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Abstract

Temporal knowledge graph question answering
(TKGQA) addresses time-sensitive queries us-
ing knowledge bases. Although large language
models (LLMs) and LLM-based agents such
as ReAct have shown potential for TKGQA,
they often lack sufficient temporal constraints
in the retrieval process. To tackle this challenge,
we propose TempAgent, a novel autonomous
agent framework built on LLMs that enhances
their ability to conduct temporal reasoning and
comprehension. By integrating temporal con-
straints into information retrieval, TempAgent
effectively discards irrelevant material and con-
centrates on extracting pertinent temporal and
factual information. We evaluate our frame-
work on the MultiTQ dataset, a real-world
multi-granularity TKGQA benchmark, using
a fully automated setup. Our experimental re-
sults reveal the remarkable effectiveness of our
approach: TempAgent achieves a 41.3% im-
provement over the baseline model and a 32.2%
gain compared to the Abstract Reasoning In-
duction (ARI) method. Moreover, our method
attains an accuracy of 70.2% on the @hit1 met-
ric, underscoring its substantial advantage in
addressing time-aware TKGQA tasks.

1 Introduction

Temporal knowledge graph question answering
(TKGQA) is an emerging research area that fo-
cuses on time-sensitive queries through the use of
structured knowledge graphs. In practice, however,
TKGQA poses significant challenges due to the
fluid and evolving nature of factual information
over time (Gottschalk and Demidova, 2018). For
instance, the entity serving as Prime Minister of
the United Kingdom changed from Boris Johnson
in 2021 to Rishi Sunak in 2023. Given the rapidly
changing landscape of real-world events, temporal
knowledge graphs (TKGs) have garnered increas-
ing attention as a means to capture evolving infor-
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mation. Meanwhile, recent developments in large
language models (LLMs), particularly those instan-
tiated through LLM-based agents such as ReAct
(Yao et al., 2022), have exhibited remarkable profi-
ciency in language understanding, generation, in-
teraction, and reasoning (Wei et al., 2022), thereby
facilitating improved QA performance through in-
tegrated reasoning and tool usage (Zhuang et al.,
2024).

Nevertheless, existing solutions often fail to in-
corporate temporal constraints effectively when in-
teracting with knowledge bases. Although LLMs
demonstrate strong performance in general natural
language processing tasks, they frequently struggle
with questions requiring robust temporal reasoning
(Huang and Chang, 2023; Liang et al., 2023). For
example, directly applying ReAct—a state-of-the-
art LLM-based agent for general QA tasks (Yao
et al., 2022; Ding et al., 2024)—to TKGQA reveals
a critical limitation: the absence of temporal con-
straints in retrieval. This shortcoming obstructs
effective filtering of facts within temporal knowl-
edge bases and complicates the process of locating
time-relevant information.

To overcome these limitations, we introduce
TempAgent, an LLM-based autonomous agent
framework specifically designed for complex,
multi-granularity TKGQA tasks. TempAgent en-
ables filtering of irrelevant information based on
the varying granularities of temporal constraints
embedded within questions. It thus aims to en-
hance both flexibility and adaptability in a zero-
shot setting for tackling complex temporal rea-
soning queries. Figure 1 illustrates the overall
flowchart of TempAgent. Concretely, our approach
comprises three central components: (i) a vector
database containing embedded representations of
each knowledge base entry, (ii) specialized tools
to conduct temporally constrained searches within
this database and isolate time-relevant content, (iii)
an LLM-based agent capable of iterative, multi-
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Figure 1: The execution flow of TempAgent

step interactions with the vector database using
these custom tools.

