatmap of T ee for all heads. Tokens are randomly sampled from the vocabulary for visualization.

6357

Figure 13: Contribution of the 6 terms in Eq. 17 for each current token position i for all heads.

6358

