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Abstract

Recent advancements in Al for biological re-
search focus on integrating molecular data with
natural language to accelerate drug discov-
ery. However, the scarcity of high-quality an-
notations limits progress in this area. This
paper introduces LA3, a Language-based
Automatic Annotation Augmentation frame-
work that leverages large language models
to augment existing datasets, thereby improv-
ing Al training. We demonstrate the effec-
tiveness of LA® by creating an enhanced
dataset, LACHEBI-20, where we systemati-
cally rewrite the annotations of molecules from
an established dataset. These rewritten annota-
tions preserve essential molecular information
while providing more varied sentence struc-
tures and vocabulary. Using LACHEBI-20, we
train LAMOLTS based on a benchmark archi-
tecture to learn the mapping between molecular
representations and augmented annotations.

Experimental results on text-based de novo
molecule generation and molecule captioning
demonstrate that LAMOLTS outperforms state-
of-the-art models. Notably, incorporating LA3
leads to improvements of up to 301% over the
benchmark architecture. Furthermore, we vali-
date the effectiveness of LA? notable applica-
tions in image, text and graph tasks, affirming
its versatility and utility. !

1 Introduction

Artificial Intelligence (Al) has garnered increas-
ing attention due to its transformative potential
in broad real-world applications, including biol-
ogy (Schwaller et al., 2019; Pei et al., 2023; Zhong
and Mottin, 2023). Take a recent new trend as
an example: researchers intend to jointly model
SMILES (Weininger, 1988) strings and scientific
text to obtain shared representations across the two

!The augmented dataset and trained models are available
at https://github.com/zhigiangzhongddu/LA3.
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Figure 1: Molecule generation performance of LAM-
OLT5-Small with different LA augmentations. Con-
ventional augmentation (EDA (Wei and Zou, 2019),
Mixup (Zhang et al., 2018)) and straightforward LLMs
for data generation (Zhong et al., 2024a) fall behind.

modalities. For instance, Edwards et al. (2022) in-
novatively propose MOLTS, a model based on the
TS5 architecture (Raffel et al., 2020), pre-trained on
ZINC (Sterling and Irwin, 2015) by predicting the
masked text parts. Consequently, they fine-tune
the model on CHEBI-20 (Edwards et al., 2021) to
learn how to map between SMILES representations
of molecules and their corresponding annotations
(captions) to support molecular tasks.

However, the development of Al faces a funda-
mental setback: the scarcity of high-quality anno-
tated data. For instance, molecular data annotation
is often a costly and time-consuming process (Di-
Masi et al., 2016). This limitation restrains the
development of Al approaches, as models grow
in size and expressiveness, they require larger and
more diverse annotated datasets to achieve high per-
formance and generalisability (Devlin et al., 2019;
He et al., 2023). Therefore, one viable alternative
for Al in practice is to resort to effective data aug-
mentation strategies.

Back to the example CHEBI-20 dataset, a
set of studies attempted various solutions to ad-
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dress the scarcity limitation, following the MOLTS.
Christofidellis et al. (2023), Liu et al. (2023b), Pei
et al. (2023) and Pei et al. (2024) introduce extra
chemical databases and auxiliary tasks to train ad-
vanced models. However, the heavy dependencies
on supplemental datasets limit their practical versa-
tility, and the auxiliary task definition requires do-
main expertise. On the other hand, Li et al. (2024)
use the general human knowledge embedded in
Large Language Models (LLMs) to perform the
molecule-caption translation tasks. Nevertheless,
despite the widespread use of LLMs in literature
review, table interpretation, etc, their application in
biology is not straightforward (Laurent et al., 2024).
The effectiveness of (Li et al., 2024) depends heav-
ily on the specific retrieval strategy used, and its
performance is surpassed by existing smaller mod-
els. Additionally, Zhong et al. (2024a) and our
empirical studies in Figures 1,3 demonstrate the
limitations of using LLMs for data augmentation.

This paper proposes an effective automatic
pipeline (see Figure 2), LA3, to effectively aug-
ment annotations of datasets with no human super-
vision. Once the augmented datasets are generated,
existing methods can be conveniently re-trained for
significant performance boosting.

We showcase the effectiveness of LA? by creat-
ing an enhanced dataset, LACHEBI-20, where we
leverage the in-context learning (Liu et al., 2023a)
capability of LLMs to rewrite the annotation of
each molecule in CHEBI-20. These rewritten an-
notations preserve essential molecular information
while providing more varied sentence structures
and vocabulary (see our analysis in Section 4.4).
After the annotation augmentation process, each
molecule in LACHEBI-20 is accompanied by di-
verse annotations. Using these annotations, we
proceed to train LAMOLTS, using the benchmark
MOLTS architecture, to support molecular tasks.
During training, LAMOLTS aims to learn a map-
ping function between the space of molecules and
the augmented annotations, thereby enhancing the
overall performance of the models.

We systematically evaluate the effectiveness
of LAMOLTS on challenging text-based de novo
molecule generation and molecule captioning tasks.
Through extensive experiments on the benchmark
evaluation pipeline, we demonstrate that LAM-
OLTS significantly elevates the performance of
MOoLTS5, which was trained using the same archi-
tecture on the original CHEBI-20 dataset. No-
tably, LAMOLTS achieves improvements of up to

301% on the molecule generation task and 9.51%
on the molecule captioning task. Additionally, the
small-size variant of LAMOLTS (77M parame-
ters) outperforms the large-size variant of MOLTS
(800M parameters) for the molecule generation
task. Compared with other leading methods re-
ported on the leaderboard, LAMOLTS achieves
new state-of-the-art performance with 99% fewer
parameters. More importantly, LA? effectively
boosts the performance of other applications, in-
cluding image captioning, text understanding and
graph property prediction, affirming its versatility.
Our contributions are as follows: (1) A fully au-
tomated pipeline for domain-specific applications
where limited data availability restricts the effec-
tiveness of existing technologies. (2) A set of
lightweight open-source models tailored to address
challenging molecular tasks. (3) Empirical studies
demonstrating the necessity and effectiveness of
L A3 across multiple applications.

2 Related Work

Molecule Language Models. MLLMs have recently
seen significant advancements, leveraging NLP
techniques to understand and generate molecules.
Early works such as ChemBERTa (Chithrananda
et al., 2020) and Text2Mol (Edwards et al., 2021)
adapt transformer-based architectures for molecu-
lar representation learning. MolGPT (Bagal et al.,
2022) and MOLTS5 (Edwards et al., 2022) demon-
strate the ability to predict molecular properties
and generate novel compounds, highlighting the
potential of language models in biological research.
However, the effectiveness of MLMs is often con-
strained by the limited availability of annotated
molecular data. Meanwhile, manual molecular data
annotation is often a costly and time-consuming
process, necessitating specialised equipment and
extensive human labour (DiMasi et al., 2016).

Data Augmentation in MLMs. Data augmenta-
tion has emerged as a critical strategy to address
the scarcity of high-quality datasets. Take the
following studies on CHEBI-20, Christofidellis
et al. (2023), Liu et al. (2023b), Pei et al. (2023)
and Pei et al. (2024) introduce additional chemi-
cal databases (PubChem (Kim et al., 2023), Drug-
bank (Wishart et al., 2018), UniProt (Consortium,
2023), PubMed (White, 2020), etc) as to enrich
model with extra knowledge, and design auxiliary
tasks to train advanced models. However, these
methods depend on supplemental datasets and the
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domain expertise required to shape the tasks. On
the other hand, LL.Ms have experienced exponen-
tial growth in both size and capability in recent
years (Brown et al., 2020). A wide range of NLP
applications have been reshaped by LLMs (Hendy
et al., 2023; Zhong et al., 2024b). Notably, Mol-
ReGPT (Li et al., 2024) leverage the built-in gen-
eral human knowledge of LLMs to perform the
molecule-caption translation tasks. Despite the
widespread use of LLMs for tasks like literature re-
view and table interpretation (Achiam et al., 2023;
Touvron et al., 2023), their application in biology
remains challenging (Laurent et al., 2024). The
effectiveness of MolReGPT is highly dependent on
the chosen retrieval strategy, and it is often outper-
formed by smaller, existing models.

