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Abstract

Detecting anomalies or out-of-distribution
(OOD) samples is critical for maintaining the
reliability and trustworthiness of machine learn-
ing systems. Recently, Large Language Mod-
els (LLMs) have demonstrated their effective-
ness not only in natural language processing
but also in broader applications due to their
advanced comprehension and generative capa-
bilities. The integration of LLMs into anomaly
and OOD detection marks a significant shift
from the traditional paradigm in the field. This
survey focuses on the problem of anomaly and
OOD detection under the context of LLMs. We
propose a new taxonomy to categorize exist-
ing approaches into two classes based on the
role played by LLMs. Following our proposed
taxonomy, we further discuss the related work
under each of the categories and finally discuss
potential challenges and directions for future
research in this field. We also provide an up-to-
date reading list ! of relevant papers.

1 Introduction

Most machine learning models operate under the
closed-set assumption (Krizhevsky et al., 2012),
where the test data is assumed to be drawn i.i.d.
from the same distribution as the training data.
However, in real-world applications, this assump-
tion often cannot hold, as test examples can come
from distributions not represented in the training
data. These instances, known as anomalies or out-
of-distribution (OOD) samples, can severely de-
grade the performance and reliability of existing
models (Yang et al., 2024a). To build robust Al sys-
tems, methods including probabilistic approaches
(Lee et al., 2018; Leys et al., 2018) and recent deep
learning techniques (Pang et al., 2021; Yang et al.,
2024a) have been explored to detect these unknown
instances across various domains, such as fraud de-
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Figure 1: A simple illustration of leveraging LLMs for
vision anomaly and OOD detection.

tection in finance and fault detection in industrial
systems (Hilal et al., 2022; Liu et al., 2024b).
Large Language Models, such as GPT-4
(Achiam et al., 2023) and LLaMA (Touvron et al.,
2023), have demonstrated remarkable capabilities
in language comprehension and generation. To
further harness the potential of LLMs beyond text
data, there is also a growing interest in extending
them to multi-modal tasks such as vision-language
understanding and generation (Wang et al., 2024),
evolving them into Multimodal LLMs (MLLMs)
(Yin et al., 2023). Given the zero- and few-shot
reasoning capabilities of LLMs and MLLMs, re-
searchers try to apply these models to anomaly and
out-of-distribution (OOD) detection, as illustrated
in Figure 1, yielding promising detection results.
Remarkably, the emergence of LLMs has fun-
damentally changed the learning paradigm in this
field. In the meantime, while leveraging LLMs
to solve the problem of anomaly and OOD detec-
tion has drawn much attention, this field remains
underexplored, highlighting the need for a compre-
hensive survey to analyze the emerging challenges
and systematically review the rapidly expanding
works. Recently, Salehi et al. (2021) and Yang et al.
(2024a) present unified frameworks for OOD detec-
tion but do not delve into the utilization of LLMs.
While Su et al. (2024) review some small-sized
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language models for forecasting and anomaly de-
tection, they neither cover the usage of LLMs with
emergent abilities nor discuss OOD detection. A
recent survey by Miyai et al. (2024a) summarizes
works on anomaly and OOD detection in vision us-
ing vision-language models but neglects other data
modalities. Therefore, we aim to conduct a sys-
tematic survey that covers both anomaly and OOD
detection across various data domains, concentrat-
ing on how LLMs are used in existing works.

In this survey, we propose a novel taxonomy
that focuses on how LLMs can profoundly impact
anomaly and OOD detection in two fundamental
ways, as illustrated in Figure 2: @ LLMs for Detec-
tion (§3): We provide a detailed review of existing
methods that leverage LLMs as detectors for identi-
fying anomalies and OOD instances; and @LLMs
for Generation (§4): We also review methods
that utilize LLMs’ emergent abilities, advanced
semantic understanding, and vast knowledge to
generate augmented data and explanations. At the
end (§5 and §6), we also summarize widely used
datasets and outline future research directions, in
order to provide a better understanding of anomaly
and OOD detection in the era of LLMs and shed
light on the following research.

2 Preliminaries

Large Language Models. Large language mod-
els (LLMs) generally refer to Transformer-based
pre-trained language models with hundreds of bil-
lions of parameters or more. Early LLMs like
BERT (Devlin et al., 2018) and RoBERTa (Liu
et al., 2019) utilize an encoder-only architecture,
excelling in text representation learning (Bengio
et al., 2013). Recently, the focus has shifted toward
models aimed at natural language generation, of-
ten using the “next token prediction” objective as
their core task. Examples include TS (Raffel et al.,
2020) and BART (Lewis et al., 2019), which em-
ploy an encoder-decoder structure, as well as GPT-
3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2023), and LLaMA (Touvron et al., 2023), which
are based on decoder-only architectures. Advance-
ments in these architectures and training methods
have led to superior reasoning and emergent abili-
ties, such as in-context learning(Brown et al., 2020)
and chain-of-thought reasoning (Wei et al., 2022).
Multimodal Large Language Models. The re-
markable abilities of Large Language Models
(LLMs) have inspired efforts to integrate language

with other modalities, with a particular focus on
combining language and vision. Notable examples
of Multimodal Large Language Models (MLLMs)
include CLIP (Radford et al., 2021), BLIP2 (Li
et al., 2023a), and Flamingo (Alayrac et al., 2022),
which were pre-trained on large-scale cross-modal
datasets comprising images and text. Models like
GPT-4(V) (OpenAl, 2023) and Gemini (Team et al.,
2023) showcase the emergent abilities of Multi-
modal LLMs, significantly improving the perfor-
mance of vision-related tasks.

2.1 Problem Definition

With LLMs advancing in zero-shot and few-shot
learning, the general pipeline of anomaly and out-
of-distribution (OOD) detection methods shifts to
adapt pre-trained LLMs for detection without ex-
tensive training. This shift challenges traditional
definitions of anomaly and OOD detection, as the
conventional train-test paradigm may not always
apply. Following previous studies (Miyai et al.,
2024a; Yang et al., 2024a), we propose to redefine
anomaly and OOD detection under the context of
LLMs and highlight the differences between the
two problems as follows:

Definition 1 LLM-based Anomaly Detection:
Given a test dataset Dyes; = {1, -+ ,xn}, where
each sample x; is drawn from distribution P'™ or
P°“. The objective of LLM-based Anomaly Detec-
tion is to use a pre-trained LLM as the backbone
and develop a detection model frrn(-) to predict
whether each sample x' € Dj.q belongs to P,
where P°" has covariate shift with P

Definition 2 LLM-based OOD Detection: Given
a test dataset Dyoy = {1, - , T}, where each
sample x; is drawn from distribution P or P,
and a known ID class set C = {c1,--- ,ci}. The
objective of LLM-based OOD Detection is to use a
pre-trained LLM as backbone and develop detec-
tion model frim(-) to predict whether each sample
2! € Dyosr belongs to P, where P°“" has semantic
shift with P, If not, x' will be classified into one
of the classes in C.

Discussions. The distinction between anomaly de-
tection and OOD detection in the context of LLMs
highlights the unique challenges posed by covari-
ate and semantic shifts. Anomaly detection aims to
identify subtle deviations within the data that may
not involve a complete change in the underlying
class or concept, such as detecting defects or irreg-
ularities in industrial processes. In contrast, OOD
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Figure 2: Taxonomy of methods utilizing LLMs for anomaly and OOD detection tasks.

detection focuses on identifying instances that do
not belong to any of the known ID classes at the
object level, such as recognizing a dog when the
only provided ID class is cat. This differentiation
underscores the need for tailored approaches for
each detection task.

