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Abstract

Large language models (LLMs) have achieved
remarkable success but still tend to generate
factually erroneous responses, a phenomenon
known as hallucination. A recent trend is to
use preference learning to fine-tune models to
align with factuality. However, existing work
primarily evaluates fine-tuned models on in-
domain (ID) datasets and the factuality on out-
of-domain (OOD) datasets remains underex-
plored. In this paper, we conduct a compre-
hensive evaluation of the factuality of different
models tuned by various preference learning
algorithms and demonstrate that their perfor-
mance on OOD datasets either increases min-
imally or decreases. Subsequently, we reveal
that the main cause of model’s failure to uphold
factuality under a distribution shift is under-
alignment, rather than over-alignment, by an-
alyzing the token distribution shift of the mod-
els before and after tuning. Finally, we pro-
pose APEFT (Atomic Preference Enhanced
Factuality Tuning), a framework that enhances
model’s awareness of factuality at the granular-
ity of individual facts. Extensive experiments
demonstrate that APEFT improves model per-
formance by an average of 3.45% on both ID
and OOD datasets, which is highly effective.

1 Introduction

Large language models (LLMs) have demonstrated
surprising abilities (Chen et al., 2024b; Sun et al.,
2024) and have achieved impressive advancements
in many tasks (Bubeck et al., 2023; Tashia et al.,
2024). However, they are still troubled by the issue
of hallucinations, a phenomenon wherein LLMs
generate seemingly convincing but factually erro-
neous responses (Zhang et al., 2023; Huang et al.,
2023), which greatly hinders their deployment in
practical scenarios (Cui et al., 2023).

Recently, some studies indicate that LLMs have
the potential to avoid generating hallucinated an-
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Write a short biography of Tom Cruise.

Tom Cruise was born on June 10, 1975

in Sunnydale, California, USA. He is 

an American actor known for his 

iconic roles in action-packed movies 

like “Mission: Impossible” and “Top 

Gun”…

Tom Cruise is an American actor 

and producer who was born on July 

3, 1962, in Syracuse, New York. 

He is widely regarded as one of the 

most successful and influential 

actors in Hollywood history…

General Preference

ID Query
Write a short biography of Tom Hanks.

Why was Henri Becquerel awarded the 1904 

The Nobel Prize in Physics?

Who was Albert Einstein and what did he do? 

At noon on December 31st in which year did 

Panama gain full control of the Panama Canal?

OOD Query

Preference 

Learning

Do you think the following statement about Tom Cruise is true?

Tom Cruise born on June 10, 1975.
No, Tom Cruise was 

born on July 3, 1962.

Yes, Tom Cruise was indeed 

born on June 10, 1975.

Atomic Preference

Train

Test

Figure 1: Illustration of our work. The combination of
general preferences and atomic preferences can enhance
model factuality on OOD queries across various prefer-
ence learning algorithms.

swers. For example, LLMs mostly ‘know’ the cor-
rect answer but fail to ‘tell’ it (Li et al., 2023; Saun-
ders et al., 2022) and they show intrinsic uncer-
tainty during hallucination occurrences (Manakul
et al., 2023; Chen et al., 2024a). Therefore, a re-
cent trend is to finetune LLMs to fully exploit their
potential, typically using preference learning (or
preference tuning) to steer the models towards
desired behaviours and mitigate hallucinations 1

(Tian et al., 2023; Lin et al., 2024). Specifically,
it involves collecting diverse model completions,
annotating each with an overall preference score
related to factuality, and refining models through
the preference feedback.

Despite being successful, existing work (Chen
et al., 2024c; Tian et al., 2023) mainly uses test
queries sourced from the same domain as the train-
ing dataset to evaluate the factuality of the tuned
model, which is impractical in real-world applica-
tions. For example, as shown in Figure 1, when
training the model to be more factual in generating

1In our work, ‘mitigate hallucination’ and ‘increase factu-
ality’ both refer to the same concept.
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a biography of Tom Cruise, we expect performance
improvements not only on in-domain (ID) queries,
like generating a biography of Tom Hanks, but also
on out-of-domain (OOD) queries, such as answer-
ing questions about Albert Einstein or the Panama
Canal. Thus, extensive exploration of the factuality
of the tuned models on OOD queries still remains
incomplete.