In another related work, Wang et al. (2024)
utilise LLMs and human annotators to augment text
for each image to improve contrastive learning of
CLIP (Radford et al., 2021), yet these pipelines still
require human supervision. Furthermore, Zhong
et al. (2024a) reveal the limited capability of LLMs
in understanding domain-specific data, e.g., biol-
ogy and physics, making LLM-based synthetic data
generation challenging in many applications (see
our analysis in Section 4.4). In contrast, our novel
LA? pipeline is fully automated and tailored for
domain-specific applications where data scarcity
limits the effectiveness of current technologies.

3 Methodology

Annotation
augmentation

(B)

C1=CC=C2C(=C1)C(=CN2) ———

C3=NC=CS3

De novo
Molecule =
Generation

Molecule
Captioning

Figure 2: An example implementation of LA® for
annotation augmentation (A) and training (B). Given
molecules and their original annotations, we prompt
LLMs to generate augmented annotations (LACHEBI-
20) by rewriting the original annotations. Next, we
train LAMOLTS on LACHEBI-20 to learn a mapping
function between the molecule’s SMILES string and
corresponding annotations.

To facilitate the practical re-implementation, we
showcase details of LA3, using CHEBI-20 (Ed-
wards et al., 2021), a widely adopted dataset for
molecular generation research (Section 3.1-3.3). In

addition, Section 3.4 describes extensive implemen-
tations of LA? across broad applications in image,
text and graph tasks.

3.1 Showcasing CHEBI-20

CHEBI-20. CHEBI-20 contains 33010 molec-
ular entities centred on chemical compounds.
Each molecule is represented using a SMILES
string (Weininger, 1988) and associated with a
high-quality, manually annotated caption support-
ing various computational and experimental studies.
Given a molecule, we formally represent it as M =
(S,C), where S and C' denote its SMILES string
and associated caption. Examples are illustrated in
Figure 2-(A). Consequently, CHEBI-20 can be for-
mally represented as D = { M, Ma, ..., M, }.
S = {51,52,...,5,} represents the SMILES
string set and C = {C4,Cq,...,C),} the caption
(annotation) set. The dataset is publicly available
with a fixed split: Drga (80%), Dyarn (10%) and
Drest (10%), allowing researchers to consistently
train and evaluate their models.

Tasks. CHEBI-20 supports two molecular tasks:
(1) text-based de novo molecule generation (GEN)
and (2) molecule captioning (CAP). The goal of
text-based de novo molecule generation is to train
a model which can generate a variety of possible
new molecules with desired properties as described
in the text. Specifically, for CHEBI-20, we aim to
learn a model fgey : C — S by minimising the loss
function value miny E(S’TRAIN, Straiv ), Where ¥
represents the set of trainable parameters of fgex-
The target of molecule captioning is to generate
descriptions of the components and chemical func-
tionality of a molecule. Similarly, we aim to learn a
model fepp : S — C , by minimising loss function
value ming E(éTRAIN, Crraiv), Where ® represents
the set of trainable parameters of fcap.

MoOLTS. The molecule generation tasks can
be considered translation tasks, and sequence-to-
sequence models serve as solid solutions. One fun-
damental method in this category is MOLTS5 (Ed-
wards et al., 2022), an improved version of T5 (Raf-
fel et al., 2020). MOLTS5 initialise an encoder-
decoder transformer model using public check-
points of T5. The model is then pre-trained on
a combined dataset of C4 (Raffel et al., 2020) and
ZINC (Sterling and Irwin, 2015) for 1 million steps.
Finally, it undergoes 50, 000 steps of fine-tuning
on CHEBI-20 for two molecular tasks. Since these
tasks are formulated as sequence-to-sequence tasks,
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the model is trained using standard maximum like-
lihood, such as cross-entropy loss (Lcg). Take
the fine-tuning phase as an example. The parame-
ters are optimised to match the generated text with
Drran’s text:

n
Z log p(STRAIN,i CTRAIN,i)
ﬁGEN _ =1
CE n y
n (D
Z 1ng(CTRAIN,i | STRAIN,i)
Egp — _i:l

n

where n is the number of molecules in Drgay and
P(Stravi | Crram,i) is the probability assigned
by foen to the i-th true SMILES string Stram,i
given the i-th caption Crramy,;- This optimisation
increases the probability of generating the correct
outputs given the corresponding inputs. Follow-
ing this way, MOLTS5 provides three trained vari-
ants of varying sizes: MOLTS5-Small (77M pa-
rameters), MOLTS5-Base (250 M parameters) and
MOLTS5-Large (8000 parameters).

3.2 Automatic Annotation Augmentation

As shown in Equation 1, the number of training
instances directly affects the amount of informa-
tion injected into the model. Edwards et al. (2022)
discuss the potential limitations caused by the lim-
ited data in CHEBI-20. A recent breakthrough
known as In-Context Learning (ICL) has enhanced
the adaptability of LLMs by enabling them to ac-
quire contextual knowledge during inference, elim-
inating the need for extensive fine-tuning (Clark
et al., 2020). To harness ICL for CHEBI-20 aug-
mentation, we first formulate a prompt for query-
ing LLMs. The goal in prompt engineering is to
find the correct way to formulate a question () in
such a way that an LLM (fLpm) will return the
corresponding answer A essentially represented as
A = frim(Q). In this work, we design the prompt
as shown in Appendix A. Precisely, the prompt
consists of two components: Instruction: Provides
general guidance to the LLM, clarifying its role
in the conversation; Message: Tasks the LLM to
rewrite the molecule caption, considering the chem-
ical expertise and given information.

Given an instance M; = (S5;,C;) from
Drrain» We can generate k rewritten captions
{Ci1,Ci2,...,Cir} with multiple rounds of
queries. This results in an augmented instance,
M:“ = (5;,Ci0,Ci1,Ci2...,Ci ), and an aug-
mented dataset, LACHEBI-20 (D). Specifically,

Dt = (Dfgam Dvarios Prest), where Dy =
{M{, M5, ...}. BEach SMILES string of Dify 1y
is associated with k£ + 1 captions. This language
augmentation process introduces diversity in sen-
tence structure and vocabulary while preserving
the essential knowledge about the molecules. In
our experiments, we adopt two open-source LLMs
(Llama 2-70b (Touvron et al., 2023) and Llama 3-
70b (Touvron et al., 2023)) and two closed-source
LLMs (GPT 3.5-turbo (Achiam et al., 2023) and
Gemini Pro (Google, 2024)) to generate four rewrit-
ten captions. We demonstrate some generated ex-
ample captions in Table 6 of Appendix B.

3.3 Training on Augmented Dataset

After generating k new captions for each molecule
of the training dataset Dryy. We proceed to train
a model based on LACHEBI-20 to perform the
molecular tasks, i.e., text-based de novo molecule
generation (GEN) and molecule captioning (CAP).
In this work, we initialise encoder-decoder trans-
former models using the available MOLTS variants,
as introduced in Section 3.1. We then train a novel
model, LAMOLTS, using a cross-entropy loss:

n

Z logp(STRAIN,i|CTRA1N,i, )

[GEN _ =l ’
CE n
i 2)
2:1 logp(CTRAIN,i, ‘STRAINJ)
LCAP _ = 7
CE n

where p(Srram,i | C’;; AN, j) is the probability as-
signed by fgey to the i-th true SMILES string
Stramv,i given the i-th molecule’s j-th caption
Ctrain,i,j- The critical addition to the MOLTS
is the augmented caption set C;;AIN,i,{O,l,...,k} for
each SMILES string Stgramv,i- For the molecule
generation task, LAMOLTS is trained to gener-
ate the correct SMILES string Stramv,; by giving
differept CaPtiOH‘ inPuts CTJ;AIsz‘,{O,l,...,k}' By in-
troducing diversity into the training data, we en-
hance the effectiveness and robustness of the model
in generating SMILES strings (validated in Sec-
tion 4.2). Meanwhile, for the molecule caption-
ing task, LAMOLTS is trained to generate various
captions for each SMILES string. Despite these
captions having different sentence structures and
vocabularies, they preserve the essential knowl-
edge about the molecules. This training enhances

the model’s ability to generate more semantically
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precise and meaningful captions (validated in Sec-
tion 4.3). Overall, this novel and effective method-
ology augments the biomedical dataset without re-
quiring human efforts, significantly contributing to
the performance of LAMOLTS.

