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Abstract
In this work, we explore the challenges of devel-
oping interactive assistants that resolve ambi-
guity by asking their users clarifying questions.
Specifically, we develop a task-agnostic frame-
work for evaluating a system’s ability to deter-
mine when to ask for clarification. Determining
when to ask for clarification is a challenging
task that requires systems to consider the de-
mands of the individual user (i.e., how much
they prioritize speed and usability versus care-
fulness) and the distribution of interpretations
for a given request (i.e., whether an ambigu-
ous request has one dominant, inferable inter-
pretation). Using this framework, we evaluate
systems for determining when to clarify across
three NLP applications: QA, MT, and NLI. Fi-
nally, we introduce present a novel uncertainty
estimation approach, INTENT-SIM, that deter-
mines the utility of asking a clarifying ques-
tion by estimating the entropy over user intents.
Our method consistently outperforms existing
uncertainty estimation approaches at identify-
ing predictions that will benefit from clarifica-
tion. Furthermore, we find that INTENT-SIM is
robust, demonstrating improvements across a
wide range of NLP tasks and LMs. Together,
our work lays foundation for further studies on
clarifying interactions with LM assistants.

1 Introduction

Ambiguity is embedded throughout natural lan-
guage, and even simple utterances can have mul-
tiple interpretations when read in isolation. Am-
biguity serves a key, communicative function in
language, allowing speakers to omit details by rely-
ing on information that is inferable from the extra-
linguistic context of the conversation (e.g., tempo-
ral, social, and physical) (Piantadosi et al., 2012).
At times, however, the speaker’s intent is still un-
clear despite the context. In such cases, further
interaction is required to resolve the ambiguity, of-
ten by asking and answering clarifying questions.

With the recent progress in large language model
(LLM) development, interactive AI assistants (e.g.,
ChatGPT, Claude, LLaMA-2) have risen to promi-
nence in our daily lives; yet, these systems often
fail to interact with users to resolve ambiguities in
their requests. We identify that the inability to de-
termine when to ask for clarification is one of core
challenges limiting these systems’ ability to ask
clarifying questions. To address these challenges,
we develop an framework for evaluating a system’s
ability to determine when to clarify and apply it to
a variety of NLP tasks including question answer-
ing (QA), machine translation (MT), and natural
language inference (NLI).

While most previous works on modeling ambi-
guity in NLP (particularly in QA and MT) have
treated ambiguity as a binary classification task
(i.e., does this input have multiple, valid interpre-
tations?), determining when to ask for clarifica-
tion requires systems to consider a variety of more
nuanced factors, like whether an ambiguous utter-
ances have one, dominant interpretation that can be
inferred (e.g., “She’s from Boston” typically does
not mean “Boston, Georgia”) and how much the
individual user prioritizes the LLM’s speed and us-
ability versus its carefulness. Our evaluations cap-
ture these considerations by measuring a system’s
ability to maximize end-task performance while
minimizing the interaction cost from the user.

To determine which examples will benefit from
clarification, we evaluate this task as the first step
in a three stage pipeline for resolving ambiguity,
which we depict in Figure 1. Here, systems (1)
determine if clarification is necessary before (2)
asking a clarifying question and (3) responding
given the user’s clarifying answer. We also support
these evaluations by deriving datasets of sampled
interpretations of ambiguous inputs from existing
datasets focused on modeling ambiguity in NLI,
MT, and QA (Min et al., 2020; Bawden et al., 2018;
Liu et al., 2023).
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Clarifying Question (q):
Which event?

Input Request (x):
Who won the US open?

Response with
Clarification (ypred  = y* ):
Coco Gauff.

Clarifying Answer (a*):
Women’s Singles.

Response without
Clarification (ypred  ≠ y* ):
Novak Djokovic

What question can I ask to determine the user’s intent?

What is the right response, given the user’s intent?

Show user the 
response

Ask for 
clarificationYesNo

No No

Yes

Step 1: Clarify or Respond?

Step 2: Generate a Clarifying Question

Step 3: Respond Using the Clarification

Is my response w/o 
clarification correct?

Given clarification, will I know 
the correct answer?

Figure 1: The three-stage pipeline for resolving ambiguity with clarification questions used in our evaluation
framework. The first step is our target task, where systems must identify which inputs will benefit from clarification.
In the second step, after deciding to clarify, we provide systems with a clarifying QA pair corresponding to the gold
interpretation, which we generate from existing sources of disambiguated input/output pairs. Finally, in the third
step, LLMs predict an output base on the input and the clarifying QA pair.

Finally, we conclude our work by introducing
INTENT-SIM: a novel method for determining
when to clarify. INTENT-SIM involves estimating
the entropy over user intents by simulating mul-
tiple user-assistant interactions. Through our ex-
periments, we demonstrate the INTENT-SIM con-
sistently outperforms other uncertainty estimation
baselines at identifying predictions that are incor-
rect and can be improved with clarification. We
also find that these improvements are robust across
different tasks and LLMs, with INTENT-SIM out-
performs our other baselines at determining when
to clarify in four out of six of the LLM-plus-task
settings evaluated in this work.

2 Determining When to Clarify

We begin this work by introducing the task of de-
termining when to ask for clarification. Later in
this section, we dive into a formal description of
our evaluation framework, which evaluates systems
for determining when to clarify by using them as
the first step in a three-step pipeline approach to
resolving ambiguity with clarifying questions.

Setting Here, we provide some basic definitions
for our setting and the three-step pipeline used for
our evaluation framework depicted in Figure 1. We
say that users provide an initial input request, x, to
the LLM assistant. Some inputs may be ambigu-
ous, resulting in many feasible output responses
for the system to choose from, which we denote as
Y = {yi}k1 . One of these outputs, y∗ ∈ Y , repre-
sents the gold output corresponding to the user’s
intent behind their ambiguous request. To deter-

mine the users intent, systems may ask the user
a clarifying question, q. The user then responds
with the clarifying answer corresponding to their
intent, a∗ ∈ A = {ai}k1 . For simplicity, we assume
a bipartite matching between the sets of clarifying
answers, A, and feasible final responses, Y .

Each input, x, has its own distribution over in-
tended interpretations given by P(y = y∗|x). Gath-
ering annotations for the true distribution over in-
tents is intractable and temperamental (i.e., subject
to changes over time, location, and individual pref-
erences); however, in Section 3 we describe sev-
eral methods we use for generating our datasets of
(x, y∗) tuples where y∗ are realistic samples from
the true distribution over intents.

