
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 5362–5387

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Transformer-based Causal Language Models Perform Clustering

Xinbo Wu
University of Illinois Urbana-Champaign

xinbowu2@illinois.edu

Lav R. Varshney
University of Illinois Urbana-Champaign

varshney@illinois.edu

Abstract

Even though large language models (LLMs)
have demonstrated remarkable capability in
solving various natural language tasks, the ca-
pability of an LLM to follow human instruc-
tions is still an area of active development. Re-
cent works (Ouyang et al., 2022; Rafailov et al.,
2023; Zhang et al., 2023) have shown great
improvements in instruction-following capabil-
ity through additional training for instruction-
following tasks. However, the mechanisms
responsible for effective instruction-following
capabilities remain inadequately understood.
Here, we introduce a simplified instruction-
following task and use synthetic datasets to
analyze a Transformer-based causal language
model. Our findings suggest that the model
learns task-specific information by clustering
data within its hidden space, with this clus-
tering process evolving dynamically during
learning. We also demonstrate how this phe-
nomenon assists the model in handling unseen
instances, and validate our results in a more
realistic setting. We further present applica-
tions in pre-training and alignment, inspired by
clustering.

1 Introduction

In recent years, large language models (LLMs)
have achieved remarkable capabilities in natural
language processing and artificial intelligence more
generally (Brown et al., 2020; OpenAI, 2023; Tou-
vron et al., 2023a). However, a significant chal-
lenge with LLMs is the misalignment between their
training objectives and users’ intentions. LLMs
are trained to optimize next-word prediction on
large-scale language data whereas users expect the
model to follow their instructions in a helpful and
safe manner (Zhang et al., 2023). Techniques such
as reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), direct preference
optimization (DPO) (Rafailov et al., 2023), and in-
struction tuning (Zhang et al., 2023) have been pro-

posed to further train LLMs for instruction follow-
ing, yielding seemingly great instruction-following
capabilities. Instruction-following also harkens
back to controllable language models (Keskar et al.,
2019).

Yet, the mechanisms underlying these success-
ful instruction-following capabilities are not well-
understood and require specific analysis. Since
LLMs have grown exceedingly complex in terms
of parameters and training data, such analysis is
extremely challenging. For example, it is difficult
to determine which token to focus on when ana-
lyzing a potentially lengthy and intricate textual
sequence, so as to extract meaningful interpreta-
tion. To gain insights into the hidden mechanisms
of LLMs, one approach is through carefully de-
signed experiments. Conducting such experiments
requires meticulous control over experimental set-
tings and this is challenging due to the complexity
of real-world language data, over which experi-
menters have limited control.

This limitation inspires us to devise a simplified
instruction-following task with a synthetic dataset
that we fully control but that reflects some key
properties of natural language data. This approach
mirrors practices in fields such as experimental
psychology, where researchers aim to study the
complexities of the human mind under simplified
task conditions with controlled stimuli. Since the
Transformer architecture (Vaswani et al., 2017) is
commonly used to build LLMs, we aim to perform
analysis on a Transformer-based causal language
model (CLM) trained for a simplified instruction-
following task to study its inductive biases.

More specifically, the ability to correctly rec-
ognize a learned task may be needed to success-
fully execute it. We aim to investigate how task-
specific information is encoded into the representa-
tion space of Transformer-based CLMs trained for
instruction-following. One intuitive hypothesis is
that hidden states corresponding to the same task

5362



are arranged close together to form a task-specific
cluster, reminiscent of functional modules and topo-
graphic maps that neuroscientists have discovered
in the brain (Knudsen et al., 1987; Chklovskii and
Koulakov, 2004). The alternative is that the hid-
den states are scattered without forming clusters,
and the Transformer learns mechanisms to identify
tasks via these scattered hidden states. Section 3
provides experimental evidence supporting the for-
mer hypothesis.

This leads us to further questions. First, do these
task-specific clusters emerge at a certain point dur-
ing training or gradually evolve? Second, how
might task-specific clustering enhance task perfor-
mance? To dive into these, we must investigate
model learning dynamics, but in-depth analysis
of LLM training is expensive due to long training
schedules and high computational costs. Our sim-
plified setting, however, allows us to constrain the
scope of the tasks so a relatively small model is able
to fully learn the task with a short training schedule.
Specifically, we perform clustering analysis on the
hidden states of the Transformer model by training
it for the instruction-following task and extend this
analysis to the entire learning process. We train the
model from scratch to isolate it from complicated
and potentially noisy pre-training, leaving studies
of pre-training impacts for future work.

Further, we validate findings from the simplified
task in a more realistic setting and showcase two
possible applications in pre-training and alignment
that are inspired by the main findings herein. The
effectiveness of these applications could be further
validated in more realistic settings, but this is de-
ferred to future work due to limited computational
resources and to keep the scope of this work man-
ageable.

In summary, we present a simplified instruction-
following task and generate a synthetic dataset
to examine a Transformer-based CLM model.
Through this simplified framework, we offer ev-
idence showing that the model learns task-specific
information by organizing data into clusters within
its hidden space. Moreover, we show that the
clusters evolve dynamically as the model learns.
Importantly, we illustrate how this clustering phe-
nomenon aids the model in handling previously
unseen instances. This is further validated in more
realistic settings and applied in pre-training and
alignment settings.

2 Instruction-following

2.1 Preliminaries

We assume a task is a function f : X → Y and
each pair of its input and output (x, y) is a map-
ping. We define an instruction-following task as
anticipating an output y by giving an instruction I
and an input x. One example is “given a location,
state its continent. New York City”, where New
York City is the input and the output should be
North America. Essentially an instruction serves
as a prompt that helps to identify a specific task
function f . We assume an instruction I is sampled
from an instruction distribution I and instructions
sampled from different distributions may be asso-
ciated with the same task reflecting the fact that a
task can be expressed in very different ways. How-
ever, the opposite does not hold since this will lead
to an ill-defined problem.

