Dynamic Strategy Planning for Efficient Question Answering with
Large Language Models

Tanmay Parekh*

Pradyot Prakash!
Akshay Shekher?
TUniveristy of California, Los Angeles

Alexander Radovic?

Denis Savenkov?

Meta AT

tparekh@cs.ucla.edu, {pradyot, alexradovic, shekher, denxx}@meta.com

Abstract

Research has shown the effectiveness of rea-
soning (e.g., Chain-of-Thought), planning (e.g.,
SelfAsk), and retrieval augmented generation
strategies to improve the performance of Large
Language Models (LLMs) on various tasks,
such as question answering. However, us-
ing a single fixed strategy to answer differ-
ent kinds of questions is suboptimal in perfor-
mance and inefficient in terms of generated
output tokens and performed retrievals. In our
work, we propose a novel technique DyPlan,
to induce a dynamic strategy selection process
in LLMs, to improve performance and reduce
computational costs in question-answering. Dy-
Plan incorporates an initial decision step to
select the most suitable strategy conditioned
on the input question and guides the LLM’s
response generation accordingly. We extend
DyPlan to DyPlan-verify, adding an internal
verification and correction process to further
enrich the generated answer. Experiments on
three prominent multi-hop question answering
(MHQA) datasets reveal how DyPlan can im-
prove model performance by 7-13% while re-
ducing the computational cost by 11-32% rel-
ative to the best baseline model. Code for this
work can be found at https://github.com/
facebookresearch/dyplan.

1 Introduction

Question-answering (QA) for large language mod-
els (LLMs) spans a range of question types, from
simple queries to those requiring reasoning, exter-
nal knowledge, step-by-step planning, or a combi-
nation of these strategies. For example (Figure 1),
modern LLMs can easily answer Who was the first
president of USA? but may need some reasoning to
figure out At what age did Roger Federer win his
first Grand Slam Title?, while Who’s contending
the 2024 US Presidential Elections? requires the
model to retrieve up-to-date external information.

*Work completed as part of an internship at Meta.

_J Who was the first President of USA? |

. <Z-__ Simple one - | can answer directly. -

George Washington
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___ "I 'can think ;t;ﬁ-by-step, I can find Roger
‘ L Federer’s birthday & his grand slam victory ==

'\/:»i __date and reason through them
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[Roger Federer won his first Grand Slam at Wimbledon in \f @

2003. He was born on August 8, 1981. Thus, he must be about
21 years old when he won the tournament in 2003.

./J Who's contending the 2024 US Presidential Elections? J

‘ e -<~ /Ii;oie;ﬂieivie;ﬂ‘s;- | feel my information could be
2277 __outdated. Let's fetch some external knowledge. 5 - — -~
[1] Former President Donald Trump is the nominee on the ... Q
[2] Vice President Kamala Harris accepted the Democratic ...
Kamala Harris and Donald Trump are running for the elections.

Figure 1: Illustration of dynamically deciding appropri-
ate strategies (indicated by the clouds) conditioned on
the input questions.

To this end, previous works have investigated vari-
ous strategies to induce reasoning, such as Chain of
Thought (Wei et al., 2022), Tree-of-Thought (Yao
et al., 2023a); or planning, such as SelfAsk (Press
et al., 2023), Decomposed Prompting (Khot et al.,
2022), StepBack Prompting (Zheng et al., 2024a);
or incorporating external knowledge through Re-
trieval Augmented Generation (Lewis et al., 2020)
and Knowledge Graphs (Pan et al., 2024).

However, employing a single strategy for all dif-
ferent types of questions is sub-optimal as well
as quite cost-ineffective in terms of generated to-
kens and retrievals. As humans, we rather employ
a dynamic decision phase to first determine the
most effective strategy before answering the given
question. Similarly, we expect that if the model
possesses sufficient self-knowledge to directly an-
swer the question, then ‘thinking step-by-step’ and
expending tokens on reasoning is unnecessary. In
other cases, a model may not have enough confi-
dence to answer directly and should spend some
computation on additional reasoning. However, not
having enough information about the topic should
warrant external retrievals instead.
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To this end, we propose to induce a human-
like cognitive ability in LLMs through our novel
technique, DyPlan (Dynamic Planning). As il-
lustrated in Figure 1, DyPlan introduces an initial
decision step to select the most suitable strategy
conditioned on the input question and then guides
the LLM’s response generation to use this strategy.
To achieve this behavior, we utilize a multi-turn
training paradigm, where the LLM is fine-tuned
and calibrated by its own generations. DyPlan pro-
vides a computationally cost-effective and adap-
tive solution that efficiently leverages the strengths
of various techniques while minimizing computa-
tional overhead.

However, there is no complete certainty that the
chosen strategy will succeed, as reasoning can be
wrong, or retrieved information may turn out to be
irrelevant or limited. At such times, humans usu-
ally evaluate and re-select a new strategy to rectify
any potential mistakes. We emulate this internal as-
sessment in LLMs by extending DyPlan as DyPlan-
verify (Dynamic Planning & Verify). Specifically,
we add a self-verification step after response gen-
eration, which gauges the model’s confidence in
the provided answer. If verification fails, the model
is prompted to re-select a different strategy, and
this cycle can repeat. Overall, DyPlan-verify can
achieve higher quality improvements at the cost of
additional inference computations.

To evaluate the efficacy of our proposed tech-
niques, we benchmark them on three QA datasets -
HotpotQA (Yang et al., 2018), 2WikiMultihopQA
(Ho et al., 2020), and Musique (Trivedi et al., 2022).
We consider four primary strategies: (1) Direct
answering directly, (2) Reason utilizing Chain-of-
Thought (Wei et al., 2022), (3) Plan leveraging
SelfAsk (Press et al., 2023), and (4) Retrieval using
external knowledge with RAG (Lewis et al., 2020).
We use the LLaMa3-8B model (Dubey et al., 2024)
as our base model. We majorly compare against
fine-tuned LLMs utilizing fixed strategies along
with other ensemble and dynamic thinking base-
lines. Results reveal that DyPlan reduces compu-
tational costs by 26-32% along with performance
gains of 7% averaged across the datasets over the
best baseline. DyPlan-verify further improves per-
formance to an average of 12-13% while providing
11-19% computational cost reductions. Analyses
reveal how DyPlan is better calibrated and general-
izable and provide insights into its decision-making
and verification ability.

In conclusion, we make these contributions: (1)

7.1 23.7 13.2

Direct Reason

Figure 2: Venn Diagram representing the F1 contribu-
tion of Direct and Reason strategies for HotpotQA.

we propose dynamic strategy planning through
DyPlan to improve the performance and compu-
tational cost-efficiency of LLMs for QA, (2) we
extend DyPlan to DyPlan-verify introducing veri-
fication of correctness to further boost model per-
formance, (3) we conduct extensive experiments
and analyses using four major strategies on three
complex QA datasets to demonstrate DyPlan’s cost-
effectiveness and strong performance.

2 Methodology

To mimic cost-effective human cognitive thinking
in LLMs, we propose our novel technique - Dy-
Plan. Unlike traditional approaches that rely on a
single fixed strategy for all questions, our technique
employs dynamic strategy planning to determine
the most effective approach for each question. We
extend DyPlan to DyPlan-verify by incorporating
additional verification and re-attempting the ques-
tion with alternative strategies if necessary. We first
motivate the potential impact of dynamic strategy
planning in § 2.1 and later provide specific details
about our techniques.

2.1 Motivation

Dynamic strategy planning can help reduce infer-
ence computational costs by simply selecting lower-
cost strategies to answer simpler questions. In our
work, we additionally posit that it can improve
model performance as strategy selection can act
as an ensembling method. We verify this hypoth-
esis through a simple analysis using two strate-
gies of Direct and Reason. Direct prompts the
LLM to directly provide the answer to the question
while Reason utilizes Chain-of-Thought (Wei et al.,
2022) to answer step-by-step. Utilizing these strate-
gies, we prompt Llama3-8B-Instruct (Dubey et al.,
2024), evaluate using F1 score on 1000 samples
from 2WikiMultihopQA (Ho et al., 2020) dataset,
and show their performances as a Venn diagram in
Figure 2. Generally, one can assume that adding
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|r Strategy Description:

) Direct - use this strategy when you know the exact answer to the question confidently.
CoT - use this strategy when you think you can infer the answer yourself by reasoning

! step-by-step.