3 LLMs for Detection

The primary objective of this section is to explore
existing works that utilize LLMs’ inherent knowl-
edge to detect anomalies or OOD samples. Un-
der this line of research, approaches can be cat-
egorized into two classes as illustrated in Figure
3: @ Prompting-based Detection methods, which
involve directly prompting LLMs to generate lan-
guage responses that include detection results; @
Contrasting-based Detection methods, which fo-
cus on multimodal scenarios, using MLLMs pre-
trained with a contrastive objective as detectors.

3.1 Prompting-based Detection

The general pipeline for prompting-based detection
methods consists of two primary stages: (i) con-
structing a structured prompt template with instruc-
tion prompt P and input data X'; and (ii) feeding the
template-based prompt X into LLMs to generate a
language response. The function Parse(-) is then
applied to extract the detection results. Depending
on the scenario, the LLM can either be frozen or
fine-tuned, denoted as f]?LM or ff'LM, respectively.

This process can be summarized as follows:

~

X = Template(X,P),

)

Prompt Construction:

Detection: Y = Parse (
Note that the prompting-based approach primarily
addresses the anomaly detection task. OOD detec-
tion research has not yet widely adopted prompting
to directly identify OOD samples.

3.1.1 Detection without LLM Tuning

Since some approaches do not require additional
tuning, they mainly focus on employing various
prompt engineering techniques (Sahoo et al., 2024)
to guide LLMs to produce better detection results.
To design suitable prompts for anomaly detection,
researchers have employed a combination of vari-
ous prompt techniques, such as role-play prompt-
ing (Wu et al., 2023), in-context learning (Brown
et al., 2020), and chain-of-thought (CoT) reasoning
(Wei et al., 2022), to create effective prompt tem-
plates. Studies such as SIGLLM (Alnegheimish
et al., 2024), LLMAD (Liu et al., 2024c), and
LogPrompt (Liu et al., 2024d) focus on time se-
ries and log data. SIGLLM (Alnegheimish et al.,
2024) investigates two distinct pipelines for using
LLMs in time series anomaly detection: one di-
rectly prompts an LLM with specific role-play in-
structions to identify anomalous elements in given
data, and the other uses the LLM’s forecasting abil-
ity to detect anomalies by comparing original and
forecasted signals, where discrepancies indicate
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anomalies. LLMAD (Liu et al., 2024c) incorpo-
rates in-context learning examples retrieved from
a constructed database and CoT prompts that in-
ject domain knowledge of time series. LogPrompt
(Liu et al., 2024d) explores three prompting strate-
gies for log data: self-prompt, CoT prompt, and
in-context prompt, demonstrating that the prompt
with CoT techniques outperforms other prompting
strategies. The tailored CoT prompt for log data
includes a specific task instruction, i.e. “classify
the given log entries into normal and abnormal
categories”, and step-by-step rules for considering
given data as anomalies.

Unlike time series and log data which can be
directly converted into raw text data, other data
modalities, such as videos and images, require ad-
ditional processing to be transformed into a format
that LLMs can understand. For instance, LAVAD
(Zanella et al., 2024) first exploits a captioning
model to generate a textual description for each
video frame and further uses an LLM to summa-
rize captions within a temporal window. This sum-
mary is then used to prompt the LLM to provide
an anomaly score for each frame. LLM-Monitor
(Elhafsi et al., 2023) uses an object detector to iden-
tify objects in video clips and then designs specific
prompt templates incorporating CoT and in-context
examples to query LLMs for anomaly detection.

With the integration of multimodal understand-
ing into LLMs, these models are now capable of
comprehending various modalities beyond text, en-
abling more direct applications for anomaly detec-
tion across a wide range of data types. Cao et al.
(2023) conduct comprehensive experiments and
analyses using GPT-4V (ision) for anomaly detec-
tion across various modality datasets and tasks. To
enhance GPT-4V’s performance, they also incor-
porate different types of additional cues such as
class information, human expertise, and reference
images as prompts. Similarly, GPT-4V-AD (Zhang
et al., 2023) employs GPT-4V as the backbone, de-
signing a general prompt description for all image
categories and injecting specific image category
information, resulting in a specific output format
for each region with respective anomaly scores.

3.1.2 Detection with LLM Tuning

Directly prompting frozen LLMs for anomaly or
OQOD detection results across various data types
often yields suboptimal performance due to the in-
herent modality gap between text and other data
modalities. As a result, additional training and fine-
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Figure 3: The illustration of two approaches in (§3): (a)
Prompting-based Detection and (b) Contrasting-based
Detection.

tuning on LLMs for downstream detection tasks
has become a prevalent research trend. Unfortu-
nately, fine-tuning entire LLMs is often computa-
tionally expensive and poses significant challenges.
Therefore, parameter-efficient fine-tuning (PEFT)
has been extensively employed instead. For exam-
ple, Tabular (Li et al., 2024a) designs a prompt
template to query the LLM to output anomalies
based on given converted tabular data. To better
adapt the LLM for anomaly detection at the batch
level, they apply Low-Rank Adaptation (LoRA),
using a synthetic dataset with ground truth labels
in a supervised manner.

To enhance LLMs for localization understand-
ing and adapting to industrial tasks, AnomalyGPT
(Zhang et al., 2023) first derives localization fea-
tures from a frozen image encoder and image de-
coder and these features are then fed to a tun-
able prompt learner. Without fine-tuning the en-
tire LLM, they fine-tune the prompt learner with
LoRA to significantly reduce computational costs.
Myriad (Li et al., 2023b) employs Mini-GPT-4 as
the backbone and integrates a trainable encoder,
referred to as Vision Expert Tokenizer, to embed
the vision expert’s segmentation output into tokens
that the LLM can understand. With expert-driven
visual-language extraction, Myriad can generate
accurate anomaly detection descriptions.

3.2 Contrasting-based Detection

In this section, we focus on MLLMSs, such as
CLIP, which are pre-trained with an image-text con-
trastive objective and learn by pulling the paired
images and texts close and pushing others far away
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in the embedding space. The zero-shot classifica-
tion ability of these models further builds the foun-
dation for contrasting-based anomaly and OOD
detection methods: (i) given an image x; and a text
prompt f with a target class set C, CLIP extracts
image features h € RP using an image encoder
fimg» and text features e; € RD using a text en-
coder fiext with a prompt template for each class
¢; € C, and (ii) the similarity between h and each
ej is usually used as an important component in
the score function f.ore for deciding whether x; is
an anomaly or OOD sample. This process can be
summarized as follows:

Feature Extraction: h = fime (),
and ej = fiex(prompt(c;)),
Detection: Y = fycore (cos(h, ej))
We further categorize contrasting-based detection

methods into two classes depending on whether
there exists additional training and fine-tuning.

3.2.1 Detection without LLM Tuning
Anomaly and OOD detection problems can indeed

be understood as classification problems. There-

fore, pretrained MLLMs like CLIP, with strong
zero-shot classification ability, can serve as de-
tectors themselves. By using only ID or normal
prompts, CLIP can be leveraged for both OOD
and anomaly detection tasks. Despite the promise,
existing CLIP-like models perform zero-shot clas-
sification in a closed-world setting. That is, it will
match an input into a fixed set of categories, even if
it is irrelevant (Ming et al., 2022). To address this,
one approach involves designing effective post-hoc
score functions that rely solely on ID or normal
class labels. Alternatively, some researchers incor-
porate anomaly or OOD class information into the
text prompts, allowing the model to match OOD or
abnormal images to paired prompts.