The input can either be integrated into the in-
struction or separated out. For simplicity, we con-
sider separate inputs. One instance is represented
as a sequence of a concatenation of an instruction,
input, and output, [I;x; y], where instruction, in-
put, and output are represented as textual sequences.
Then, the instruction-following task is formulated
as a causal language modeling task by autoregres-
sively predicting the next token in the sequence.

2.2 A simplified instruction-following task

For ease of analysis, we simplify the instruction-
following task as follows. To emulate language
data, we assume both alphabets X and Y are dis-
crete. To have a focus of analysis, we assume the
input and output are each represented by a single
token. The next token prediction task allows us to
have one token representation to evolve from the
current token to the next token across the Trans-
former layers. We further assume the output token
comes right after the input token without using any
template tokens in between, allowing us to con-
centrate our study on representations of one single
token across layers (i.e. its hidden states).

To accommodate these assumptions, we synthe-
size a task function by randomly sampling a finite
number of mappings such that an input of the func-
tion is uniquely associated with an element in Y .
The mapping could be made stochastic, so an in-
put could be associated with multiple different out-
put elements, but for simplicity we mainly assume
uniqueness (but see Appendix B). This reflects the
fact that we usually only have a finite number of
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demonstrations for a task, for model learning and
for evaluation. Different task functions may share
an identical input set, but the respective outputs
could be different, so it is important for the model
to learn to correctly identify a task to provide ac-
curate output accordingly. Additionally, our focus
lies on the model’s ability to generalize by iden-
tifying the correct task from unseen instructions,
rather than generalization of the task itself, which
is beyond the scope of this study. Therefore, we
provide all of the mappings from a task but only
a portion of instructions to the model during the
training process.

We aim to investigate the behavior of the model
when provided with sufficient data to learn the
patterns of different instructions. Given resource
constraints, it is infeasible to create a large-scale
instruction-following dataset of natural language
that enables the model to fully comprehend the
complexities inherent in natural language and then
to train a Transformer model on such a vast dataset.
Therefore, we opt to study the regularities of in-
structions simpler than those of natural languages
using regular expressions. We provide an illustra-
tive example in Figure 1. Regular expressions are
patterns used to match character combinations in
strings. They are widely used in text processing
and search tasks, allowing for flexible and powerful
matching operations. We can also use regular ex-
pressions to synthesize as much data as needed by
sampling based on these expressions, so the model
can adequately acquire the ability to recognize reg-
ularities within the instructions. In our study, we
randomly sample a regular expression, as detailed
in Appendix B. Each sampled regular expression
is considered as a simple grammar rule. We then
sample instructions represented as sequences of
symbols based on the regular expression. We con-
struct instructions by sampling instances based on
different regular expressions to emulate different
distributions.

Another concern arises from many real-world
tasks needing to acquire external knowledge. For
instance, to learn to predict the next letter in the
alphabet sequence, the model must possess exter-
nal knowledge of the alphabet itself. Since we
synthesize task functions in our approach, as out-
lined earlier, we can present all information to the
model to learn how to solve a task, overcoming
this limitation. We associate each task with in-
structions originating from distinct distributions
and construct a data instance by concatenating an

instruction and a mapping together. Each instruc-
tion will accordingly have a task identity. In this
context, the different distributions highlight instruc-
tions characterized by highly distinct regularities,
such as varying vocabularies and syntactic struc-
tures. Given the existence of task-specific clusters
as shown in Figure 2, this treatment also allows us
to examine whether the model forms task-specific
clusters based solely on the similarities of instruc-
tions. Moreover, to delve deeper into the Trans-
former model’s ability to form task-specific clus-
ters, we create hard examples by replacing a word
within certain instructions in the training data with
another word, thereby associating these instruc-
tions with a new task. For instance, in a realis-
tic scenario, substituting the word “initial” with
“secondary” from “return the initial letter from the
provided letter list” indicates a different task. To
further increase the difficulty, we introduce a new
task with identical mappings as the original task
but modify the outputs. In a realistic scenario, even
a subtle change like this would likely trigger a dif-
ferent task. These hard examples can be viewed
as outliers of the original data distribution. This
creates instructions that are difficult to distinguish
based solely on their appearance, posing a challeng-
ing task to assess whether the model can still effec-
tively separate them into distinct clusters based on
task identities.

3 Experiments

3.1 Implementation details

We construct a synthetic instruction-following in-
struction dataset based on the guidelines outlined
in Section 2.2. This dataset is then divided into
training and validation sets. For computational ef-
ficiency in subsequent clustering analysis, we ran-
domly sample a number of instances from a subset
of tasks to form the validation set and a training
subset for intermediate evaluations. Given full con-
trol over the data generation process, we record
meta information such as a task identity for each
data instance. We construct 50 tasks in total and
each task has 152 variants of instructions on aver-
age. Further details regarding the hyperparameters
of the data generation process and statistics of the
resulting datasets are in Appendix B.

We train a six-layer Transformer model follow-
ing the GPT-2 architecture (Radford et al., 2019).
This model is optimized using an AdamW opti-
mizer (Loshchilov and Hutter, 2017) and employs

5364



Figure 1: An illustrative example of our simplified instruction-following setting: Each task consists of three
mappings, in which "->" means from an input to an output. Each dot represents a data instance, which is a
concatenation of an instruction colored blue and a mapping colored orange. As illustrated, an output token comes
right after an input token without any other tokens for formatting in between. Different dot colors indicate different
instruction distributions, while the same color signifies instructions from the same distribution based on a regular
expression. Similar colors represent instances of the same task. We illustrate three tasks, each with three instruction
distributions, and Task X with stochastic mappings where outputs are shared by several inputs (stochastic mappings
are considered in Appendix B.1 experiments). Tasks 1 and 2 overlap in input space, requiring the model to recognize
the task from the instruction to predict the correct output. Clustering occurs such that instances group together in
various ways, as shown by circles. Only a subset of instances is annotated for clarity.

a cosine annealing learning rate schedule. We ter-
minate training based on the best task accuracy
achieved on the validation dataset. The task ac-
curacy is measured by the percentage of correct
outputs, which is treated as the measurement of
task performance. Additional specifics about the
hyperparameters of the model and training process
are in Appendix D. We perform all of our experi-
ments on a single NVIDIA A100 GPU with 80 GB
memory.