2.1 Task Definition

Determining when to ask for clarification is a com-
plex task that builds upon prior works on modeling
ambiguity and estimating uncertainty in NLP. Ex-
isting approaches for modeling ambiguity in NLP
applications has primarily focused on treating am-
biguity as a binary label: either an input does or
does not posses multiple valid interpretations (Min
et al., 2020; Pilault et al., 2023). While it may seem
natural to always ask for clarification for ambigu-
ous inputs, the distribution over intended interpreta-
tions, given by P(y = y∗|x), is often dominated by
a single most-likely interpretation. In such cases,
it may be preferable to forego clarification and re-
spond to the user’s request directly.

How frequently systems should forego clarifi-
cation for ambiguous requests depends on the de-
mands of the domain and preferences of the user.
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In high-stake settings, we may want systems to
frequently ask for clarification. Likewise, for time-
sensitive issues, we may want to minimize the num-
ber of interactions. As such, we define the task of
determining when to clarify as an uncertainty esti-
mation objective: where given an input request, x,
systems must predict a scalar uncertainty estimate,
u(x), that correlates with how much performance
is expected to improve after clarification.

This task differs from standard uncertainty es-
timation, where the objective is to produce uncer-
tainty estimates that correlate with the correctness
of a given prediction. In contrast, the objective
of determining when to clarify is to identify pre-
dictions are both incorrect and will improve after
clarification. This requires systems to disentan-
gle the two factors that contribute to model uncer-
tainty: epistemic and aleatoric uncertainty (Cole
et al., 2023). Epistemic uncertainty refers to un-
certainty that is due to a lack of knowledge. This
may occur in QA with questions about an entities
the LLM hasn’t seen or in MT with words it hasn’t
observed the translation of. Aleatoric uncertainty,
on the other hand, refers to uncertainty that is the
result of some intrinsic randomness in the output.
This randomness is often due to ambiguity, which
we resolve through interaction. Systems for this
task must identify instances with high aleatoric un-
certainty, where the user’s intent is ambiguous, and
low epistemic uncertainty, where it has the knowl-
edge required to respond after clarification.

2.2 Evaluation Framework
Following on the definition above, evaluating sys-
tems for determining when to clarify requires mea-
suring the LLM assistant’s end-task performance
with and without access to clarification. To accom-
plish this, we model our evaluation framework after
the three-stage pipeline depicted in Figure 1. We
then evaluate systems by having them to perform
the first step in this pipeline: determining which ex-
amples the LLM assistant should clarify and which
it should respond to directly by predicting ypred.
Examples that the evaluated system decides to clar-
ify are passed onto the later two stages the pipeline.
In second step, we allow the LLM to ask a clarifi-
cation question, q, to ask the user and receive their
response, a∗. Finally, in the last step, the LLM
assistant predicts ypred based on the input and its
clarification. The evaluation metrics defined below
in Section 2.3 are then used to evaluate systems on
their ability to maximize the performance of the

LLM’s predictions, ypred, while minimizing the
number of clarification queries made to the user.

In the setup above, the usefulness of asking for
clarification is heavily dependent on (1) the qual-
ity of clarifying QA pair and (2) the LLM assis-
tant’s ability to utilize clarifications to determine
the proper output. While several works have ex-
plored the task of generating good clarifying ques-
tions, particularly in classification (Yu et al., 2019),
FAQ (Rao and Daumé III, 2018), and moral as-
sessment (Pyatkin et al., 2022) domains, the task
of determining when to ask for clarification has
been comparatively under examined. As such, we
opt to alleviate the dependence on the quality of
the question generation system by using an ora-
cle method for generating clarifying questions and
answers. We describe this oracle system and the
construction of the three-step ambiguity resolution
pipeline in our evaluation framework in Section 4.

2.3 Evaluation Metrics
We define two metrics for evaluating uncertainty
estimates, u(x), for determining when to clarify:

Performance Under a Fixed Interaction Budget
To evaluate uncertainty estimates for determining
when to clarify, we provide systems with an inter-
action budget, b ∈ [0, 100], and allow systems to
ask clarification questions on b% of input exam-
ples. We use each system’s uncertainty estimates,
u(x), to determine top b% of examples to provide
clarification for, then evaluate system performance
under this interaction budget. This metric is closely
related to those used in selective prediction (El-
Yaniv and Wiener, 2010), a uncertainty estimation
task where low-confidence predictions are either
withheld or passed onto a human oracle to annotate
by hand (Tran et al., 2022).

AUROC This metric is commonly used in un-
certainty quantification to evaluate an uncertainty
estimator’s ability to classify correct and incorrect
predictions over all possible confidence thresholds.
In our setting, we adapt this metric to evaluate the
uncertainty estimate’s ability to identify which pre-
dictions will improve from clarification.

3 Datasets and Applications

We apply our framework to three tasks and datasets
for modeling ambiguity. All datasets label ambigu-
ous inputs with their different interpretations, along
with their respective outputs. We use these anno-
tations later in developing our oracle system for

5543



Task Ambiguity Type Input (x) and Clarifying Question (q) Proportion

QA

Word-Sense
Disambiguation /

Entity Linking

x: Who wins at the end of friday night lights?
48%q: Are you referring to the Friday Night Lights film, book,

or television series?

Literal vs. Implied
Interpretation

x: Real name of gwen stacy in amazing spiderman?
8%q: Are you asking for the name of the actress who plays

Gwen Stacy, or the full name of the character Gwen Stacy?

Multiple Valid
Outputs

x: When did west germany win the world cup? 44%q: Which time?

NLI

Word-Sense
Disambiguation

x: Every night, the baby is fed milk. / Some nights, the baby
is fed milk. 44%
q: Does the baby get fed milk every night or just some
nights?

Literal vs. Implied
Interpretation

x: The cake was so dry, it was like eating sand. / The cake
was so dry, it was inedible. 56%
q: Was the cake not suitable for eating or not safe to eat?

MT Word-Sense
Disambiguation

x: It’s a little steeper than I was expecting. 100%q: What kind of mole are you referring to?

Table 1: Example instances for each task for different ambiguity types, along with what proportion of ambiguities in
each dataset fall into each type from our manual analysis on 150 examples.

generating clarifying questions and answers. All
datasets lack existing labels for the distribution over
these intents. Below, we describe each dataset in
detail, as well as our methods for sampling intents
for each example (further details in Appendix A).