To analyze this generalization problem, we first
conduct a comprehensive quantitative study on the
OOD performance of the models tuned by various
preference learning algorithms. In particular, the
training data is constrained to the biography gen-
eration task and we train two LLMs on these data
using five preference learning algorithms. Subse-
quently, we evaluate their performance on one ID
dataset and OOD datasets. The OOD datasets incor-
porates various aspects related to model factuality,
including generating factually accurate long-form
responses consisting of several paragraphs, identi-
fying false premises in user queries and answering
with short responses on a scale of several phrases.
In the end, the performance either increases min-
imally, or actually decreases, with the maximum
drop in performance reaching 8.47%.

Therefore, we investigate the reasons for the in-
effectiveness of the tuned models on OOD queries.
We posit that there are two potential failure modes.
One possibility is that the tuning process is particu-
larly superficial, resulting in no significant change
in the tuned model’s behaviour in OOD settings
(under-alignment). Alternatively, the tuning pro-
cess may be adversely affected by spurious features
in the training data, resulting in unintended changes
in the tuned model’s behaviour (over-alignment).
For example, when asked about the contribution of
Albert Einstein, the tuned models may produce
nearly identical responses to those of their pre-
tuned counterpart, or tend to generate vague and
subjective sentences like ‘his insights are unparal-
leled’, which is undesirable in this context. To dis-
tinguish them, we measure the behaviour change of
the model by directly comparing the shift in token
distributions before and after tuning. We discover
that the number of shifted tokens on OOD queries
is less than a third of those on ID queries. It indi-
cates that the primary cause of the ineffectiveness
is under-alignment rather than over-alignment.

Furthermore, we posit that under-alignment may
result from the the original factual preference
feedback, which is predominantly based on para-
graphs and does not adequately inform the model

about the factuality of individual facts. There-
fore, we propose Atomic Preference Enhanced
Factuality Tuning (APEFT), a framework that en-
hances model’s awareness of factuality at the gran-
ularity of individual facts. Initially, we define the
preferences collected on one specific task as gen-
eral preferences. Firstly, we break the responses in
general preferences into single sentences contain-
ing only one piece of knowledge. Subsequently,
we assess the extent to which the model knows
these pieces of knowledge by collecting stochasti-
cally sampled responses to a knowledge detection
prompt. Then, we select the contradicted responses
along with the knowledge detection prompt to con-
struct preference pairs, denoted as atomic prefer-
ences. Finally, we train the models based on both
the atomic preferences and the general preferences.
Experimental results demonstrate performance im-
provements across almost all the preference learn-
ing algorithms. Additionally, we briefly explore
whether merely increasing the quantity and improv-
ing the quality of training preference pairs enhances
factuality and find that they do not necessarily lead
to performance gains.

Our contributions can be summarized as follows:

• We conduct a comprehensive evaluation of
the factuality of different models tuned by
various preference learning algorithms. We
demonstrate that the model’s performance on
OOD queries either increases minimally or
even decreases after the tuning.

• We provide two potential failure modes ex-
plaining why the models fail to uphold their
factuality under a distribution shift: under-
alignment and over-alignment. We reveal that
under-alignment is the primary cause by an-
alyzing the differences in token distributions
of the models before and after tuning.

• We propose APEFT (Atomic Preference
Enhanced Factuality Tuning), a framework
that enhances model’s awareness of factuality
at the granularity of individual facts. Exten-
sive experiments demonstrate its effectiveness
and the model performance increases an av-
erage of 3.45% on both the OOD and ID
datasets. 2

2The code and datasets will be available at https://
github.com/HongbangYuan/APEFT.
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2 Related Work

Hallucination Hallucinations greatly impede the
practical applications of LLMs (Liu et al., 2024a;
Mündler et al., 2023; Jin et al., 2024a) and many
studies have been conducted to address the issue
(Trivedi et al., 2023; Gou et al., 2023). Since LLMs
have shown internal awareness when hallucination
occurs (Azaria and Mitchell, 2023; Manakul et al.,
2023; Men et al., 2024), some methods propose
to intervene the internal representations during in-
ference to mitigate hallucinations (Li et al., 2023;
Chuang et al., 2023; Zou et al., 2023; Jin et al.,
2024c) while others directly fine-tune the LLMs to
be more factual in the first place (Tian et al., 2023;
Chen et al., 2024c; Lin et al., 2024). However, they
primarily use test data sourced from the same do-
main as the training data to evaluate factuality, and
fail to consider the generalization of their methods
on out-of-domain datasets.