We evaluate TempAgent on two datasets: Mul-
tiTQ (Chen et al., 2023), which features complex
temporal constraints, and CronQuestions (Saxena
et al., 2021), a standard TKGQA benchmark. All
experiments are conducted in a zero-shot setting
using two proprietary LLMs and one open-source
LLM. Our results show that TempAgent consis-
tently surpasses naive RAG (Chen et al., 2024a)
and the ReAct RAG agent (Yao et al., 2022) across
all tested models, achieving a 32.2% improve-
ment over the Abstract Reasoning Induction (ARI)
(Chen et al., 2024c) baseline. Notably, under GPT-
4, TempAgent achieves a 70.2% accuracy on the
Hits@1 metric, underscoring its efficacy in address-
ing time-sensitive queries. This performance high-
lights TempAgent’s scalability, as it leverages au-
tonomous reasoning within the model. Overall, our
findings underscore TempAgent’s potential to ef-
fectively handle TKGQA tasks and adapt to more
sophisticated LLMs. In summary, the primary con-
tributions of our work are as follows:

• Multi-Granularity Time-Filtering. We con-
duct a systematic analysis of temporal con-

straints in TKGQA, culminating in the devel-
opment of a multi-granularity time-filtering
tool to retrieve time-relevant knowledge more
precisely. We further design tailored prompts
based on the type and number of temporal
constraints to enhance the model’s temporal
reasoning.

• Innovative TKGQA Framework. We pro-
pose an innovative framework that harnesses
the capabilities of LLM-based agents to ad-
dress the challenges posed by TKGQA. This
framework operates in a zero-shot manner,
thereby establishing a foundation for further
advances in the field.

• Comprehensive Evaluation. Through exten-
sive experimentation on the MultiTQ dataset
(Chen et al., 2023) and CronQuestions (Sax-
ena et al., 2021), we demonstrate that Tem-
pAgent’s temporal reasoning over large-scale
knowledge bases significantly outperforms the
baseline model. On MultiTQ, our approach
yields an improvement of up to 41.3% in
Hits@1.
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2 Related Work

2.1 TKGQA

Temporal Knowledge Graph Question Answering
(TKGQA) involves answering natural language
queries using information derived from Temporal
Knowledge Graphs (TKGs) (Jia et al., 2018a). Ex-
isting TKGQA approaches typically fall into two
main categories: embedding-based methods and
semantic parsing techniques (Li et al., 2024b).

Embedding-based Methods. These methods
rely on TKG embeddings to represent entities, rela-
tions, and temporal information, and then employ
scoring functions to identify appropriate answers
(Saxena et al., 2021; Shang et al., 2022; Mavro-
matis et al., 2022; Chen et al., 2023). (Lacroix
et al., 2020) introduced TComplEx as a founda-
tional model for TKG embeddings; subsequent
work has extended its functionality in various
ways. For instance, (Shang et al., 2022) incor-
porated a time-aware knowledge graph encoder,
while CRONKGQA (Saxena et al., 2021) leveraged
transformer-based pre-trained TKG models. Tem-
poQR (Mavromatis et al., 2022) introduced special-
ized modules for contextual, entity, and temporal
reasoning. More recently, MultiQA (Chen et al.,
2023) proposed a multi-granularity time aggrega-
tion mechanism to address more complex temporal
queries.

Semantic Parsing Techniques. Although less
prevalent, semantic parsing methods concentrate
on capturing and structuring temporal constraints
within queries. TEQUILA (Jia et al., 2018b) de-
composes questions into sub-questions, while SF-
TQA (Ding et al., 2022) represents time constraints
using predefined structured formats. More recently,
SERQA (Du et al., 2024) integrates syntactic infor-
mation with Masked Self-Attention. Building on
the powerful semantic capabilities of Large Lan-
guage Models (LLMs), (Chen et al., 2024c) in-
troduced the ARI framework to enhance LLMs’
temporal reasoning, and Prog-TQA (Chen et al.,
2024b) exploits in-context learning for generat-
ing and executing program drafts. Our proposed
method diverges from these approaches by intro-
ducing a time-aware agent that dynamically filters
knowledge based on multi-granularity temporal
constraints and leverages LLMs’ robust reasoning
to tackle more intricate temporal queries.