3.4 Extension to Broad Applications

To further demonstrate the versatility of LA3,
we extend its application to several addi-
tional datasets, including ogbg-molbace,
ogbg-molhiv, ogbg-molesol (Hu et al., 2020),
and CC3M (Sharma et al., 2018). These datasets
support a variety of crucial tasks, e.g., image
captioning, text understanding, and graph property
prediction. Due to the paper length constraints,
the detailed implementations of LAMOLTS on
these additional datasets are presented in Ap-
pendix F. Experimental results derived from these
implementations will be discussed in Section 4.5.

4 Experiments

4.1 Experimental Settings

Dataset. We use our generated LACHEBI-20
dataset for training LAMOLTS. One annotation
is the original present in CHEBI-20, and the other
two are LLM-generated. We adopt two conven-
tional LLMs, GPT 3.5-turbo and Gemini Pro, to
generate annotations in the main dataset from most
experiments. We additionally experiment in Sec-
tion 4.4 with annotations generated by two open-
source LLMs, e.g., Llama 2-70b and Llama 3-70b.

Baselines. We mainly consider three families of
methods: (1) Methods included in the benchmark
paper (Edwards et al., 2022), including RNN (Cho
et al., 2014), Transformer (Vaswani et al., 2017),
T5 (Raffel et al., 2020) and MOLTS (Edwards
et al., 2022). (2) The state-of-the-art methods (re-
ported on the leaderboards (den, 2024; cap, 2024))
without additional datasets, including Text+Chem
T5 (Christofidellis et al., 2023), TGM-DLM (Gong
et al., 2024) and MolReGPT (Li et al., 2024). They
rely on the same datasets as LAMOLTS, we re-
port their results in Table 1, 3 (3) The state-of-the-
art methods incorporating extra datasets. For the
text-based de novo molecule generation task, we
include BioT5 (Pei et al., 2023) and BioT5+ (Pei
et al., 2024); for the molecule captioning task, we
include BioT5, MolXPT (Liu et al., 2023b). For a
fair comparison, we report their results in Figure 3.
A detailed description of each baseline method can
be found in Appendix D.

Training Setup. We train LAMOLT5-Small and
-Base for as little as 1500 epochs and LAMOLT5-
Large for 200 epochs. This project used ~ 11500
H100 GPU hours. Detailed hyper-parameter set-
tings and checkpoints are available online?.

Evaluation Setup. We adopt the benchmark evalu-
ation setup following (Edwards et al., 2022). For
the text-based de novo molecule generation task,
we employ: SMILES BLEU score (Papineni et al.,
2002), Levenshtein distance (Miller et al., 2009),
Fréchet ChemNet Distance (FCD) (Preuer et al.,
2018), MACCS FTS (Durant et al., 2002), RDK
FTS (Schneider et al., 2015) Morgan FTS (Rogers
and Hahn, 2010), Exact score (Edwards et al.,
2022), Validity (Edwards et al., 2022), and
Text2Mol (Edwards et al., 2021). For the molecule
captioning task, we measure the BLEU score,
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005), and Text2Mol of the generated an-
notation compared to the ground-truth. Detailed
descriptions can be found in Appendix C.

4.2 Molecule Generation

Observation 1: LAMOLTS significantly ele-
vates the performance of MOLTS5. The de novo
molecule generation results across nine evaluation
metrics in Table 1 reveal that LAMOLTS5 achieves
the highest performance on all measures. In addi-
tion, LAMOLTS consistently delivers substantial
enhancements over MOLT5, with improvements up
to 301% in terms of Exact score, which measures
the number of times the output corresponds to the
ground truth. This consistent and notable perfor-
mance underscores the effectiveness of LACHEBI-
20 and LAMOLTS. Moreover, it illustrates the
efficacy of our automatic annotation-augmentation
pipeline, LA3, on biomedical datasets.

Observation 2: The small 77)/ parameters
LAMOLTS outperforms the 800// MOLTS. The
results of Table 1 indicate that the small-size variant
of LAMOLTS (77M) outperforms the large-size
variant of MOLTS5 (800M) in seven different eval-
uation metrics (Levenshtein, MACCS FTS, RDK
FTS, Morgan FTS, FCD, Text2Mo, Validity) on
the molecule generation task. On the other two
evaluation metrics (BLEU and Exact), LAMOLTS5-
Small achieves competitive performance compared
to MOLTS5-Large. LAMOLTS achieves impressive
results by leveraging the annotation-augmented

>The augmented dataset and trained models are available
at https://anonymous.4open.science/r/LaMolT5-D3C3.
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Model BLEU?T Exact? Levenshtein] MACCS FTST RDKFTST Morgan FTST FCDJ| Text2Molf  Validity?
Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0

RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.34 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 16.03 0.277 0.906
T5-Small 0.741 0.064 27.703 0.704 0.578 0.525 1.77 0.479 0.608
MolT5-Small 0.755 0.079 25.988 0.703 0.568 0.517 1.35 0.482 0.721
LAMOLT5-Small  0.852 0.287 16.009 0.891 0.805 0.741 0.384 0.594 0.950
(Improvement) +12.85% +263.29%  +38.42% +26.72% +41.55% +43.33% +71.56%  +23.24% +31.74%
T5-Base 0.762 0.069 24.950 0.731 0.605 0.545 1.43 0.499 0.660
MolT5-Base 0.769 0.081 24.458 0.721 0.588 0.529 1.16 0.496 0.772
LAMOLTS5-Base 0.861 0.325 14.685 0.899 0.819 0.760 0.352 0.596 0.961
(Improvement) +11.96% +301.23%  +39.95% +24.69% +39.29% +43.67% +69.66%  +20.16% +24.48%
T5-Large 0.854 0.279 16.721 0.823 0.731 0.670 0.401 0.552 0.902
MolT5-Large 0.854 0.311 16.071 0.834 0.746 0.684 0.385 0.554 0.905
LAMOLTS-Large 0.856 0.328 15.666 0.892 0.816 0.754 0.371 0.593 0.962
(Improvement) +0.23% +5.46% +2.52% +6.9% +9.38% +10.23% +3.64% +7.04% +6.30%
Text+Chem T5 0.750 0.212 27.39 0.874 0.767 0.697 0.499 0.574 0.792
TGM-DLM 0.826 0.242 17.00 0.854 0.739 0.688 0.770 0.581 0.871
MolReGPT 0.857 0.280 17.14 0.903 0.805 0.739 0.410 0.593 0.899

Table 1: Text-based de novo molecule generation results for models without additional datasets. Models incorporat-
ing extra datasets are presented in Figure 3. Best performances are highlighted with an underline.

Caption Ground Truth MoLT5-Small LAMOLTS5-Small
(1):  The molecule is an indolylmethylglucosinolate that is on o
the conjugate base of 4-methoxyglucobrassicin, obtained by de- 7 O\ -
protonation of the sulfo group. It is a conjugate base of a 4- o o o on
methoxyglucobrassicin. SN0 0" o OH
3.0 OH 3O OH
o7y o o (e} \\O P o—

(2):  The molecule is an N-carbamoylamino acid that is as-
partic acid with one of its amino hydrogens replaced by a car- o0 A° NH,
bamoyl group. It has a role as a Saccharomyces cerevisiae J\I
metabolite, an Escherichia coli metabolite and a human metabo-  HO' N
lite. It is a N-carbamoyl-amino acid, an aspartic acid deriva-
tive and a C4-dicarboxylic acid. It is a conjugate acid of a N-

carbamoylaspartate(2-).

Table 2: Example of molecules generated with the same input descriptions. Generated SMILES strings are converted

to molecule graphs for better visualisation.

dataset, LACHEBI-20, which introduces diversity
in sentence structure and vocabulary while main-
taining the core molecular knowledge.