* Without Anomaly/OOD Prompts. For anomaly
detection, WinCLIP (Jeong et al., 2023) initially
investigates a one-class design by using only the
normal prompt “normal [0]” where [0] repre-
sents object-level label, i.e “bottle”, and defining
an anomaly score as the similarity between vec-
tors derived from the image encoder and normal
prompts. However, this one-class design yields
poorer results compared to a simple binary zero-
shot framework, CLIP-AC (Jeong et al., 2023),
which adapts CLIP with two class prompts: “nor-
mal [0]” vs. “anomalous [0]”. These results high-
light that the one-class design is less effective
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for anomaly detection, and as a result, anomaly
detection research generally does not follow this
line with only normal prompts.

For OOD detection, to address the challenges of
using only in-distribution (ID) class information
while avoiding the matching of OOD inputs to
irrelevant ID classes, one notable approach is the
Maximum Concept Matching (MCM) framework
proposed by (Ming et al., 2022). This method is
not limited to CLIP and can be generally appli-
cable to other pre-trained models that promote
multi-modal feature alignment. They view the
textual embeddings of ID classes as a collection
of concept prototypes and define the maximum
concept matching (MCM) score based on the co-
sine similarity between the image feature and the
textual feature. Following the idea of MCM, sev-
eral subsequent works focus on improving OOD
detection results by either adding a local MCM
score or modifying weights in the original MCM
framework, such as (Miyai et al., 2023) and (Li
et al., 2024d).

With Anomaly/OOD Prompts. Fort et al. (2021)
first investigate using CLIP for OOD detection
and demonstrate encouraging performance. How-
ever, in their setup, they include the candidate
labels related to the actual OOD classes and
utilize this knowledge as a very weak form of
outlier exposure, which contradicts the open-
world assumption. Therefore, after this work,
researchers aim to leverage pseudo-OOD labels
in the text prompt instead of using actual OOD
labels. The earliest work under this idea is ZOC
(Esmaeilpour et al., 2022) which trains a text
description generator on top of CLIP’s image en-
coder to dynamically generate candidate unseen
labels for each test image. The similarity of the
test image with seen and generated unseen labels
is used as the OOD score. Instead of training an
additional text decoder, NeglLabel (Jiang et al.,
2024) and CLIPScope (Fu et al., 2024) rely on
auxiliary datasets to gather potential OOD la-
bels. CLIPScope gathers nouns from open-world
sources as potential OOD labels and uses them in
designed prompts to ensure maximal coverage of
potential OOD samples. NeglLabel employs the
NegMining algorithm to select high-quality neg-
ative labels with sufficient semantic differences
from ID labels. Recent work utilizes the emer-
gent abilities of LLMs to generate reliable OOD
labels, such as (Cao et al., 2024), (Huang et al.,



2024b), (Park et al., 2023), and (Xu et al., 2023).

For contrasting-based anomaly detection, fol-
lowing the simple binary zero-shot framework,
CLIP-AC (Jeong et al., 2023), which adapts CLIP
with two class prompts: “normal [0]” vs. “anoma-
lous [0]”, many subsequent research emerge.
While using the default prompt has demonstrated
promising performance, similar to the prompt
engineering discussion around GPT-3 (Brown
et al., 2020), researchers have observed that per-
formance can be significantly improved by cus-
tomizing the prompt text. Models like WinCLIP
(Jeong et al., 2023) and AnoCLIP (Deng et al.,
2023) use a Prompt Ensemble technique to gen-
erate all combinations of pre-defined lists of state
words per label and text templates. After gen-
erating all combinations of states and templates,
they compute the average of text embeddings
per label to represent the normal and anomalous
classes. In practice, more descriptions in prompts
do not always yield better performance. There-
fore, CLIP-AD (Chen et al., 2023b) proposes
Representative Vector Selection (RVS), from a
distributional perspective for the design of the
text prompt, broadening research opportunities
beyond merely crafting adjectives.

3.2.2 Detection with LLM Tuning

Following the similar detection pipeline of meth-
ods without LLM tuning, researchers propose to
employ prompt tuning or adapter tuning techniques
to eliminate the need for manually crafting prompts
and enhance the understanding of local features of
images. Additionally, by incorporating a few ID or
normal images during training or inference phases,
some methods transition into few-shot scenarios.

* LLM Adapter-Tuning. Adapter-tuning methods
involve integrating additional components or lay-
ers into the model architecture to facilitate better
alignment or localization (Hu et al., 2023). This
approach is significantly useful for anomaly de-
tection task, because CLIP was originally de-
signed for classifying the semantics of objects
in the scene, which does not align well with the
sensory anomaly detection task where both nor-
mal and abnormal samples are often from the
same class of object. To reconcile this, INCTRL
(Zhu and Pang, 2024) includes a tunable adapter
layer to further adapt the image representations
for anomaly detection. To better adapt to medical
image anomaly detection, MVFA (Huang et al.,
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2024a) proposes a multi-level visual feature adap-
tation architecture to align CLIP’s features with
the requirements of anomaly detection in med-
ical contexts. This is achieved by integrating
multiple residual adapters into the pre-trained vi-
sual encoder, guided by multi-level, pixel-wise
visual-language feature alignment loss functions.

LLM Prompt-Tuning. Manually crafting suitable
prompts always requires extensive human effort.
Therefore, researchers employ the idea of prompt
tuning, such as CoOp (Zhou et al., 2022), to learn
a soft or differentiable context vector to replace
the fixed text prompt. For OOD detection, most
approaches rely on using auxiliary prompts to
represent potential OOD textual information, and
one crucial problem is to identify hard OOD data
that is similar to ID samples. To solve this, Bai
et al. (2024) first constructs outliers highly corre-
lated with ID data and introduces a novel prompt
learning framework for learning specific prompts
for the most challenging OOD samples, which
behave like ID classes. Additionally, LSN (Nie
et al., 2024), NegPrompt (Li et al., 2024b), and
CLIPN (Wang et al., 2023) all work on learn-
ing extra negative prompts to fully leverage the
capabilities of CLIP for OOD detection. Un-
like the other two approaches, CLIPN requires
training an additional “no” text encoder using
a large external dataset to get negative prompts
for all classes. This auxiliary training is compu-
tationally expensive, limiting its application to
generalized tasks. Also, LSN demonstrates that
naive “no” logic prompts cannot fully leverage
negative features. Therefore, both LSN and Neg-
Prompt focus on training on more detailed neg-
ative prompts, while LSN also aims to develop
class-specific positive and negative prompts, en-
abling more accurate detection.

Instead of focusing on leveraging OOD informa-
tion into the text encoder, some methods aim to
perform prompt tuning to optimize word embed-
dings for ID labels and then use the MCM score
as the detection criterion. MCM-PEFT (Ming
and Li, 2024) demonstrates that simply apply-
ing prompt tuning for CLIP on few-shot ID
datasets can significantly improve detection ac-
curacy. However, a primary limitation of this
approach is its exclusive reliance on the features
of ID classes, leading to incorrect detection when
input images share a high visual similarity with
the class in the prompt. To address this, LoCoOp



(Miyai et al., 2024c) treats such ID-irrelevant
nuisances as OOD and learns to push them away
from the ID class text embeddings, preventing the
model from producing high ID confidence scores
for the OOD features. Additionally, Lafon et al.
(2024) enhances detection capabilities by learn-
ing a diverse set of prompts utilizing both global
and local visual representations. For anomaly
detection which emphasizes more on learning
local features, AnomalyCLIP (Zhou et al., 2024)
aims to learn object-agnostic text prompts that
capture generic normality and abnormality in im-
ages, allowing the model to focus on abnormal
regions rather than object semantics.