2.2 LLM-Based Agents

Recent advancements in LLMs demonstrate no-
table reasoning abilities (Sun et al., 2024a), spark-
ing heightened research interest in LLM-based
agents that can autonomously address complex
QA tasks (Zhao et al., 2024; Wang et al., 2024;
Abbasiantaeb et al., 2024). A pioneering work
in this domain, ReAct (Yao et al., 2022), intro-
duces a prompting strategy that transforms mod-
els such as ChatGPT into interactive language
agents. These agents can collaborate with exter-
nal resources, incorporate feedback, and generate
step-by-step reasoning. Building on ReAct, Reflex-
ion (Shinn et al., 2024) proposes a mechanism that
uses linguistic feedback instead of model weight
updates. Through an episodic memory buffer, Re-
flexion stores verbal reflections on prior task out-
comes, facilitating improved decision-making in
subsequent interactions.

Concurrently, efforts to equip open-source
LLMs with agent-like capabilities through fine-
tuning have gained traction (Lin et al., 2024a,b).
However, these approaches often rely heavily on
LLM-generated data for training. Such reliance
can introduce invalid or suboptimal trajectories
into the training corpus, making it challenging to
maintain consistent performance. To mitigate these
issues, we focus on more reliable, closed-source
LLM APIs, such as ChatGPT and GPT-4, investi-
gating strategies to solve complex tasks in a manner
less susceptible to the pitfalls of fine-tuning.

3 Approach

3.1 Problem Formulation

TKGQA. A temporal knowledge graph typically
consists of a set of fact tuples that capture rela-
tionships between entities over time, represented
as G = {⟨e, r, e′, t⟩ | e, e′ ∈ E , r ∈ R, t ∈ T},
where E , R, and T denote the sets of entities, rela-
tionships, and timestamps, respectively. Each tuple
⟨e, r, e′, t⟩ encapsulates factual knowledge, indicat-
ing that a relationship r exists between the head
entity e and tail entity e′ at timestamp t. Given
a total of N questions and O answers, we de-
note the sets of questions and answers as Q =
{q1, ..., qn, ..., qN} and A = {a1, ..., ao, ..., aO}
respectively. The objective of TKGQA is to ac-
curately answer questions by leveraging relevant
tuples in G.

6030



Tool Definition

Search(q) Returns relevant knowledge.
SearchOnDay(q, t) Returns relevant knowledge on a given date.
SearchAfterDay(q, t) Returns relevant knowledge strictly after a given date.
SearchBeforeDay(q, t) Returns relevant knowledge strictly before a given date.
SearchOnMonth(q, tstart, tend) Returns relevant knowledge between tstart and tend.
SearchAfterMonth(q, t) Returns relevant knowledge after the last day of a specified month.
SearchBeforeMonth(q, t) Returns relevant knowledge before the first day of a specified month.
SearchOnYear(q, tstart, tend) Returns relevant knowledge between tstart and tend.
SearchAfterYear(q, t) Returns relevant knowledge after the last day of a specified year.
SearchBeforeYear(q, t) Returns relevant knowledge before the first day of a specified year.

Table 1: Descriptions of the retrieval tools.

3.2 Overview

Current approaches to TKGQA often fail to ef-
ficiently incorporate temporal constraints when
searching knowledge bases, and contemporary
LLMs face inherent challenges in processing time-
sensitive tasks. To address these issues, we intro-
duce TempAgent, a novel framework that augments
multi-granularity QA over TKGs by integrating so-
phisticated temporal reasoning. First, we embed
the TKG, treating it as our temporally structured
knowledge base. Next, we enhance the LLM’s
capabilities by constructing a dedicated “toolbox”
that can manipulate TKG data or intermediate out-
puts.

In tackling complex temporal reasoning tasks,
we adopt an agent-based paradigm. Specifically,
we design distinct prompts for different question
types, allowing our method to adopt a divide-and-
conquer approach. Our agent provides targeted
reasoning for each category of question, ensuring
that each query employs a customized reasoning
process. The complete process is illustrated in
Figure 1.