4.3 Molecule Captioning

Observation 3: LAMOLTS generates coherent
descriptions. The results in Table 3 highlight
the superior performance of the LAMOLTS in the
molecule captioning task. LAMOLTS excels in the
Text2Mol metric, which provides a comprehensive
assessment of the semantic alignment —throuch
cosine similarity— between generated descriptions
and their corresponding molecules. LAMOLTS
variants achieve improvements up to 23% in LAM-
OLT5-Small over the corresponding MOLTS vari-
ants. These results underscore LAMOLTS ’s en-
hanced ability to capture the intricate semantics of
molecule descriptions, making it a highly effective
model for this task.

LAMOLTS exhibits lower
LAMOLTS exhibits lower

Observation 4:
ROUGE score.

ROUGE scores than MOLTS5, as ROUGE empha-
sises exact n-gram overlaps, which do not fully
capture the semantic accuracy of the generated text.
The LACHEBI-20, by introducing variability in
sentence structure and vocabulary, contributes to
this discrepancy. During training, LAMOLTS pri-
oritises achieving higher semantic coherence, po-
tentially at the expense of exact word or phrase
matches. As we argue above, although LAM-
OLTS5 excels in capturing the overall semantics of
molecule descriptions, this focus leads to reduced
performance on ROUGE scores.

4.4 Analysis

Comparison with state-of-the-art methods. Fig-
ure 3 demonstrates the performance of top-3 leader-
board SOTA models. LAMOLTS variants take the
first two overall ranks. Notably, LAMOLTS es-
tablishes new SOTA results on molecule genera-
tion task. Although BioT5 outperforms LAMOLTS
on the molecule captioning task, BioT5 leverages
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Model BLEU-21 BLEU-4t ROUGE-17 ROUGE-2t ROUGE-L1T METEORT Text2Molf
Ground Truth 1.000 1.000 1.000 1.000 1.000 1.000 0.609
RNN 0.251 0.176 0.450 0.278 0.394 0.363 0.426
Transformer 0.061 0.027 0.204 0.087 0.186 0.114 0.057
T5-Small 0.501 0.415 0.602 0.446 0.545 0.532 0.526
MolT5-Small 0.519 0.436 0.620 0.469 0.563 0.551 0.540
LAMOLTS-Small  0.539 0.446 0.610 0.446 0.538 0.566 0.588
(Improvement) +3.85% +2.29% -1.61% -4.90% -4.44% +2.72% +8.89%
T5-Base 0.511 0.423 0.607 0.451 0.550 0.539 0.523
MolT5-Base 0.540 0.457 0.634 0.485 0.578 0.569 0.547
LAMoOLTS-Base  0.574 0.485 0.634 0.478 0.564 0.596 0.599
(Improvement) +6.30% +6.13% 0.00% -1.44% -2.42% +4.75% +9.51%
T5-Large 0.558 0.467 0.630 0.478 0.569 0.586 0.563
MolT5-Large 0.594 0.508 0.654 0.510 0.594 0.614 0.582
LAMoOLTS-Large 0.602 0.521 0.655 0.512 0.598 0.634 0.597
(Improvement) +1.35% +2.56% +0.15% +0.39% +0.67% +3.26% +2.58%
Text+Chem T5 0.580 0.490 0.647 0.498 0.586 0.604 0.567
MolReGPT 0.607 0.525 0.634 0.476 0.562 0.610 0.585

Table 3: Molecule captioning results for models without additional datasets. Models incorporating extra datasets are
presented in Figure 3. Best performances are highlighted with an underline.

ID Molecule

Ground Truth

MOoLTS-Small

LAMOLTS-Small

1
O H

BN

HN
HO

0

}X_“\HH

The molecule is an N-carbamoylamino
acid that is aspartic acid with one of
its amino hydrogens replaced by a car-
bamoyl group. It has a role as a Saccha-
romyces cerevisiae metabolite, an Es-
cherichia coli metabolite and a human
metabolite. It is a N-carbamoyl-amino
acid, an aspartic acid derivative and a
C4-dicarboxylic acid. It is a conjugate
acid of a N-carbamoylaspartate(2-).

The molecule is a member of the class
of ureas that is urea in which one of the
amino hydrogens is replaced by a car-
bamoyl group. It has a role as a metabo-
lite. It is a N-acyl-amino acid and a
member of ureas.

The molecule is a member of the class
of ureas that is malonic acid in which
one of the hydrogens attached to the
nitrogen is substituted by a carbamoyl
group. It has a role as an Escherichia
coli metabolite and a mouse metabolite.
It is a member of ureas and a mem-
ber of ureas. It derives from a mal-
onic acid. It is a conjugate acid of a
N-carbamoylglycinate.

The molecule is the conjugate base of
Photinus luciferin; major species at pH
7.3. It is a conjugate base of a Photinus
luciferin. It is an enantiomer of an ent-
Photinus luciferin(1-).

[

The molecule is a monocarboxylic acid
anion that is the conjugate base of ent-
Photinus luciferin, obtained by depro-
tonation of the carboxy group; major
species at pH 7.3. It is a conjugate base
of an ent-Photinus luciferin. It is an
enantiomer of a Photinus luciferin(1-).

The molecule is a monocarboxylic acid
anion that is the conjugate base of Photi-
nus luciferin, obtained by deprotonation
of the carboxy group; major species at
pH 7.3. It is a conjugate base of a Phot-
inus luciferin. It is an enantiomer of a
Photinus luciferin(1-).

Table 4: Example of captions generated with the same input SMILES strings.
to molecule graphs for better visualisation.

Input SMILES strings are converted

Text-based de novo Molecule Generation Molecule Captioning

0.6 [ LAMOLT5-Base MolReGPT BioT>
. ‘LAMOLTS—Large (o] 0.6 |-
LAMOLTS-Small ng% LAMOLTS-Base @ LAMOLTS-Large
—_ BioT5  \oLT5-Large b4 MoIXPT MolRsGPT
> o 0 séd AMOLTS5-Small O MOLTS5-Large
E 0.55 :
(|
-
3
= 0.56
0.5 |- MOLTS-Base MOLTS5-Base
YIOLT5-Small VIOLT5-Small
o 0.54 - O
| Lol Lol Ll Lol Lol
10® 10? 100 108 10? 100

Number of parameters Number of parameters

Figure 3: Performance vs. Number of parameters of LAMOLTS and top-3 leaderboard state-of-the-art methods.
Overall rank: LAMOLT5-Base (#1), LAMOLTS5-Large (#2) and BioT5 (#3).

in this domain. Moreover, the small-size variant de-
livers highly competitive results with significantly
fewer parameters than other leading models: LAM-
OLT5-Small has 99% fewer parameters than Mol-

external data, offering an additional advantage.
When comparing models that do not incorporate ex-
ternal knowledge, LAMOLTS achieves the best per-
formance, solidifying its position as the top model
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RecGPT but delivers superior performance. This
efficiency makes LAMOLTS5-Small an attractive
option for applications requiring high performance
with reduced computational resources.

Performance with different augmentations. Fig-
ure 1 shows the performance of LAMOLTS with
different augmentation strategies during training.
(i) The combination of two augmented annotations
generated by LA3 demonstrates a consistent im-
provement to using only one augmentation in per-
formance, leading to more robust learning. (ii)
Conventional data augmentation strategies, e.g.,
EDA (Wei and Zou, 2019), Mixup (Zhang et al.,
2018) are not feasible solutions in the context of bi-
ological data. We argue that the pre-training stage
involved general knowledge about molecules, and
easy text wrapping does not provide enough diver-
sity to enhance the information. (7ii) Relying on
captions generated directly by LLMs not only fails
to improve performance but actually degrades it.
Specifically, including these directly generated an-
notations results in lower BLEU scores than the
original MOLTS, underscoring that such annota-
tions might introduce noise or lack the molecular
knowledge needed for effective training. Such re-
sults echo the empirical studies of (Zhong et al.,
2024a) and affirm the necessity of LA? design.

H A Original
HE GPT 3.5-turbo + Gemini Pro
[ L1ama 2-70b + Liama 3-70b

w
T

Relative score
[\&]
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o =
T
NN
(NEEEERN]]
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Figure 4: Molecule generation performance of MOLTS5-
Small and LAMOLTS5-Small with captions generated by
open-sourced and closed-sources LLMs.