Alignment Aligning LLMs with human prefer-
ences is a crucial step to steer already-capable mod-
els towards desired behaviors (Burns et al., 2023;
Liu et al., 2024c). It typically involves instruc-
tion tuning and reinforcement learning from hu-
man feedback (Sanh et al., 2022; Ouyang et al.,
2022; Bai et al., 2022; Zhou et al., 2023). Since
relative preference scores are more feasible than
expert demonstrations (Rafailov et al., 2023), many
studies develop methods to fine-tune models with
preferences (Azar et al., 2023; Ethayarajh et al.,
2024; Xu et al., 2024a). However, as human prefer-
ences in many datasets tend to under-represent the
factuality of the responses (Hosking et al., 2024),
it’s still unclear how to construct preference pairs
that can enhance the factuality of LLMs.

3 A Comprehensive Evaluation

In this section, we conduct comprehensive quanti-
tative study on the performance of models tuned by
various preference learning algorithms. We demon-
strate that nearly all the preference learning algo-
rithms deliver unsatisfactory performance on the
OOD datasets.

3.1 Data Construction

Initially, we construct a preference dataset that fo-
cuses on the factuality of the responses.

Formally, we prompt a pre-trained LLM πθ with
a prompt x to produce pairs of answers: (y1, y2) ∼
πθ(y|x). Then we compare which response aligns

more closely with external knowledge sources. The
preferred response with fewer factual errors is de-
noted as yw, while the dispreferred response with
more factual errors is denoted as yl.

Specifically, we prompt the LLMs to generate
biographies of famous people, with names sam-
pled from a list of the most popular individuals
3. To measure the factuality of the responses, we
employ FActScore (Min et al., 2023), which com-
putes the percentage of individual facts in the gen-
erated responses that are supported by the knowl-
edge source. For each prompt, we generate N re-
sponses, create

(
N
2

)
preference pairs, and then filter

out those pairs that have identical factuality scores.
Finally, we obtain a dataset of N preference pairs
D = {xi, yiw, yil}Ni=1.

We employ LLaMA-2-7B-Chat (Touvron et al.,
2023) and LLaMA-3-8B-Instruct 4 as the base
model of our experiments. Ultimately, we construct
2777 preference pairs for LLaMA-3-8B-Instruct
and 2730 preference pairs for LLaMA-2-7B-Chat.

3.2 Training

We primarily use reward-free preference learning
algorithms to avoid the complex process of rein-
forcement learning without the loss of generality.
Specifically, we employ the following representa-
tive methods:

(1) DPO (Rafailov et al., 2023), which directly
optimizes a simple classification loss function with-
out the explicit usage of reward model.

(2) RSO (Liu et al., 2024b), which proposes to
employ a hinge loss to replace the sigmoid loss in
the classification loss function in DPO.

(3) IPO (Azar et al., 2024), which designs a
new general objective to avoid over-fitting to the
preference dataset.

(4) KTO (Ethayarajh et al., 2024), which di-
rectly maximizes the utility of generated responses
instead of the log-likelihood of preferences.

(5) CPO (Xu et al., 2024b), which derives an ap-
proximation of the DPO loss that is more memory-
efficient and speed-efficient.

Further details about these methods are provided
in Appendix A.

For the training hyperparameters, we set training
epochs to 3, learning rate to 1e−6, batch size to
4 and gradient accumulation step to 4. We use

3https://today.yougov.com/ratings/entertainment/
popularity/people/all

4https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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Dataset Samples Example Task Type
Bio 44 Write a short biography of Robert Duvall. Biography Generation ID

FAVA 100 Explain Hypermarcas, including information about industry, key person. Open-ended Generation OOD
FPQA 986 Why was Albert Einstein awarded the 1922 The Nobel Prize in Physics? False Premise QA OOD
KUQA 946 What languages did Mila Kunis speak as a child? Knowledge-based QA OOD

Table 1: Statistics and examples of the evaluation datasets.
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Figure 2: Performance changes of LLaMA-3-8B-
Instruct before and after tuning using various preference
learning techniques.

LLaMA-Factory 5 to train the models using full
parameter fine-tuning. All of our experiments are
conducted on 4 Nvidia A100-80G GPUs.

3.3 Evaluation

We evaluate the factuality of the tuned models from
two aspects: in-domain and out-of-domain. For
the in-domain evaluation, we use the same biogra-
phy generation task as the training data. For the
out-of-domain evaluation, we choose the following
datasets:

(1) FAVA (Mishra et al., 2024), which contains
information-seeking queries on open-ended topics,
aims to benchmark model’s long-form factuality in
a variety of domains.

(2) FPQA (Yuan et al., 2024), which contains
questions that have false premises, aims to eval-
uate the model’s factuality when faced with such
unanswerable questions.

(3) KUQA (Jin et al., 2024b), which contains
questions about particular entities and their neigh-
bours, aims to assess the model’s knowledge
through its ability to generate short-form phrases.