3.1 Question Answering

We use the AmbigQA (Min et al., 2020) dataset,
which re-annotates questions from NaturalQues-
tions (Kwiatkowski et al., 2019) with whether they
are ambiguous. For each ambiguous example, they
also annotate different intents as disambiguated re-
visions of the initial question paired their respective
answers. We use the original annotated answers
from NaturalQuestions as samples from the true
distribution over intents, mapping these sampled
outputs to their respective intents by identifying the
disambiguation that contains the same answer.

QA Metric We evaluate QA using answer re-
call, measuring whether the gold answer string
appears in the generated output after normaliza-
tion (Chen et al., 2017). This deviates slightly
from prior work (Rajpurkar et al., 2016) that evalu-
ates strict exact match after normalization, as chat-
based LLMs to generate verbose, sentence-length
outputs as opposed to short answers (e.g., “The
stern is the back of the boat.” instead of “the back”).

3.2 Natural Language Inference

We use the AmbiEnt dataset (Liu et al., 2023),
which consists of ambiguous premise/hypothesis

pairs that are paired with disambiguated revisions
for each of their interpretations. Annotators for this
dataset are first presented with the ambiguous input
and are asked to label it as an NLI example. Anno-
tators are then shown the different disambiguations
each input, and are asked to label each interpreta-
tion again. We use these multiple annotations to
identify which interpretation’s label is consistent
with the label annotators gave the initial, ambigu-
ous input. We then use the matching interpretation
as our sampled user intent and output label.

NLI Metric We evaluate NLI using 3-way (en-
tails, contradicts, neutral) classification accuracy.

3.3 Machine Translation

Rich previous works have explored when sentence-
level translation to fail in document-level con-
text (Lopes et al., 2020; Yin et al., 2021; Voita et al.,
2019). We source examples of ambiguous transla-
tions from one such work, DiscourseMT (Bawden
et al., 2018), which manually curates a test set
of ambiguous English-French translations. Each
example consists of an ambiguous test sentence
paired with two possible context sentences, where
the translation of the test sentence depends on
which context sentence precedes it. We use these
test sentences, without context, as examples of am-
biguous user inputs, taking its two translations as
the set of feasible outputs. We also include the
context sentences, which each have only one feasi-
ble translation, as examples of unambiguous inputs.

5544



While this dataset does not contain annotations for
estimating distribution over interpretations, sen-
tences in this dataset are hand-crafted to be highly
ambiguous. We, therefore, simply use the uniform
distribution over interpretations in our experiments.

MT Metric We evaluate using contrastive ac-
curacy (Maruf et al., 2019). This binary metric
measures whether an LLM assigns a greater likeli-
hood to the intended translation of an ambiguous
sentence over the alternative. For unambiguous
examples, we simply say that the system gets the
interpretation correct without clarification. We de-
viate from the standard MT metrics (e.g., BLEU),
as confounding factors such as variance in sentence
structure often overshadow the word-level, seman-
tic differences between translations.

3.4 Sources of Ambiguity Across Tasks

In Table 1, we provide analysis comparing the most
common causes of ambiguity across tasks. The
most common cause across all tasks is word-sense
disambiguation. In QA, where named entities are
more common, this commonly surfaces as entity
linking ambiguities. The second cause is due to the
literal and implied interpretations of each input. In
QA, this usually occurs when a question literally
means something different from what the user prob-
ably meant to ask. In NLI, we find this is often due
to figurative language, where it is unclear whether
the sentence should be interpreted literally. In MT,
however, we find these ambiguities in the source
sentence can usually be captured in its translation.
The last common cause we find is ambiguity due to
multiple valid outputs. This cause only affects QA
reporting one of many answers may mislead users.
We do not find this type of ambiguity in MT, where
multiple translations of any sentence is a given, nor
in NLI, where classes are mutually exclusive.

4 Ambiguity Resolution Pipeline

To evaluate systems for determining when to clarify,
we first construct systems for performing the latter
two steps of our three-step pipeline for resolving
ambiguity through interaction.

Generating Oracle Clarifications To minimize
the dependence on the LLM’s ability to generate
high quality clarifying questions, we use an ora-
cle system for generating clarifying questions and
answers. Our oracle makes use of few-shot prompt-
ing with GPT-3.5 (OpenAI, 2022), providing sys-

tems with instructions and two hand-written ex-
emplars to accomplish the following task: Given
the ambiguous input, x, and its different interpre-
tations, each corresponding to a different output
y ∈ {yi}k1 , systems must generate (1) clarifying
question differentiating each interpretation, q, and
(2) then clarifying responses, {ai}k1 , corresponding
to each interpretation. Interpretations are provided
in different formats depending on the available an-
notations in each dataset: we use disambiguated
revisions of x for QA and NLI and the different
target translations, {yi}k1 , for MT (details in Ap-
pendix B). Table 1 includes examples of generated
clarification questions generated using this oracle.

Generating LLM Predictions To generate LLM
predictions with and without providing clarifica-
tion, we use standard four-shot prompting. We
provide LLMs with demonstrations from the target
task where exemplars include or do not include
clarifications to match whether the test case does.
We sample exemplars per-example and perform
greedy decoding (exact prompts in Appendix E).

4.1 Do LLMs Utilize Clarifying Interactions?

Before evaluating systems for determining when
to clarify, we must first establish that LLMs are
capable of using clarifications and that providing
clarifications can yield improvements on our de-
rived datasets. To do this, we experiment with our
ambiguity resolution pipeline by comparing the
performance when opting to clarify no inputs ver-
sus clarifying all inputs. We also compare against
not providing clarifying interactions, but instead
providing the disambiguated versions of each input
provided by each of the base datasets.