3.2 Clustering analysis

As detailed in Section 2.2, our study focuses on the
hidden states corresponding to the input tokens (the
last token in a sequence) within the Transformer
model. We gather hidden states of the input to-
kens from various data instances. Next, we use the
popular KMeans clustering algorithm to uncover
clusters within the data. We optionally pre-process
them using t-SNE dimension reduction (Van der
Maaten and Hinton, 2008) if it benefits the subse-
quent clustering performance. We conduct extrin-
sic clustering evaluation on the clustering results,
using task identities as labels. Our analysis reports
results on the training subset and validation set, em-
ploying three commonly used metrics for clustering
analysis: F1 score, adjusted Rand index (ARI), and
adjusted mutual information (AMI). Further details

on clustering analysis and evaluation metrics are in
Appendix C.

As shown in Figure 2, on both of training and
validation splits, there exists a strong trend of im-
provement of the clustering performance based on
task identities throughout the training process un-
til saturating at some high values. Figure 6 in the
Appendix demonstrates results on all evaluation
metrics. Especially during the late stages of the
training process, the hidden states exhibit a strong
clustering effect on task identities, indicated by
high values across different data splits and met-
rics. The model early stops at the 51th epoch, but
particularly noteworthy is the persistence and even
improvement of the clustering phenomenon long
after the early stopping point, indicating cluster-
ing as a strong inductive bias of the Transformer
during its training process. In addition, the early
stop point is close to when the clustering perfor-
mance starts to saturate. After that, the model’s
task performance also saturates at high values as
shown in Figure 3c, which may indicate a corre-
lation between task performance and clustering
performance. The correlation is further validated
by results presented in Figure 15 in Appendix G.4:
the correlation generally increases across layers,
reaching a significant value.

Moreover, clustering performance tends to im-
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(a) Training subset

(b) Validation set

Figure 2: Clustering analysis on both of training subset (a) and validation set (b) across different layers throughout
the training process: Different columns corresponds to uses of different identities as labels. Only shows results on
F1 score here and see results on other evaluation metrics in Figure 6. Each dot represents a data point.

(a) Training Loss (b) Trainsub Task Accuracy (c) Validation Task Accuracy

Figure 3: (a) Training loss, (b) Training subset task accuracy, and (c) validation task accuracy throughout the training
process. Each dot represents a data point. Both (b) and (c) show dense dots with near-zero accuracy for the first few
epochs.

prove in higher layers of the Transformer model,
with the 0th layer serving as a baseline solely based
on input word embedding. Notably, the baseline
does not undergo much change during the training
process compared to the clustering performances
of other layers. It is important to note that task iden-
tities are concealed from the training process, and
the Transformer models perform clustering during
training without explicit supervision. Moreover,
we design the simplified task to have many tasks
share the same inputs by using a small task-related
vocabulary such that the model will not be able to
identify a task solely from the inputs.

Interestingly, based on our formulation of the
instruction-following task in Section 2.1, instances
with instructions from different distributions are
clustered together based on their task identities.

This is corroborated by the high F1 score. Further,
our analysis reveals that hard examples, formulated
as described in Section 2.2, and their correspond-
ing original examples are predominantly separated
into different clusters. This can be seen from the
significantly high F1 score at the late training stage
on the training subset, which contains both the hard
examples and their original examples. This elimi-
nates the possibility that the model groups instances
solely based on instruction similarities. This under-
scores the model’s ability to form clusters based
on task identities. Additionally, similar clustering
phenomena are observed on both the validation and
testing sets, indicating that the clustering effect gen-
eralizes to unseen instances as well. These results
not only provide compelling evidence supporting
the existence of task-specific clusters but also show

5366



that the clusters evolve throughout the training pro-
cess instead of appearing spontaneously.

We have found that task-specific clusters ex-
ist within the hidden representation space of the
Transformer model. This suggests the question
of whether there are any intriguing internal struc-
tures within these clusters. To explore this, we
conduct the same clustering analysis using the dis-
tributions that the instructions belong to as labels.
As demonstrated in Figure 2, we find obvious clus-
tering effects based on this setting, which reveals
possible inner clustering structures within the task-
specific clusters. To delve deeper and uncover finer-
grained structures within this hierarchical cluster-
ing, we conduct further analysis by considering
a combination of labels, including the identities
of instruction distributions and mappings. We ob-
serve strong clustering under this setting as well,
as evidenced by high clustering performances. See
(Knudsen et al., 1987; Chklovskii and Koulakov,
2004) for similar clustering and mapping phenom-
ena in the mammalian cortex. In addition, by com-
paring to the performance on the training subset,
the model performs generally better on the valida-
tion set when using the combination labels. This
is because the training subset contains some more
challenging hard examples, which are used to check
if the model clusters examples solely based on their
similarities.

Figure 3 showcases the learning curve of the
model based on task accuracy. An intriguing ob-
servation is that the task accuracy remains around
zero for the first few epochs on both training sub-
sets and validation set before abruptly beginning
to rise thereafter, despite continuous improvements
in training loss as depicted in Figure 3a. We hy-
pothesize that the model initially learns task identi-
fication through the evolved clustering process by
resolving various ambiguities that we introduced,
including the hard examples, enabling it to subse-
quently learn to solve different tasks successfully.
We also confirm a similar clustering phenomenon
and various trends we have discovered so far on a
smaller model with a small hidden dimension of
32 and a larger model with a hidden dimension of
2048. See results on these additional models in
Figures 7, 8, 9, and 10 of the Appendix. We also
repeat the experiments for three different random
seeds and present the results in Appendix G.2,
from which consistent results are observed.