I RAG - use this strategy when you think you want external resources or text to better

I answer the question.
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1 The actor who plays Uncle Remus is James

1 Baskett. James Baskett sings the song

1 "Zip-a-Dee-Doo-Dah" in the movie Song of the
1
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1
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South. Final answer: "Zip-a-Dee-Doo-Dah".

Plan - use this strategy when you think the question is too complex and you want to

break the question into simpler atomic questions to get to the final answer. ‘ Final answer: "Atlanta Falcons". 1

(B) EXECUTION

the name of the strategy to use. Only output the strategy name and nothing else.

: ‘ What song who plays Uncle Remis sing in Song of the South? ‘
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1
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I | looks correct, else answer ‘No’.

1
1
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1
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What NFL team plays at the stadium in which Luke Bryan closed his

the given question is correct. Answer ‘Yes' if the reasoning/answer

1 [Using your self-knowledge, verify if the answer/reasoning provided for ]

1
1
1
|
I
1
1
1
Based on your confidence, provide the strategy to use. Take a deep breath, and output I
1
|
I
1
1
1
1
1
|

(A) DECISION EEEEEEEE 4
[C——) DyPlan-base ) DyPlan-verify |
Figure 3: The different components in DyPlan along with the pipeline flow for two example questions. The Decision

component chooses an appropriate strategy from a pool of strategies. The Execution component runs the chosen
strategy. The Verification component (used in DyPlan-verify) self-verifies the correctness of the provided answer.

Question: Which band, Letters to Cleo or Screaming
Trees, had more members?
Gold Answer: Letters to Cleo

Direct: Final answer: "Letters to Cleo"

Reason: Letters to Cleo had 4 members: Brian Desveaux,
Michael Hubbard, Ken Ray, and Stacy Jones. Screaming
Trees had 4 members: Mark Lanegan, Gary Lee Conner,
Van Conner, and Barrett Martin. Both bands had the same
number of members, 4. Final answer: "same"

Table 1: Qualitative example highlighting how LLMs
can yield the right answer by directly answering the
question, while reasoning can lead to incorrect answers.

reasoning should only allow us to further answer
harder questions while still being able to answer
all questions that Direct strategy answers correctly.
However, there is a significant contribution of 7.1%
F1 where Reason is incorrect, but Direct is cor-
rect (for example, a mistake or hallucination can
lead to an incorrect result). We provide a qualita-
tive example in Table 1 highlighting this behavior
(more examples in Table 24). We notice similar
patterns across datasets and strategies (shown in
§ B.1). Such patterns shed light on how the choice
of an appropriate strategy can also improve model
performance.

2.2 DyPlan Components

Our techniques majorly utilize three components
in a plug-and-play manner: (1) Decision, which
selects a strategy to follow; (2) Execution, which
generates the answer using the chosen strategy;
and (3) Verification, which evaluates the answer’s
correctness. We describe them in detail below and
provide a high-level overview diagram in Figure 3.

Decision: The Decision component is the core
of our technique, responsible for dynamically se-
lecting the optimal strategy for a given question.
This is achieved by presenting an LLM with a strat-
egy pool with their descriptions and prompting it
to leverage its self-confidence to choose the most
suitable and efficient strategy. This component pro-
vides an opportunity to optimize efficiency while
still enabling powerful reasoning to improve perfor-
mance when possible, unlike OpenAlI’s o1 model,’
which currently applies thinking even for simple
questions. We provide an illustration prompt of
this component in Figure 3(A).

Execution: The Execution component involves
prompting the model to apply the selected strat-
egy from the Decision component to generate an
answer to the question. Although analogous to
fixed-strategy prompting, our approach is different
since we enable dynamic strategy execution based
on the previously chosen strategy. We provide an
illustration Execution prompt in Figure 3(B).

Verification: The Verification component is op-
tional and only part of our extended technique
DyPlan-verify. Intuitively, when we make a de-
cision to choose a certain strategy, like reasoning
or retrieval, we cannot be certain it will be success-
ful, as reasoning may fail and retrieval may get
irrelevant results. Therefore, DyPlan should have
the ability to correct the course as long as we have
some more budget before having to present the final
answer. This component assesses the validity of the
Execution output by prompting the LLM to lever-

"https://platform.openai.com/docs/models/o1
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age its self-knowledge and confidence to evaluate
the answer’s reasonableness and correctness. To
minimize computational cost, we implement this
component by asking the LLM to simply output
yes/no, as shown in Figure 3(C).

2.3 DyPlan Pipeline Flow

DyPlan majorly achieves computational cost mini-
mization by dynamic decision-making in the Deci-
sion phase and restricting generation output space
for each component. The base version of DyPlan
(also referred to as DyPlan-base) employs a low-
cost Decision-Execution pipeline (pink arrow in
Figure 3). On the other hand, our extension tech-
nique DyPlan-verify utilizes an iterative loop of
Decision-Execution-Verification (orange arrow in
Figure 3). If verification fails, the pipeline reverts
to the Decision component to select an alternative
strategy; otherwise, it exits the loop with the exe-
cution answer. This iterative loop runs for a preset
number of rounds based on the inference budget
or until the Decision runs out of usable strategies.
Both pipelines are implemented using multi-turn
chat, with each component corresponding to a sin-
gle turn.

3 Data Creation for Finetuning

To adhere LLMs with the DyPlan pipeline, we
fine-tune the LLM on DyPlan-specific data. To
ensure zero human annotation cost, we propose
automatic data creation utilizing an existing QA
dataset D and a strategy set S comprising n strate-
gies. We order S = [sq,. .., s,] by strategy prefer-
ence, with s; being the most preferred and s,, the
least preferred (e.g. in order of computational cost-
efficiency/performance). For each strategy s € S,
we prompt the base LLLM on all datapoints d € D
and evaluate the results against the ground truth.
This yields two disjoint subsets for each s: D7,
comprising datapoints where s produced the cor-
rect answer, and D;, comprising the remaining
datapoints where s failed to produce the correct
answer. Utilizing the base LLM (instead of distill-
ing from larger LLMs) ensures a stronger model
self-calibration. Using the positive and negative
subsets, we create component-specific data for Dy-
Plan (described below) and train the LLM on the
combination of all the component data. We con-
duct training only on the last-turn response for the
multi-turn training instances.

[ Strategy Description:
CoT - use this strategy when you think you can infer the
answer yourself by reasoning step-by-step.

Question: At what age did Roger Federer win his first Grand

Forced Wrong
Strategy
/\_Slam Title?

A
Col B LLM O
tput
J Now use the chosen strategy to answer the question. ] m

-
Roger Federer won his first Grand Slam at _—
Wimbledon in 2003. He was born on August 8, 1985. |~
Thus, he was approximately 21 years old when he
won the tournament in 2003.
iUsing your self-knowledge, verify if the answer/reasoning
provided for the given question is correct. Answer ‘Yes' if the —
reasoning looks correct, else answer ‘No’. ////

4 Strategy Description:

Direct - use this strategy when you know the exact answer to
the question confidently.

Correct Strategy
‘ Selection

AS

Figure 4: Illustration of an automatically created multi-
turn data instance utilizing a forced wrong strategy in
the first round with the correct strategy in the second
round. LLM is only trained on the second round.

Decision: We define an optimal mapping func-
tion f* : D — & that assigns each training data-
point d € D to the first strategy s € S (according
to the preference order) that yields the correct an-
swer. If none of the strategies produce the correct
answer, d is mapped to the least preferred strat-
egy sp. The Decision component’s training data
consists of mapped input-output pairs (d, f*(d)).

Execution: The input here is a multi-turn chat
where the first turn (Decision) selects a strategy
s. In the second turn (Execution), the output is
set as the base LLM generation using strategy s.
Utilizing the base LLM response aids efficient and
faster model training. To minimize noise, we utilize
only the positive data D, for each strategy s.

Verification: For this component, we create bi-
nary training data by mapping positive data D, to
"yes" and negative data D; to "no". Multi-turn
traces are generated by forcing the selection of
strategy s in the first turn (Decision) and using the
base LLM response in the second turn (Execution).

Multi-round data: To facilitate multiple rounds
of the Decision-Execution-Verification pipeline
for DyPlan-verify, we generate additional training
data for each component using a reduced dataset
D' C D. Specifically, D’ comprises subsets D5,
where each datapoint d € D,’},” satisfies d € D
and d € D;j . In other words, strategy s; is incor-
rect for d and is used as the wrong strategy in the
first round, while the correct strategy s; is used in
the second round. We provide an illustration of
such a two-round training instance in Figure 4.

6056



4 Experimentation Details

We describe the benchmarking datasets and the
evaluation metrics. Next, we discuss the strategies,
baselines, and, finally, the implementation details.