3.3 Toolbox for retrieval

To facilitate robust retrieval from our external
knowledge base, we develop a suite of special-
ized retrieval tools. Broadly, these tools can be
grouped into two categories: those that do not im-
pose temporal constraints and those that filter data
based on specific time conditions. In the latter cate-
gory, we analyze a range of question types in detail,
classifying time-related keywords into three princi-
pal categories: “before,” “after,” and “on.” Given
that real-world time naturally has multiple granu-
larities, our chosen dataset similarly exhibits this
property. Consequently, each principal category
is subdivided by time granularity—namely “year,”
“month,” and “day”—yielding nine time-aware fil-

ters. We also include a single tool without time
filtering. Table 1 lists all ten tools in our retrieval
toolbox.

Tool Inputs and Processing. Each tool receives
as input a query alongside one or two timestamps.
The query is dynamically generated by the model
based on the requirements of the specific question-
answering step. For queries that target a particular
year or month, we interpret that year or month as a
time span from its first day to its last day. Hence,
tools such as SearchOnMonth and SearchO-
nYear require two timestamps, tstart and tend.

When a tool is invoked, it first computes the
embedding vquery . Next, it applies a filtering
step on G using time constraints determined by
the tool and timestamps. For example, invok-
ing [SearchAfterDay(“Richard Boucher visit”,
“2008-04-02”)] excludes all tuples from G dated
prior to April 2, 2008. Formally, we define

Gfilter =





filter(G, tstart, tend)

for on-year/month queries,
filter(G, ti)
for single time-bound queries,

(1)

where Gfilter is the time-filtered subset of G.
Subsequently, we calculate the semantic simi-

larity between vquery and each tuple in Gfilter. For
tools that do not incorporate time filtering, the sim-
ilarity is computed against the entire G. We then
select the top k tuples, converting them back to
textual form:

RT = topk

(
S
(
vquery ,G

))
, (2)

RT = topk

(
S
(
vquery ,Gfilter

))
, (3)

where S(·) represents the semantic similarity func-
tion, and RT = {rt1, . . . , rtk} denotes the set of
k most relevant tuples returned to the LLM-based
agent.
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Property Sample Question

By Question Type

Equal Who paid a visit to Iraq in December 2008?
Before/After Which country signed formal agreements with Iraq after 2014-12?
First/Last In which year did the head of government of Finland last visit China?
Equal Multi Who threatened Iraq last, before Najm-al-Din Karim did?
Before Last Before Ethiopia, with whom did Swaziland last formally sign an agreement?
After First Who visited China first, after the International Federation of Red Cross and Red Crescent

Societies?

By Time Granularity

Year Who announced the intention to negotiate with Swaziland in 2012?
Month Which country signed formal agreements with Glaxosmithkline in August 2009?
Day When did the Australian professor praise Iraq?

By Answer Type

Entity Which country was condemned by Thailand after Kuwait on 21 June 2011?
Time When did the presidential family of the United States make an appeal to China?

Table 2: Examples of Various Question Types.

3.4 Agent for reasoning
Having established our retrieval toolbox, we now
focus on the core reasoning mechanism of our
TKGQA system. Motivated by ReAct (Yao et al.,
2022), we conceptualize the LLM as an agent that
interacts with its environment to handle TKGQA
tasks. As shown in Figure 1, our carefully crafted
prompt P consists of four key components: a
comprehensive task description, tailored reason-
ing methods for diverse question types, definitions
of each tool available in the retrieval toolbox and
detailed step-by-step instructions.

In this setup, the agent’s planning trajec-
tory is framed as a sequence of thought–action–
observation triplets

(
T ,A,O

)
. We denote by T

the internal thoughts or deliberations of the LLM-
based agent, A the set of available actions (i.e.,
invoking a specific tool or Finish the process), and
O the observations or feedback derived from each
action. Let q be a given question, and let the final
set of answers be FA = {fa1, . . . , faL}. Each
step i proceeds as follows:

RTi = Tool(action_input,G) (4)

oi = RTi (5)

Here, Tool represents the invocation of a tool from
the toolbox. action_input denotes the input re-
quired for the tool call, which is generated by
thought ti and utilized by action ai. We have
specified the format of action_input in P to en-
sure stable tool invocation. G represents the exter-
nal knowledge graph database. The observation
oi ∈ O captures the feedback and information re-

ceived from the environment in response to these
actions. If the action is Finish fi ∈ F , it indicates
the agent finishes the task with a final answer fa.
This can be represented as:

fa = LLM(P, ti, {o1, ..., oi−1}), (6)

where fa is the final answer generated by the LLM,
P is the prompt that provides instructions, ti is the
current thought at step i, and o1, ..., oi−1 is the set
of all previous observations up to step i− 1.