In addition, we conduct experiments in a new
setting where tasks share similarities and stochastic

mapping is allowed. We define two tasks as similar
if they share at least one mapping. Detailed descrip-
tions of the experiments and results are provided
in Appendix B.1 and Figure 14. We observed that
instances of the same tasks form clusters, and in-
stances of similar tasks also cluster together. This
indicates that the model places representations of
similar tasks relying on some common knowledge
(shared mappings) in close proximity to each other.

3.3 Advantages of clustering
Next, we explore the potential advantages of the
clustering phenomenon observed earlier. We have
observed clustering effects on both the training sub-
set and unseen instances from the validation set.
To further verify if training instances and unseen
instances with the same task identity are close in
the hidden representation space, Figure 4a shows
the percentage of K nearest training instances of
an unseen instance belonging to the same task iden-
tity, averaged over all instances. The nearest neigh-
bors are found based on the original representations
without the pre-processing by t-SNE. We observe
a dramatic improvement in the percentage along
the training process, indicating that both training
instances and unseen instances are not only close
in the hidden space but also become more clus-
tered as training proceeds. This suggests the same
task-specific clustering structure generalizes to the
unseen instances.

Previous work (Khandelwal et al., 2019) has
demonstrated that using an inference method based
on K-nearest neighbors (KNN) with pre-trained
Transformer-based language models can achieve
competitive or even better next-token prediction
performance than inference methods based on mod-
els’ forward pass. This inspires us to measure task
performance of our models based on KNN during
the training process. From Figure 4b, we observe
that task accuracy based on KNN improves consis-
tently during training until saturating at high val-
ues, providing direct evidence of the advantages of
task-specific clustering by bringing instances of the
same task closer together in the hidden space. More
specifically, the model clusters instances belonging
to the same task close to each other so it is easy
for making inferences for even unseen instances
by using their nearby data instances. The KNN
accuracy is also improved across layers. This is
also apparently a working way to identify a specific
task by a model gradually moving a representation
to those with the same task over a series of layers.
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(a) KNN Percentage (b) KNN Accuracy

Figure 4: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same
task identity. (b) K nearest neighbors accuracy. Measurements are performed across all layers and throughout the
training process.

3.4 Analysis of natural instruction-following
task

One further question to ask is if the clustering phe-
nomenon we discovered under the simplified set-
ting holds in realistic settings. Therefore, we study
trained LLMs on a realistic instruction-following
task based on natural language. We use 16 tasks
and their descriptions in natural language from Hen-
del et al. (2023) of three categories: Knowledge,
Linguistic, and Translation (released under CC-
BY 4.0 license). In accordance with the typical
approach of constructing instruction datasets via
LLM self-instruct (Wang et al., 2022), we build a
set of instructions for each task by using their task
descriptions as seeds to prompt ChatGPT (OpenAI,
2024) to generate 50 different expressions. We
consider expressions sampled based on the same
seed as coming from the same distribution. The
specifics of the task descriptions and prompts used
for querying ChatGPT are in Appendix E. The sub-
sequent step involves linking each instruction to
a task mapping provided by (Hendel et al., 2023)
in the same way as described in Section 2.2. We
only keep those task mappings that have inputs and
outputs of only a single word to have a better focus
of study. For computational efficiency, we only use
ten of those selected task mappings for each task.
We assign the same task identity to tasks under the
same category due to their similarities. The result-
ing dataset contains 8,800 data points. Actually, the
instruction-following data can be considered as a
special kind of language data that naturally exists in
the large-scale language data used for pre-training.
Therefore, we will perform the same clustering
analysis as in Section 3.2 on several different open

LLMs either instruction tuned or not: LLaMa-7B,
LLaMa-13B (Touvron et al., 2023a; Geng and Liu,
2023; Computer, 2023), GPT-J-6B (Wang and Ko-
matsuzaki, 2021) (all three released under a Apache
2.0 license), LLaMa-2-7B-Instruct (Touvron et al.,
2023b; Together, 2023) (released under Llama 2 Li-
cense) and Instruct-GPT-J-6B (NLP Cloud, 2023;
Taori et al., 2023) (released under GPL-3.0 license),
in which LLaMa-2-7B-Instruct and Instruct-GPT-J-
6B are fine-tuned on instruction datasets. Here, B
(billion) refers to the number of parameters; model
sizes are detailed in Table 9 in the Appendix.

We only report measurements of the layer with
the best F1 score for clustering based on task iden-
tity. As in Table 1, similar to our results in the sim-
plified setting, all of the LLMs achieve high cluster-
ing performances based on task identities. In partic-
ular, a high F1 score indicates different tasks under
the same category are clustered together. Both the
LLaMa models of different sizes and the LLaMa-2-
7B-Instruct models receive high scores on cluster-
ing instances with the same distribution-mapping
identities, which is consistent with our results on
the simplified setting. However, the GPT-J-6B and
Instruct-GPT-J-6B seem to not form clear clusters
based on the distribution-mapping identity. More-
over, as we expected, the clustering phenomenon
appears on LLMs whether instruction-tuned or not.
Note that the conclusions we made on the sim-
plified setting may not completely extend to the
realistic settings due to differences in data com-
plexity and scales. However, we do still see some
consistent results, which indicates some general-
izability of the clustering phenomenon. We hope
our analysis of both the simplified and realistic set-
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Model Task Distribution Distribution-Mapping
F1 ARI AMI F1 ARI AMI F1 ARI AMI

LLaMa-7B 0.959 0.872 0.869 0.571 0.438 0.673 0.940 0.903 0.974
LLaMa-13B 0.953 0.855 0.854 0.546 0.381 0.645 0.936 0.893 0.969
GPT-J-6B 0.887 0.697 0.665 0.652 0.485 0.653 0.465 0.345 0.602
LLaMa-2-7B-Instruct 0.917 0.756 0.780 0.563 0.339 0.638 0.932 0.890 0.966
Instruct-GPT-J-6B 0.907 0.749 0.692 0.471 0.290 0.516 0.170 0.084 0.342

Table 1: Clustering analysis on open LLMs using task identity, distribution identity, and distribution-mapping
identity as labels.

tings can shed some light on inductive biases of the
Transformer-based LLMs for instruction following.