Performance of LA® using different LLMs.
Figure 4 show the molecule generation perfor-
mance based on annotations augmented by differ-
ent LLMs. LAMOLTS trained on LACHEBI-20
annotations generated by both open- and closed-
source LL.Ms consistently outperforms MOLTS.
This highlights the versatility of our proposed an-
notation augmentation pipeline, LA3, in practical
applications. Expectedly, LAMOLTS trained on
closed-source LLMs (GPT 3.5-turbo + Gemini Pro)
outperforms the one trained on open-source LLMs

(Llama 2-70b + Llama 3-70b). As LLMs continue
to improve in performance and in-context learning
capabilities, LAMOLTS can benefit directly from
these advancements.

4.5 Broad Applications

Data Performance
Eval. Metric Task — Model Orig. LA3
ogbg-molbace cl LM 0.6163  0.6589

ROC-AUC 1 a5 GNN 07147 0.7760
ogbg-molhiv al LM 0.5037  0.5562
ROC-AUC 1 a5 GNN 07376  0.7641
ogbg-molesol R LM 2.2549  2.1811

RMSE | €8 GNN 12561  0.9301
A ce3M Class. CNN 158 177
ccuracy T

Table 5: Results on image, text and graph tasks. LM: De-
BERTa (He et al., 2023); GNN: GCN (Kipf and Welling,
2017); CNN: ViT-B/16 (Dosovitskiy et al., 2021).

Results of image, text and graph tasks. To fur-
ther demonstrate the versatility of LA3, we per-
form extended experiments on several additional
datasets, including ogbg-molbace, ogbg-molhiv,
ogbg-molesol, and CC3M, which support a variety
of crucial tasks, e.g., image captioning, text under-
standing, and graph property prediction. Due to
the page limit, we describe the detailed implemen-
tations in Appendix F. Results in Table 5 show that
LA3 significantly enhances performance across
these diverse applications. This improvement high-
lights LA3 ’s potential to be a valuable tool in a
wide range of Al tasks, offering substantial gains
in accuracy and efficiency.

5 Concluding Discussion

This work proposes an automatic annotation aug-
mentation pipeline, LA3, designed to enhance an-
notated datasets and thereby boost the performance
of Al approaches with minimal cost. We gener-
ate LACHEBI-20, an enriched biomedical dataset
featuring diverse sentences and vocabulary while
preserving essential molecular knowledge. This in-
creased diversity is crucial for training LAMOLTS
models, leading to remarkable improvements in
challenging molecular tasks. A set of ablation stud-
ies investigate the impact of LA? design and affirm
its effectiveness. Furthermore, we expand the ap-
plication of LA3 to a wide range of datasets across
different domains, including image captioning, text
understanding, and graph property prediction. The
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observed significant improvements vindicate the
remarkable versatility and utility of LA3.

6 Limitations and Ethic Statement

Limitations. The language augmentation process
relies on external LLMs, which introduce uncer-
tainties because their robustness in other applica-
tions cannot be guaranteed. Additionally, results
shown in Figure 4 demonstrate the impact of cap-
tion quality on molecular tasks, suggesting that
developing techniques for filtering captions could
be a valuable direction for future work. Moreover,
while LLMs continue to improve in performance
and ICL capabilities, LAMOLTS can benefit from
these advancements. However, the domain-specific
knowledge embedded in LLMs remains relatively
limited. Thus, exploring practical solutions to in-
corporate more comprehensive domain knowledge
into LLMs for language augmentation is a promis-
ing future direction for enhancing LA3.

Ethic Statement. Throughout our work, we did
not utilise any private or sensitive information. The
involved datasets are open-source, and outputs are
available online to the community. However, it’s es-
sential to note that if any private information were
to be inadvertently exposed to an LLM during inter-
nal pre-training and fine-tuning stages, LA? does
not offer any privacy filtration mechanism. There-
fore, there exists the potential for privacy concerns
associated with the underlying model to manifest
through the output provided by LA3.
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A Proposed Prompt Details

In this work, we design the prompt as follows:

7

\.

Instruction: You are now a chemical spe-
cialist in rewriting captions for a molecule
in SMILES format. Make sure those cap-
tions describe the given molecule correctly
and precisely based on your two inputs
(SMILES and Caption of it). Also, make
sure your rewriting captions do not include
the input SMILES. Write the response with-
out using linebreaks, newlines, or special
characters such as “\t” or “\n”.

Message: SMILES string of target
molecule: [SMILES].

Description of the molecule: [caption].
Task: Rewrite the following molecule with
its SMILES and caption. The newly rewrit-
ten caption should be elaborate, descrip-
tive, and concise, highlighting the key struc-
tural features and biological activities of the
molecule. Only output rewritten caption
without any header and linebreak.

Answer:

B Caption Augmentation Details

This section presents some examples of augmented
captions. Particularly, we provide the SMILES
string, the original caption of CHEBI-20 and four
different captions rewritten by four LLMs, i.e., two
open-source LLMs (Llama 2-70b (Touvron et al.,
2023) and Llama 3-70b (Touvron et al., 2023)) and
two closed-source LLMs (GPT 3.5-turbo (Achiam
et al., 2023) and Gemini Pro (Google, 2024)).

1.

SMILES string: [18FH]

Original caption: The molecule is the radioac-
tive isotope of fluorine with relative atomic
mass 18.000938. The longest-lived fluorine
radionuclide with half-life of 109.77 min.

GPT 3.5-turbo: The molecule is the radioac-
tive isotope of fluorine with relative atomic
mass 18.000938 and atomic number 9. It is
the longest-lived fluorine radionuclide with
half-life of 109.77 min. It is used in positron
emission tomography (PET) for imaging the
brain, heart, and other organs.

Gemini Pro: This molecule is a radioactive
isotope of fluorine with a relative atomic mass
of 18.000938. It is the longest-lived fluorine
radionuclide with a half-life of 109.77 minutes.
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Llama 2-70b: This molecule is a radioactive
isotope of fluorine, with a relative atomic
mass of 18.000938. It is the longest-lived
fluorine radionuclide, with a half-life of 109.77
minutes. It has a number of applications
in medical imaging and research, including
positron emission tomography (PET) scans and
fluorodeoxyglucose (FDG) tracers.

Llama 3-70b: This molecule is fluorine-18 a
radioactive isotope of fluorine with a relative
atomic mass of 18.000938 and a half-life of
109.77 minutes making it the longest-lived
fluorine radionuclide.

. SMILES string: CCN(CC)CCN1C(=0)CN=C

(C2=C1C=CC(=C2)C1)C3=CC=CC=C3F
Original caption: The molecule is a
1,4-benzodiazepinone that is 1,3-dihydro-
2H-1,4-benzodiazepin-2-one substituted by a
2-(diethylamino)ethyl group, 2-fluorophenyl
group and chloro group at positions 1, 5
and 7, respectively. It is a partial agonist of
GABAA receptors and used for the treatment
of insomnia. It has a role as a sedati gve, an
anticonvulsant, a GABAA receptor agonist and
an anxiolytic drug. It is a 1,4-benzodiazepinone,
an organochlorine compound, a member of
monofluorobenzenes and a tertiary amino
compound.

GPT 3.5-turbo: A 1,4-benzodiazepinone with a
1,3-dihydro-2H-1,4-benzodiazepin-2-one core,
this molecule features a 2-(diethylamino)ethyl
group, 2-fluorophenyl group, and -chloro
group at positions 1, 5, and 7, respectively.
As a partial agonist of GABAA receptors, it
exhibits sedative, anticonvulsant, and anxiolytic
effects. Its therapeutic applications include the
treatment of insomnia, making it a valuable

pharmaceutical agent in managing sleep
disorders.

Gemini Pro: The molecule is a 1,4-
benzodiazepinone derivative with a 2-

(diethylamino)ethyl side chain and substitutions
of a 2-fluorophenyl group at position 5 and
a chloro group at position 7. Known for its
partial agonist activity on GABAA receptors, it
is commonly used as a sedative, anticonvulsant,
and anxiolytic agent for the treatment of
insomnia. Its chemical structure includes a
diazepine ring fused to a benzene ring with
specific substituents, making it a potent thera-



Molecule

Caption - Original

Caption - GPT 3.5-turbo

Caption - Gemini Pro

The molecule is the radioactive isotope
of fluorine with relative atomic mass
18.000938. The longest-lived fluorine ra-
dionuclide with half-life of 109.77 min.