In addition to experimenting on our standard
dataset of SAMPLED interpretations for ambiguous
inputs, we also experiment with a UNIFORM ver-
sion of our dataset which includes all the labeled in-
terpretations of each input, where each is weighted
each uniformly (note that for our MT dataset, these
are equivalent due the construction process). While
the standard SAMPLED setup is well suited for esti-
mating system performance in realistic settings, it
can also underestimate the importance of achieving
high performance on uncommon intents. To avoid
over-indexing on only the most common interpreta-
tions, we also evaluate on UNIFORM. Results here
can help us determine whether LLMs are able to
use clarifications for rare interpretations of inputs.
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Model Clarification
MT QA NLI

Uniform/Sampled Uniform Sampled Uniform Sampled

GPT3
Direct 50.0 22.7 51.8 31.2 41.7
Clarify 85.8 (35.8) 40.8 (18.1) 61.8 (10.0) 31.6 (0.4) 45.9 (4.2)

Disambig 84.7 (34.7) 41.2 (18.5) 62.0 (10.2) 30.6 (-0.6) 30.6 (-11.1)

LLAMA2 7B
Chat

Direct 50.0 18.1 37.3 41.0 43.5
Clarify 43.2 (-6.8) 32.0 (13.9) 47.9 (10.6) 55.3 (14.3) 52.5 (9.0)

Disambig 44.9 (-5.1) 26.5 (8.4) 42.0 (4.7) 40.0 (-1.0) 40.0 (-3.5)

LLAMA2 13B
Chat

Direct 50.0 17.9 40.0 28.0 40.7
Clarify 40.9 (-9.1) 33.5 (15.6) 50.9 (10.9) 49.1 (21.1) 52.5 (11.8)

Disambig 42.6 (-7.4) 28.5 (10.6) 45.2 (5.2) 26.6 (-1.4) 26.6 (-14.1)

Table 2: End-task results comparing three input settings: without clarification (Direct), with clarification (Clarify),
and with the disambiguated input (Disambig). For QA and NLI, we evaluate under two different data generation
processes, either uniformly weighing all interpretations or using our sampled interpretations. We evaluate MT using
contrastive accuracy, QA using EM accuracy, and NLI using 3-way classification accuracy.

Results We report our results with using LLaMA-
2-Chat and GPT-3 as the base LLM assistant in
Table 2. We find that, across tasks and systems,
LLMs can leverage clarifying questions and an-
swers to improve their response. One exception to
this trend, however, is the performance of LLaMA-
2 variants on MT. We attribute this poor perfor-
mance to LLaMA-2’s low translation performance
and insufficient multilingual pre-training (Touvron
et al., 2023).

As expected, we also observe that clarification
is often not necessary infer the correct interpreta-
tion and that models still frequently produce errors,
even after clarification. These observations rein-
force the challenges we highlighted above when
determining when to clarify: systems must be able
to identify when ambiguous inputs have a domi-
nant, inferable interpretation, and they must be able
to disentangle different forms of uncertainty to dis-
tinguish when incorrect predictions can and cannot
be resolved through clarification.

Another notable trend is that systems tend to
perform better with clarifying questions and an-
swers than with disambiguated inputs, particularly
for QA and NLI. We attribute this the way our
QA and NLI datasets construct disambiguated in-
terpretations. These datasets create disambiguated
revisions of each ambiguous input by applying a
minimal set of token-level edits to the initial in-
put. While this makes disambiguations easier to
annotate and compare, it comes at the cost of the
naturalness of the resulting disambiguations. In
contrast, our clarifying interactions do not have the
same minimal-edit constraints and more closely
resemble these systems’ pretraining distributions.

5 Experiments

For our experiments on determining when to clarify,
we use the same base LLMs as above for answering
questions with and without clarification. We adapt
existing methods for uncertainty estimation and
chain-of-thought reasoning as baselines for this
task. We begin this section by describing our novel
approach, before introducing our baselines below.

5.1 INTENT-SIM

Unsupervised methods for uncertainty quantifica-
tion in LLMs generally rely on estimating entropy
over the output distribution, using high entropy to
identify erroneous outputs (Kadavath et al., 2022;
Kuhn et al., 2023). While these methods perform
well at identifying incorrect predictions, they fail
to identify why predictions are incorrect. Determin-
ing when to ask for clarification requires moving
beyond simply predicting correctness and requires
systems to identify when uncertainty is the result of
ambiguity. In our proposed method, INTENT-SIM,
we disentangle these two factors by explicitly esti-
mating the ambiguity of a given input, which we
quantify as the entropy over simulated user intents.

Table 3 illustrates our method. Using the same
few-shot prompt structure for answering questions
with clarification (exact prompt in Appendix E),
we condition on the user’s request to greedily gen-
erate a clarifying question. We then simulate dif-
ferent user intents by sampling multiple responses
to the clarifying question (example generations in
Table 3). Following Kuhn et al. (2023), we then
cluster sets of semantically equivalent responses us-
ing a DeBERTa-large NLI model (He et al., 2021)
finetuned on MNLI (Williams et al., 2018). We say
that two responses are equivalent if either clarify-
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Input with Sampled Clarification Question Simulated User Answers Likelihood

xMT: There, on the trunk. The large storage box at the back of a car. }
60%The large storage compartment of a car.

qgreedy: What type of trunk are you
referring to?

The back of a car.
A large suitcase or box for storage. }

40%The large, wooden storage chest.

xQA: How many Grammy Awards
does Whitney Houston have? The number of Grammy Awards

Whitney Houston won. (Repeated × 4)

}
80%

qgreedy: Are you referring to the number of
Grammy Awards Whitney Houston
won, or the number of Grammy Awards
Whitney Houston was nominated for?

The number of Grammy Awards
Whitney Houston was nominated for.

}
20%

Table 3: Generations from our INTENT-SIM method. Systems greedily generate a clarifying question based on the
input, then sample multiple user responses. We group equivalent responses using an NLI system, then compute the
likelihoods and entropy over the grouped, simulated intents.

ing QA pair entails each other, then estimate the
likelihood of each set as the proportion of samples
in it. Finally, we compute our uncertainty estimate
by computing the entropy of this distribution over
semantically distinct answers. In our experiments
we decode 10 user responses with T = 0.5 for all
systems, following prior work on estimating uncer-
tainty from samples (Cole et al., 2023) (details in
Appendix C).

5.2 Baselines

Likelihood For this baseline, we prompt the
model to generate the output without clarification
using the same few-shot prompt as above. We then
use the likelihood of the greedy output to determine
when to clarify. This simple yet effective baseline
is often used in uncertainty estimation for identi-
fying incorrect model outputs. In this work, we
use low-certainty in the output to identify where
clarification may improve the model’s response.

Self-Ask Introduced by Press et al. (2022), this
prompting method elicits chain-of-thought reason-
ing from LLMs for compositional tasks such as
multi-hop QA. In their method, LLMs decompose
inputs into multiple sub-questions and answers,
which are composed to get the final answer. Self-
Ask uses an intermediate step, where models de-
cide whether to continue generating sub-questions
or generate the final response. We adapt this tech-
nique for our task, where the focus on querying for
outside context, not on decomposing the input. We
adjust our few-shot prompt from above to ask assis-
tants after each input query “Is a follow-up question
needed here?” (exact prompt in Appendix E). We
then use the likelihood of generating “No” to score
whether that clarification is needed. We also in-

clude this step in our few-shot exemplars, creating
a 50-50 split between unambiguous inputs, where
the system responds “No”, and ambiguous inputs,
where systems respond “Yes”.