4 LLMs for Generation

In this section, we review methods that leverage
LLMs as generative tools for enhancing anomaly
and OOD detection. LLMs use their extensive
pre-trained knowledge to generate augmented data,
such as embeddings, pseudo labels, and textual de-
scriptions, improving detection performance (Li
et al., 2024c; Ding et al., 2024). Furthermore, due
to their ability to understand and generate human-
like text, LLMs have been explored for provid-
ing insightful explanations and analyses of detec-
tion results, aiding in interpretation, planning, and
decision-making. These methods are classified into
two main approaches: @ Augmentation-centric
Generation and @ Explanation-centric Generation.

4.1 Augmentation-centric Generation

LLMs serve as effective tools for data augmenta-
tion in anomaly and OOD detection tasks by gen-
erating textual embeddings, pseudo labels, and de-
scriptive text. The extensive pre-training of LLMs
on large datasets and the autoregressive training ob-
jective endow them with superior generative capa-
bilities. These capabilities allow LLMs to produce
high-quality embeddings, create synthetic labels,
and provide additional descriptive information, ul-
timately boosting the performance and robustness
of detection models.

4.1.1 Text Embedding-based Augmentation

LLMs are highly effective feature extractors, pro-
ducing meaningful embeddings that can be used
in detection tasks. This augmentation enables de-
tection models to capture more subtle patterns and
distinctions, leading to more accurate and robust
detection performance. For instance, Hadadi et al.
(2024) and Qi et al. (2023) fine-tune pre-trained

GPT models on log data and use the extracted se-
mantic embeddings as key components for future
anomaly detection.

For OOD detection in text data, a common ap-
proach involves using encoder-only LLMs to gen-
erate sentence representations that are used to com-
pute OOD confidence scores (Liu et al., 2024a).
These models are typically fine-tuned on ID data,
and OOD detectors are applied to the generated
representations. Recently, there has been a shift
toward leveraging larger language models with de-
coder architectures, which provide enhanced capa-
bilities in refining textual representations. Liu et al.
(2024a) explore the use of decoder-only LLMs,
such as LLaMa, incorporating fine-tuning tech-
niques like LoRA to reduce the additional param-
eters. Their findings demonstrate that fine-tuned
LLMs, combined with customized OOD scoring
functions, significantly improve OOD detection
performance. A key advantage of decoder-based
LLMs is their autoregressive ability, which al-
lows for more effective handling of sequential data.
Building on this, Zhang et al. (2024a) propose us-
ing the likelihood ratio between a pre-trained and
fine-tuned LLM as a criterion for OOD detection,
leveraging the deep contextual understanding em-
bedded within LLMs for text data.

4.1.2 Pseudo Label-based Augmentation

The emergent capabilities of LLMs provide a
promising approach for generating high-quality
synthetic datasets, including pseudo labels for
OOD samples. A significant challenge in OOD
detection is the lack of labeled OOD data, which
can limit model performance. Traditionally, obtain-
ing OOD labels requires extensive human effort,
but LLMs can mitigate this by generating pseudo-
OOD labels through carefully designed prompts.
For example, EOE (Cao et al., 2024) and PCC
(Huang et al., 2024b) prompt LL.Ms to generate
visually similar OOD class labels, which are then
used to define a new scoring function. This ap-
proach significantly outperforms methods relying
solely on known ID labels. TOE (Park et al.,
2023) further evaluates the generation of pseudo-
OOD labels at three verbosity levels—word-level,
description-level, and caption-level—using BERT,
GPT-3, and BLIP-2, respectively. Results indicate
that caption-level pseudo-OOD labels generated
by BLIP-2, which incorporates both semantic and
visual understanding, perform the best. In text
data, CoNAL (Xu et al., 2023) prompts LLMs to
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Figure 4: The illustration of four approaches in (§4):
(a) Text Embedding-based Augmentation; (b) Pseudo
Label-based Augmentation; (c) Textual Description-
based Augmentation; and (d) Explanation-centric Gen-
eration.

extend closed-set labels with novel examples and
generates a comprehensive set of probable OOD
samples. By applying contrastive confidence loss
during training, the model achieves high accuracy
on the ID training set while maintaining lower con-
fidence on the generated OOD examples.

4.1.3 Textual Description-based Augmentation

In addition to generating pseudo labels, LLMs are
also used to generate textual descriptions of both
known ID classes and potential OOD samples. For
example, TagFog (Chen et al., 2024) employs a
Jigsaw strategy to generate fake OOD samples and
prompts ChatGPT to create detailed descriptions
for each ID class, guiding the training of the image
encoder in CLIP for OOD detection. In anomaly de-
tection tasks, it is essential for LLMs to recognize
the close correlation between normal images and
their respective prompts, while identifying a more
distant association with abnormal prompts. This
requires detailed and nuanced descriptions of nor-
mal and anomalous stages of objects. ALFA (Zhu
et al., 2024) formulates prompts for LLMs to de-
scribe both normal and abnormal features for each
class, and these descriptions are then used to im-
prove the detection of abnormal objects. To avoid
LLM hallucination, Dai et al. (2023) introduce a
consistency-based uncertainty calibration method,
where LLMs describe visual features for distin-
guishing categories in images, and the confidence
score of each generation is estimated accordingly.

4.2 Explanation-centric Generation

Beyond augmentation, LLMs’ powerful reason-
ing and natural language generation abilities al-
low them to provide insightful explanations for
anomaly and OOD detection outcomes. These
explanations are especially important in safety-
critical domains, such as autonomous driving,
where transparency and interpretability are crucial.

For example, Holmes-VAD (Zhang et al., 2024b)
trains a lightweight temporal sampler to select
frames with high anomaly scores and uses an
LLM to generate detailed explanations, providing
clear insights into the detected anomalies. VAD-
LLaMA (Lv and Sun, 2024) generates instruction-
tuning data to train the projection layer of Video-
LLaMA, enabling more comprehensive explana-
tions of anomalies. AnomalyRuler (Yang et al.,
2024c) employs a rule-based reasoning strategy
with few-normal-shot prompting, providing inter-
pretable, rule-driven explanations that can quickly
adapt to various video anomaly detection scenarios.

Additionally, LLMs are being used in au-
tonomous agents to guide decision-making after
anomaly or OOD detection. For instance, AESOP
(Sinha et al., 2024) leverages the autoregressive
capabilities of an LLLM to provide zero-shot as-
sessments on whether interventions are required
in robotic systems after an anomaly is detected.
By utilizing LLMs’ generative reasoning, these
systems can plan and respond to anomalies in an
efficient and informed manner.

5 [Evaluation Datasets

In this section, we introduce commonly used
datasets across multiple modalities in Table 1, in-
cluding images, videos, text, and time series, that
serve as benchmarks for anomaly and OOD de-
tection We also introduce widely used evaluation
metrics in Appendix E.