4 Applications

Now we demonstrate two applications under our
simplified setting inspired by our findings: pre-
training a model using task identities in the fol-
lowing subsection and an alignment algorithm with
less forgetting (based on switching away from toxic
clusters) in Appendix F.1.

4.1 Pre-training with task identities

Our experimental results from Figure 2 present
task-specific clusters evolved from the training pro-
cess for the instruction-following task. This in-
spires us to ask if we can directly guide a model
to learn the clustering structures within its hidden
representation space before being tuned for various
tasks, to make the tuning process more efficient.

To verify this idea, we pre-train a CLM model to
predict a task identity (ID) for a given instruction.
More specifically, we append a special token at the
end of an instruction to trigger the model to predict
the corresponding task ID as the next token. We
select the model with the best prediction perfor-
mance on the validation set for fine-tuning at the
next stage. Note that the model is pre-trained by
a regular causal language modeling task over an
entire sequence instead of solely the task ID predic-
tion task. Also, the task mappings are not used at
the pre-training stage. As shown in Figure 5a, the
task-specific clusters indeed evolve during the pre-
training process. After pre-training, we fine-tune
the model for the instruction-following task and
measure the task accuracy over the fine-tuning pro-
cess. We compare this pre-training strategy with
direct training for the instruction-following task
denoted by No Pre-training.

To see if our pre-training approach makes ad-
ditional contributions besides language modeling

over the instructions, we also compare it to a setting
(Instruction Pre-training) that pre-trains a model by
causal language modeling over only the instruc-
tions. A model for the following fine-tuning is cho-
sen based on the minimum validation CLM loss.
We focus on a smaller model with a hidden dimen-
sion of 256 since there are two stages of training.

From Figure 5b, we see that our method not only
converges faster but also achieves higher task ac-
curacy on the validation set during the fine-tuning
process than the other two methods. Comparing to
Instruction Pre-training indicates the information
about task ID benefits the downstream fine-tuning.
The results demonstrate both the efficiency and ef-
fectiveness of our pre-training method. It may be
feasible to perform this kind of pre-training scal-
ably in practice since information about task iden-
tities is not hard to collect and is more sparse com-
pared to entire instruction-following data. Further,
due to the high cost of LLM fine-tuning, shorten-
ing its training schedule by accelerating its conver-
gence is both economically and environmentally
appealing.

More experimental details are in Appendix D.
The pre-training application here and the alignment
application in Appendix F.1 are currently limited
to simplified settings. Their effectiveness could be
further verified in more realistic settings, but this
is left as future work due to limited computational
resources and to constrain the scope of this work.
We aim to concentrate on model analysis in this
work and use these applications to demonstrate the
potential usefulness of our findings.

5 Related works

Instruction following: Making LLMs follow user
intention specified in instructions is important for
making them more truthful and less toxic. Many
efforts has been made to achieve this goal (Hill
et al., 2020; Zhang et al., 2023; Ouyang et al.,
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(a) (b)

Figure 5: (a) Clustering analysis of the model trained for the task ID prediction following the setting in Section 3.2.
(b) Comparison of different pre-training strategies by their performances during the fine-tuning process. The task
accuracy is measured on the validation set.

2022; Rafailov et al., 2023). In our work, we focus
on studying the hidden mechanism and inductive
biases of the Transformer-based CLMs to learn
instruction following in a general and simplified
setting, rather than developing a more advanced
instruction-following method.

Functional vectors: Recent works (Todd et al.,
2023; Hendel et al., 2023) present compelling evi-
dence of function vectors that store task-related in-
formation in in-context learning. While in-context
examples can be viewed as a specific type of in-
struction, our work primarily focuses on conduct-
ing analysis based on more general textual instruc-
tions rather than in-context examples. Further, our
study extends to analyzing the learning dynamics
of models, rather than solely focusing on trained
models.

Mechanistic interpretability: The primary ob-
jective of mechanistic interpretability is to reverse
engineer model behaviors (Olah et al., 2020; El-
hage et al., 2021; Nanda et al., 2023; Meng et al.,
2022; Hernandez et al., 2023; Geva et al., 2023;
Conneau et al., 2018; Ilharco et al., 2022). Simi-
lar to many of the works in this area, we conduct
studies based on a synthetic task and data to gain
better controllability of the experiments and per-
form more in-depth analysis.

Clustering in Transformers: Some studies also
explore clustering phenomena within the Trans-
former model (Chen et al., 2021; Reif et al., 2019;
Geshkovski et al., 2023; Thompson and Mimno,
2020). However, they did not specifically focus
on the instruction-following setting and conducted
analysis mainly on trained models. Geshkovski
et al. (2023) primarily concentrates on studying
clustering among tokens within a sequence. In con-
trast, our clustering analysis focuses on identifying

clustering structures among different sequences.

6 Conclusion and discussion

In this work, we introduce a simplified instruction-
following task and construct synthetic datasets to
analyze a Transformer-based CLM model. From
the simplified setting, we provide experimental evi-
dence supporting the notion that the model encodes
task-specific information through clustering in its
hidden space, and demonstrate that this cluster-
ing evolves continuously during the learning pro-
cess. Additionally, we highlight the advantages
of the clustering phenomenon for the model to
handle unseen instances. We also further verify
the existence of the clustering phenomenon in re-
alistic settings. The inductive biases uncovered
and analyzed in this study offer new insights into
Transformer-based CLM models and shed light on
their remarkable instruction-following capabilities.
Further, this newfound understanding can inspire
the development of more advanced algorithms to
enhance LLM’s capability to effectively follow hu-
man instructions. We have shown two inspired
applications—pre-training and alignment—and are
continuing to explore more applications.