Benchmarking Datasets: LLMs seem to per-
form well on simpler question-answering datasets
like SQuAD (Mavi et al., 2024). Instead, we con-
sider three complex Wikipedia-based multi-hop
QA (MHQA) datasets to benchmark the perfor-
mance of our technique, namely HotpotQA (Yang
et al., 2018), 2WikiMultihopQA (2WikiQA) (Ho
et al., 2020), and Musique (Trivedi et al., 2022).
HotpotQA was one of the first human-created
MHQA datasets with upto 2-hop reasoning ques-
tions. 2WikiMultihopQA further improved over
HotpotQA by improving the complexity and rea-
soning depth of the questions. Musique is a rule-
based constructed dataset created by composing
different single-hop questions. These unique chal-
lenges of each dataset aid extensive benchmarking.
We utilize 1000 samples from the development sets
of these datasets as the main evaluation dataset.

Evaluation Metrics: We evaluate the models on
two major dimensions of performance and compu-
tational cost. For performance, we utilize Exact
Match (EM) and F1 score evaluated against the
ground truth - higher the better. For computational
cost, we consider the number of generated tokens
(# T) and number of retrievals (# R) - lower the
better. For DyPlan, we report the aggregated cost
metrics across the turns.

Strategies: We focus on four major themes of
strategies, as follows:

1. Direct: LLM is prompted to directly provide
the final answer. This is the cheapest strategy
in terms of computational cost.

2. Reason: LLM is prompted to reason to reach
the final answer. We utilize Chain-of-Thought
(CoT) (Wei et al., 2022) to reason step-by-step.
This strategy is more expensive than Direct in
terms of generated tokens.

3. Plan: LLM is prompted to decompose the
question as part of planning and reason
through the atomic questions to reach the final
answer. We utilize SelfAsk (Press et al., 2023)
as a prototype for this strategy. This is the
most expensive in terms of generated tokens.

4. Retrieval: Following RAG (Lewis et al.,
2020), using the question as the query, three
external passages retrieved from Wikipedia
are fed to the LLM. LLM is prompted to rea-
son to reach the final answer. This strategy is
expensive in terms of retrievals.

Baseline Models: As baselines, we consider: (1)
Fixed-base prompts the base LLM with a single
fixed strategy, (2) Fixed-sft prompts a LLM fine-
tuned on the fixed strategy using the positive base
LLM traces, (3) Classifier trains an external clas-
sifier to choose the strategy and chooses the corre-
sponding fine-tuned LLLM response, (4) Ensemble
simply outputs the majority ensemble using all the
Fixed-sft strategy responses.

Additionally, we consider some similar works
utilizing dynamic decision-making as reference
such as: (5) ReAct (Yao et al., 2023b) uses thoughts-
actions-observation tuples to guide model gener-
ation. (6) DRAGIN (Su et al., 2024) utilizes dy-
namic retrieval based on model entropy. Both these
baselines are orthogonal to our work and can be
utilized in a complementary manner as individual
strategies for DyPlan. We majorly compare the
cost-effectiveness of DyPlan with these techniques.

Implementation Details: For all experiments,
we utilize the LLaMa3-8B-Instruct model (Dubey
et al., 2024) as the base LLM. We set the strategy
order in increasing order of model performance
as Direct-Plan-Reason-Retrieval for training data
creation. We use Low-Rank Adaptation (Hu et al.,
2022) with rank 32 using LLaMa-Factory (Zheng
et al., 2024c¢) for fine-tuning the base LLM. We
utilize code from DRAGIN (Su et al., 2024) to
implement the fixed strategy baselines as well as
evaluate our techniques. Our reported numbers are
averaged scores over three runs. Additional details
and hyperparameters are provided in Appendix A.

5 Results

We present our main results comparing DyPlan
utilizing all the strategies with other baselines in
Table 2. We utilize the best-performing Fixed-sft
Retrieval model as the reference baseline for com-
parisons. We also aggregate these metrics across
datasets and plot Performance (F1 score) v/s Effi-
ciency (weighted sum of # T and # R)? in Figure 5.

*Weights are determined based on pricing of input and
output tokens for GPT40-mini.
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Technique HotpotQA 2WikiMultihopQA Musique

EM F1 #T #R |EM F1 #T #R |EM F1 #T #R
Fixed-base Direct 23.8 323 95 0 321 374 65 0 2.3 9.3 99 0
Fixed-base Reason 272 375 124 0 19.7 274 65 0 72 167 129 0
Fixed-base Plan 241 33.8 203 0 254 315 197 0 5.8 134 203 0
Fixed-base Retrieval 36.1 479 185 1 31.6 404 101 1 9.6 18 187 1
Fixed-sft Direct 241 343 9 0 326 384 10 0 24 9 17 0
Fixed-sft Reason 276 379 53 0 293 356 77 0 76 164 63 0
Fixed-sft Plan 263 36 105 0 269 347 116 0 6.6 15 117 0
Fixed-sft Retrieval [ref] | 36.8 48.6 53 1 32.8 40.0 56 1 9.3 184 88 1
Classifier 326 439 34 059|360 431 28 045 | 80 175 82 0.90
Ensemble 359 475 220 1 35.7 42.8 260 1 88 181 279 1
DyPlan-base (ours) 36.1 476 42 076 | 378 460 28 048 | 10.1 198 65 0.98
DyPlan-verify (ours) 36.7 485 53 079 | 40.5 496 45 0.65 | 10.8 204 77 099
ReAct 20.5 27,5 255 391|279 323 226 3.01 | 44 85 290 5.10
DRAGIN 389 502 724 223|327 418 272 167 | 119 22.0 993 3.03

Table 2: The main results comparing DyPlan and DyPlan-verify with other baselines.

‘We mark the best and

second-best metrics in bold and underline. [ref] indicates the main reference baseline.

Technique HotpotQA 2WikiMultihopQA Musique

EM F1 #T #R |EM F1 #T #R |EM F1 #T #R
Fixed-sft Direct 24.1 343 9 - 326 384 10 - 2.4 9 17 -
Fixed-sft Reason [refl] 27.6 379 53 - 293 356 77 - 76 164 63 -
Fixed-sft Plan 263 36 105 - 269 347 116 - 6.6 15 117 -
Fixed-sft Retrieval [ref2] 36.8 48.6 53 1 32.8 40.0 56 1 9.3 184 88 1

Strategy Combination: Direct - Plan - Reason Reference: Fixed-sft Reason
Classifier 263 364 73 - 31.7 381 57 - 6.3 146 115 -
Ensemble 27.6 379 167 - 29.3 356 203 - 76 164 191 -
DyPlan-base (ours) 28.0 38.2 47 - 335 413 36 - 8.1 16.7 67 -
DyPlan-verify (ours) 28.3 388 59 - 374 438 68 - 79 168 164 -
Strategy Combination: Reason - Retrieval Reference: Fixed-sft Retrieval

Classifier 3277 443 53 052 | 314 382 57 054 ] 91 182 88 098
Ensemble 36.8 48.6 106 1 32.8 40.0 134 1 9.3 184 151 1
DyPlan-base (ours) 355 473 51 071 | 345 438 50 0.6 | 10.8 205 65 097
DyPlan-verify (ours) 372 494 92 079 | 374 460 57 0.74 | 10.6 206 71 0.97

Table 3: Performance and computational cost metrics for two strategy combinations of Direct-Plan-Reason ([ref1]
is reference) and Reason-Retrieval ([ref2] is reference). We mark the best and second-best metrics in bold and

underline.

We note that external classifiers help reduce com-
putational cost but don’t improve model perfor-
mance - demonstrating the difficulty of the task.
Dynamic decision-making frameworks like DRA-
GIN and Ensemble improve performance but are
2-5x more expensive. To this end, DyPlan provides
the best balance with an average reduction of 32%
token and 26 % retrieval cost along with relative
performance improvements of 7% EM and 7%
F1. DyPlan-verify further improves performance
with average relative gains of 13% EM and 12%
F1 while reducing the token and retrieval cost by
11% and 19% respectively. In the best case sce-
nario on 2WikiMultihopQA, DyPlan shows 16%
performance gains with 52% computational cost

reductions, and DyPlan-verify shows 24% perfor-
mance gains while reducing costs by 35%. Overall,
DyPlan provides strong computational cost reduc-
tions along with decent performance gains.