Sample Entropy Prior work in uncertainty esti-
mation for LLMs has estimated the entropy over an
LLM’s output space by sampling multiple outputs
and grouping equivalent responses (Kuhn et al.,
2023; Cole et al., 2023). Following such works,
we few-shot prompt the LLM to provide an out-
put without clarification. We then group equivalent
sampled responses using a pretrained NLI model
(same as for INTENT-SIM) to determine equivalent
sampled QA outputs. For MT and NLI, we deter-
mine equivalence using exact match. We then clus-
ter equivalent outputs and compute entropy over
equivalent output sets (details in Appendix C).

5.3 Results

In Table 4, we report our results using different
methods for deciding when to clarify. In comparing
these systems against the random baseline, which
randomly selects b% of examples to clarify and
achieves percent gain in performance equal to b,
we observe that Likelihood and Self-Ask demon-
strate mixed results. While these systems generally
perform better than random, they perform consid-
erably worse than random under many settings.
In contrast, using Sample Entropy and INTENT-
SIM consistently outperform all other baselines.
In comparing just Sample Entropy and INTENT-
SIM, we find that INTENT-SIM performs better in
about two-thirds of the AUROC and budget set-
tings we experiment with. Furthermore, note that
in three out of the four settings where INTENT-
SIM achieved the best AUROC performance the dif-
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Task Model Method AUROC b = 10% b = 20% b = 30%

MT GPT-3

Likelihood 0.547 76.1 (6%) 78.1 (17%) 79.8 (27%)
Self-Ask 0.371 77.3 (13%) 79.5 (25%) 81.5 (37%)
Sample Entropy 0.531 76.4 (11%) 78.4 (19%) 80.4 (30%)
INTENT-SIM 0.512 77.3 (13%) 78.7 (21%) 79.3 (24%)

NLI

LLaMA-2 7B Chat

Likelihood 0.416 41.2 (1%) 40.0 (-7%) 39.4 (-11%)
Self-Ask 0.477 41.6 (4%) 41.9 (7%) 42.5 (11%)
Sample Entropy 0.467 43.9 (21%) 44.1 (22%) 43.7 (19%)
INTENT-SIM 0.531* 44.3 (24%) 44.3 (24%) 43.1 (15%)

LLaMA-2 13B Chat

Likelihood 0.526 31.0 (14%) 33.0 (24%) 33.8 (27%)
Self-Ask 0.462 28.2 (1%) 30.6 (12%) 34.0 (28%)
Sample Entropy 0.525 29.8 (8%) 33.0 (24%) 33.8 (27%)
INTENT-SIM 0.544* 31.0 (14%) 32.8 (23%) 34.8 (32%)

QA

GPT-3

Likelihood 0.590 55.4 (14%) 55.9 (25%) 56.3 (35%)
Self-Ask 0.538 55.1 (6%) 55.6 (18%) 56.2 (32%)
Sample Entropy 0.625 55.5 (17%) 56.1 (29%) 57.0 (49%)
INTENT-SIM 0.628* 55.5 (17%) 56.1 (29%) 57.0 (49%)

LLaMA-2 7B Chat

Likelihood 0.510 38.4 (-1%) 39.1 (14%) 39.7 (28%)
Self-Ask 0.510 38.9 (10%) 39.3 (17%) 39.9 (32%)
Sample Entropy 0.532 39.1 (13%) 39.3 (19%) 40.1 (36%)
INTENT-SIM 0.501 38.7 (6%) 39.3 (19%) 39.7 (26%)

LLaMA-2 13B Chat

Likelihood 0.551 41.1 (8%) 41.7 (21%) 41.8 (24%)
Self-Ask 0.546 41.0 (6%) 41.6 (20%) 42.1 (30%)
Sample Entropy 0.552 41.0 (6%) 41.4 (14%) 42.0 (28%)
INTENT-SIM 0.570 41.3 (11%) 41.5 (17%) 42.8 (37%)

Table 4: Results for determining when to clarify. We report AUROC and performance under fixed interaction
budget, b, evaluated using contrastive accuracy for MT, accuracy for QA and NLI. We also report the percent gain in
performance relative to the total gain from clarifying all examples. (*) denotes cases where there was a statistically
significant difference in AUROC with the best performing system when compared against all other baselines. We
determine significance using p < 0.05 and 1,000 samples.

ference was statistically significant from all other
baselines. This was not true for the two settings
where other systems achieved the best AUROC.

6 Related Work

Clarifying Questions Fried et al. (2022) notes
that a relationship between pragmatic reasoning
and ambiguity, where ambiguity can often be re-
solved via pragmatic reasoning. Prior works ex-
plore such goal-oriented dialogues have studied
task-specific settings. Shridhar et al. (2023) stud-
ies generating clarifying questions as a supervised
learning task, and then using them for knowledge
distillation. (Pyatkin et al., 2022) uses RL to guide
their question generation models for moral judg-
ments of a situations. Prior work (Yu et al., 2019)
studies balancing asking clarification questions and
making the final classification prediction over multi
turn interactions. Their clarifying questions only
cover existing attributes, while ours are open ended.
Deng et al. (2023b) also notes the tendency for
current LLMs to not ask clarifying questions, and
explores methods to trigger such responses via
prompting.

Clarifying questions have also been studied un-

der the task of dialogue act prediction. While clari-
fying questions represent one class of dialogue acts,
Deng et al. explores the task of predicting a vari-
ety of other dialogue acts that are relevant to other
dialogue domains like negotiations. Deng et al.
(2023a) surveys work exploring a wider range of
‘dialogue strategies’ and methods to predict when
to use each. Our task of determining whether clari-
fication is needed is closely related to such works
on dialogue act prediction. Furthermore, Sorensen
et al. (2024) describes the challenge and goal of
developing pluralistically aligned language models
that can accommodate a variety of user perspec-
tives. Clarifying questions represent one such strat-
egy, and our evaluation methods using sampled
user interpretations are connected to the concept
of distributional pluralism discussed in this work.
Here, systems are evaluated on their ability to ac-
commodate perspectives based on their distribution
across the user population. We are able to develop
an evaluation setting for this by relying on sam-
pled interpretations to inputs where users may have
diverse views and expect opposing outputs.
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Uncertainty Estimation Several existing works
have studied methods for disentangling different
sources of uncertainty. Kamath et al. (2020) stud-
ies identifying out-of-distribution test examples,
a source of epistemic uncertainty. Other works
have studied uncertainty estimation techniques for
LLMs (Kadavath et al., 2022; Lin et al., 2022), but
they do not explicitly model or evaluate their abil-
ity to disentangle different sources of uncertainty.
These works also explore supervised methods for
uncertainty estimation in LLMs, but find that these
methods generalize poorly to new domains.