Separately, Huh et al. (2024) also studied repre-
sentations of various models and discovered rep-
resentational alignments not only among different
models of the same modality but also among mod-
els of different modalities. Our findings could pro-
vide a potential explanation: representations of dif-
ferent models converge to similar clustering struc-
tures. We plan to explore these aspects in future
work.
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7 Limitations

At present, our main study is confined to a simpli-
fied task and synthetic dataset along with specific
data distributional assumptions. Expanding the
analysis to encompass a broader range of diverse
and realistic distributional assumptions on data is
an avenue for future exploration. We anticipate that
our study can provide insights into Transformer’s
hidden mechanisms and inductive biases, serving
as a foundational starting point and offering direc-
tions for analysis on larger scales. It is conceivable
that our findings may have broader applicability
and could be validated across a wider array of sce-
narios beyond our simplified instruction-following
tasks. Scaling up our analysis to encompass more
complex and realistic scenarios and verifying the
inspired applications in a more realistic setting are
areas we plan to explore in future research endeav-
ors.
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A Societal impact

This work enhances the understanding of induc-
tive biases and hidden mechanisms of Transformer-
based CLMs. By better understanding how the
language models work, we can build systems that
are more transparent, fostering greater trust among
users. Insights into the models’ mechanisms al-
low for the identification and reduction of biases,
leading to fairer AI systems. In addition, the task
identity pre-training algorithm we proposed in Sec-
tion 4.1 could potentially reduce the development
costs of language models and make the process
more environmentally friendly. The novel align-
ment algorithm proposed by this work in Section
F.1 could potentially be leveraged to reduce the
biases and the toxicity of language models, leading
to a positive societal impact. However, deeper in-
sights into the biases and mechanisms of language
models could be misused to develop harmful AI
systems. Nonetheless, the understanding provided
by this work could also lead to the design of bet-
ter monitoring mechanisms to identify and rectify
such misuse.

B Simplified setting

To construct data for the synthetic instruction-
following task under the simplified setting, we
first sample a task function consisting of several
unique mappings. For each mapping, we sample
two symbols from a task symbol vocabulary to
form a mapping. We enforce that no two functions
share a mapping. Next, we sample instructions for
each task based on a regular expression by using
Xeger package (O’Connor, 2015) (released under
MIT license). Regular expressions are sequences
of characters that define a search pattern. They
are widely used in computing for tasks such as
text processing, string manipulation, and pattern
matching. Regular expressions consist of normal
characters (like letters and digits) and special char-
acters (also known as metacharacters) that have spe-
cial meanings. These metacharacters allow you to
specify rules and conditions for matching patterns
within text. We use regular expression reversely by
sampling a string from a search pattern. To sam-
ple a regular expression, we first sample several
metacharacters and then sample normal characters
from an instruction vocabulary as their arguments
and concatenate them together as a regular expres-
sion. For computational efficiency, we build a train-
ing subset, validation set, and hard examples from

a subset of tasks by randomly selecting several
instructions sampled from all of the distributions
associated with each of the tasks. Please refer to
Table 3 for related hyperparameters. We emulate
sampling from different distributions by sampling
from different regular expressions as described in
Section 2.2.

We present the statistics of the synthetic
instruction-following dataset in Table 2.

B.1 Similar task setting

Additionally, we conduct experiments in a new set-
ting where tasks exhibit similarities and stochastic
mapping is permitted. We define two tasks as simi-
lar if they share at least one mapping. We use the
same hyperparameters for data construction as in
the main experiment. Specifically, we designed
the data so that similar tasks share three mappings.
We linked different instruction distributions of the
same task identities to different but similar tasks.
The same model architecture and training strategy
from the main experiment were employed. The
results are presented in Figure 14.

C More on clustering analysis

In this work, we use extrinsic evaluation for our
clustering analysis. Extrinsic evaluation of clus-
tering refers to assessing the quality of clustering
results by comparing them to ground truth. Ground
truth data refers to labeled data that indicates the
class or cluster to which each data point belongs.
We utilize three widely used evaluation metrics: F1,
adjusted Rand index, and adjusted mutual informa-
tion.

F1 Score: The F1 score combines both precision
and recall into a single value, making it a useful
measure of a model’s accuracy. The formula for
the F1 score is 2 × precision×recall

precision+recall . The F1 score
ranges from 0 to 1 with higher values indicating
better agreement to the ground truth.

Adjusted Rand Index (ARI): ARI is a measure
of the similarity between two clustering results. It
considers all pairs of samples and counts pairs that
are assigned to the same or different clusters in
both the true and predicted clusterings. ARI ranges
from −1 to 1, where 1 indicates perfect clustering
agreement, 0 indicates clustering results are ran-
dom, and negative values indicate less agreement
than expected by chance.

Adjusted Mutual Information (AMI): AMI
is another measure used to evaluate the quality of
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Setting Set Size
Simplified Training 7,300

Training subset 180
Validation 315

Realistic Testing 8,800

Table 2: Data statistics of both simplified and realistic settings. The size of a data set is quantified by its number of
instances. Only testing set is available for the realistic setting since we use pre-trained models instead of we training
and validating a model in this setting.

clustering. It quantifies the amount of information
obtained about one clustering from knowing the
other, adjusting for chance. Like ARI, AMI ranges
from −1 to 1, where higher values indicate better
agreement between clusterings.

D Hyperparameters

Tables 3 and 8 show the hyperparameters of the
data generation processes. Table 4 contains the
hyperparameters of our Transformer model and
its training process. Hyperparameters for t-SNE,
KMeans and KNN are listed in Tables 5, 6 and 7.

E Natural instruction-following task

E.1 ChatGPT prompt template
We use the following prompt template to query
ChatGPT to generate different expressions of a
task description: "Rewrite 50 different expressions
of XXX", where "XXX" is a task description.