To facilitate evaluation, we select a subset of
each dataset. The statistics and concrete examples
of each dataset are shown in Table 1.

5https://github.com/hiyouga/LLaMA-Factory

3.4 Results and Analysis

We train the models using various preference learn-
ing algorithms using our constructed preference
pairs. Then, we depict the performance changes of
LLaMA-3-8B-Instruct before and after tuning in
Figure 2. Additional results are presented in Ap-
pendix B. We can draw the following observations:
(1) Our constructed preference pairs can improve
model factuality on in-domain datasets. For exam-
ple, apart from the IPO, nearly all the preference
learning algorithms demonstrate an improvement
in the FActScore on Bio dataset. (2) Nearly all the
preference learning algorithms perform poorly on
OOD datasets. For example, the performance on
FAVA increases minimally while the performance
actually decreases on FPQA and KUQA.

4 Under-Aligned or Over-Aligned?

Given the unsatisfactory performance of the tuned
models, we set out to better understand the reasons
for the ineffectiveness. We start by proposing two
potential failure modes, namely under-alignment
and over-alignment, and then we conduct the token
distribution analysis proposed by Lin et al. (2023)
to empirically determine the primary cause.

4.1 Two Failure Modes

Intuitively, the failure may be caused either by in-
sufficient learning from the preference pairs or by
excessive attention to spurious features that are un-
related to factuality. We termed these two cases
under-alignment and over-alignment. We describe
them in detail in the following paragraphs:

Under-Alignment The preference learning pro-
cess is particularly superficial, resulting in no sig-
nificant change in the tuned model’s behaviour in
OOD settings. For example, the tuned models may
produce the same responses as their pre-tuned coun-
terpart because they didn’t fully aware of the factu-
ality conveyed by the training preference pairs.

Over-Alignment The preference learning pro-
cess is adversely affected by spurious features in
the training data, resulting in unintended changes
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in model behaviour in OOD settings. For example,
the model tends to generate vague and subjective
queries after training on the biography generation
task, thus failing to answer questions such as the
specific contributions of Albert Einstein or when
Panama gained full control of the Panama Canal.

Notably, it is significant to distinguish them as
it influences how we proceed to address the gen-
eralization failure. If the under-alignment is the
primary cause, enhancing the model’s awareness
of factuality becomes necessary. Conversely, if
the over-alignment is the primary cause, it would
be imperative to revise the learning process or the
current preference pairs to minimize the impact of
spurious features.

4.2 Empirical Validation
To quantitatively measure the behaviour change
during the preference learning, we directly com-
pare the differences in token distribution of the
models before and after tuning.

Method Intuitively, if the model’s behaviour
changes significantly after the fine-tuning pro-
cess, the predicted tokens using the same context
will also change dramatically. Specifically, the
response of the fine-tuned model is denoted as
{t1, t2, ..., tN} and at each token position, the next
token prediction probability distribution is denoted
as Paligned. For each token position ti, the con-
text {t1, t2, ..., ti−1} is input again to the pre-tuned
counterpart and the resulting distribution is denoted
as Pbase. We measure how the rank of ti in Paligned

changes compared to its rank in Pbase and define
the difference as δ. The greater the difference, the
more significant the change in model behaviour
after the tuning. We refer to a tokens as ‘shifted
token’ if its rank difference is greater than zero.

Results and Analysis We conduct experiments
on the ID dataset Bio and the OOD dataset FAVA
on LLaMA-2-7B-Chat trained by various learning
algorithms. We calculate the frequency of vari-
ous levels of the shifted tokens along with their
relative positions in each sentence. The experi-
mental results are shown in Figure 3. We draw
the following observation: shifted tokens are more
prevalent in the in-domain dataset than in the out-
of-domain dataset. The frequency bars in the Bio
figure are almost three times as high as those in
the Fava figure. This indicates that the the model’s
behaviour changes far less on OOD queries than
on ID queries and the performance drop on OOD
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Figure 3: Token shift analysis on LLaMA-2 trained by
DPO. More results are presented in Appendix C.

queries is more likely a result of under-alignment
rather than over-alignment. Therefore, it’s essential
to design methods to enhance model’s awareness
of factuality.

5 Atomic Preference Enhanced Factuality
Tuning

In this section, we introduce APEFT, a framework
designed to enhance the model’s awareness of fac-
tuality at the granularity of individual facts. We
start with a detailed description of our framework
and then demonstrate its effectiveness by extensive
quantitative experiments.