5.1 Other strategy combinations

To demonstrate the generalizability of our tech-
nique across strategy combinations, we consider
two additional combinations of strategies. The first
combination - Direct, Plan, Reason - explores the
ability of LLMs to utilize only their self-knowledge
to answer the question. The second combination -
Reason and Retrieval - explores the LLM’s calibra-
tion to decide if it requires any external informa-
tion to answer the question. We show the results
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Figure 5: Performance v/s Inference Efficiency for vari-
ous techniques. Our technique DyPlan (in green) pro-
vides the best performance while also reducing the in-
ference costs relative to Fixed-sft Retrieval baseline.
Hmm Retrieval

Emm Direct Plan B Reason

Optimal

DyPlan-verify
DyPlan-base

Classifier

Techniques

0-shot DyPlan

Fixed Retrieval

0.0 0.2 0.4 0.6 0.8 1.0
Percentage Strategy Selection

Figure 6: Comparing the strategy planning distribution
of various techniques with optimal policy for 2WikiQA.

for these combinations in Table 3. Similar to the
main results, we observe the superior performance
of DyPlan and DyPlan-verify in terms of model
performance (average relative gains of 6%-10%)
as well as computational cost reduction (average
reduction of 13%-20% tokens and 17%-24% re-
trievals).

6 Analysis

We conduct additional experiments to better under-
stand the quality of DyPlan decision-making and
verification and its generalization across datasets.

6.1 Calibration Analysis

In § 3, we defined an optimal policy f* for each
question as a strategy to pick the most cost-effective
technique that yields the correct answer. Here, we
analyze model calibration, that is, how well its
decisions align with the optimal policy at test time
(additional details are provided in § B).

6.1.1 Decision component of DyPlan

We compare the strategy planning distribution of
various techniques with the optimal policy for
2WikiMultihopQA in Figure 6. The major dif-
ference is the usage of Plan and Reason which are

Technique Accuracy
Random 25.8%
Majority 30.8%
Classifier 48.1%
DyPlan 61.7%

Table 4: Accuracy of the Decision component of Dy-
Plan in choosing the right strategy evaluated using the
optimal policy on the HotpotQA dataset.

Dataset \ KL-pre KL-post Reject % Ver Prec
HotpotQA | 0.281 0.068 8% 80%
2WikiQA | 0.138 0.014 13% 71%
Musique 0.240 0.001 16% 97%

Table 5: Studying the impact of verification in DyPlan-
verify by evaluating the strategy usage KL divergence
with the optimal policy pre (KL-pre) and post (KL-post)
verification, the % datapoints verified as “no" (Reject
%) and the verification precision of “no" (Ver Prec).

nearly 0% for Fixed/Classifier approaches. On the
other hand, DyPlan-base and DyPlan-verify are
closer to the optimal distribution. We quantify this
proximity of the probability distributions in terms
of KL divergence. DyPlan-base and DyPlan-verify
achieve low scores of 0.066 and 0.014, respectively,
while the classifier baseline has a high divergence
score of 0.35. Finally, for a stronger sanity check,
we compute the accuracies of the strategy choice
(relative to optimal policy) of DyPlan in Table 4.
The high improvements relative to other baselines
highlight the better strategy planning and stronger
calibration of DyPlan, while throwing light towards
further possible improvements.

6.1.2 Verification analysis of DyPlan-verify

We study the verification precision, answer re-
jection rate (% datapoints verified as “no"), and
the change in strategy distribution pre and post-
verification (in terms of KL divergence relative to
optimal strategy) to gain a deeper understanding of
the impact of verification in DyPlan-verify. We pro-
vide these statistics in Table 5. The huge drops in
KL-divergence post-verification demonstrate how
verification aids better alignment to the optimal
policy and, thus, improves model calibration. The
low rejection rate ensures the computational cost
doesn’t increase significantly, while the high verifi-
cation precision underlines the strong utility of the
verification step.
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Model |EM F1 #T #R

Fixed-base (Retrieval) 31.6 404 101 1
Fixed-sft (Retrieval) 32.8 40.0 56

0-shot DyPlan 32.1 40.6 100 0.97
Few-shot DyPlan 28.7 37.0 93 0.79

| 37.8

Fine-tuned DyPlan 46.0 28 048

Table 6: Ablation analysis on 2WikiMultihopQA for the
need to fine-tune LLMs to incorporate DyPlan.

Model HotpotQA | 2WikiQA | Musique
EM Fl1 |EM Fl1 |EM Fl
DyPlan-base 36.1 47.6 |37.8 46.0|10.1 19.8
DyPlan-verify 36.7 48.5]40.5 49.6|10.8 204
Upper Bound 47.0 60.5|51.3 60.2|14.2 23.0
+A 10.3 12.0 | 10.8 10.6 | 34 2.6

Table 7: Empirical upper bounds for possible improve-
ments of DyPlan using an oracle Decision component
with base LLM responses for Execution. A indicates
the potential improvement gap.

6.1.3 Fine-tuning improves calibration

Choosing the right strategy in a 0-shot way is diffi-
cult, as models don’t surely know what they know
and don’t know (Yin et al., 2023a). We analyze the
0-shot DyPlan strategy planning in Figure 6 and
note how the 0-shot model mostly resorts to the
most expensive strategy, while fine-tuning helps to
learn the patterns between questions and model ca-
pabilities. We also compare the model performance
of 0-shot / few-shot DyPlan with fine-tuned DyPlan
in Table 6 for 2WikiMultihopQA. Clearly, the non-
fine-tuned models fail to improve over the fixed
strategy baseline, but fine-tuning provides strong
performance gains - demonstrating how fine-tuning
strongly improves calibration for strategy planning.

6.1.4 Optimal Policy Upper Bound

We study the upper bound for DyPlan to motivate
possibilities of future improvements. Specifically,
we replace the DyPlan’s Decision component with
the optimal policy and use the corresponding fixed
strategy base LLM outputs for Execution. We com-
pare this upper bound with DyPlan in Table 7 with
A, indicating further potential improvement. While
Musique exhibits a low A of 2-3 F1 points, the
larger A of 10-12% F1 for the other datasets pro-
vides promise to further explore strategy planning.

6.2 Generalization Analysis

To assess the generalization of DyPlan, we fine-
tune it on combined data from the three bench-

I Individual DyPlan
[ Combined DyPlan

¥ Individual DyPlan-verify
Z—2 Combined DyPlan-verify

F1 Score
NOwWw A g
S & o© o

i
o

HotpotQA 2WikiQA

Test Datasets

Musique

Figure 7: Assessing the generalizability of DyPlan by
comparing the performance (F1 score) of combined-
data training with individal-data training.

Strategy Ordering |EM F1 #T #R

DyPlan

Direct, Plan, Reason, Retrieve | 36.1 47.6 42 0.76
Direct, Reason, Plan, Retrieve | 354 46.8 40 0.69
Reason, Direct, Plan, Retrieve | 36.1 47.7 42 0.72

DyPlan-verify

Direct, Plan, Reason, Retrieve | 36.7 48.5 53 0.78
Direct, Reason, Plan, Retrieve | 36.5 48.5 51 0.72
Reason, Direct, Plan, Retrieve | 37.2 48.5 58 0.76

Table 8: Impact of different strategy orderings for Dy-
Plan on downstream performance and computational
costs on the HotpotQA dataset.

mark datasets. To ensure a fair comparison, the
combined data comprises 20k datapoints (same
as individual data) with equal shares from the
three datasets. We compare the performance
of this combined-data fine-tuned model with the
individual-data fine-tuned model in Figure 7 and
note how the performances are nearly similar for
both models. The cost analysis for the combined
data model (Table 20 in § B.4) reveals at-par levels
of computational costs as well. Thus, this study
reveals how the gains provided by DyPlan/DyPlan-
verify are generalizable and not overfitting to a
single dataset.

6.3 Analyzing the Order of Strategies

In this analysis, we study the impact of different
strategy ordering S for DyPlan. Specifically, we
consider three different orderings for HotpotQA
and show the results in Table 8. Differently order-
ing the strategies (e.g., Direct, Reason, Plan, Re-
trieve) can help further reduce the computational
cost by 4-7%, but it can also reduce the perfor-
mance by 1-2%. Similarly, the performance can
be optimized by a different ordering (e.g., Reason,
Direct, Plan, Retrieve), with improvements upto 1-
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2% while incurring additional computational costs
upto 10%. This puts focus on exploring the choice
of the right strategy ordering as a key component
for optimization, but we will keep that for future
works.