Images. Industrial anomaly detection is com-
monly evaluated using MVTec-AD (Bergmann
et al., 2019) and VisA (Zou et al., 2022), which
provide benchmarks for defect detection and local-
ization. In the medical domain, datasets such as
Chest X-ray (Kermany et al.) and Head CT (Fe-
lipe, 2018) are used for detecting abnormalities in
clinical imaging. Logical anomaly detection is as-
sessed with MVTec LOCO (Bergmann et al., 2022).
For OOD detection, which focuses on semantic
shifts, large-scale datasets such as ImageNet (Deng
et al., 2009), iNaturalist (Van Horn et al., 2018),
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Task Type Datasets
Anomaly MVTec-AD (Bergmann et al., 2019)
Anomaly VisA (Zou et al., 2022)
Anomaly Chest X-ray (Kermany et al.)
Anomaly Head CT (Felipe, 2018)

4  Anomaly LOCO (Bergmann et al., 2022)

¥ 00D ImageNet (Deng et al., 2009)

é OO0D iNaturalist (Van Horn et al., 2018)
OO0D Places (Zhou et al., 2017)
OOD SUN (Xiao et al., 2010)
OO0D Texture (Cimpoi et al., 2014)

% Anomaly UCF-Crime (Sultani et al., 2018)

‘—°§ Anomaly XD-Violence (Wu et al.)

> Anomaly VAD-Intruct50k (Zhang et al., 2024b)
Anomaly NLP-AD (Li et al., 2024e¢)
Anomaly AD-NLP (Bejan et al., 2023)

£ 00D 20NG (Lang, 1995)

g 00D SST-2 (Socher et al., 2013)
OOD CLINC150 (Repository, 2020)

& Anomaly ODDS (Rayana, 2016)

g Anomaly Yahoo (Paparrizos et al., 2022)

»  Anomaly ECG (Paparrizos et al., 2022)

E Anomaly SVDB (Paparrizos et al., 2022)

£ Anomaly IOPS (Paparrizos et al., 2022)

Table 1: A summary of datasets for Anomaly and Out-
of-Distribution (OOD) Detection by Modality.

Places (Zhou et al., 2017), and SUN (Xiao et al.,
2010) are widely used.

Videos. UCF-Crime (Sultani et al., 2018) and XD-
Violence (Wu et al.) are widely used for detecting
anomalous activities in surveillance footage. The
VAD-Instruct50k dataset (Zhang et al., 2024b) in-
troduces a large-scale multimodal benchmark for
video anomaly detection.

Texts. Textual anomaly and OOD detection have
gained attention with the rise of LLMs. NLP-
AD (Li et al., 2024e) and AD-NLP (Bejan et al.,
2023) provide benchmarks for detecting anoma-
lous patterns in textual data. Recent work, AD-
LLM (Yang et al., 2024b), evaluates LLM per-
formance on text anomaly detection, demonstrat-
ing their superior effectiveness in this task. Tex-
tual OOD detection is commonly assessed us-
ing CLINCI150 (Repository, 2020), which parti-
tions intent categories into ID and OOD classes.
Additional benchmarks, such as 20 Newsgroups
(20NG) (Lang, 1995) and SST-2 (Socher et al.,
2013), are used for OOD detection in topic classifi-
cation and sentiment analysis.

Time Series. The ODDS dataset (Rayana, 2016)
serves as a standard benchmark for time series
anomaly deteciton, while Yahoo, ECG, SVDB, and
IOPS datasets (Paparrizos et al., 2022) focus on
detecting anomalies in financial transactions, phys-

iological signals, and system performance.

6 Challenges and Future Directions

In this section, we briefly summarize challenges
and future directions within the anomaly and OOD
detection research field in the era of LLMs.
Explainability and Trustworthiness. In addition
to accurately detecting anomalies or OOD samples,
there is an increasing trend to utilize LLMs to pro-
vide reasonable explanations and serve as agents to
plan future actions. Future research should focus
on developing methods to enhance the explainabil-
ity of LLMs for anomaly or OOD detection, in-
creasing the trustworthiness of LLM-based systems
and facilitating their adoption in critical domains
such as healthcare and finance (Holzinger et al.,
2019; Guidotti et al., 2019).

Unsolvable Problem Detection. Miyai et al.
(2024b) propose Unsolvable Problem Detection
(UPD), which evaluates the LLMs’ ability to rec-
ognize and abstain from answering unexpected or
unsolvable input questions, aiding in preventing
incorrect or misleading outputs in critical appli-
cations where the consequences of errors can be
significant. Future work should focus on incorpo-
rating the concepts of OOD detection techniques
for solving the UPD problems.

Handling Multimodal Data. The emergence of
MLLMSs capable of processing and understanding
multiple data modalities offers significant potential
in the field of anomaly and OOD detection (Alayrac
et al., 2022; Li et al., 2023a). Future research
should explore methods to better adapt LLMs to
comprehend and integrate various multimodal data,
thereby enhancing their ability to detect anomalies
and OOD instances across diverse datasets.

7 Conclusion

In this survey, we examine the use of Large Lan-
guage Models (LLMs) and multimodal LLMs
(MLLMs) in anomaly and out-of-distribution
(OOD) detection. We introduce a novel taxonomy
categorizing methods into two approaches based
on the role of LLMs in the architectures: detec-
tion, and generation. This taxonomy clarifies how
LLMs can augment data, detect anomalies or OOD,
and build explainable systems. We also summa-
rize commonly used datasets and discuss future
research directions, aiming to highlight advance-
ments and challenges in the field of anomaly or
OOD detection and encourage further progress.
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Limitations

While this survey provides a comprehensive
overview of the utilization of Large Language Mod-
els (LLMs) for anomaly and out-of-distribution
(OOD) detection, several limitations should be ac-
knowledged:

* Scope of Coverage: Although we endeavored
to include the latest research, the rapid pace of
advancements in the field means that some recent
developments may not be covered.

* Depth of Analysis: Given the broad range of
topics discussed, certain methods may not be
explored in the depth they deserve.

* Evaluations and Benchmarks: Due to space
constraints, we did not include a detailed sum-
mary of common evaluation metrics and bench-
mark datasets used in this area.

By acknowledging these limitations, we aim to pro-

vide a balanced perspective and encourage further

research to address these gaps and build on the
foundations laid by this survey.
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A LLM-based Anomaly and OOD
Detection: Strengths and Challenges

A.1 Strengths

Zero-shot/Few-shot: Traditional anomaly and
OOD detection methods require extensive training
on well-defined normal and in-distribution datasets,
which can be both time-consuming and compu-
tationally expensive. In contrast, LLMs can per-
form zero-shot or few-shot reasoning or learning,
producing detection results without needing large-
scale training (Kojima et al., 2022). This allows re-
searchers to bypass the complex process of data col-
lection and model training, enabling faster anomaly
and OOD detection.

Explainability and Interpretability: LLMs pos-
sess strong reasoning abilities that can contribute
to building explainable systems for anomaly and
OOD detection. Traditional methods often rely
on scores that offer little insight into the detection
process. In contrast, LLMs can provide detailed, in-
terpretable explanations for their detection results,
offering valuable insights for future actions. Fur-
thermore, LLMs can be integrated as agents within
a system, assisting in planning the next steps when
an anomaly or OOD event is detected.

A.2 Challenges

Computational Efficiency and Token Limits: A
major concern when leveraging LLMs for anomaly
and OOD detection is computational inefficiency.
Applying LLMs in these tasks often requires com-
plex reasoning which can lead to significant com-
putational overhead. Additionally, many LLMs
have input token limits, making it impossible to
feed large amounts of data directly into the model.
To address this, researchers must carefully design
architectures that allow LLMs to process the data
effectively. For instance, techniques like Retrieval-
Augmented Generation have been used to retrieve
the most relevant data to avoid token limit issues
(Liu et al., 2024c¢). Moreover, methods such as
model pruning and knowledge distillation should
be considered to reduce computational costs while
maintaining high accuracy.