5.1 Framework Description
We posit that the original factual preference feed-
back, which is mainly based on paragraphs, is too
coarse-grained and insufficient to convey the factu-
ality of individual facts. For example, as shown in
Figure 1, the general preferences contain too much
information, such as the date and place of Tom
Cruise’s birth, the films in which he starred. Con-
sequently, the model is unable to discern exactly
which fact is incorrect, leading to under-alignment
on OOD queries. Thus it’s essential to construct
preferences at the granularity of each individual
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fact. In particular, as shown in Figure 4, our method
APEFT is divided into three steps: atomic fact ex-
traction, knowledge detection and atomic prefer-
ence creation. We will describe each step in detail
sequentially.

Atomic Fact Extraction Firstly, we extract in-
dividual atomic facts from the general preference
dataset. Following (Min et al., 2023; Wei et al.,
2024), we define the atomic facts as short sentences
containing only one piece of information. We ex-
tract atomic facts of both the preferred response yw
and the dispreferred response yl for every prefer-
ence pair by prompting ChatGPT.

Knowledge Detection Subsequently, we assess
the extent to which model knows the knowledge
contained in each atomic fact. We ask the model
to decide whether the provided atomic fact is true
or false and detect the model’s internal knowledge
through the percentage of correct responses among
the stochastically sampled responses.

We employ multinomial sampling as the decod-
ing strategy and set temperature to 1 to increase
randomness and diversity. With the percentage
of the correct responses after the sampling de-
noted as r, the unknown, potentially-known and
known atomic facts are defined as when (r = 0),
(0 < r < 1) and (r = 1) respectively. We pro-
pose that our focus should be on improving those
potentially-known atomic facts.

Atomic Preference Creation Finally, we con-
struct atomic preferences from previously iden-
tified potentially-known atomic facts. We direct
use the knowledge detection prompt as the user
query x and the two contradictory responses as
preference (yw, yl). The atomic preferences are
mixed together with the general preferences to en-
hance the factuality of LLMs. With the original
general preferences denoted as Dg and the newly
constructed atomic preferences denoted as Da, we
aim to optimize the following generic objective
function:

O (πθ) = E
(y,x)∼Dg∪Da

[
r(x,y)− β log

πθ(y | x)
πref(y | x)

]

where the data (x,y) can either be (x, yw) or
(x, yl), r is the reward model and β is a regular-
isation term controlling the Kullback-Leibler diver-
gence between the policy model πθ and the refer-
ence model πref . Further details about the objective
function are presented Appendix A.

Do you think the following statement 

about Tom Cruise is true? Tom 

Cruise was born on June 10, 1975.

Write a short biography of Tom Cruise.

Tom Cruise was born on June 10, 1975 in Sunnydale, California, USA.

He is an American actor known for his iconic roles in action-packed 

movies like “Mission: Impossible” and “Top Gun”…

Tom Cruise was born on June 10, 1975.

Tom Cruise in Sunnydale, California, USA.

Tom Cruise is an American Actor.

Tom Cruise acts in “Mission: Impossible”.

Tom Cruise acts in “Top Gun”…

1. Atomic Fact Extractions 2. Knowledge Detection

No, Tom Cruise was 

born on July 3, 1962.

Yes, Tom Cruise was indeed 

born on June 10, 1975.

3. Atomic Preference Creation

Do you think the following statement about Tom Cruise is true?

Yes, Tom Cruise was indeed born on June 10, 1975.

No, Tom Cruise was born on July 3, 1962. Atomic Preference

General Preference

Correct × 12

Incorrect × 8𝑟 = 0.6

0 < 𝑟 < 1

Figure 4: Illustration of our proposed APEFT. It cre-
ates atomic preferences from the responses in original
general preferences to enhance model’s awareness of
factuality at the granularity of individual facts.

5.2 Experimental Results

We create 2063 atomic preferences each for
LLaMA-2-7B-Chat and LLaMA-3-8B-Instruct,
and train the models using both these atomic pref-
erences and the previously generated general pref-
erences. The training process and the evaluation of
the models follow the procedure outlined in Sec-
tion 3. The experimental results are shown in Table
2 (our method is denoted as ‘w/atom’) and we can
draw the following observations:

(1) Add atomic preferences to the original gen-
eral preferences gain performance increase among
almost all the learning algorithms. For example,
for each preference learning algorithm, our method
achieves improvements compared with the general-
preference-only baselines. This demonstrates the
effectiveness of the atomic preferences in contribut-
ing to the enhancement of facuality.

(2) Despite containing knowledge of only one
single factoid, the atomic preferences can enhance
the factuality in long-form responses. For example,
the factuality of LLaMA-2 on the FAVA dataset im-
proves after the incorporation of atomic preferences
compared to using only the general preferences.