At each iteration, the prompt P is expanded to
include the newly formed ⟨ti, ai, oi⟩. This itera-
tive scheme enables the agent to track and refer-
ence the complete history of reasoning steps, tool
calls, and observations, thus supporting an adaptive
decision-making process. Equipped with continu-
ous feedback and intermediate outputs, TempAgent
can refine its plan and actions accordingly, leading
to a more coherent, accurate, and efficient solution
trajectory.

3.5 Answer Evaluation
Due to the time-consuming nature of human evalua-
tion and the limitations of code-based assessments,
LLMs are increasingly adopted to evaluate model
outputs, often achieving results that align closely
with human judgments given appropriate instruc-
tions. In our experiments, we randomly sampled
100 questions and evaluated the answers generated
by the model using gpt-3.5-turbo. Manual veri-
fication of these LLM-based evaluations revealed a
high agreement rate of 93.33%.

Our evaluation prompt guides the LLM through
a systematic procedure: it first assesses whether the
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Hits@1
Question Type Answer TypeModel Overall Single Multiple Entity Time

MultiQA 0.289 0.361 0.112 0.329 0.203
ARI 0.380 0.680 0.210 0.394 0.344
Naive RAG(LLama3) 0.323 0.401 0.124 0.180 0.627
Naive RAG(GPT3.5) 0.320 0.404 0.112 0.201 0.576
Naive RAG(GPT4) 0.379 0.469 0.155 0.242 0.672
ReAct RAG Agent(LLama3) 0.332 0.406 0.149 0.248 0.514
ReAct RAG Agent(GPT3.5) 0.330 0.411 0.130 0.202 0.610
ReAct RAG Agent(GPT4) 0.398 0.506 0.130 0.243 0.735
TempAgent(LLama3) 0.543 0.697 0.162 0.483 0.672
TempAgent(GPT3.5) 0.539 0.684 0.168 0.478 0.661
TempAgent(GPT4) 0.702 0.857 0.316 0.624 0.870

Table 3: Overall results of baselines and our framwork on the MULTITQ.

Hits@1
Question Type Answer TypeModel Overall Simple Complex Entity Time

ARI 0.707 0.860 0.570 0.660 0.800
Naive RAG(LLama3) 0.533 0.621 0.200 0.537 0.526
Naive RAG(GPT3.5) 0.492 0.589 0.200 0.524 0.474
Naive RAG(GPT4) 0.633 0.726 0.280 0.610 0.684
ReAct RAG Agent(LLama3) 0.725 0.789 0.480 0.683 0.816
ReAct RAG Agent(GPT3.5) 0.692 0.758 0.440 0.671 0.737
ReAct RAG Agent(GPT4) 0.809 0.863 0.600 0.768 0.895
TempAgent(LLama3) 0.800 0.853 0.600 0.768 0.868
TempAgent(GPT3.5) 0.767 0.821 0.560 0.732 0.842
TempAgent(GPT4) 0.842 0.895 0.640 0.805 0.921

Table 4: Overall results of baselines and our framework on the CronQuestions dataset. This dataset consists of
single time-granularity data and is divided into “simple” and “complex” categories based on difficulty.

predicted answer matches the ground-truth answer
via a preliminary logical analysis and then provides
a concise decision (i.e., correct or incorrect). This
conservative grading practice tends to classify am-
biguous or partially correct answers as incorrect,
thus leading to a slightly lower score than a typical
human evaluation might yield. Nevertheless, the
resulting metric offers a more rigorous assessment
of model performance.