Ambiguity in NLP Numerous datasets have
been created for studying ambiguity in NLP, in-
cluding work in coreference resolution (Yuan et al.,
2023), NLI (Pavlick and Kwiatkowski, 2019), and
MT (Pilault et al., 2023). The last work on MT
also studies resolving ambiguity in an interactive
chain-of-thought setting; however, it does not con-
sider the challenge of modeling how ambiguous a
given input is or determining whether interaction
is helpful. (Parrish et al., 2021) has also used ambi-
guity resolution to study model biases, creating a
task where systems are evaluated on if they resolve
ambiguity by relying on harmful social biases.

7 Conclusion

We present a unified framework for resolving am-
biguity with clarifying questions, applying it to
QA, MT, and NLI. Our framework exposes the
challenges in modeling clarifying interactions, and
motivates the further study of disentangling uncer-
tainty estimation and identifying when uncertainty
can be attributed to ambiguity. We present a novel
uncertainty estimation approach for this objective,
INTENT-SIM, which we demonstrate improves de-
tection of when to clarify.

8 Limitations

There is a computational overhead associated with
our proposed INTENT-SIM uncertainty estimation
method that comes from running an NLI model
over samples from the LLM. In practice, we find
that this additional cost is dominated by the need
to sample multiple continuations from the LLM,
and the overhead from running our NLI model or
clustering algorithm are negligible in comparison.

While this work makes strides toward modeling
ambiguity as a distribution over intents, rather than
a binary classification as done in previous works on

ambiguity in NLI and MT, we note that these distri-
butions are highly dependent on a variety of extra-
linguistic factors including time, location, and indi-
vidual preferences. Further exploration is needed
into exploring how this framework may be adapted
to also account for such factors in both modeling
and evaluation.

Finally, our work does not consider several other
important challenges, including clarifying question
generation, and handling arbitrary length interac-
tions. We hope that our work will aid future efforts
exploring these unaddressed challenges.
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A Data Details

In Table 8 include of raw examples from each of
our MT, QA, and NLI datasets and in Table 6 we
include dataset statistics, including the number of
ambiguous versus unambiguous examples, and the
total number of interpretations. In matching inter-
pretations from NaturalQuestions to AmbigQA dis-
ambiguations, we eliminate all examples where the
NaturalQuestions answers do not appear in any of
the AmbigQA interpretations and when it matches
more than one interpretation.

B Oracle Question Generation System
Details

We present our oracle clarification generation
prompts for QA, NLI, and MT in Table 9, Table 10,
and Table 11, respectively. We do not provide GPT-
3.5 any system prompt, and the entire body of the
prompt is provided in a single user-side message.
Note that for our MT oracle prompt, there is the
risk of answer leakage, since the output translation
is included in the prompt. However, we do not find
this is an issue, as the generated followup questions
and answers are always in the source language only.

C Modeling Details

In Figure 2, we outline the INTENT-SIM algorithm
in detail. Note that we greedily sample the clari-
fying question before sampling user responses at
temperature T = 0.5. Note that, as with all sample-
based approaches used in this work, we do not edit
the exemplars between different generation steps
or samples. Note that for our Sample Entropy base-
lines, we use a similar DFS strategy as depicted
in Figure 2 lines 11-16 for clustering equivalent
outputs and estimating entropy over the sampled
outputs. We also use the same sampling hyperpa-
rameters as for INTENT-SIM. Inference was done
on 4 NVIDIA A40 GPUS and the largest LLAMA-
2 13B experiments took less than 5 hours each. We
use the Transformers (Wolf et al., 2020) library
for our implementations of LLAMA-2 models and
variatns

In our initial testing, we find that model pre-
dictions can be sensitive to the choice in few-shot
examples. In preliminary experiments, we explored
sampling greedy answers from the LLMs to 20000
questions from NaturalQuestions over 10 randomly
selected sets of few-shot exemplars using Llama2.
We then counted the number of unique answers
predicted for each question (after normalizing for

# of Unique Answers % of Questions

1 29%
2 24%
3 17%
4 11%

>5 18%

Table 5: Statistics of the number of unique answers gen-
erated per questions from sampling greedy answers from
the LLMs to 20000 questions from NaturalQuestions
over 10 randomly selected sets of few-shot exemplars
using Llama2.

Input: LM M , NLI model N , User input x, sampling
temperature T , and simulation count S.
Output: Entropy over simulated intents, u.
1: q← GreedySample(M, [x])
2: for i ∈ {1, . . . , S} do
3: ai ← TempSample(M, [x;q] , T )
4: G← ∅
5: for i ∈ {1, . . . , S − 1} do
6: for j ∈ {i+ 1, . . . , S} do
7: left← N([q;ai] , [q;aj])
8: right← N([q;aj] , [q;ai])
9: if left is entailment or right is

entailment then
10: G← G ∪ {< i, j >,< j, i >}
11: C ← ∅
12: for i ∈ {1, . . . , S} do
13: if ai ̸∈ c ∀c ∈ C then
14: C ← C ∪ DFS(G, ai)

15: P̂ (c|x)← |c|
S
, ∀c ∈ C

16: u← Entropy(P̂ (·|x))

Figure 2: INTENT-SIM algorithm. We sample a clarify-
ing question and responses from the LLM. We then con-
struct a equivalence graph of responses, G, using NLI
to determine equivalence. Finally, we identify disjoint
subgraphs of G with depth-first-search, representing
distinct intents, and estimate the entropy over intents.

whitespace, casing, etc.). In Table 5, we provide
statistics of the number of unique answers gener-
ated. Given this variation, we evaluate all methods
by randomly sample a new set of exemplars for
each test example to ensure that our evaluations are
not sensitive to any particular choice in few-shot
exemplars. Prior work such as Rubin et al. (2021)
has also explored the topic of varying few-shot ex-
emplars for in-context learning. We will further
clarify this point in our revisions.