Domain Knowledge: While LLMs are trained on
vast and diverse datasets, they may lack specific
domain expertise needed for certain anomaly and
OOD detection tasks. To enhance performance in
these specialized domains, incorporating domain
knowledge into the LLMs is crucial. One strategy is
injecting domain knowledge into prompts to guide

the LLM’s understanding. Another approach in-
volves using adapters or fine-tuning to better tailor
the LLMs to domain-specific problems, ensuring
they perform well in specialized tasks.
Hallucination and Trustworthiness: LLMs can
sometimes produce inaccurate or fabricated infor-
mation, a phenomenon known as hallucination. In
the context of anomaly and OOD detection, hallu-
cinations pose a significant risk, potentially leading
to incorrect or misleading results. To mitigate this,
researchers need to work on reducing hallucina-
tion rates and improving the trustworthiness of the
model. Manual checks may still be necessary in
critical applications, as LLMs should be seen as
assistants rather than sole decision-makers.

B Anomaly Detection Research Roadmap

Anomaly detection has evolved significantly from
traditional statistical methods to deep learning ap-
proaches and more recently to Large Language
Model (LLM)-based methods. These advance-
ments have expanded the range of applications
across diverse data modalities and downstream
tasks. Following Yang et al. (2024a), tradi-
tional methodologies can be grouped into density-
based, reconstruction-based, distance-based, and
classification-based methods. Below is an overview
of these traditional approaches, followed by a dis-
cussion of the advantages and challenges of LLM-
based anomaly detection.

B.1 Traditional Methods

Density-based Methods. Density-based methods
model the distribution of normal data and detect
anomalies by evaluating how well a sample fits this
modeled distribution. The underlying assumption
is that normal data is more likely to have a higher
likelihood under the distribution, while anomalous
data will have a lower likelihood.

Parametric density estimation assumes a prede-
fined form for the distribution, such as a multivari-
ate Gaussian or Poisson distribution (Danuser and
Stricker, 1998; Leys et al., 2018; Turcotte et al.,
2016). These methods perform well when the data
distribution adheres to the parametric assumption
but can struggle with more complex cases. Non-
parametric density estimation methods, such as his-
tograms and kernel density estimation (KDE), offer
more flexibility by not assuming a fixed paramet-
ric form, making them suitable for handling more
complex distributions (Parzen, 1962; Hu et al.,
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2018). Modern deep learning techniques enhance
density estimation by learning high-quality feature
representations. Methods such as autoencoders
(AE), variational autoencoders (VAE), and flow-
based models are commonly used (Kramer, 1991;
Kingma and Welling, 2013; Goodfellow et al.,
2014).

Reconstruction-based Methods. Reconstruc-
tion-based methods operate on the assumption that
models trained on normal data will reconstruct
those samples accurately, while anomalous data
will result in higher reconstruction errors. This dis-
crepancy in reconstruction performance is used to
identify anomalies. Common approaches include
sparse reconstruction, where normal samples are
represented by a small set of basis functions, while
anomalies are not. Autoencoders and variational
autoencoders are often employed to capture these
differences in reconstruction errors (Kramer, 1991;
Kingma and Welling, 2013).

Recent advancements have sought to reduce the
computational costs associated with reconstruction-
based methods, for example by focusing on recon-
structing hidden features or masking parts of the
input (Pidhorskyi et al., 2018). These improve-
ments enhance both the accuracy and efficiency of
anomaly detection, without requiring pixel-level
reconstruction.

Distance-based Methods. Distance-based meth-
ods detect anomalies by measuring the distance
between test samples and reference points, such
as class prototypes or centroids. Anomalies are
expected to be further from these reference points
than normal samples (Tian et al., 2014).
Classification-based Methods. Classification-
based methods treat anomaly detection as a super-
vised learning problem. In one-class classification
(OCC) (Tax, 2002), the goal is to learn a decision
boundary that encompasses the normal data, with
any data points outside this boundary being classi-
fied as anomalies.

DeepSVDD (Ruff et al., 2018) is a notable
deep learning method for OCC, where a deep net-
work learns a compact representation of the nor-
mal class. Semi-supervised approaches, such as
positive-unlabeled (PU) learning (Zhang and Zuo,
2008; Bekker and Davis, 2020; Jaskie and Spanias,
2019), are also used when only a subset of the
normal data is labeled, with the rest being unla-
beled. Self-supervised learning methods have been
proposed as well, using pretext tasks such as con-
trastive learning or future frame prediction to iden-

tify anomalies (Tack et al., 2020).

B.2 LLM-based Anomaly Detection

The advent of Large Language Models (LLMs) like
GPT, as well as multimodal LLMs, has introduced
new possibilities for anomaly detection. LLMs
offer zero-shot and few-shot learning capabilities,
allowing anomalies to be detected with minimal or
no task-specific training. This is particularly valu-
able in scenarios where labeled data is scarce or
unavailable. LLM-based approaches benefit from
their pre-trained knowledge and can adapt to vari-
ous data modalities, including images, and videos.
By using natural language processing capabilities,
LLMs can provide explainability in anomaly de-
tection, offering reasoning as to why a particular
instance is flagged as anomalous.

However, LLM-based methods come with cer-
tain challenges, including high computational costs
and limitations related to token size. These mod-
els are computationally intensive to run and may
struggle with long input sequences, which necessi-
tates techniques such as retrieval-augmented gen-
eration (RAG) or model pruning to manage these
constraints.

B.3 Comparison: Traditional vs. LLM-based
Anomaly Detection

When comparing traditional and LLM-based
anomaly detection methods, several key differences
emerge:

* Assumptions: Traditional methods often rely on
predefined assumptions about the data distribu-
tion, such as the parametric forms used in density-
based methods. In contrast, LLM-based ap-
proaches are better equipped to generalize across
a variety of tasks.

* Data Requirements: Traditional methods, par-
ticularly those based on deep learning, usually
require large labeled datasets for training. LLM-
based methods excel in zero-shot or few-shot
settings, enabling them to detect anomalies with
minimal task-specific data.

» Explainability: Traditional methods lack the
ability to explain their decisions in natural lan-
guage. LLM-based approaches can not only de-
tect anomalies but also provide natural language
explanations, which improves transparency and
trustworthiness for further steps.

» Computational Efficiency: Traditional methods
are generally more computationally efficient
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compared to LLM-based methods, especially
when fine-tuning models. However, LLM-based
approaches offer greater flexibility and can han-
dle a wider range of tasks, though at the cost
of higher computational resources. Moreover,
LLMs do not require extensive data preparation
and training from scratch, which can offset the
computational overhead in certain scenarios.

* Generalization: LLM-based methods are highly
adaptable, capable of processing different types
of data, such as text and images. In contrast, tra-
ditional methods often need custom architectures
tailored to the specific data modality.

In conclusion, while traditional anomaly detec-
tion methods remain effective and computation-
ally efficient, LLM-based methods provide greater
flexibility, generalization, and explainability. This
makes LLM-based approaches increasingly valu-
able in modern, complex anomaly detection tasks.

C Out-of-Distribution Detection Research
Roadmap

Compared to Anomaly Detection (AD), Out-of-
distribution (OOD) detection emerged in 2017 and
has since received increasing attention. OOD de-
tection is critical for ensuring the reliability and
safety of machine learning models by identifying
samples that fall outside the distribution of the
training data. Following Yang et al. (2024a), tradi-
tional OOD detection methods can be categorized
into classification-based, density-based, distance-
based, and reconstruction-based methods. These
approaches vary in how they define and detect
OOD samples, with each showing strengths de-
pending on data characteristics and the task at hand.