The molecule is the radioactive isotope
of fluorine with relative atomic mass
18.000938 and atomic number 9. It is
the longest-lived fluorine radionuclide
with half-life of 109.77 min. It is used
in positron emission tomography (PET)
for imaging the brain, heart, and other
organs.

This molecule is a radioactive isotope
of fluorine with a relative atomic mass
of 18.000938. It is the longest-lived
fluorine radionuclide with a half-life of
109.77 minutes.

The molecule is a 1,4-benzodiazepinone
that is 1,3-dihydro-2H-1,4-
benzodiazepin-2-one substituted
by a 2-(diethylamino)ethyl group,
2-fluorophenyl group and chloro group
at positions 1, 5 and 7, respectively.
It is a partial agonist of GABAA
receptors and used for the treatment
of insomnia. It has a role as a sedati
gve, an anticonvulsant, a GABAA
receptor agonist and an anxiolytic
drug. It is a 1,4-benzodiazepinone, an
organochlorine compound, a member
of monofluorobenzenes and a tertiary
amino compound.

A l4-benzodiazepinone with a
1,3-dihydro-2H-1,4-benzodiazepin-
2-one core, this molecule features
a 2-(diethylamino)ethyl group, 2-
fluorophenyl group, and chloro group at
positions 1, 5, and 7, respectively. As
a partial agonist of GABAA receptors,
it exhibits sedative, anticonvulsant,
and anxiolytic effects. Its therapeutic
applications include the treatment
of insomnia, making it a valuable
pharmaceutical agent in managing sleep
disorders.

The molecule is a 1,4-benzodiazepinone
derivative with a 2-(diethylamino)ethyl
side chain and substitutions of a 2-
fluorophenyl group at position 5 and a
chloro group at position 7. Known for
its partial agonist activity on GABAA
receptors, it is commonly used as a
sedative, anticonvulsant, and anxiolytic
agent for the treatment of insomnia. Its
chemical structure includes a diazepine
ring fused to a benzene ring with specific
substituents, making it a potent therapeu-
tic compound with diverse pharmacolog-
ical properties.

The molecule is an indole phytoalexin
that is indole substituted at position 3 by
a 1,3-thiazol-2-yl group. It has a role as
a metabolite. It is an indole phytoalexin

Indole phytoalexin with a 1,3-thiazol-2-
yl substitution at position 3. It plays a
role as a metabolite and exhibits indole
phytoalexin and 1,3-thiazole properties.

The molecule is a biologically active
compound containing an indole ring sub-
stituted at position 3 with a 1,3-thiazol-2-
yl group. It acts as an indole phytoalexin

and a member of 1,3-thiazoles.

<

and plays a role as a metabolite. Its struc-
ture consists of fused aromatic rings and
a sulfur-containing heterocycle, making
it a unique and potentially potent agent
in biological systems.

Table 6: Example of molecules and their captions generated by GPT 3.5-turbo and Gemini Pro in LACHEBI-20.

peutic compound with diverse pharmacological
properties.

Llama 2-70b: This molecule is a 14-
benzodiazepinone, a type of sedative drug that
selectively activates GABAA receptors. It has
a 2-(diethylamino)ethyl group, 2-fluorophenyl
group, and chloro group attached at positions
1, 5, and 7, respectively. Its role as a partial
agonist of GABAA receptors makes it useful for
treating insomnia, and it also has anticonvulsant,
anxiolytic, and sedative properties. This com-
pound belongs to the class of organochlorine
compounds and is a tertiary amino compound.
Llama 3-70b: This molecule is a
1,4-benzodiazepinone  featuring a  2-
(diethylamino)ethyl substituent at position 1, a
2-fluorophenyl group at position 5, and a chloro
group at position 7, functioning as a partial
GABAA receptor agonist used to treat insomnia,
and possessing sedative, anticonvulsant, and
anxiolytic properties.

. SMILES string: C1=CC=C2C(=C1)C(=CN2)
C3=NC=CS3
Original caption: The molecule is an indole
phytoalexin that is indole substituted at position
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3 by a 1,3-thiazol-2-yl group. It has a role as
a metabolite. It is an indole phytoalexin and a
member of 1,3-thiazoles.

GPT 3.5-turbo: Indole phytoalexin with a
1,3-thiazol-2-yl substitution at position 3. It
plays a role as a metabolite and exhibits indole
phytoalexin and 1,3-thiazole properties.
Gemini Pro: The molecule is a biologically
active compound containing an indole ring
substituted at position 3 with a 1,3-thiazol-2-yl
group. It acts as an indole phytoalexin and plays
arole as a metabolite. Its structure consists of
fused aromatic rings and a sulfur-containing
heterocycle, making it a unique and potentially
potent agent in biological systems.

Llama 2-70b: This indole phytoalexin features
a unique molecular structure where an indole
ring is substituted at position 3 by a 1,3-thiazol-
2-yl group, resulting in a distinct chemical
compound with significant biological activity.
As a metabolite, it plays a crucial role in various
physiological processes and is also a member
of the 1,3-thiazole class of compounds, which
are characterized by their sulfur-containing
heterocyclic ring.

Llama 3-70b: This molecule is a substituted
indole featuring a 1,3-thiazol-2-yl group at



position 3, classified as an indole phytoalexin
and a metabolite, also belonging to the class of
1,3-thiazoles.

. SMILES string: CN(CC(=0)O)N=0
Original caption: The molecule is a ni-
trosamine that is sarcosine in which the
hydrogen attached to the nitrogen has been
replaced by a nitroso group. It has a role as a
carcinogenic agent. It is a non-proteinogenic
amino acid derivative and a nitrosamine. It
derives from a sarcosine.

GPT 3.5-turbo: The molecule is a nitrosamine
that is sarcosine in which the hydrogen attached
to the nitrogen has been replaced by a nitroso
group. It has a role as a carcinogenic agent. It is
a non-proteinogenic amino acid derivative and
a nitrosamine. It derives from a sarcosine. This
molecule is a nitrosamine containing a nitroso
group attached to a sarcosine derivative. It is
known for its carcinogenic properties and is
classified as a non-proteinogenic amino acid
derivative.

Gemini Pro: Sarcosine N-nitrosamide, a
nitrosamine with a nitroso group replacing the
hydrogen atom on the nitrogen atom of the
sarcosine molecule, exerts carcinogenic effects.
This non-proteinogenic amino acid derivative
exhibits a potential role as a carcinogen and is
derived from sarcosine.

Llama 2-70b: This nitrosamine is a modified
form of sarcosine, where the hydrogen atom
attached to the nitrogen has been replaced by a
nitroso group, resulting in a distinct chemical
structure. As a non-proteinogenic amino acid
derivative, it exhibits unique properties and
functions, and its presence has been linked to
carcinogenic effects.

Llama 3-70b: This molecule is a carcinogenic
nitrosamine derived from sarcosine where a
nitroso group replaces the hydrogen attached to
the nitrogen atom making it a non-proteinogenic
amino acid derivative.