E.2 Realistic setting
See Table 10 for the task descriptions used for
constructing the dataset for the realistic setting as
detailed in Section 3.4 and data statistics in Table
2.

F More applications

F.1 Alignment
One goal in alignment is to reduce undesirable be-
haviors of LLMs such as toxicity via additional
tuning. Aligning a model to reduce toxicity can
be simulated in our simplified setting: We assume
there is a toxic behavior represented as a task trig-
gered by some instructions with toxic tendencies.
We want to convert the toxic source task to a health-
ier target task that is associated with instructions of
goodwill and shares the same input domain. Then,
a model gives outputs corresponding to the health-
ier task, even if toxic instructions are seen. We
consider the model to get exposure to the healthier

task during its training because this is close to the
reality, in which the model is trained on large-scale
language data.

We first train a model on an instruction-
following dataset generated according to our sim-
plified setting, in which we label some tasks as
toxic, some as their healthier counterparts, and oth-
ers as regular tasks. Next, we construct a new and
smaller dataset consisting of only the data relevant
to the toxic tasks by updating the outputs of the
toxic tasks according to the target tasks and keep-
ing the toxic instructions unchanged. We fine-tune
the model using the new dataset to perform the
alignment.

A straightforward idea is direct fine-tuning, but
this may lead to unwanted catastrophic forgetting
of other tasks (Wang et al., 2023). To overcome
this drawback, one can fine-tune only the linear
language head by freezing the rest of the model.
This approach could be useful in practice since we
are only expected to make limited changes to the
model’s behavior as simple as updating outputs for
certain tasks. However, updating the language head
may still impact the performance of other tasks be-
cause all tasks share the same language head. Since
clusters found by Kmeans may have good separa-
bility, we are inspired to use a switch network that
activates a new language head for the source tasks
and the original language head otherwise based on
the hidden states of the last tokens from the last
layer. Then, only the new language head and the
switch network are trained during the fine-tuning
process such that the performance of other tasks
could largely remain. Since the clustering structure
is clear according to our experiments in Section 3.2,
we use instances of the source tasks and only one
instance for each other task to train the switch net-
work to classify whether an instance belongs to a
source task or not.

We consider both a linear switch network imple-
mented by a linear layer and a switch network con-
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Hyperparameter Value
Number of tasks 50
Maximum number of instruction distributions per task 6
Minimum number of instruction distributions per task 1
Number of instructions per distribution 10
Number of mappings per task 5
Number of tasks in training subset 5
Number of instructions per distribution in the training subset all available
Number of tasks in the validation set 10
Number of instructions per distribution in the validation set 3
Number of different tasks in hard examples 5
Number of instructions per distribution in hard examples 3
Size of the task symbol vocabulary 25
Size of the instruction symbol vocabulary 35
Maximum number of metacharacters per regular expression 3
Minimum number of metacharacters per regular expression 1
Maximum number of characters per metacharacters 10
Minimum number of characters per metacharacters 3

Table 3: Hyperparameters used for the data generation process.

Hyperparameter Value
Learning rate 1E-4
Number of epochs 200
Optimizer AdamW
Max gradient normM 1.0
validation criterion Task accuracy
Scheduler Cosine Annealing
Number of layers 6
Number of heads 8
Hidden dimension 768
Feedforward network dimension 1024
Dropout 0.2

Table 4: Hyperparameters related to our model in the main experiment and its training.

Hyperparameter Value
Number of Components 3
Perplexity 10
Number of iterations 2,000
Metric Euclidean
Initialization method PCA

Table 5: Hyperparameters for t-SNE (Van der Maaten and Hinton, 2008).

Hyperparameter Value
Number of Clusters ground truth number
Initialization method k-means++
Maximum number of iterations 300
Algorithm Lloyd (Lloyd, 1982)

Table 6: Hyperparameters for KMeans.
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Hyperparameter Value
Number of neighbors 10
Weight function uniform
Metric Minkowski

Table 7: Hyperparameters for KNN.

Hyperparameter Value
Number of tasks 50
Number of source-target pairs 3
Maximum number of instruction distributions per task 6
Minimum number of instruction distributions per task 1
Number of mappings per task 5
Number of tasks in the validation set 10
Number of instructions per distribution in the validation set 3
Size of the task symbol vocabulary 65
Size of the instruction symbol vocabulary 35
Maximum number of metacharacters per regular expression 3
Minimum number of metacharacters per regular expression 1
Maximum number of characters per metacharacters 10
Minimum number of characters per metacharacters 3

Table 8: Hyperparameters of the data generation process for the alignment experiments in Section F.1. We do not
consider hard examples in this setting.

Model Hidden Dimension Parameter Count
Our model 768 768 23 million
Our model 32 32 55 thousand
Our model 256 256 3 million
Our model 2048 2048 202 million
LLaMa-7B 4096 7 billion
LLaMa-13B 5120 13 billion
LLaMa-2-7B-instruct 4096 7 billion
GPT-J-6B 4096 6 billion
Instruct-GPT-J-6B 4096 6 billion

Table 9: Sizes of models used in this work in terms of parameter counts and size of hidden dimension. The names
of our models trained in the simplified setting end with their hidden dimension sizes.
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Category Task Description
Translation French to English Given a word in French, translate to English

English to French Given a word in English, translate to French
Spanish to English Given a word in Spanish, translate to English
English to Spanish Given a word in English, translate to Spanish
Italian to English Given a word in Italian, translate to English
English to Italian Given a word in English, translate to Italian

Linguistic Antonyms Given an English adjective, output an antonym
plural to Singular Given an English noun in plural form, output the singular form
Singular to plural Given an English noun in singular form, output the plural form
Present to gerund Given an English verb in present simple tense,

output the corresponding gerund form
Present to past perfect Given an English verb in present simple tense, output the

corresponding verb in past perfect
Present to past simple Given an English verb in present simple tense,

output the corresponding verb in past simple
Knowledge Country to Capital Given a name of a country, output the name of the capital city

Location to continent Given a name of a location, output the name of its continent
Religion Given a name of a location or a person,

output the associated religion
Person to Language Given a name of a person, output their native language

Table 10: Task descriptions provided by Hendel et al. (2023)

structed by a more capable three-layer multilayer
perceptron (MLP). The intermediate dimension of
the MLP is the same as the hidden dimension of
the CLM model. We compare different methods
by selecting a model based on the best average
validation accuracy of updated source tasks.