C.1 Traditional Methods

Classification-based Methods. Classification-
based OOD detection methods rely on the outputs
of neural networks , typically using the softmax
probabilities of a classifier to determine whether a
sample is in-distribution (ID) or OOD. The most
common baseline is the Maximum Softmax Prob-
ability (MSP) method, which flags samples with
lower softmax scores as OOD (Hendrycks and Gim-
pel, 2017). This has led to more advanced tech-
niques that either post-process the classification
outputs or modify the training process to improve
OOD detection performance (Liu et al., 2020).
Given its alignment with classification tasks, this

approach remains one of the most prominent meth-
ods for OOD detection.

Density-based Methods. Density-based methods
explicitly model the distribution of in-distribution
(ID) data using probabilistic models, assuming that
OOD samples will lie in low-density regions (Zong
et al., 2018; Abati et al., 2019; Pidhorskyi et al.,
2018; Deecke et al., 2018; Sabokrou et al., 2018).
Techniques such as class-conditional Gaussian
models allow for probabilistic modeling of ID
classes, while flow-based models are also used for
density estimation (Kobyzev et al., 2020; Zissel-
man and Tamar, 2020; Kingma and Dhariwal, 2018;
Van Oord et al., 2016). However, density-based
methods sometimes assign higher likelihoods to
OOD samples, leading to challenges in reliabil-
ity. Methods such as likelihood ratio-based ap-
proaches and ensembles have been proposed to ad-
dress these issues, though these approaches tend to
be computationally expensive and often fall behind
classification-based methods in performance.
Distance-based Methods. Distance-based meth-
ods operate under the assumption that OOD sam-
ples are farther from the centroids or prototypes
of in-distribution classes in feature space. A pop-
ular parametric approach is to use Mahalanobis
distance to compute the distance between test sam-
ples and class centroids (Lee et al., 2018), whereas
non-parametric methods are increasingly favored
for their flexibility and simplicity (Sun et al., 2022).
These methods use various distance metrics—such
as Euclidean distance and geodesic distance—to
detect OOD samples.

Reconstruction-based Methods. Reconstruc-
tion-based methods leverage encoder-decoder mod-
els to reconstruct input samples and detect OOD
samples by measuring reconstruction error. The
premise is that models trained on ID data will ex-
hibit lower reconstruction errors for ID samples
and higher errors for OOD samples. (Zhou, 2022).

C.2 LLM-based OOD Detection

Large Language Models (LLMs) and Multi-
Modal LLMs (MLLMs) have transformed Out-of-
Distribution (OOD) detection by leveraging pre-
trained models like CLIP to perform downstream
detection tasks. These models are capable of detect-
ing OOD samples in zero-shot or few-shot settings,
meaning they can generalize to unseen data with lit-
tle to no additional training. This represents a shift
from traditional OOD detection methods, which
typically rely on training classifiers using the entire
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in-distribution (ID) dataset.

Incorporating the internal knowledge of pre-
trained MLLMs, the field is progressing towards
even greater computational efficiency, where min-
imal or no training data is needed. This ability to
operate with limited data while maintaining per-
formance makes LLM-based OOD detection espe-
cially appealing for real-world applications.

C.3 Comparison of Traditional vs.
LLM-based OOD Detection

The shift from traditional OOD detection methods
to LLM-based approaches marks a fundamental
change in how OOD detection is defined and exe-
cuted. Traditional methods, such as classification-
based approaches like Maximum Softmax Prob-
ability (MSP) or distance-based techniques like

Mahalanobis distance, rely heavily on task-specific

training and typically require large amounts of in-

distribution (ID) data. These methods often define

OQD detection in the context of post-processing

or retraining models on ID data to differentiate

between in- and out-of-distribution samples.

In contrast, LLM-based methods redefine OOD
detection by leveraging pre-trained models, allow-
ing them to detect OOD samples without extensive
task-specific training. This results in a significant
shift in the OOD detection paradigm, moving to-
wards zero-shot and few-shot learning, where mod-
els can generalize to new tasks with minimal or no
additional training. Key differences include:

* Performance: LLM-based methods often outper-
form traditional methods in zero-shot and few-
shot scenarios, where limited labeled data is avail-
able. Traditional methods struggle without sub-
stantial in-distribution data and retraining.

* Flexibility: LLM-based approaches are highly
adaptable to new tasks and datasets due to their
reliance on vast pre-trained knowledge, while
traditional methods require significant retraining
for new domains or data types.

* Efficiency: Traditional OOD methods rely on ex-
plicitly training models with in-distribution data,
while LLM-based methods redefine the problem
by leveraging pre-existing knowledge in zero-
shot or few-shot settings, minimizing the need
for retraining or task-specific data preparation.
In conclusion, the transition from traditional

OOD detection methods to LLM-based approaches

represents a shift from task-specific training and

rigid models to more flexible, generalizable sys-

Method MVTec AD VisA
AUC 1 AUC 1
Zero-shot
CoOp (Zhou et al., 2022)T 88.8 62.8
CLIP-AC (Radford et al., 2021)1 71.5 65.0
VAND (Chen et al., 2023a)f 86.1 78.0
AnomalyCLIP (Zhou et al., 2024)f 91.5 82.1
CLIP-AD (Liznerski et al., 2022) 90.9 79.2
FiLo (Gu et al., 2024a)' 91.2 83.9
One-shot
SPADE (Park et al., 2019) 81.0 79.5
PaDiM (Defard et al., 2021) 76.6 62.8
PatchCore (Roth et al., 2022) 834 79.9
WinCLIP (Jeong et al., 2023)f 93.1 83.8
AnomalyGPT (Gu et al., 2024b)1 94.1 87.4
AnomalyDINO-S (Damm et al., 2024)F 96.6 87.4

Table 2: Anomaly detection results for MVTec AD and
VisA (image-level). Bold indicates the best performance.
The methods marked with § are using MLLMs as back-
bones. The results are are sourced from (Zhou et al.,
2024; Gu et al., 2024b)

tems that can handle a wider variety of tasks with
minimal additional training. As research contin-
ues, a hybrid approach combining the efficiency
of traditional methods with the flexibility LLM-
based models may offer the most robust solution
for diverse OOD detection challenges.

D Quantitative Analysis and Comparison

While our primary goal is to conduct a systematic
literature review of existing methods for anomaly
and out-of-distribution (OOD) detection tasks, we
acknowledge that including quantitative analysis
and comparisons is valuable for understanding the
practical implications of these methods.

D.1 Anomaly Detection

Table 2 presents the quantitative results for image-
level anomaly detection on two widely used bench-
marks, MVTec AD (Bergmann et al., 2019) and
VisA (Zou et al., 2022). The results are sourced
from the original papers. We ensured that the ex-
periments across different methods used the same
dataset and learning settings for a fair comparison.