. SMILES string: CC(=O)N[C@ @H]1[C@H]
([C@@H]([C@H](O[C@H]10)CO)O[C@ @H]
2[C@@H]([C@H|([C@@H]([C@H](02)CO)
0)O[C@ @H3[C@H]([C@H]([C@ @H]([C@
H](03)C0O)0)0)O)NC(=0)C)O

Original caption: The molecule is an
amino trisaccharide consisting of alpha-D-
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mannopyranose, 2-acetamido-2-deoxy-alpha-
D-glucopyranose and 2-acetamido-2-deoxy-
beta-D-glucopyranose residues joined in
sequence by (1->3) and (1->4) glycosidic
bonds. It is a glucosamine oligosaccha-
ride, an amino trisaccharide and a member
of acetamides. It derives from an alpha-
D-Manp-(1->3)-alpha-D-GlcpNAc and an
alpha-D-GlcpNAc-(1->4)-beta-D-GlcpNAc.
GPT 3.5-turbo: The molecule is an
amino trisaccharide consisting of alpha-
D-mannopyranose, 2-acetamido-2-deoxy-
alpha-D-glucopyranose and 2-acetamido-2-
deoxy-beta-D-glucopyranose residues joined in
sequence by (1->3) and (1->4) glycosidic bonds.
It is a glucosamine oligosaccharide, an amino
trisaccharide and a member of acetamides.
It derives from an alpha-D-Manp-(1->3)-
alpha-D-GlcpNAc and an alpha-D-GlcpNAc-
(1->4)-beta-D-GIcpNAc. The molecule is a
complex amino trisaccharide composed of
alpha-D-mannopyranose, 2-acetamido-2-deoxy-
alpha-D-glucopyranose, and 2-acetamido-2-
deoxy-beta-D-glucopyranose residues linked
together via (1->3) and (1->4) glycosidic bonds.
This glucosamine oligosaccharide is a member
of acetamides and plays a crucial role in various
biological processes due to its unique sugar
composition and glycosidic linkages.

Gemini Pro: This molecule is an amino
trisaccharide composed of an alpha-D-
mannopyranose unit, a 2-acetamido-2-deoxy-
alpha-D-glucopyranose unit, and a 2-acetamido-
2-deoxy-beta-D-glucopyranose unit. These
units are linked by (1->3) and (1->4) glycosidic
bonds. This amino trisaccharide is a member of
the acetamides family and is derived from an
alpha-D-Manp-(1->3)-alpha-D-GlcpNAc and
an alpha-D-GlcpNAc-(1->4)-beta-D-GlcpNAc.
Llama 2-70b: This molecule is a glucosamine
oligosaccharide composed of three residues:
alpha-D-mannopyranose, 2-acetamido-2-deoxy-
alpha-D-glucopyranose, and 2-acetamido-2-
deoxy-beta-D-glucopyranose. These residues
are joined in sequence by (1->3) and (1->4)
glycosidic bonds. It is an amino trisaccharide,
derived from an alpha-D-Manp-(1->3)-alpha-
D-GlcpNAc and an alpha-D-GlcpNAc-(1->4)-
beta-D-GlcpNAc.

Llama 3-70b: This molecule is a
trisaccharide ~ composed  of  alpha-D-
mannopyranose, 2-acetamido-2-deoxy-



alpha-D-glucopyranose, and 2-acetamido-2-
deoxy-beta-D-glucopyranose residues linked by
(1->3) and (1->4) glycosidic bonds, classified
as a glucosamine oligosaccharide and an
acetamide derivative.

C Evaluation Setup

Following the benchmark settings of CHEBI-20,
we train LAMOLTS on the training dataset of
LACHEBI-20 and evaluate it on the test dataset.
Since we are considering two molecular tasks: text-
based de novo molecule generation and molecule
captioning, we employ two evaluation metric sets.

To evaluate the molecule generation task,
we employ eight metrics following previous
work (Edwards et al., 2022): SMILES BLEU
score (Papineni et al., 2002), Levenshtein dis-
tance (Miller et al., 2009), Fréchet ChemNet
Distance (FCD) (Preuer et al., 2018), MACCS
FTS (Durant et al., 2002), RDK FTS (Schnei-
der et al., 2015) Morgan FTS (Rogers and Hahn,
2010), Exact score (Edwards et al., 2022), and Va-
lidity (Edwards et al., 2022). Notably, there are
three fingerprint metrics: MACCS FTS, RDK FTS
and Morgan FTS. FTS stands for fingerprint Tani-
moto similarity. MACCS, RDK, and Morgan are
each fingerprinting methods for molecules. The
fingerprints of two molecules are compared using
Tanimoto similarity, and the average similarity over
the evaluation matrix is reported. Additionally, we
report exact SMILES string matches i.e., Leven-
shtein distance and SMILES BLEU score. Exact
score and Validity are the percentage of generated
molecules that exactly match the ground truth and
the percentage of generated strings that are valid.

To evaluate the molecule captioning task, we
employ three natural language generation metrics,
e.g., Caption BLEU score (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee
and Lavie, 2005). BLEU measures the precision
of n-grams between generated and reference texts,
ROUGE evaluates recall and precision of overlap-
ping units such as n-grams or word sequences,
and METEOR combines precision, recall, and syn-
onym matching for a more holistic evaluation of
text generation quality.

Furthermore, the cross-modal evaluation met-
ric Text2Mol (Edwards et al., 2021) aims to train
a retrieval model to rank molecules given their
text descriptions. Unlike traditional metrics that
rely on words or n-grams, the ranking function

of Text2Mol uses cosine similarity between the
ground truth molecule/description and the gener-
ated description/molecule, respectively. It can of-
fer a more integrated assessment to measure the
comprehensive semantics of molecule/description.
Therefore, we adopt this metric as an essential as-
sessment to understand the effectiveness of differ-
ent models.

D Baseline Models Description

This section presents brief descriptions of baseline
models included in this work.

RNN (Cho et al., 2014). It introduces a novel ap-
proach for improving statistical machine transla-
tion through the use of Recurrent Neural Networks
(RNNs). They propose an encoder-decoder archi-
tecture that learns continuous-space representations
for phrases. The encoder processes an input phrase
and compresses it into a fixed-dimensional vector,
while the decoder uses this vector to generate the
target phrase. This method allows for better han-
dling of variable-length input sequences and cap-
turing long-term dependencies in phrases, leading
to significant improvements in translation quality
compared to traditional models.

Transformer (Vaswani et al., 2017). It introduces
the Transformer model, a novel neural network
architecture designed for sequence transduction
tasks, such as machine translation. The Trans-
former model relies entirely on attention mecha-
nisms to capture dependencies between input and
output without using recurrent or convolutional
layers. This self-attention mechanism allows for
greater parallelization and better handling of long-
range dependencies compared to previous models.
They demonstrate that the Transformer achieves
state-of-the-art performance on translation tasks,
significantly improving both training speed and
translation quality.

TS (Raffel et al., 2020). It presents the Text-to-Text
Transfer Transformer (TS5), a model designed to
unify various NLP tasks by converting all tasks into
a text-to-text format. They explore the capabilities
of transfer learning within this framework, demon-
strating that the same model, training objective,
hyperparameters, and architecture can be applied
across a wide range of NLP tasks. By pre-training
on a massive and diverse dataset and fine-tuning
specific tasks, TS5 achieves state-of-the-art perfor-
mance on numerous benchmarks. Additionally,
they propose the CHEBI-20 dataset.

6206



MOLTS (Edwards et al., 2022). It explores the
novel concept of bridging the gap between molec-
ular representations and natural language descrip-
tions. They propose a model, MOLTS, that trans-
lates molecular structures into textual descriptions
and vice versa. This interdisciplinary approach
leverages advances in natural language process-
ing and cheminformatics, using techniques such
as neural networks to encode and decode informa-
tion between these two domains. MOLTS is the
fundamental model that motivates our work.

Text+Chem TS (Christofidellis et al., 2023).
Text+Chem T35 is a novel multi-task, multi-domain
language model designed to bridge the gap be-
tween natural language and chemical language
tasks. Built on the TS architecture, it is specifi-
cally designed to handle tasks spanning both tex-
tual and chemical domains. This model can ef-
fectively translate between natural and chemical
languages, enabling it to perform a variety of tasks
such as chemical reaction prediction (forward and
retrosynthesis), text-conditional de novo molecule
generation, molecular captioning, and paragraph-
to-action conversion for chemical procedures.

TGM-DLM (Gong et al., 2024). TGM-DLM em-
ploys a Transformer-based architecture with cross-
attention to incorporate textual guidance. It is
trained using two objectives: denoising embed-
dings with text guidance and recovering uncor-
rupted SMILES strings from deliberately corrupted
ones. This training strategy enhances the model’s
ability to generate valid and relevant molecular
structures. The model demonstrates superior per-
formance compared to autoregressive models like
MolT5-Base, achieving this without additional data
resources or pre-training.