7 Related Works

Question Answering: Question-answering is a
popular task, with wide-spread applications such
as document parsing (Suvarna et al., 2024), infor-
mation extraction (Parekh et al., 2024c), chatbots
(Chalkidis et al., 2022; Singhal et al., 2023), sum-
marization (Fabbri et al., 2022), as well as great
multilingual (Parekh et al., 2024a,b) and multi-
modal (Singh et al., 2019; Talmor et al., 2021)
applications. Some prominent benchmarking QA
datasets include SQuAD (Rajpurkar et al., 2016,
2018), MS MARCO (Nguyen et al., 2016), Triv-
1aQA (Joshi et al., 2017), and SearchQA (Dunn
et al., 2017). These datasets are single-hop, i.e.,
they require simple reasoning to find the answer
and are easier to answer. To develop complex rea-
soning in models, multi-hop question-answering
(MHQA) datasets were developed like HotpotQA
(Yang et al., 2018), 2WikiMultihopQA (Ho et al.,
2020), Compositional Celebrities (Press et al.,
2023), and Musique (Trivedi et al., 2022). To
improve MHQA performance, works explored on
improving the reasoning capabilities of LLMs us-
ing chain-of-thought (Wei et al., 2022; Kojima
et al., 2022), auto-CoT (Zhang et al., 2023), self-
consistency (Wang et al., 2023), tree-of-thought
(Yao et al., 2023a). Another line of work focused
on planning by question decomposition like Self-
Ask (Press et al., 2023), ART (Paranjape et al.,
2023), decomposed prompting (Khot et al., 2022)
or using explicit planners like ReWOO (Xu et al.,
2023), LLMCompiler (Kim et al., 2024), stepback
(Zheng et al., 2024b). Works also focus on us-
ing external knowledge through retrieval like RAG
(Lewis et al., 2020), Self-RAG (Asai et al., 2024),
CRAG (Yan et al., 2024) with recent works like
IRCoT (Trivedi et al., 2023), FLARE (Jiang et al.,
2023b), SynCheck (Wu et al., 2024), and DRA-
GIN (Su et al., 2024) exploring dynamic retrieval.
The closest approach to our work is Adaptive RAG
(Jeong et al., 2024) which utilizes a classifier to
determine the question complexity and adaptively
utilize RAG. In comparison, our work is more gen-
eralized to adapt to any kind of prompt/tool and
induces deeper thinking in the LLM itself, while

being highly cost-effective at the same time.

Agentic LLLMs: Recent works have explored
LLMs as decision-makers, especially in interac-
tive environments, as agents deciding a policy.
WebGPT (Nakano et al., 2021) utilized LLMs to
search the web to answer complex questions. Some
works have also been explored in conversational
modeling like BlenderBot (Shuster et al., 2022),
SimpleTOD (Hosseini-Asl et al., 2020), Tartan
(Chen et al., 2020) and robotics like SayCan (Ichter
et al., 2022) and Inner Monologue (Huang et al.,
2022). ReAct (Yao et al., 2023b) was one of the
earlier systems utilizing natural language thoughts
and actions, followed by other works like Reflexion
(Shinn et al., 2023) and CAMEL (Li et al., 2023).

Uncertainty estimation in LLMs: With the in-
creasing utilization of LLMs in various reasoning
tasks, several works have studied LLM’s confi-
dence in its self-knowledge. Xiao and Wang (2021)
show evidence of model uncertainty with increased
hallucinations, while LLM’s quantification about
its self-knowledge is studied as honesty alignment
by Yang et al. (2023). Kadavath et al. (2022) and
Tian et al. (2023) discuss how LLMs are generally
well-calibrated when for simpler tasks or in the
presence of source information. On the other hand,
Kapoor et al. (2024) and Yin et al. (2023b) show
that LLLM calibration about its self-knowledge is
not good and explore how fine-tuning can further
improve this calibration.

8 Conclusion and Future Work

In our work, we introduce the paradigm of dy-
namic strategy planning for question-answering
mimicking human cognitive thinking through Dy-
Plan with the goal of reducing inference compu-
tational costs and improving model performance.
By adding verification and self-correction using
DyPlan-verify, we further enhance the model out-
put quality. Through experimentation on three
MHQA datasets, we show strong efficacy and im-
proved performance using our techniques. Our
analyses and empirical bounds provide promise
for further improvements. Incorporating partial
thinking and integrating dynamic tool usage can
be explored to further improve DyPlan. Utilizing
alignment-based fine-tuning can further improve
the model’s effectiveness.
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Limitations

We present a prototype for our technique DyPlan
to selectively choose strategies in our work. We
haven’t evaluated it extensively on all possible
strategies, tools, and models and we leave it for
future work. Our technique is not restricted to
question-answering and is generalizable to other
tasks as well. But in this work, we only show
experiments and results on question-answering.
We haven’t optimized our technique or explored
changing the hyper-parameters or the prompt. It
might be possible to improve the model by further
engineering, but again, we leave it up to future
work. For fine-tuning, we limit ourselves to LoORA
and smaller models (8B) only owing to budget
constraints. Full fine-tuning and exploring larger
LLMs might be faster and better and can be ex-
plored in future works.

Ethical Considerations

We utilize LLMs to partially correct and rewrite
parts of our paper. Since we work with genera-
tive models, there’s little control on the text/to-
kens. It is possible that the model can generate
spurious or unsafe content and we haven’t eval-
uated our trained models for it. In general, fine-
tuning has been prone to reducing the robustness
of LLMs for other tasks/skills or introducing ad-
ditional biases due to spurious patterns in training.
We haven’t evaluated the models for robustness or
general safety. Finally, our work promotes using
less retrieval in favor of reducing inference genera-
tion costs. Previous works have found an inverse
correlation between hallucinations and knowledge
grounding in external documents. So, our work
can induce more hallucinations at the cost of reduc-
ing inference costs, and this should be taken into
consideration before using our work.
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A Additional Implementation Details

In this section, we provide additional details about
our implementation and hyperparameters of each
technique.

A.1 General Implementation Details

All of our experiments were conducted on an
NVIDIA RTX A100 machine with support for 8
GPUs. Fine-tuning runs took about 6-18 hours
to complete using distributed training on 4 GPUs.
Inference was faster and would be completed in
1-2 hours on a single GPU. Our base LLM for
all experiments was Llama3-8B-instruct (Dubey
et al., 2024), specifically its Huggingface release.’
We average the main results for most techniques
over three runs. Final inference was run with tem-
perature = 0.4 leading to low variance in model
performance.

A.2 Fixed Strategy Implementations

We self-implemented the simple Direct strategy.
We utilized the codebase* of DRAGIN (Su et al.,
2024) to implement the Chain-of-Thought (CoT)
(Wei et al., 2022) and RAG (Lewis et al., 2020)
strategies. We utilized a BM25 retrieval system
indexed on the entire Wikipedia and capable of re-
trieving intermediate excerpts of length 200 based
on the query. We provide the top three passages as
the retrieved passages for RAG. For SelfAsk (Press
et al., 2023), we utilized their original codebase.’
If any of the strategy inferences weren’t able to
provide their answer within the max generation
length limit, we used force-decoding with a pre-
set prefix “Final answer:" to get the final answer.
Other specific hyperparameters are provided for
each strategy in Tables 9, 10, 11, and 12.

# In-context Examples 8
Max Generation Length 100

Table 9: Hyper-parameters for Fixed Strategy Imple-
mentation for Direct strategy. Here, # = number of.

A.3 DyPlan Implementation

We describe the prompts and multi-turn setting of
our model DyPlan in § 2. We provide specific
hyperparameters for the non-fine-tuned version of

3https://huggingface.co/meta-1lama/
Meta-Llama-3-8B-Instruct

*https://github.com/oneal2000/DRAGIN

Shttps://github.com/ofirpress/self-ask

# In-context Examples 8
Max Generation Length 200

Table 10: Hyper-parameters for Fixed Strategy Imple-
mentation for Direct strategy. Here, # = number of.

# In-context Examples 4
Max Generation Length 200

Table 11: Hyper-parameters for Fixed Strategy Imple-
mentation for Direct strategy. Here, # = number of.

DyPlan and DyPlan-verify in Table 13. We utilize
the hierarchy order of Direct < Plan < Reason <
Retrieval for the Decision component. For RAG
strategy selection, we provide the retrieved pas-
sages as part of the Execution prompt. We set the
number of Decision-Execution-Verification rounds
for DyPlan-verify to 2.

A.4 Fine-Tuning Details

We utilize LoRA (Hu et al., 2022) for fine-tuning
the base LLM for fixed strategy and DyPlan. We
utilize the LLaMa-Factory (Zheng et al., 2024c)
and their codebase® for the fine-tuning and infer-
ence. We provide the hyperparameters for this
tuning in Table 14.