D.2 OOD Detection

Table 3 provides an overview of out-of-distribution
(OOD) detection results using ImageNet-1K as the
in-distribution (ID) dataset. The methods are evalu-
ated across multiple OOD datasets, including Tex-
ture, iNaturalist, Places, and SUN (Van Horn et al.,
2018; Zhou et al., 2017; Xiao et al., 2010; Cim-
poi et al., 2014), with performance measured using
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Method Texture iNaturalist Places SUN Avg
AUC?T FPR95] AUCT FPR95S| AUCT FPR95] AUCT FPR95S| | AUCT FPR9S|

Traditional posthoc methods
MSP (Hendrycks et al., 2019)f 74.84 73.66 77.74 74.57 72.18 79.12 73.97 76.95 74.98 76.22
MaxLogit (Hendrycks et al., 2019)"  88.63 48.72 88.03 60.88 87.45 55.54 91.16 44.83 88.82 52.49
Energy (Liu et al., 2020)f 88.22 50.39 87.18 64.98 87.33 57.40 91.17 46.42 88.48 54.80
ReAct (Sun et al., 2021)f 88.13 49.88 86.87 65.57 87.42 56.85 91.04 46.17 88.37 54.62
ODIN (Liang et al., 2018) 87.85 51.67 94.65 30.22 85.54 55.06 87.17 54.04 88.80 47.75

Without Tuning methods
MCM (Ming et al., 2022)f 86.11 57.77 94.61 3091 89.77 44.69 92.57 34.59 90.76 42.74
NegLabel (Jiang et al., 2024) 90.22 43.5 99.49 191 91.64 35.59 95.49 20.53 94.21 25.40
EOE (Cao et al., 2024) 57.53 85.64 97.52 12.29 95.73 20.40 92.95 30.16 92.96 30.09
With Tuning methods

CoOp (Zhou et al., 2022) 89.47 45.00 93.77 29.81 90.58 40.11 93.29 40.83 91.78 51.68
LoCoOp (Miyai et al., 2024c)f 90.19 42.28 96.86 16.05 91.98 32.87 95.07 23.44 93.52 28.66
CLIPN (Wang et al., 2023)f 90.93 40.83 95.27 23.94 92.28 33.45 93.92 26.17 93.10 31.10
NegPrompt (Nie et al., 2024) 91.60 35.21 98.73 6.32 93.34 27.60 95.55 22.89 94.81 23.01

Table 3: Comprehensive OOD detection results for ImageNet-1K as ID dataset. The black bold indicates the best
performance. The results marked with t are sourced from (Wang et al., 2023) and (Miyai et al., 2024c). Others are

sourced from their original papers (Wang et al., 2023; Jiang et al., 2024; Cao et al., 2024; Nie et al., 2024)

AUC (Area Under the ROC Curve) and FPR95
(False Positive Rate at 95% True Positive Rate).

E Evaluation Metrics

The primary goal of both anomaly detection and
out-of-distribution (OOD) detection is to differen-
tiate between normal/in-distribution (ID) samples
and abnormal/out-of-distribution (OOD) samples,
framing the problem as a binary classification task.
Several common metrics are used to evaluate the
performance of detectors:

AUROC (Area Under the Receiver Operating
Characteristic curve): This metric evaluates a de-
tector’s overall ability to distinguish between ID or
normal and OOD or anomalous samples. The ROC
curve plots the true positive rate (TPR) against the
false positive rate (FPR), where:

TP FP
TP+ FN’ FP+TN

Here, TP (true positives), TN (true negatives), FP
(false positives), and FN (false negatives) corre-
spond to the detector’s correct and incorrect classi-
fications.

AUPR (Area Under the Precision-Recall curve):
The AUPR metric is particularly useful for cases
where there is class imbalance, as AUROC can
be biased in such situations. The Precision-Recall
curve plots precision against recall, where:

TP
TP+ FP’
FPR@N (False Positive Rate at TPR = N%):

This metric evaluates the probability of misclassify-
ing an OOD or anomalous sample as ID or normal

TPR FPR =

TP

Precision = Recall =

TP+ FN

when the true positive rate (TPR) is set at a speci-
fied value, commonly 90% or 95%. This is crucial
for real-world deployments where achieving high
accuracy on ID samples is important, while also
minimizing false positives for OOD or anomaly
detection.

F1 Score: The F1 score is a harmonic mean of
precision and recall, providing a balanced evalua-
tion of a model’s performance across both metrics.
It is particularly useful in scenarios where there
is an imbalance between the positive and negative
classes, as it gives a single metric that reflects both
false positives and false negatives.

The F1 score is calculated as:

Pl 9y Precision x Recall

Precision + Recall
where:

TP
TP+ FP’

TP

Recall = m

Precision =

Precision measures the proportion of true positive

predictions out of all positive predictions made by

the model, while recall measures the proportion of
actual positives correctly identified by the model.

There are two main variations of the F1 score:

* Macro F1 Score: This version computes the
F1 score independently for each class (ID and
OOD, or normal and anomalous) and then takes
the average across classes. It treats all classes
equally, making it particularly useful when the
class distribution is imbalanced.

* Micro F1 Score: This version aggregates the
contributions of all classes to calculate the F1
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score, considering the total number of true posi-

tives, false positives, and false negatives across

all classes. It is more sensitive to the performance
on the larger class.

A high F1 score indicates that the model main-
tains a good balance between precision (minimiz-
ing false positives) and recall (minimizing false
negatives), which is critical in practical OOD de-
tection and anomaly detection tasks.

F General Guidelines

We provide general guidelines for selecting ap-
propriate approaches for anomaly or out-of-
distribution (OOD) detection, considering key fac-
tors such as data modality, efficiency, explanation,
and optimization.

Data Modality: The choice of approach is
strongly influenced by the type of data being an-
alyzed. For textual data, prompting-based meth-
ods may not always offer meaningful interpreta-
tions of anomalies or OOD detection, particularly
when trying to understand patterns in semantic
spaces. In these cases, generating embeddings
from LLMs and applying specialized post-hoc de-
tection techniques can lead to better results. Fine-
tuning LLMs to produce more relevant embed-
dings may further enhance detection accuracy. In
the case of numerical data, such as time series or
tabular data, prompting-based methods have been
explored, though they often require carefully de-
signed prompts or fine-tuning to capture the un-
derlying structure of the data. For vision data, in-
cluding images and videos, the development of
multimodal LLMs offers greater flexibility. Both
prompting-based and contrasting-based methods
can be highly effective, as they are capable of han-
dling the diverse characteristics of multimodal data.

Efficiency: Efficiency is a crucial considera-
tion when choosing between prompting-based and
contrasting-based methods. Prompting-based meth-
ods can be inefficient for high-precision numerical
tasks, as the conversion of numerical values into
text results in excessively long input sequences.
This inefficiency can become a bottleneck for tasks
involving long-term predictions or large datasets,
where the computational overhead of generating
long outputs becomes significant. In contrast,
contrasting-based methods are more efficient for
detection tasks for image. By utilizing contrastive
objectives to distinguish between positive and nega-

tive samples, these methods excel at zero-shot clas-
sification and are computationally more efficient,
especially for handling multimodal anomaly and
OOD detection. Researchers can also explore the
use of contrasting-based approaches to numerical
data modalities with their visual representations.

Explanation: In fields where transparency and
interpretability are critical, explanation plays a piv-
otal role in model selection. LLLMs offer a unique
advantage by not only detecting anomalies but also
generating human-like explanations. This capabil-
ity is especially valuable in domains where action-
able insights and interpretable results are essential
for decision-making. Research should focus on en-
hancing the ability of LLMs to explain their outputs
in a way that aligns with domain-specific require-
ments for clarity and transparency.

Optimization: The optimization strategy is
highly dependent on the specific data modality and
the nature of the detection task. For prompting-
based methods, parameter-efficient tuning tech-
niques—such as Low-Rank Adaptation are essen-
tial for improving model performance without in-
curring high computational costs. These techniques
enable models to adapt to new tasks efficiently
while maintaining their generalization capabilities.
This allows the broad generalization capabilities of
LLMs to be leveraged while optimizing for specific
domain-related tasks, leading to improved accuracy
and reduced computational overhead.
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