MolReGPT (Li et al., 2024). MolReGPT is a
novel framework leveraging LLMs like GPT to
advance molecule discovery through molecule-
caption translation. Unlike traditional methods,
which rely heavily on domain experts, computa-
tional resources, or domain-specific pre-training,
MolReGPT uses ICL few-shot learning. This ap-
proach enables LLMs to perform molecule under-
standing and text-based molecule generation by
retrieving and learning from similar molecules and
their descriptions from a local database.

BioT5 (Pei et al., 2023). It is a pre-training
framework designed to enhance drug discovery by
integrating molecules, proteins, and natural lan-
guage. This framework addresses limitations in

current models, such as generating invalid molecu-
lar SMILES, underutilising contextual information,
and treating structured and unstructured knowl-
edge equally. BioT5 utilises SELFIES (Krenn
et al., 2020) for robust molecular representations
and extracts relevant knowledge from the context
surrounding bio-entities in unstructured biological
literature.

MolXPT (Liu et al., 2023b). It is a unified lan-
guage model that integrates text and molecular
representations for enhanced molecular modelling.
MOolXPT leverages the success of Generative Pre-
trained Transformers (GPT) by pre-training on
SMILES sequences wrapped in relevant textual
context. This involves detecting molecule names in
text, replacing them with corresponding SMILES,
and thus allowing mutual information exchange
between text and molecule representations.

BioT5+ (Pei et al., 2024). BioT5+ is designed to
bridge the gap between molecular data and textual
descriptions in biological research. Building upon
the BioT5 framework, BioT5+ introduces several
innovations, including the integration of IUPAC
nomenclature for molecules, which enhances its
ability to understand molecular structures in both
scientific literature and formal representations like
SMILES and SELFIES. By employing multi-task
instruction tuning, BioT5+ can generalise across
diverse biological tasks, such as classification, re-
gression, and generation, making it versatile for
applications ranging from molecule property pre-
diction to drug discovery.

E Additional Experimental Results and
Discussion

Anecdotal molecule generation examples. Ta-
ble 2 shows some example molecules generated
by MOLT5-Small and LAMOLTS5-Small, and the
ground-truth molecules from LACHEBI-20. From
these examples, we can find that LAMOLTS5-Small
can generate accurate molecules similar to the
ground truth, while MOLT5-Small is making mis-
takes. (1) is an interesting case since (i) its ground
truth SMILES string has a long length, 88 charac-
ters for which LAMOLTS5-Small is able to gener-
ate an exact match; (if) indicates that LAMOLTS5-
Small can understand crystalline solids, like in-
dolylmethylglucosinolate, in the annotation. In
another interesting case, (2), LAMOLTS5-Small not
only understands chemical compounds but also
can understand chemical treatments, e.g., replace-
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ment, mentioned in the annotation. These exam-
ples showcase the superiority of LAMOLTS for the
text-based de novo molecule generation task.

Anecdotal molecule captioning examples. Ta-
ble 4 shows examples of molecule descriptions
generated by MOLTS5-Small and LAMOLTS-Small,
alongside the ground-truth descriptions. LAM-
OLTS5-Small can generate more accurate and de-
tailed descriptions that align closely with the
ground truth, whereas MOLT5-Small often misses
important semantic details. In (1), MOLT5-Small
omits critical details about the specific role and
structure. In contrast, LAMOLTS5-Small correctly
identifies the molecule as derived from malonic
acid and mentions its role as an Escherichia coli
metabolite and mouse metabolite. These examples
show the superiority of LAMOLTS5-Small in gener-
ating detailed and accurate molecule descriptions,
making it a more effective model for the molecule
captioning task.

F Additional Experiments

Section 3.1 and Section 3.2 demonstrate a
detailed example implementation of LA? on
the CHEBI-20 for challenging molecular
generation tasks. To further demonstrate the
versatility of LA3, we extend its application to sev-
eral additional datasets, ogbg-molbace (Hu
et al, 2020), ogbg-molhiv (Hu et al.,
2020), ogbg-molesol (Hu et al., 2020), and
CC3M (Sharma et al., 2018). These datasets support
a variety of crucial tasks, such as image captioning,
text understanding, and graph property prediction.

F.1 Dataset and Task

We consider four benchmark datasets, which con-
tain image, text and graph data.

1. ogbg-molbace. The ogbg-molbace dataset
provides quantitative (ICs0) and qualitative (bi-
nary label) binding results for a set of inhibitors
of human b-secretase 1 (BACE-1). All data
are experimental values reported in the sci-
entific literature over the past decade, some
with detailed crystal structures available. Task:
ogbg-molbace merged a collection of 1,522
compounds with their 2D structures and binary
labels, built as a classification task.

2. ogbg-molhiv. The HIV dataset was introduced
by the Drug Therapeutics Program (DTP) AIDS
Antiviral Screen, which tested the ability to in-
hibit HIV replication for 41,127 compounds.

Screening results were evaluated and placed into
three categories: confirmed inactive (CI), con-
firmed active (CA) and confirmed moderately
active (CM). We further combine the latter two
labels, making it a classification task between
inactive (CI) and active (CA and CM). Task: As
we are more interested in discovering new cate-
gories of HIV inhibitors based on the available
text and graph structure information.

3. ogbg-molesol. ogbg-molesol is a small
dataset consisting of water solubility data for
1,128 compounds. Task: We intend to estimate
solubility directly from chemical graph struc-
tures (as encoded in fext SMILES strings).

4. CC3M. CC3M s a large-scale dataset comprising
around 3.3 million image-caption pairs. It is de-
signed for automatic image captioning tasks and
represents a significant step forward in terms
of the variety and volume of data compared to
previous datasets like MS-COCO. Task: We
follow the settings of (Fan et al., 2023) to train
CLIP model (Radford et al., 2021) and test it on
ImageNet (Deng et al., 2009).

F.2 Automatic Annotation Augmentation

Given ogbg-molbace, ogbg-molhiv, and
ogbg-molesol datasets, we first generate descrip-
tions following the instruction of (Zhong et al.,
2024a). Consequently, we query LLMs to augment
these descriptions as described in Section 3.2. The
prompt is designed as follows:

Instruction: You are now a chemi-
cal specialist in rewriting descriptions for
a molecule in SMILES format. Make
sure those descriptions describe the given
molecule correctly and precisely based on
your two inputs (SMILES and Description
of it). Also, make sure your rewriting cap-
tions do not include the input SMILES.
Message: SMILES string of target
molecule: [SMILES].

Description of the molecule: [description].
Task: Rewrite the following molecule with
its SMILES and description. The newly
rewritten caption should be elaborate, de-
scriptive, and concise, highlighting the key
structural features and biological activities
of the molecule. Only output rewritten cap-
tion without any header and linebreak.
Answer:

\ Vv,
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CC3M has available annotations for each image.
We leverage LLMs to augment their annotations
using this prompt:

Instruction: You are now a specialist in
rewriting descriptions for an image. Make
sure those descriptions describe the given
image correctly and precisely.

Message: Description of the image: [de-
scription].

Task: Rewrite the following description.
The newly rewritten caption should be elab-
orate, descriptive, and concise, highlighting
the key knowledge of the molecule. Only
output rewritten caption without any header
and linebreak.

Answer:
\ J

In this paper, we utilise two closed-source LLMs
(GPT 3.5-turbo (Achiam et al., 2023) and Gem-
ini Pro (Google, 2024)) to generate two rewritten
annotations for the above-mentioned datasets.

F.3 Training on Augmented Dataset

After obtaining the augmented datasets
(ogbg-molbace, ogbg-molhiv, and
ogbg-molesol), we simply combine three
annotations of each molecule as the input features
and integrate them within the LM and GNN
models. Other training implementations follow
the instruction of (Zhong et al., 2024a). About
the CC3M dataset, we follow the implementation
of (Fan et al., 2023) to integrate the augmented
annotations with the CLIP model and evaluate
them.

Results in Table 5 show that LA? significantly
enhances performance across these diverse appli-
cations. This improvement highlights LA? ’s po-
tential to be a valuable tool in a wide range of Al
tasks, offering substantial gains in accuracy and
efficiency.
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