A.5 Classifier Implementation

As a baseline, we train a multi-class classifier with
each strategy as a separate class to select an appro-
priate strategy based on the question. We exper-
imented with utilizing binary classifiers for each
strategy but the multi-class classifier performed
better. We utilize the codebase’ from XTREME
(Hu et al., 2020) to implement the classifiers. We
utilize RoBerta-large (Liu et al., 2019) as the base
model. We provide additional details about the
hyperparameters in Table 15.

A.6 Majority Ensemble Implementation

We implement a simple majority ensemble wherein
we utilize the final answers from the fixed strategy
models and aggregate them using a majority func-
tion. In case of a tie, we choose the final answer
of the better strategy in the hierarchy. In 2-3 strat-
egy cases, this leads to aligning with the best-fixed
strategy method itself.

6https: //github.com/hiyouga/LLaMA-Factory
"https://github.com/google-research/xtreme
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# In-context Examples 8
Retriever BM25
# Retrievals 3
Max Generation Length 200

Table 12: Hyper-parameters for Fixed Strategy Imple-
mentation for Direct strategy. Here, # = number of.

# In-context Examples 0-4
Retriever BM25
# Retrievals 3
Max Generation Length for Decision 10
Max Generation Length for Execution 200
Max Generation Length for Verification 10
Numbers of Rounds 2

Table 13: Hyper-parameters for DyPlan and DyPlan-
verify. Here, # = number of.

A.7 ReAct Implementation

As a reference for costs, we also included a base-
line for ReAct (Yao et al., 2023b). We utilize their
original codebase® for the implementation. Utiliz-
ing the Instruct version of Llama3-8B didn’t work
as well, instead we utilize the non-instruct-tuned
version of this model Llama3-8B° for this baseline.
We utilize six in-context examples for the prompt.
Additionally, to keep a fair comparison and reduce
token generation costs, we do forced decoding stop-
ping for the keywords of "Thought:", "Action:" or
"Observation". This avoids any unnecessary token
generations or when the model starts to repeat itself.
We notice that this model works well with larger
LLMs, but the planning and performance are poor
with smaller LLMs.

A.8 DRAGIN Implementation

As areference for costs, we also included a baseline
for ReAct (Su et al., 2024) implemented using their
original implementation codebase. '° We provide
specific hyperparameters of this model in Table 16.

B Additional Experimental Results

B.1 Hierarchy Violations for other datasets

In § 2.1, we motivated how strategy selection acts
as an ensemble for the Direct-Reason strategy com-
bination. Here, we provide more evidence to sup-
port this claim across four strategies - Direct, Plan,
Reason, and Retrieval - and multiple datasets.

8https://github.com/ysymyth/ReAct
9https://huggingface.co/meta—llama/
Meta-Llama-3-8B

Yhttps://github.com/oneal 2000/DRAGIN

# In-context Examples 0
LoRA rank 32
LoRA target All
Train Datasize 20,000
Learning Rate le-5
Warmup Ratio 0.1
# Epochs 4
Save Steps 250
Train Batch size 16
Inference Batch size 32

Table 14: Hyper-parameters for fine-tuning the base
LLM. Here, # = number of.

Base Model RoBerta-large
Max length 256
Train Batch size 32
Train datasize 20,000
Learning Rate le-5
Weight Decay 0
Warmup Steps 0
# Epochs 10
Save Steps 50
Adam Epsilon le-8
Max Gradient Norm 1.0

Table 15: Hyper-parameters for fine-tuning the base
LLM. Here, # = number of.

General Hierarchy: For the four strategies men-
tioned above, a general hierarchy we assume is
Direct < Plan < Reason < Retrieval. If the model
knows the answer directly, then it should be able
to plan/reason to provide the answer. Thus, Direct
is the lowest in this hierarchy. Comparing Plan
and Reason - we assume Plan is a special kind
of reasoning with a specific focus on breaking the
question into atomic units. On the other hand, there
are several questions like “Who was the actor who
starred in an Avengers movie and has three chil-
dren?" where breaking into atomic questions will
not help to answer the question. Thus, we assume
Plan < Reason. Finally, Retrieval brings in addi-
tional external information compared to Reason
ranking Reason < Retrieval.

Hierarchy Violations: In an ideal world, the
LLM should follow this hierarchy, and we should
simply use Retrieval all the time to optimize model
performance. However, owing to various reasons
like non-relevant retrievals, incorrect reasoning,
rote learning, and spurious generations, this hierar-
chy is not maintained. We call these special cases
as hierarchy violations.

Quantifying Violations: Similar to the study in
§ 2.1, we quantify the F1 performance contribution
of the hierarchy violations for all the four strategies
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# In-context Examples 8
Retriever BM25
# Retrievals 3
# Retrieval Keep Top-k 25
Max Generation Length 200
Hallucination Threshold 1.0
Query Formulation real-words
Check Real Words true

Table 16: Hyper-parameters for Fixed Strategy Imple-
mentation for Direct strategy. Here, # = number of.
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Figure 8: Breaking the contribution of each strategy

combination to HotpotQA model performance. A strat-

egy’s inclusion in the set is indicated by the colored dot.
dots and bars indicate the hierarchy violations.

using Llama3-8B-Instruct for the three datasets of
HotpotQA, 2WikiMultihopQA and Musique in Fig-
ures 8, 9 and 10. These upset plots are a way of
visualizing Venn diagrams, wherein each column
is a unique combination of strategies, and the bar
heights indicate its F1 contribution. The colored
dots (black/red) indicate the presence of the corre-
sponding strategy in the strategy combination set,
while the grey dots indicate the absence. For ex-
ample, in Figure 8, the first bar indicates that there
are about 9.5% questions that only Retrieval can
correctly answer while all other methods fail. Sim-
ilarly, the second bar indicates that more than 5%
questions can only be answered by Direct and no
other strategy. To distinctively show the hierarchy
violations, we color-code them in red in these plots.

Results:  Similar to our original findings, we find
a significant portion of performance contributions
can potentially be attributed to hierarchy violation
patterns. Specifically, they account for approximate
F1 scores of 23.5%, 37%, and 9% for HotpotQA,
2WikiMultihopQA, and Musique, respectively. We
provide some qualitative examples to back this find-
ing more in § C.3 Such high contributions from
hierarchy violations indicate that the underlying
hierarchy is weak, and ensembling can yield better-
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Figure 9: Breaking the contribution of each strategy

combination to 2WikiMultihopQA model performance.
A strategy’s inclusion in the set is indicated by the col-

ored dot. dots and bars indicate the hierarchy viola-
tions.
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Figure 10: Breaking the contribution of each strategy
combination to Musique model performance. A strat-

egy’s inclusion in the set is indicated by the colored dot.
dots and bars indicate the hierarchy violations.

combined performance. To this end, our technique
DyPlan can provide promise by utilizing dynamic
strategy planning not only to reduce costs but also
to improve model performance.

B.2 Fine-tuning ablation Analysis

We provided basic ablation analysis highlighting
how fine-tuning aids LL.Ms to be better calibrated
to utilize DyPlan in § 6.1.3. Here we provide ad-
ditional details about the experimental setup along
with additional results on other datasets.

Non fine-tuned DyPlan: For zero-shot model,
we prompt the base LLM for the Decision com-
ponent (i.e. to select the preferred strategy) in a
zero-shot fashion. Based on the chosen strategy,
the base LLM output from the fixed strategy run is
used as the Execution component output. For the
few-shot model, we utilize four few-shot examples
for each strategy (16 in total). If the model out-
puts a strategy not defined in the list of provided
strategies, we map it to the retrieval strategy (as
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Model |EM F1 #T #R

Fixed-base (Retrieval) 36.1 479 185 1
Fixed-sft (Retrieval) 36.8 48.6 53

0-shot DyPlan 353 46.6 179 0.92
Few-shot DyPlan 33.1 44.1 167 0.79
Fine-tuned DyPlan |36.1 47.6 42 0.76

Table 17: Ablation analysis on HotpotQA for the need
to fine-tune LLMs to incorporate DyPlan.

Model |EM F1 #T #R

96 180 187 1
93 184 88 1

Fixed-base (Retrieval)
Fixed-sft (Retrieval)

0-shot DyPlan 8.7 172 183 0.95
Few-shot DyPlan 73 159 175 0.85
Fine-tuned DyPlan |10.1 19.8 65 0.98

Table 18: Ablation analysis on Musique for the need to
fine-tune LLMs to incorporate DyPlan.

that’s the best-preferred strategy in terms of model
performance).