5.3 Ablation Study

To demonstrate the effectiveness of the selection
of atomic facts in the general preferences, we con-
duct the following ablation study. We randomly
select questions from the TriviaQA dataset (Joshi
et al., 2017). To align with the atomic preferences,
we filter these questions to ensure that they are
relevant to the famous individuals in the training
data and also contain a single ‘potentially known’
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Methods
Bio FAVA FPQA KUQA AVG(↑)

FS(%)(↑) NC(↑) NE(↓) FS(%)(↑) NC(↑) NE(↓) Acc(↑) Acc(↑)
LLaMA-2-7B-Chat

Vanilla 82.11 27.41 6.02 60.37 18.46 11.96 22.99 68.09 58.39
+DPO 87.35 29.23 4.30 62.37 19.14 11.53 36.18 65.11 62.75
w/rand 87.45 29.45 4.23 64.66 19.95 10.83 29.22 71.62 63.24
w/atom 88.08 28.23 3.86 63.66 18.90 11.08 39.03 69.56 65.08

+IPO 85.66 29.05 5.05 64.30 19.56 11.32 37.03 64.67 62.92
w/rand 85.55 28.77 4.77 63.25 19.15 11.32 11.29 70.93 57.75
w/atom 88.17 24.66 3.25 65.84 19.88 10.75 30.49 72.58 64.27

+KTO 82.88 28.14 5.75 61.25 18.63 12.12 43.99 60.92 62.26
w/rand 85.34 28.14 4.86 60.79 18.56 12.53 21.84 70.30 59.57
w/atom 84.62 28.43 5.20 63.98 20.12 11.27 40.40 60.52 62.38

+CPO 89.15 28.48 3.52 62.31 19.61 11.97 34.49 67.44 63.35
w/rand 89.42 29.59 3.55 64.92 19.93 11.02 30.70 72.92 64.49
w/atom 89.54 29.89 3.50 65.91 20.07 10.31 30.59 70.81 64.21

+RSO 87.63 28.30 4.02 62.18 19.22 11.69 35.76 65.08 62.66
w/rand 87.59 30.41 4.30 63.23 19.32 11.56 22.15 73.18 61.54
w/atom 89.06 30.16 3.57 65.11 20.07 10.83 39.13 67.57 65.22

LLaMA-3-8B-Instruct
Vanilla 86.37 33.86 5.43 69.14 26.95 11.97 82.91 74.29 78.18
+DPO 91.94 35.77 3.20 72.32 29.19 10.78 56.01 70.21 72.62
w/rand 91.79 36.61 3.27 71.68 27.02 10.32 50.21 77.90 72.90
w/atom 90.69 35.16 3.64 69.49 25.36 10.53 67.30 77.27 76.19

+IPO 82.81 33.50 7.09 68.11 26.78 11.93 85.76 56.15 73.21
w/rand 85.55 28.77 4.77 67.32 24.25 11.68 81.22 81.11 78.80
w/atom 84.75 34.02 6.16 65.27 24.61 12.24 95.99 72.53 79.63

+KTO 86.17 32.70 5.32 69.24 27.22 12.10 65.93 73.95 73.82
w/rand 85.06 33.00 5.82 65.35 24.02 11.10 48.73 82.44 70.40
w/atom 84.86 33.41 6.02 64.73 24.37 10.29 96.80 77.35 80.93

+CPO 91.25 36.18 3.50 71.43 27.97 11.00 59.92 67.21 72.45
w/rand 91.04 35.34 3.48 69.40 26.22 10.12 56.54 79.47 74.11
w/atom 90.22 35.20 3.80 69.58 26.42 9.98 92.41 75.42 81.91

+RSO 89.82 37.09 4.25 70.93 28.49 11.53 47.26 70.84 69.71
w/rand 90.09 35.14 4.05 69.67 26.49 10.39 37.45 80.18 69.35
w/atom 88.11 33.64 4.64 69.40 26.22 10.12 71.20 80.23 77.23

Table 2: Experimental results of models trained by different preference learning techniques. ‘FS’ denotes FActScore,
‘NC’ denotes the number of correct atomic facts and ‘NE’ denotes the number of error atomic facts. ‘Acc’ stands for
‘Accuracy’ and ‘Rec’ stands for ’Recall Score’. ‘Avg’ is averaged across all ‘FS’ and ‘Acc’ values. Cells in blue
indicate a performance increase, while cells in orange indicate a performance decrease.

fact according to stochastically sampled responses.
Therefore, we use each question and its correspond-
ing contradicted responses to construct preference
pairs directly. We train the models based on these
preferences and the previously generated general
preferences (denoted as ‘w/random’) and the exper-
imental results are shown in Table 2.