4 Experiment

4.1 Settings

Dataset: We conducted experiments on Mul-
tiTQ(Chen et al., 2023), a multi-granularity
TKGQA dataset. In addition to its diverse tem-
poral granularities, the dataset has a sufficiently
large scale, providing abundant relevant facts per
query. The original MultiTQ dataset contains over
50,000 question–answer pairs; for our experiments,
we randomly sampled 1% of these pairs, resulting
in 560 questions as our test set.

To further evaluate the generalization of our ap-
proach, we also tested on CronQuestions (Saxena
et al., 2021). In MultiTQ, temporal information is

represented as time points, and questions can in-
clude either a single temporal constraint or multiple
constraints. We label those with a single constraint
as Single questions, and those with multiple time
constraints as Multiple questions. Consequently,
this dataset thoroughly tests a model’s capacity to
handle varied temporal demands while coordinat-
ing across multiple granularities. Table 2 provides
illustrative examples of different question types
from both categories.

Baselines:We compare TempAgent against four
sets of baselines:

MultiQA (Chen et al., 2023): This is the primary
baseline of the MultiTQ dataset (Chen et al., 2023),
relying on an embedding-based strategy.

ARI (Chen et al., 2024c): The Abstract Rea-
soning Induction (ARI) framework designed to en-
hance LLMs’ temporal knowledge and reasoning
capacities.

Naive RAG (Chen et al., 2024a): One of the
earliest retrieval-augmented generation approaches
post-ChatGPT. It follows a “retrieve-then-read”
paradigm (Ma et al., 2023), incorporating indexing,
retrieval, and generation steps. It has served as a
foundation for later, more advanced retrieval-based
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Model Equal Before/After Equal Multi
Day Month Year Day Month Year Day Month Year

MultiQA 0.446 0.397 0.330 0.614 0.574 0.667 0.154 0.333 0.276
Naive RAG(LLama3-70b) 0.261 0.510 0.536 0.195 0.300 0.556 0.167 0.167 0.444
Naive RAG(GPT-3.5) 0.261 0.388 0.714 0.232 0.550 0.444 0.083 0.000 0.278
Naive RAG(GPT-4) 0.307 0.531 0.571 0.317 0.450 0.444 0.083 0.000 0.278
ReAct RAG Agent(LLama3-70b) 0.318 0.510 0.571 0.293 0.350 0.556 0.250 0.167 0.389
ReAct RAG Agent(GPT-3.5) 0.250 0.388 0.643 0.268 0.400 0.556 0.583 0.000 0.389
ReAct RAG Agent(GPT-4) 0.273 0.612 0.714 0.402 0.550 0.444 0.250 0.333 0.222
TempAgent(LLama3-70b) 0.875 0.918 0.875 0.488 0.800 0.667 0.167 0.000 0.444
TempAgent(GPT-3.5) 0.875 0.898 0.821 0.500 0.750 0.667 0.167 0.167 0.444
TempAgent(GPT-4) 0.989 0.939 0.893 0.720 0.900 0.889 0.750 0.833 0.611

Table 5: Experiment results of multi-granular time.

methods.
ReAct (Yao et al., 2022): A straightforward yet

powerful approach enabling collaborative reason-
ing and decision-making in LLMs by maintaining
interpretable step-by-step traces. It achieves strong
performance in multi-hop QA and interactive deci-
sion tasks.

Implementation Details. Following prior work
(Li et al., 2024a; Sun et al., 2024b; Jiang et al.,
2023; Liu et al., 2024), we employ Hits@1 to mea-
sure the proportion of queries whose top-ranked
candidate answer matches the ground truth. Be-
cause LLMs do not produce output probabilities,
we rely on an exact match approach, effectively
mirroring the Hits@1 metric used in earlier stud-
ies.

We evaluate our framework on two propri-
etary models and one open-source model: gpt-3.5-
turbo1, gpt-4-turbo-2024-04-092 and llama-3-70b-
instruct3.