D Additional Responsiveness to
Clarification Results

In Table 7, we report our full results on responsive-
ness to clarifications. In addition to what we report
in the main paper in Table 2, we also include re-
sults on LLAMA2 variants without chat-finetuning.
Most notably from these additional results, we can
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see that chat-finetuning has strong effect on the
overall performance across all tasks; however, the
absolute gains from providing clarification only to
increase in our NLI evaluations, and not notably
in our QA results. This suggests that these clarifi-
cation dialogue strategies may not be suffieicntly
learned in these current chat-finetuning approaches.

E Prompts

We present the prompts for responding with clarifi-
cation, without clarification, and for SelfAsk in Ta-
bles 12, 14, and 13. These tables also demonstrate
the variations in prompt between tasks, particularly
in the instructions. We base our NLI instruction and
class-to-token mapping on the prompts from (Liu
et al., 2023).

To perform our experiments with disambiguated
inputs for QA and NLI, we use the same prompt as
responding without clarification, substituting the
input with the disambiguate form of the input. For
MT where disambiguations are given as additional
context sentences, we simply prepend “Context:
. . . ” onto each user input, filling in the context
sentence.

For sampling unambiguous examples for Self-
Ask, we use the unambiguous examples labeled
in the MT and QA datasets. For NLI, where all
examples are labeled as ambiguous, we use exam-
ples where all 9 annotators interpreted the input
the same way as unambiguous examples, as these
demonstrate the least variation in user intents.

F Licensing

AmbigQA does not list any license; however Nat-
uralQuestions, the dataset which it is based on, is
under the Apache License 2.0. The DiscourseMT
dataset is licensed under CC BY-SA 4.0. LLAMA2
is licensed under the LLAMA 2 Community Li-
cense Agreement.

G Ethical Considerations

We do not collect any data in this paper. While we
do generate datasets, we visually inspect generated
examples and do not find instances of harmful or
offensive content. The datasets we use in this work
have been previously vetted by their authors in prior
work. We also note that our work is only applied to
English QA and NLI datasets and English-French
translation.
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Task Ambiguous x Unambiguous x Sampled Interpretations y∗ Total Interpretations y∗

NLI 504 0 504 1008
QA 652 830 1482 2781
MT 88 176 352 352

Table 6: Counts of ambiguous and unambiguous inputs for each task. We also include counts of the number of
sampled interpretations used in our “determining when to clarify” evaluations and the total number of interpretations.

Model Clarification
MT QA NLI

Uniform/Sampled Uniform Sampled Uniform Sampled

GPT3
Direct 50.0 22.7 51.8 31.2 41.7
Clarify 85.8 (35.8) 40.8 (18.1) 61.8 (10.0) 31.6 (0.4) 45.9 (4.2)

Disambig 84.7 (34.7) 41.2 (18.5) 62.0 (10.2) 30.6 (-0.6) 30.6 (-11.1)

LLAMA2 7B
Direct 50.0 14.5 31.4 29.4 32.4
Clarify 46.6 (-3.4) 27.3 (12.8) 45.4 (14.0) 25.4 (-4) 35.9 (3.5)

Disambig 45.5 (-4.5) 25.7 (11.2) 41.1 (9.7) 29.8 (0.4) 29.8 (-2.6)

LLAMA2 7B
Chat

Direct 50.0 18.1 37.3 41.0 43.5
Clarify 43.2 (-6.8) 32.0 (13.9) 47.9 (10.6) 55.3 (14.3) 52.5 (9.0)

Disambig 44.9 (-5.1) 26.5 (8.4) 42.0 (4.7) 40.0 (-1.0) 40.0 (-3.5)

LLAMA2 13B
Direct 50.0 17.7 39.1 30.6 37.4
Clarify 46.6 (-3.4) 34.1 (16.4) 53.7 (14.6) 34.6 (4.0) 43.1 (5.7)

Disambig 47.2 (-2.8) 32.4 (14.7) 50.8 (11.7) 30.2 (-0.4) 30.2 (-7.2)

LLAMA2 13B
Chat

Direct 50.0 17.9 40.0 28.0 40.7
Clarify 40.9 (-9.1) 33.5 (15.6) 50.9 (10.9) 49.1 (21.1) 52.5 (11.8)

Disambig 42.6 (-7.4) 28.5 (10.6) 45.2 (5.2) 26.6 (-1.4) 26.6 (-14.1)

Table 7: Full Responsiveness to clarification results. Here, we alos inlude results of the base LLAMA-2 systems
without chat finetuning. We evaluate three input settings: with clarification (Clarify), with the disambiguated input
(Disambig), and baseline (Direct) without clarification. For QA and NLI, we evaluate under two different data
generation processes, either uniformly weighing all interpretations or using our sampled interpretations. We evaluate
MT using contrastive accuracy, QA using EM accuracy, and NLI using 3-way classification accuracy.
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Task Input (x) Interpretations / Outputs (y)

MT

That is so sweet!

Context: You’ve been so wonderful to me these past couple of
months.
Target: C’est tellement adorable.

Context: Try some - it’s like a sugar explosion!
Target: C’est tellement sucré.

I’ve never seen so much dough!

Context: The pizza’s in the oven, but there’s still some dough
left.
Target: Je n’ai jamais vu autant de pâte !

Context: Here you are - you’ve earnt it.
Target: Je n’ai jamais vu autant de thune !

QA

When is episode 113 of dragon
ball super coming out?

Disambig: When is episode 113 of dragon ball super coming
out for its original airdate?
Answer: October 29, 2017

Disambig: When is episode 113 of dragon ball super coming
out for its american airdate?
Answer: June 1, 2019

Who plays the science officer
on star trek discovery?

Disambig: Who plays the science officer on star trek discovery
who is a chief engineer?
Answer: Anthony Rapp

Disambig: Who plays the science officer on star trek discovery
who is a Kelpien?
Answer: Doug Jones

Disambig: Who plays science officer Michael Burnham on Star
Trek Discovery?
Answer: Sonequa Martin-Green

NLI

A large number of people were
not willing to take the risk. / A
small number of people were
willing to take the risk.

Disambig: A large number of people, but not all people, were
not willing to take the risk.
Label: entailment

Disambig: A large number of people, and possibly all people,
were not willing to take the risk.
Label: neutral

We have not been able to find
any scientific evidence that
extraterrestrial life exists. /
There is no scientific evidence
that extraterrestrial life exists.