Table 11 shows that all methods achieve perfect
performance for the updated source tasks on a val-
idation set, but the direct fine-tuning undergoes
significant performance drops on other tasks. Note
that perfect performance means a model provides
updated and healthier outputs even if toxic instruc-
tions are given. The method that only fine-tunes the
language head retains more performance on other
tasks, but not as much as methods using the linear
switch network and the MLP-based switch network.
The MLP-based switch network is slightly better
than the linear switch network. Moreover, a few ad-
ditional examples of the other tasks are not only at-
tainable in practice but also are sufficient to achieve
a small performance degradation, which showcases
good scalability of the method and further supports
good separability. The performance of other tasks
is not completely preserved due to the imperfection
of the switch network and more examples may be
used to obtain a better switch network.

G More results

We present additional experimental results in this
section.

G.1 Various models
We show results obtained on models with various
architectures in Figures 6-10.

G.2 Various random seeds
We also repeat our main experiment with three
different random seeds and report the means and
standard deviations in Figures 11, 12 and 13. The
greater variations in the results based on training
subsets in Figure 11a are due to instability from
learning the hard examples.

G.3 Experiments on similar tasks.
In Figure 14, we present results based on the simi-
lar task setting described in Appendix B.1.

G.4 Correlation analysis
We conducted a correlation analysis between task
performance and clustering performance. In Fig-
ure 15, Pearson correlation coefficients (Freedman
et al., 2007) are calculated between task perfor-
mance and clustering performance throughout the
entire training process for each individual layer.
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Method Task Accuracy Accuracy Drop
Direct fine-tuning 1.00 0.210
Language head fine-tuning 1.00 0.120
Ours with Linear switch network 1.00 0.087
Ours with MLP-based switch network 1.00 0.080

Table 11: Comparison of different alignment methods described in Section F.1 by their performances on a validation
set. Task accuracy is measured for updated source tasks only and accuracy drop is measured for tasks other than the
source tasks.

We observe that for all combinations, the corre-
lation generally increases across layers, reaching
values over 0.6 for accuracy and below -0.6 for loss,
indicating a relatively strong correlation.
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(a) Training subset

(b) Validation set

Figure 6: Clustering analysis on both training subset (a) and validation set (b) across different layers throughout the
training process: Different columns correspond to uses of different identities as labels.
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(a) Training subset

(b) Validation set

Figure 7: Clustering analysis on both training subset (a) and validation set (b) across different layers throughout
the training process: The results are shown for the model with 32 hidden dimensions. We train this model for 500
epochs due to its slow convergence. Different columns correspond to the uses of different identities as labels.
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(a) KNN Percentage (b) KNN Accuracy

Figure 8: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same task
identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process. The results are shown for the model with 32 hidden dimension.
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(a) Training subset

(b) Validation set

Figure 9: Clustering analysis on both training subset (a) and validation set (b) across different layers throughout the
training process: The results are shown for the model with 2048 hidden dimension. Different columns correspond
to the uses of different identities as labels.
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(a) KNN Percentage (b) KNN Accuracy

Figure 10: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same
task identity. (b) K nearest neighbors accuracy. Measurements are performed across all layers and throughout the
training process. The results are shown for the model with 2048 hidden dimensions.
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(a) Training subset

(b) Validation set

Figure 11: Clustering analysis on both training subset (a) and validation set (b) across different layers throughout
the training process: The results are aggregated from repeated main experiments using different random seeds.
Shaded areas represent variability via means and ± standard deviations. Different columns correspond to the uses of
different identities as labels.
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(a) KNN Percentage (b) KNN Accuracy

Figure 12: (a) Percentage of K nearest neighbors in the training set of an unseen instance belonging to the same
task identity. (b) K nearest neighbors accuracy. Measurements are performed across all of layers and throughout the
training process. The results are aggregated from repeated main experiments using different random seeds. Shaded
areas represent variability via means and ± standard deviations.

(a) Training Loss

(b) Trainsub Task Accuracy (c) Validation Task Accuracy

Figure 13: (a) Training loss, (b) Training subset task accuracy, and (c) validation task accuracy throughout the
training process. Each dot represents a data point. Both (b) and (c) show dense dots with near-zero accuracy for the
first few epochs. The results are aggregated from repeated main experiments using different random seeds. Shaded
areas represent variability via means and ± standard deviations.
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(a) Training subset

(b) Validation set

Figure 14: Clustering analysis on both training subset (a) and validation set (b) across different layers throughout the
training process: The results are obtained by training a model on data with similar tasks. As detailed in Section B.1,
instances sharing the same task identity have either identical or similar tasks, while those with the same distribution
identity have identical tasks. We observe that instances with similar tasks form clusters, while instances with
identical tasks form more specific, lower-level clusters.
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Figure 15: Correlation analysis between the task performance and the clustering performance. The task performance
is measured by either the task accuracy or its cross-entropy loss. We follow the main experiments to use F1, ARI and
AMI to measure the clustering performance based on the task identity. Experiments are performed on the validation
data split. With a combination of different measurements shown in the legend, Pearson correlation coefficients
(Freedman et al., 2007) are computed between the task performances and the clustering performances across the
entire training process for each individual layer. We can observe that in all of the combinations, the correlation
generally increases across layers and reaches a value over 0.6 (below -0.6) for performance measurements using
accuracy/loss respectively, an indicator of a relatively strong correlation.
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