4.2 Experimental results

Tables 3, 4, and 5 present the experimental results
on both the MultiTQ and CronQuestions datasets,
with the highest scores in bold. In Table 3, our
approach outperforms Naive RAG and ReAct RAG
Agent under all tested models, validating the ad-
vantages of TempAgent’s design. Notably, TempA-
gent surpasses the baseline methods by a substan-
tial margin of 41.3% when integrated with GPT-
4. Although LLaMA3-70b delivers performance
slightly above GPT-3.5, it remains below GPT-4.

This outcome underscores the versatility of Tem-
pAgent: by seamlessly guiding the model’s chain-

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://platform.openai.com/docs/models/gpt-4-turbo-

and-gpt-4
3https://ollama.com/library/llama3:70b-instruct

of-thought and incorporating specialized tools, it
exploits the inherent strengths of the underlying
LLM to achieve robust performance across differ-
ent scenarios. For single-answer questions, TempA-
gent registers nearly a 50% improvement over Mul-
tiQA, and on multiple-answer questions, it demon-
strates roughly triple the effectiveness of MultiQA.
As a time-aware agent, TempAgent excels in time-
specific queries, reaching an accuracy of 87%.

Additionally, we performed a comprehensive ex-
amination of various question types, as illustrated
in Figure 2. Among them, equal questions are
handled most effectively, achieving nearly 100%
accuracy. The First/Last, Before/After, and Equal
multi question types show broadly comparable per-
formance, although First/Last questions exhibit a
marginally better success rate. Conversely, ques-
tions with multiple constraints, specifically Before
last and After first, pose significant challenges, scor-
ing far below Equal multi queries. These results im-
ply that TempAgent can interpret both implicit and
explicit temporal information yet struggles with
the heightened multi-hop reasoning demanded by
Before last and After first.

To evaluate the agent’s capacity for multi-
granularity temporal reasoning, we conducted ex-
periments involving queries that span multiple time
granularities. Table 5 reports these results. Our
model demonstrates robust performance across dif-
ferent temporal granularities yet underperforms on
Equal multi questions at the yearly granularity. Two
key factors contribute to this shortfall: (1) the addi-
tional complexity arising from multiple temporal
constraints and (2) the daily resolution of time in
the knowledge base, which complicates the extrac-
tion of coarse-grained yearly information. Interest-
ingly, TempAgent attains notably high Hits@1 on
Equal multi questions at both day and month gran-
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Figure 2: Performance (Hits@1) of TempAgent and MultiQA on the MultiTQ dataset under different question types.

Hits@1
Question Type Answer TypeModel Overall Single Multiple Entity Time

w/o toolbox 0.398 0.516 0.106 0.243 0.734
w/o multiprompt 0.355 0.396 0.087 0.337 0.395
TempAgent 0.539 0.684 0.168 0.478 0.661
k=3 0.479 0.627 0.112 0.381 0.689
k=5 0.509 0.667 0.118 0.415 0.712
k=10 0.539 0.684 0.168 0.478 0.661
k=15 0.529 0.681 0.149 0.449 0.644

Table 6: Overall results of our ablation experiments with different values of k. All experiments are conducted using
gpt-3.5-turbo.

ularities, showing a substantial improvement over
the baseline. This underscores the model’s strong
temporal reasoning in these particular contexts.

4.3 Ablation Study

To further clarify the contributions of each TempA-
gent component, we carried out an ablation study
(see Table 6). Specifically, we tested different val-
ues of k (3, 5, 10, 15) to identify the optimal num-
ber of retrieved tuples. Our findings suggest that
performance improves as k increases from 3 to 10,
before dipping at k = 15, likely due to excessive
noise and resultant hallucinations. Consequently,
k = 10 is selected for all other experiments.

We also evaluated the necessity of two key com-
ponents: Toolbox. Removing the time-filtering
toolbox (w/o toolbox) led to a marked drop in per-
formance, indicating that time-constrained retrieval
mitigates irrelevant noise and reduces hallucina-
tions. Multi-Prompting. Eliminating the special-
ized prompts for distinct question types (w/o mul-
tiprompt) also degraded results, confirming that
targeted question-specific prompts reinforce tem-
poral reasoning.