(1) Preferences constructed with the randomly
selected questions are not as effective as those con-
structed with atomic facts selected from the general
preferences. For example, the average accuracy of
the ‘w/random’ method does not exceed that of our
‘w/atom’ method across almost all the preference
learning algorithms and both models.

(2) Randomly selected QA samples are more
beneficial for short-form factuality but contribute

less to longer responses on the scale of several
sentences or paragraphs. For example, while the
accuracy on the KUQA dataset is generally slightly
higher than that achieved with our method, it
slightly drops on the other three datasets.

6 Discussion

In this section, we further explore whether merely
increasing the quantity or improving the quality
of training preference pairs facilitates the prefer-
ence learning of factuality more effectively. Our
main finding is that scaling or a greater difference
in preference pairs does not necessarily result in
improved factuality performance.

6331



0 2000 4000 6000 8000
Data Quantity

0.81

0.83

0.85

0.87

0.89

0.91
B

io

0 2000 4000 6000 8000
Data Quantity

0.59

0.61

0.63

0.65

0.67

FA
VA

0 2000 4000 6000 8000
Data Quantity

0.59

0.61

0.63

0.65

0.67

0.69

K
U

Q
A

DPO IPO KTO CPO RSO

Figure 5: Experimental results of models trained by various number of training preferences.
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Figure 6: Experimental results of models trained by
preferences of different quality levels using DPO. More
results are presented in Appendix D.

6.1 Data Quantity

Initially, we investigate the influence of increasing
the number of the training preference pairs. We cre-
ate different amount of preference pairs and train
LLaMA-2-7B-Chat based on them. The experi-
mental results are shown in Figure 5.

We can draw the following observation: scaling
is ineffective when training models for factuality.
For example, what can be clearly seen in the fig-
ure is the dramatic decline in performance on the
KUQA dataset as the number of training prefer-
ence pairs increase. For the Bio and FAVA datasets,
the performance quickly reaches a peak and then
struggles to improve further. It suggests that a mod-
erate amount of preference pairs is sufficient for
the model to learn factuality, and simply adding
more data might even backfire.

6.2 Data Quality

Subsequently, we study the influence of data qual-
ity in training preference pairs. We define the
preference data quality as the difference in fac-

tuality scores between the preferred and dispre-
ferred responses. Formally, the data quality score
q of a preference (x, yw, yl) is calculated as q =
f(yw)− f(yl) where f(y) represents the factuality
score of model response y.

We divide the general preferences generated in
Section 3 into three levels of data groups accord-
ing to their quality score: Level1 (0 < q ≤ 0.1),
Level2 (1 < q ≤ 0.2) and Level3 (q > 0.2). We
have also added a mixed data group encompassing
data of all quality levels. To ensure a fair compar-
ison, we ensure that each data group is filtered to
have an equal quantity. Then we use DPO to train
LLaMA-2-7B-Chat using each data group. The
experimental results are shown in Figure 6.

We can draw the following observation: prefer-
ence pairs of better quality do not necessarily en-
sure better performance. For example, data group
with quality Level2 consistently outperforms others
on OOD datasets. One possible reason is that the
preference learning is actually aligning the knowl-
edge inside the model parameters. Meanwhile, the
quality of the preference pairs is assessed based
on whether the responses align with the external
knowledge sources, which are not necessarily rele-
vant to the model itself.

7 Conclusion

In this work, we firstly conduct a comprehensive
evaluation of the factuality of different models on
OOD queries tuned by various preference learning
methods and demonstrate their ineffective perfor-
mance. Subsequently, we conduct a token distribu-
tion analysis and reveal that the primary cause of
the ineffectiveness is under-alignment rather than
over-alignment. Finally, we propose APEFT, a
framework that can enhance model’s awareness of
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factuality at the granularity of individual facts. Ex-
tensive experiments demonstrate the effectiveness
of our proposed APEFT.