Disambig: There is no scientific evidence to be found that
extraterrestrial life exists.
Label: neutral

Disambig: There has been no scientific evidence collected that
extraterrestrial life exists.
Label: entailment

Table 8: Raw ambiguous examples from each dataset.
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Given the Ambiguous Question and several possible Intended Interpretations, ask a Clarification Question and provide
Clarification Responses corresponding to each Intended Interpretations. Here are two examples:

Example 1:
Ambiguous Question: Who has the highest goals in world football?
Intended Interpretation 1: Who has the highest goals in men’s world international football?
Intended Interpretation 2: Who has the highest goals all-time in men’s football?
Intended Interpretation 3: Who has the highest goals in women’s world international football?

Clarification Question: Are you referring to the highest goals in men’s world international football, or the highest goals
in women’s world international football?
Clarification Response 1: The highest goals in men’s world international football.
Clarification Response 2: The highest goals all-time in men’s football.
Clarification Response 3: The highest goals in women’s world international football.

Example 2:
Ambiguous Question: Who won the last olympic men’s hockey?
Intended Interpretation 1: Who won Olympic men’s ice hockey in 2014?
Intended Interpretation 2: Who won Olympic men’s ice hockey in 2010?
Intended Interpretation 3: Who won Olympic men’s ice hockey in 2006?
Intended Interpretation 4: Who won the 2016 olympic men’s field hockey?
Intended Interpretation 5: Who won the 2012 olympic men’s field hockey?
Intended Interpretation 6: Who won the 2008 olympic men’s field hockey?
Clarification Question: Which year? Are referring to field hockey or ice hockey?
Clarification Response 1: 2014, ice hockey.
Clarification Response 2: 2010, ice hockey.
Clarification Response 3: 2006, ice hockey.
Clarification Response 4: 2016, field hockey.
Clarification Response 5: 2012, field hockey.
Clarification Response 6: 2008, field hockey.

Now do it yourself:
Ambiguous Question: {}
Intended Interpretation 1: {}
. . .
Intended Interpretation k: {}

Table 9: QA Followup Generation Prompt.

Given the Ambiguous Phrase and two possible Intended Interpretations, ask a Clarification Question and provide two
Clarification Responses corresponding to each Intended Interpretations. Here are two examples:

Example 1:
Ambiguous Phrase: Jon will wash his car, and Mary will too.
Intended Interpretation 1: Jon will wash his car, and Mary will wash hers.
Intended Interpretation 2: Jon and Mary will both wash Jon’s car.
Clarification Question: Will Jon and Mary wash the same or different cars?
Clarification Response 1: The same.
Clarification Response 2: Different.

Example 2:
Ambiguous Phrase: The hospital is being sued by six foot doctors.
Intended Interpretation 1: The hospital is being sued by six podiatrists.
Intended Interpretation 2: The hospital is being sued by doctors who are six feet tall.
Clarification Question: Do you mean six podiatrists or doctors who are six feet tall.
Clarification Response 1: Podiatrists.
Clarification Response 2: Doctors who are six feet tall.

Now do it yourself:
Ambiguous Phrase: {}
Intended Interpretation 1: {}
Intended Interpretation 2: {}

Table 10: NLI Followup Generation Prompt.
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Given the Ambiguous Phrase and two possible Translations, ask a Clarification Question about the meaning of a specific
word or phrase and provide two Clarification Responses corresponding to each Translation. Here are two examples:

Example 1:
Ambiguous Phrase: Where are the bats?
Translation 1: Où sont les chauves-souris?
Translation 2: Où sont les battes?
Clarification Question: What type of bats do you mean?
Clarification Response 1: The small animals with wings.
Clarification Response 2: Sticks like you would use for a sport.

Example 2:
Ambiguous Phrase: I love dates.
Translation 1: J’adore les rendez-vous.
Translation 2: J’adore les dattes.
Clarification Question: What type of dates are you referring to?
Clarification Response 1: Meetings or appointments with someone.
Clarification Response 2: The sweet fruit from the date palm tree.

Now do it yourself:
Ambiguous Phrase: {}
Translation 1: {}
Translation 2: {}

Table 11: MT Followup Generation Prompt.

Role Messages

System Translate the English sentences into French.

User English: It’s tight enough if you ask me.
Assistant Follow-Up Question: Are you referring to physical tightness or tension in a situation?

User Follow-Up Response: I’m referring to a tense or stressful situation.
Assistant French: C’est déjà assez tendu à mon avis.

. . .

User English: Why don’t you care for them then?
Assistant Follow-Up Question: What do you mean by ’care for them’?

User Follow-Up Response: I mean, why don’t you take responsibility for them or look after them?
Assistant French: Alors pourquoi tu ne t’en occupes pas ?

Table 12: Prompt for few-shot MT with clarification questions. The colored text represents the output generated
from the LLM assistant.

Role Messages

System Answer the question.

User Question: How many medals did australia win in the 2000 olympics?
Assistant Is a Follow-Up Question Needed Here? Yes.

Follow-Up Question: Are you asking about the number of gold, silver, bronze, or total medals
that Australia won in the 2000 Olympics?

User Follow-Up Answer: The total number of medals that Australia won in the 2000 Olympics.
Assistant Answer: 58.

User Question: Who plays erica on the last man on earth?
Assistant Is a Follow-Up Question Needed Here? No.

Answer: Cleopatra Coleman.

. . .

User Question: How long do contestants get to answer on jeopardy?
Assistant Is a Follow-Up Question Needed Here? No.

Table 13: Prompt for few-shot QA with SelfAsk. The colored text represents the output that is scored by LLM
assistant, and used as an uncertainty estimate. Sampled exemplars are always half unambiguous examples, not
requiring follow-up questions, and half ambiguous examples, requiring follow-ups.
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Role Messages

System For each Context, determine whether the Claim is True, False, or Inconclusive.

User Context: The professor admitted that no students wrote course evaluations, which is surprising.
Claim: It is surprising that no students wrote course evaluations.

Assistant Answer: True.

. . .

User Context: Many birds are attracted to the island because of the abundance of food.
Claim: Many birds are attracted to the island because of the abundance of trees.

Assistant Answer: Inconclusive.

Table 14: Few-shot NLI prompt without clarification. The colored text represents the output generated from the
LLM assistant.
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