Results: We provided results for this study for
the 2WikiMultihopQA dataset in Table 6. Here,
we also provide similar comparisons on HotpotQA
and Musique datasets in Tables 17 and 18, respec-
tively. Across all the datasets, we can notice the
sub-optimal performance of non-fine-tuned LLM
runs with DyPlan. The zero-shot model mostly
selects retrieval, while the few-shot model selects
other strategies, but it’s not well-calibrated. The
calibration is poorer for few-shot DyPlanas the
model gets heavily influenced by the in-context
examples. In conclusion, we demonstrate how
base LLMs by default are not calibrated well to
utilize DyPlan, underlining the need for fine-tuning
LLMs.

B.3 Decision-making of DyPlan

We discussed how DyPlan helps to better calibrate
decision-making in terms of strategy selection for
the 2WikiMultihopQA dataset in § 6.1.1. Here,
we show similar analysis for the other datasets of
HotpotQA and Musique in Figures 11 and 12. Sim-
ilar to our earlier findings, we notice the DyPlan
helps the strategy usage to be more similar to the
optimal policy, in turn helping to improve model
performance. We notice for HotpotQA, DyPlan
is similar to the external classifier. DyPlan-verify,
on the other hand, is strongly closer to the optimal
policy for both HotpotQA and Musique.

Emm Direct Plan s Reason Emm Retrieval

Fixed Retrieval

DyPlan-base

Techniques

0.0 0.2 0.4 0.6 0.8 1.0
Percentage Strategy Selection

Figure 11: Comparing the strategy usage distribution of
various techniques with the optimal policy distribution
for HotpotQA.
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e
£ -
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Percentage Strategy Selection

Figure 12: Comparing the strategy usage distribution of
various techniques with the optimal policy distribution
for Musique.

B.4 Combined Data Fine-tuning

In § 6.2, we compared and discussed the perfor-
mance difference for models fine-tuned on indi-
vidual datasets relative to models fine-tuned on a
single combined dataset. We provide the complete
table with the performance numbers in Table 19.
We also compare the costs of these models in Ta-
ble 20. We observe that the costs for DyPlan with
combined data are slightly more than the individual
models. On the contrary, the costs for a combined
model for DyPlan-verify are lesser than the indi-
vidual model fine-tuning. Overall, the range of
differences is quite small, and the combined model
costs less than the best baseline as well.

B.5 Generalization with other LLMs

To validate the compatibility of DyPlan with other
LLMs, we conduct a small study utilizing Dy-
Plan and DyPlan-verify for Mistral-7B (Jiang et al.,
2023a) model.!! We provide the experimental re-
sults for this model in Table 21 for the 2WikiMulti-
hopQA dataset. The results demonstrate how Dy-

11https://huggingface.co/mistralai/
Mistral-7B-v@.3
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Model HotpotQA | 2WikiQA | Musique
EM F1 |EM F1 |[EM F1
DyPlan-base
Individual 36.1 47.6 |37.8 46.0| 10.1 19.8
Combined 365 48.0 (362 44.7| 98 19.0
-A -04 -04]16 13|03 08
DyPlan-verify
Individual 36.7 48.5 (405 49.6|10.8 20.4
Combined 36.1 479 |38.1 46.8|10.6 20.3
-A 06 06|24 28102 0.1

Table 19: Generalization analysis comparing model
performance of LLM fine-tuned on a single combined
dataset v/s individual datasets.

Model HotpotQA | 2WikiQA | Musique
#T #R |#T #R |#T #R
DyPlan-base
Individual 42 076 | 28 048 | 65 098
Combined 44 076 | 31 058 | 71 098
-A 2 0 3 0.1 6 0
DyPlan-verify
Individual 53 079 | 45 0.65 | 77 0.99
Combined 53 077 | 44 054 |65 097
-A 0o -002| -1 -0.11]-12 -0.02

Table 20: Generalizability analysis comparing model
performance of LLM fine-tuned on a single combined
dataset v/s individual datasets. Here, 2WikiQA = 2Wiki-
MultihopQA

Plan brings about a 3-5% boost in model perfor-
mance and a 41-63% reduction in token and re-
trieval costs. Overall, this provides evidence for the
generalizability of DyPlan across different LLMs.

C Qualitative Studies

C.1 Qualitative Examples for DyPlan

We provide some qualitative examples highlighting
the cases where DyPlan provides stronger model
performance and better efficiency compared to the
best baseline of Fixed-sft Retrieval in Table 22. We
also provide corresponding comments to indicate
how DyPlan is better. Initial examples demonstrate
cases wherein DyPlan is more efficient as well as
correct. Some of these examples are also when
both the methods use RAG - which throws light on
improved reasoning ability by DyPlan training. At
the bottom, we show examples where both give the
right answer, but DyPlan is more efficient.

Model |EM F1 #T #R

Fixed-sft Direct 41.6 442 11 0
Fixed-sft Reason | 43.6 47.7 91 0
Fixed-sft Plan 414 447 106 O
Fixed-sft Retrieval | 47.8 52.0 99 1

DyPlan-base 49.1 53.6 37 0.5
DyPlan-verify 499 548 55 0.59

Table 21: Benchmarking model performance using
DyPlan for Mistral-7B model on 2WikiMultihopQA
dataset.

C.2 Qualitative Examples for DyPlan-verify

In Table 23, we show some examples wherein ad-
ditional verification identifies and rectifies any po-
tential mistakes made in the first round. Specifi-
cally, we also show examples (last two) wherein
the first-round strategy was better but provided the
wrong answer, while the second-round strategy was
weaker but provided the right answer. Overall, this
shows how verification, along with multi-strategy
selection, is a key component to improve model
performance.

C.3 Qualitative Examples for Strategy
Hierarchy Violations

In § B.1, we discussed how violations in the hier-
archy could contribute to significant model perfor-
mance. Here, we provide some qualitative exam-
ples for violations of various strategy combination
sets in Table 24. In the first comparison of Direct
with Reason, we observe how reasoning leads to
hallucinations or wrong logical inferences leading
to the wrong final answer; while the model can an-
swer correctly when prompted directly. In the sec-
ond comparison of Plan with Reason, we observe
how breaking the questions into atomic questions
helps the model to correctly answer for Planning.
It’s expected that the model can reason in a similar
way, but in its reasoning, it again starts to hallu-
cinate. Finally, we show the case of Reason with
Retrieval, wherein the model correctly answers the
questions using its self-knowledge, but in the con-
text of retrieved passages, the model suddenly starts
to hallucinate or state incorrect facts. On further
analysis, we find that some of these cases can be
attributed to wrong retrievals. However, many of
them are just incorrect reasoning itself - which is
quite odd and strange. Overall, our work doesn’t fo-
cus deeply on why such violations happen (which
can be an area of future study), but we majorly
provide the verification loop in DyPlan-verify to
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Question | DyPlan Output | Fixed-sft Retrieval Output | Comments
Where was the father | Decision: Direct | [1]...[2]... [3] ... Alexandre Gaydamak’s | Efficient &
of Alexandre Gay- | Execution: Final answer: "Rus- | father, Arcadi Gaydamak, was born in | Correct
damak born? sia" France. Final answer: "France"
Who is younger, Lo | Decision: Direct | [1] ... [2] ... [3] ... Lo Hsiao-Ting was | Efficient
Hsiao-Ting or Basil | Execution:  Final answer: "Lo | born on 1985-09-29. Basil Hoffman was | and Correct
Hoffman? Hsiao-Ting" born on 1938-01-18. Thus, Basil Hoffman
is older than Lo Hsiao-Ting. Final answer:
"Basil Hoffman"
Who lived longer, | Decision: Plan | [1] ... [2] ... [3] ... Henry Scheffé | Correct
Csaba Pdlinkds or | Execution: Follow up: How old | was born on April 11, 1907, and died | by self-
Henry Scheffé? was Csaba Pdlinkds when he died? | on July 5, 1977. Csaba Pdlinkds was | knowledge
Intermediate answer: Csaba Palinkds | born on 1936 and died on 2017. There-
was 64 years old when he died. Follow | fore, Henry Scheffé lived for 70 years,
up: How old was Henry Scheffé when | and Csaba Palinkés lived for 81 years.
he died? Intermediate answer: Henry | Csaba Pdlinkds lived longer. Final answer:
Scheffé was 72 years old when he | "Csaba Palinkas"
died. Final answer: "Henry Scheffé"
Where was the fa- | Decision: CoT | [1]... [2] ... [3] ... Eugene Fubini’s father | Efficient
ther of Eugene Fubini | Execution:  Eugene Fubini’s fa- | was Guido Fubini. Guido Fubini was a | and correct
born? ther, Guido Fubini, was born in Italy. | mathematician. There is no information | by self-
Final answer: "Italy" provided about Guido Fubini’s birthplace. | knowledge
Final answer: "unknown"
Who is the mater- | Decision: RAG | [1] ... [2] ... [3] ... Amadeus VII, Count | Correct by
nal grandfather of | Execution: Amadeus VII, Count | of Savoy was the son of Amadeus VI, | better Rea-
Amadeus Vii, Count | of Savoy’s mother is Bonne of | Count of Savoy and Bonne of Bourbon. | soning
Of Savoy? Bourbon. Bonne of Bourbon’s father | Bonne of Bourbon was the daughter of
is Peter I, Count of Bourbon. Thus, | John, Duke of Berry and Joan of Au-
Amadeus VII, Count of Savoy’s | vergne. Therefore, the maternal grand-
maternal grandfather is Peter I, Count | father of Amadeus VII, Count of Savoy is
of Bourbon. Final answer: "Peter I, | John, Duke of Berry. Final answer: "John,
Count of Bourbon" Duke of Berry"
Which film has the di- | Decision: Direct | [1]... [2] ... [3] ... Captain Kidd And The | More effi-
rector who died ear- | Execution: Final answer: "Cap- | Slave Girl was released in 1952. Relax | cient
lier, Captain Kidd | tain Kidd And The Slave Girl" Freddie was released in 1971. Therefore,
And The Slave Girl or Relax Freddie was released later. The di-
Relax Freddie? rector of Relax Freddie is unknown. The
director of Captain Kidd And The Slave
Girl is Lew Landers. Lew Landers died in
1993. Therefore, Lew Landers died ear-
lier. Final answer: "Captain Kidd And
The Slave Girl"
Where was the per- | Decision: Reason | [1] ... [2] ... [3] ... Leona Lewis, the | Efficient
former of song I See | Execution: The song I See You | performer of the song I See You (Theme | by self-
You (Theme From | (Theme From Avatar) was performed | From Avatar), was born in London, Eng- | knowledge