Limitations

While our work provides an in-depth analysis of
how to enhance model’s factuality on OOD queries,
it is still subject to the following limitations: (1)
Our research primarily concentrates on how to en-
hance the factuality of LLMs through fine-tuning.
However, it naturally raises concerns about whether
the same process could adversely affect other ca-
pabilities that LLMs have already developed, such
as mathematical reasoning, code completion and
safety preservation. Future research could system-
atically investigate the changes in various capa-
bilities of LLMs during the fine-tuning process.
(2) Our work does not delve into the internals of
LLMs. It would be interesting to develop a more
fine-grained understanding of behaviour changes
within the LLMs induced by fine-tuning. For in-
stance, is there a tiny region within LLMs focusing
on the concept of factuality, and do the primary
changes in parameters occur in this area? We leave
the exploration for future work.
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A Preference Learning Algorithms

In this section, we formally introduce the loss func-
tions used by the various preference learning al-
gorithms. Formally, given the preference dataset
D = {xi, yiw, yil}Ni=1, the reference policy model
πθ and the current policy model πref , the loss func-
tions can be articulated as follows:

(1) DPO (Direct Preference Optimization)

LDPO = − E
(yw,yl,x)∼D

[
log σ

(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

)]

where β is a hyperparameter controlling the de-
viation between the policy model πθ and the refer-
ence model πrefduring the optimization process.

(2) IPO (Identity Preference Optimization)

LIPO = E
(yw,yl,x)∼D

(
hπ (yw, yl, x)− τ−1

2

)2

hπ

(
y, y′, x

)
= log

(
π(y | x)πref (y

′ | x)
π (y′ | x)πref(y | x)

)

where τ is a regularisation term. A lower value of
τ means a higher value of the log-likelihood ratio
of yw to yl.

(3) KTO (Kahneman-Tversky Optimization)

LKTO = Ex,y∼D [w(y) (1− vKTO(x, y;β))]

where

rKTO(x, y) = β log
πθ(y | x)
πref(y | x)

zref = Ex′∼D

[
βKL

(
πθ

(
y′ | x′) ∥πref

(
y′ | x′))]

vKTO(x, y;β) =

{
σ (rKTO(x, y)− zref ) if y ∼ ydesirable | x
σ (zref − rKTO(x, y)) if y ∼ yundesirable | x

w(y) =

{
λD if y ∼ ydesirable | x
λU if y ∼ yundesirable | x

Notably, KTO only requires one response and
a binary signal indicating whether it is ‘desirable’
or ‘undesirable’. We set the loss_type parameter
to kto_pair in DPOTrainer which is a highly sim-
plified version and we leave a more sophisticated
implementation for future work.
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Figure 7: LLaMA-2-7B-Chat performance change be-
fore and after tuning using various preference learning
techniques.

(4) CPO (Contrastive Preference Optimization)

LNLL = −E(x,yw)∼D [log πθ (yw | x)]
Lprefer = −E(x,yw,yl)∼D [log σ (β log πθ (yw | x)

−β log πθ (yl | x)))]
LCPO = Lprefer + LNLL

where β is a regularisation term. Notably, CPO
doesn’t require the reference model. Thus it is
more memory-efficient and speed efficient.

(5) RSO (Statistical Rejection Sampling
Optimization)

Lrso = E
(yw,yl,x)∼D

[max (0,

1 −
[
γ log

πθ (yw | x)
πsft (yw | x)

− γ log
πθ (yl | x)
πsft (yl | x)

]

where γ is a regularisation term. In our work,
the preferences are sampled and annotated directly
from the models. Thus we use a simplified version
by setting the supervised finetuning model to the
original base reference policy model. This equals to
substituting the sigmoid function in DPO loss with
a hinge loss. We leave the original implementation
for future work.

B Additional Results of General
Preference Performance

We present the performance change of LLaMA-
2-7B-Chat trained by general preferences using
various preference learning techniques.

C Additional Result of Token Shift
Analysis

In this section, we present the results of token anal-
ysis of LLaMA-2-7B-Chat trained by IPO (Figure
8), KTO (Figure 9), CPO (Figure 10) and RSO
(Figure 11).
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Figure 8: Token shift analysis on LLaMA-2 trained by
IPO.

D Additional Results of the Data Quality
Experiments

In this section, we present the results demonstrating
the impact of data quality on our experiments. The
training methods are IPO (Figure 12), KTO (Figure
13), CPO (Figure 14) and RSO (Figure 15).
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Figure 9: Token shift analysis on LLaMA-2 trained by
KTO.
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Figure 10: Token shift analysis on LLaMA-2 trained by
CPO.
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Figure 11: Token shift analysis on LLaMA-2 trained by
RSO.
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Figure 12: Experimental results of models trained by
preferences of different quality levels using IPO.
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Figure 13: Experimental results of models trained by
preferences of different quality levels using KTO.
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Figure 14: Experimental results of models trained by
preferences of different quality levels using CPO.
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Figure 15: Experimental results of models trained by
preferences of different quality levels using RSO.
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