5 Conclusion

We introduced TempAgent, an LLM-based frame-
work dedicated to multi-granularity TKGQA. By
integrating time-aware retrieval with robust reason-
ing strategies, TempAgent addresses a key short-
coming in existing ReAct-style approaches: the
inability to effectively filter knowledge bases by
multi-granularity temporal constraints. Such an
omission often leads to excessive or irrelevant infor-
mation, amplifying the risk of LLM hallucinations.
Our method bridges this gap through a novel re-
trieval mechanism that diligently enforces temporal
filtering, thereby substantially reducing hallucina-
tion rates and bolstering efficiency.

6 Limitation

Although large language models exhibit remark-
able capabilities, they are not impervious to inac-
curacies or biases. Manual verification remains
important for improving overall evaluation fidelity.
Our experiments show that retrieving the top 10
chunks offers the best balance between coverage
and noise. Nonetheless, potential information gaps
remain, and we are exploring more sophisticated
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retrieval methods to optimize the volume and qual-
ity of retrieved data without exacerbating halluci-
nations. While iterative retrieval partly mitigates
information gaps, it is not a comprehensive solu-
tion. Additionally, the agent’s performance is pre-
dominantly influenced by the underlying LLM’s
capacity; smaller models may struggle to attain
comparable outcomes.
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A Appendix

A.1 Prompt for answer evaluation
Table 7 presents our carefully designed prompt for
answer evaluation. The LLM first offers a prelim-
inary judgment on whether the generated answer
matches the reference, followed by a structured
chain-of-thought that validates the initial assess-
ment. Concluding the process, the LLM issues a
definitive verdict (correct or incorrect). Notably,
this stringent evaluation paradigm can result in con-
servative grading—ambiguous or partially correct
answers often receive an incorrect label. As a con-
sequence, the final accuracy evaluated by the LLM
tends to be slightly lower than that from human an-
notators, though it also tends to be more rigorous.

A.2 Case study
To illustrate how TempAgent’s runtime differs from
prior approaches, we performed a case study com-
paring Naive RAG (Chen et al., 2024a), ReAct
(Yao et al., 2022), and our method. Figure 3(a)
shows that Naive RAG relies solely on keyword
searches; it fails to locate the necessary knowledge
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Figure 3: Comparison of four methods on TKGQA: (a) Naive RAG (Chen et al., 2024a; Ma et al., 2023), (b) ReAct
(Yao et al., 2022), and (c) TempAgent. Incorrect finishes are shown in red; correct ones are in green. Orange
highlights indicate retrieved content that does not conform to the question’s time constraints, leading to potential
hallucinations.
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Prompt of Answer Evaluation

You are assessing a submitted answer to a question relative to the true answer based on the provided
criteria:
QUESTION: {question}
ANSWER: {answer}
TRUE ANSWER: {correct_answer}
Criteria:
Relevance: Is the submission referring to a real quote from the text?
Conciseness: Is the answer concise and to the point?
Correct: Is the answer correct?

Does the submission meet the criterion? First, write out in a step-by-step manner your reasoning
about the criterion to be sure that your conclusion is correct. Avoid simply stating the correct
answers at the outset. Then print the CORRECT or INCORRECT (without quotes or punctuation)
on its own line corresponding to the correct answer.
Reasoning:

Table 7: This prompt describes the entire process of model evaluation, where {question}
represents the question, {correct_answer} represents the correct answer, and {answer}
represents the answer generated by the model.

and produces an incorrect final answer. ReAct
(Figure 3(b)) attempts a second retrieval step by
updating the query with partial knowledge gleaned
from the first search, but also fails to identify the
crucial information. By contrast, TempAgent (Fig-
ure 3(c)) deconstructs the query into two subtasks:
(1) identify the date Richard Boucher visited Iraq,
and (2) isolate the first country he visited thereafter,
applying temporal filtering appropriately. This case
underscores TempAgent’s ability to resolve queries
that stymie both Naive RAG and ReAct, revealing
how multi-step temporal reasoning and time-aware
retrieval yield a more effective TKGQA workflow.
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