Avatar) born?

by Leona Lewis. Leona Lewis was
born in Highbury, London, England.
Final answer: "Highbury, London,
England"

land. Final answer: {.ondon, England"

Table 22: Qualitative analysis depicting cases where DyPlan improves over Fixed-sft Retrieval baseline.
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Question | First Round Output | Second Round Output

Which film has the di- | Decision: Direct | Decision: Plan

rector who died ear- | Execution: Final answer: | Execution: Follow up: Who is the director of

lier, Toen °T Licht | "Toen T Licht Verdween" | Toen T Licht Verdween? Intermediate Answer: The

Verdween or Boum | Verification: No director of Toen 'T Licht Verdween is Fons Rademakers.

Sur Paris? Follow up: When did Fons Rademakers die? Interme-
diate Answer: Fons Rademakers died on February 22,
2001. Follow up: Who is the director of Boum Sur
Paris? Intermediate Answer: The director of Boum Sur
Paris is Henri Lepage. Follow up: When did Henri
Lepage die? Intermediate Answer: Henri Lepage died
on October 14, 1991. Final answer: "Boum Sur Paris"

Are both directors of | Decision: Direct | Decision: CoT

films The Princess | Execution: Final answer: "no" | Execution: The Princess Bride (film) was directed by

Bride (Film) and I | Verification: No Rob Reiner. I Never Sang For My Father was directed

Never Sang For My by John Erman. Rob Reiner’s nationality is United

Father from the same States. John Erman’s nationality is United States. Thus,

country? they are from the same country. Final answer: "yes"

Where was the direc- | Decision: RAG | Decision: Direct

tor of film Lettre Ou- | Execution: [1] ... [2] ... [3] ... The | Execution: "Final answer: "Paris"

verte born? director of film Lettre Ouverte is not

specified. Final answer: "Not specified"
Verification: No
Which film has the | Decision: Plan | Decision: Direct
director who died | Execution: Follow up: Who is the | Execution: "Final answer: "Them!"

later, Stolen Identity
or Them!?

director of Stolen Identity? Intermediate
Answer: Andrzej Wajda.  Follow
up: When did Andrzej Wajda die?
Intermediate Answer: September
9, 2016. Follow up: Who is the
director of Them!? Intermediate
Answer: Gordon Douglas. Follow
up: When did Gordon Douglas die?
Intermediate Answer: September 30,
1993. Final answer: "Stolen Identity"
Verification: No

Table 23: Qualitative analysis depicting cases where DyPlan-verify improves over the first round outputs.
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Question

| Strategy 1 Output

| Strategy 2 Output

Strategy 1: Direct

Strategy 2: Reason

Strategy 1 > Strategy 2

Who died first, George
Archainbaud or Ralph
Murphy?

Final answer: "George Archainbaud"

George Archainbaud was born on October 15,
1899. Ralph Murphy was born on April 16, 1891.
Therefore, Ralph Murphy died first. Final an-
swer: "Ralph Murphy"

Alice David is the voice
of Lara Croft in a
video game developed
by which company?

Final answer: "Crystal Dynamics"

The video game developed by Eidos Interactive
is Tomb Raider. The voice of Lara Croft in Tomb
Raider is Camilla Luddington. Alice David is
not the voice of Lara Croft. Final answer: "Eidos
Interactive"

Strategy 1: Plan

Strategy 2: Reason

Strategy 1 > Strategy 2

When was the former
Indian cricketer who
made his ODI debuts
during the 2000 ICC
KnockOut Trophy
born?

Follow up: Who is the former Indian crick-
eter who made his ODI debuts during the
2000 ICC KnockOut Trophy? Intermediate
Answer: Virender Sehwag. Follow up: When
was Virender Sehwag born? Intermediate An-
swer: Virender Sehwag was born on October
30, 1978. Final answer: "October 30, 1978".

The former Indian cricketer who made his ODI
debuts during the 2000 ICC KnockOut Trophy
is Harbhajan Singh. Harbhajan Singh was born
on July 3, 1980. Final answer: "July 3, 1980"

What is the birthplace of
the Senator who repre-
sents the first of 62 dis-
tricts in the State Sen-
ate?

Follow up: Who represents the first of 62
districts in the State Senate? Intermediate an-
swer: Chuck Schumer. Follow up: Where is
Chuck Schumer from? Intermediate answer:
Chuck Schumer is from Brooklyn, New York.
Final answer: "Brooklyn, New York"

The State of California has 40 Senate districts.
The first of these is the 1st Senate district. The
Senator representing the 1st Senate district is
Toni Atkins. Toni Atkins was born in San Diego,
California. Final answer: "San Diego, Califor-

nia

Str

ategy 1: Reason Strategy 2: Retrieval

Strategy 1 > Strategy 2

Are Random House
Tower and 888 7th
Avenue both used for
real estate?

Random House Tower is a residential build-
ing. 888 7th Avenue is the address of the
General Motors Building, which is a com-
mercial building. Final answer: "no"

[1] ... [2] ... [3] ... Random House Tower is
used for office space. 888 7th Avenue is used for
office space. Final answer: "yes"

What is the name of
the oldest child that
attended the Trump
campaign-Russian
meeting?

The Trump campaign-Russian meeting refers
to the meeting between Donald Trump Jr. and
a group of Russians in June 2016. The oldest
child who attended the meeting was Donald
Trump Jr.’s son, Donald Trump III. Final an-
swer: "Donald Trump III"

[1] ... [2] ... [3] ... The meeting was held on
June 9, 2016. The meeting was attended by
Donald Trump Jr., Jared Kushner, Paul Manafort,
Natalia Veselnitskaya, and Rinat Akhmetshin.
The oldest child that attended the meeting is
Jared Kushner. Final answer: "Jared Kushner"

Luke Null is an actor
who was on the program
that premiered its 43rd
season on which date?

Luke Null is an actor who was on the program
Saturday Night Live. Saturday Night Live
premiered its 43rd season on September 30,
2017. Final answer: "September 30, 2017"

[1]... [2] ... [3] ... Luke Null is an actor who was
on the program "The Daily Show with Trevor
Noah". The Daily Show with Trevor Noah pre-
miered its 43rd season on September 28, 2021.
Final answer: "September 28, 2021"

Table 24: Qualitative cases eliciting odd behaviors when an inferior strategy yields the correct answer but a superior
one fails highlighting the strategy hierarchy violations.

navigate through such failure cases.
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